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SYMPLECTIC CURVATURE FLOW

JEFFREY STREETS AND GANG TIAN

Abstract. We introduce a parabolic flow of almost Kähler structures, providing a natural
extension of Kähler Ricci flow onto symplectic manifolds. We exhibit this flow as one of a
family of parabolic flows of almost Hermitian structures, generalizing our previous work on
parabolic flows of Hermitian metrics. We end with a discussion of some problems related to
the symplectic curvature flow.

1. Introduction

The purpose of this paper is to introduce a geometric evolution equation on symplectic
manifolds. More specifically, let (M2n, ω) denote a compact smooth manifold with closed,
nondegenerate 2-form ω. Any such ω admits compatible almost complex structures. Below
we will define a coupled degnerate parabolic system of equations for a compatible pair (ω, J)
preserving the symplectic condition for ω. If the initial almost complex structure is in fact
integrable, then the resulting one-parameter family of complex structures is fixed, i.e. J(t) =
J(0), and the family of Kähler forms ω(t) is a solution to Kähler Ricci flow. This parabolic
system is furthermore a special instance of a general family of parabolic flows of almost
Hermitian structures. We begin by describing this more general setup, then proceed to
define the flow of almost Kähler structures.

Let (M2n, ω, J) be an almost Hermitian manifold. Let ∇ denote the Chern connection
associated to (ω, J), which is the unique connection satisfying

∇ω ≡ 0, ∇J ≡ 0, T 1,1 ≡ 0

where T 1,1 refers to the (1, 1) component of the torsion of ∇ thought of as a section of
Λ2 ⊗ TM . Let Ω denote the (4, 0)-curvature tensor associated to this connection, and let

Sij = ωklΩklij.

Furthermore, let Q denote a (1, 1) form which is a quadratic expression in the torsion T of
∇. Let

Ki
j = ωkl∇kN

i
lj.

where N denotes the Nijenhuis tensor associated to J . Also, let H denote a generic qua-
dratic expression in the torsion which is an endomorphism of the tangent bundle which
skew-commutes with J . Finally, let

H =
1

2
[ω(K −H, J) + ω(J,K −H)] .
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These definitions are spelled out in greater detail in the rest of the paper. Consider the initial
value problem

∂

∂t
ω = − 2S +Q+H

∂

∂t
J = −K +H

ω(0) = ω0

J(0) = J0.

(1.1)

It follows from Lemma 3.2 that this system of equations preserves compatibility of the pair
(ω, J). Moreover this is a degenerate parabolic system of equations for (ω, J), with degeneracy
arising from the action of the diffeomorphism group. In section 3 we prove the general short-
time existence of solutions of (1.1), a generalization of Theorem 1.1 of [11].

Theorem 1.1. Let (M2n, ω0, J0) be an almost-Hermitian manifold. There exists ǫ > 0 so
that a unique solution to (1.1) with initial condition (ω0, J0) exists on [0, ǫ). Moreover, g(t)
is compatible with J(t) for all t ∈ [0, ǫ). If J0 is integrable, then J(t) = J0 for all t ∈ [0, ǫ).
Furthermore, if J0 is integrable and g0 is Kähler, then g(t) is Kähler for all t ∈ [0, ǫ) and
g(t) solves the Kähler-Ricci flow with initial condition g0.

Remark 1.2. It is important to note that equation (1.1) is defining a family of equations.
Indeed, the choice of Q, and further lower order terms which may be included in the definition
of K and F , are arbitrary in the definition of (1.1) and the proof of Theorem 1.1.

Remark 1.3. When J0 is integrable, the one-parameter family of metrics ω(t) is a solution
to Hermitian curvature flow, as defined in [11]. Again, the torsion term Q can be arbitrary
for the result of Theorem 1.1.

Remark 1.4. As will be clear from Proposition 4.5, it is possible to define a parabolic flow
of metrics compatible with any given almost complex structure. Specifically, given (M2n, J)
an almost complex manifold, one can set

∂

∂t
ω = − 2S +Q (1.2)

where again Q is a (1, 1) form which is a quadratic expression in the torsion. This viewpoint
was considered recently by Vezzoni [17]. When J is integrable, this is precisely the family of
equations introduced in [11]. If one is interested in understanding metrics compatible with a
given almost complex structure, (1.2) could be a useful tool.

We now proceed to define the flow of almost Kähler structures.

Definition 1.5. An almost Hermitian manifold (M2n, ω, J) is almost Kähler if

dω = 0.

This condition is a very natural extension of Kähler geometry, and one may consult [1]
for a nice fairly recent survey of results on these structures. Due to its connection with
symplectic geometry, almost Kähler structures have become a central area of mathematics
(see for instance [5], [9]).

An almost Kähler structure has a canonical Hermitian connection ∇ (which coincides with
the Chern connection) with curvature Ω. Furthermore, let

Pij = ωklΩijkl.
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Also let

Rj
i = Jk

i Rcjk −Rcki J
j
k .

Consider the initial value problem

∂

∂t
ω = − 2P

∂

∂t
J = − 2g−1

[
P (2,0)+(0,2)

]
+R

ω(0) = ω0

J(0) = J0.

(1.3)

Theorem 1.6. Let (M2n, ω0, J0) be an almost Kähler manifold. There exists ǫ > 0 so that
a unique solution to (1.3) with intial condition (ω0, J0) exists on [0, ǫ). Moreover, the pair
(ω(t), J(t)) is a solution to an equation of the type (1.1), where Q and H are defined in (5.13)
and (5.14) respectively, and H is defined so that (4.1) holds. In particular, this instance of
equation (1.1) preserves the almost Kähler condition.

Remark 1.7. In [8] a certain geometric evolution equation was studied on symplectic man-
ifolds. There the perspective taken is that the symplectic structure ω is fixed, and then one
studies the gradient flow of the functional

F(J) :=

∫

M

|DJ |2 dV

where the metric defining the quantities above is that associated to J via ω. The proof of
short time existence of this flow is already technical, due to certain local obstructions in
prescribing the skew-symmetric part of the Ricci tensor. Our approach here is different, as
we allow both ω and J to change. This seems to have certain advantages, since for instance
the diffeomorphism action is the only obstruction to parabolicity.

Here is an outline of the rest of the paper. In section 2 we review some basic aspects
of almost Hermitian geometry, and recall the Chern connection. Section 3 contains basic
calculations on variations of almost Hermitian structures. In sections 4 and 5 we give the
proofs of Theorems 1.1 and 1.6. In section 6, we give a discussion of some special properties
of the limiting metrics of (1.3). We end in section 7 by posing a number of problems related
to symplectic curvature flow. In a forthcoming paper, we will study the curvature evolution
equations of our flow for almost Kähler manifolds and derive some consequences of them.

Acknowledgements: The first author would like to thank Graham Cox, Zoltan Szabo,
Mohommad Tehrani, and Guangbo Xu for several interesting conversations on this topic.

2. Background on Almost Hermitian Geometry

In this section we review some basic material about almost Hermitian geometry and various
associated connections. Let (M2n, J) be an almost complex manifold. This means that J is
an endomorphism of TM satisfying

J2 = − Id .

By the famous theorem of Newlander-Nirenberg [10], the almost complex structure J is
integrable, i.e. one can find local complex coordinates at each point, if and only if the
Nijenhuis tensor vanishes. Following the convention of [7], the Nijenhuis tensor is

4NJ (X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X,JY ]. (2.1)
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As in the case of complex manifold, the almost-complex structure J induces a decomposition
of the space of differential forms onM via the eigenspace decomposition on TM . In particular
we will write

Λr(M)⊗ C =
⊕

p+q=r

Λp,q.

The operator d acts on Λr, but in general one does not have dΛp,q ⊂ Λp+1,q ⊕ Λp,q+1, due to
the potential lack of integrability of J .

Moving to the metric geometry, let ω be an almost-Hermitian metric on M , i.e. ω is a real
(1, 1) form satisfying the compatibility condition

ω(·, ·) = ω(J ·, J ·).

Associated to this pair is the Riemannian metric

g(·, ·) = ω(·, J ·).

Next we consider connections associated to almost Hermitian manifolds. A very thorough
discussion of these connections can be found in [7]. A connection∇ on TM is called Hermitian
if

∇ω ≡ 0, ∇J ≡ 0.

These two conditions alone do not suffice to determine a unique connection in general. Indeed,
there is freedom yet of ψ ∈ Λ3(R)∩Λ2,1⊕Λ1,2 and B ∈ Λ1,1⊗TM satisfying a certain Bianchi
identity (see [7] Proposition 2). Certain members of this family are chosen according to certain
desirable properties of the torsion. Frequently, one chooses the Chern connection.

Definition 2.1. Given (M2n, ω, J) an almost-Hermitian manifold, the Chern connection
associated to (ω, J) is the unique connection ∇ satisfying

∇ω ≡ 0

∇J ≡ 0

T 1,1 ≡ 0

where T denotes the torsion tensor of ∇ and T 1,1 is the projection of the vector-valued torsion
two-form onto the space of (1, 1)-forms.

As a final important remark we observe that there is a canonical Hermitian connection on
almost Kähler manifolds. This connection has the simple form

∇XY = DXY −
1

2
J(DXJ)(Y ).

3. Variations of Almost Hermitian Structures

Lemma 3.1. Let (M2n, J) be a complex manifold and suppose J(t) is a one-parameter family
of endomorphisms of TM such that J(0) = J . Then J(t) is a one-parameter family of almost-
complex structures if and only if

J

(
∂

∂t
J

)
+

(
∂

∂t
J

)
J = 0.
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Proof. Since by assumption J(t) is an almost complex structure, we have J(t)2 = − Id. Thus

0 =
∂

∂t
J2 = JK +KJ.

�

Lemma 3.2. Let (M2n, ω(t), J(t)) be a one-parameter family of Kähler forms and almost-
complex structures. Specifically write

∂

∂t
ω = φ+ ψ

∂

∂t
J = K

where ψ ∈ Λ(2,0)+(0,2) and φ ∈ Λ1,1. Then ω(t) is compatible with J(t) if and only if

ψ =
1

2
[ω(K,J) + ω(J,K)] . (3.1)

Proof. We directly compute

0 =
∂

∂t
(ω(J ·, J ·) − ω(·, ·))

= (φ+ ψ) (J ·, J ·) + ω(K·, J ·) + ω(J ·,K·) − (φ+ ψ) (·, ·)

= ψ(J ·, J ·) − ψ(·, ·) + ω(K·, J ·) + ω(J ·,K·).

Since ψ ∈ Λ(2,0)+(0,2) the above equation is equivalent to

2ψ = ω(K,J) + ω(J,K)

as required. �

Remark 3.3. Fix a point p ∈ M and choose some local coordinates. Certainly the above
equation for ψ holds if

Kb
a = gbcψac.

In paricular we have

ω(K,J)ab + ω(J,K)ab = ωcdK
c
aJ

d
b + ωcdJ

c
aK

d
b

= ωcdg
cpψapJ

d
b + ωcdJ

c
ag

dpψbp

= gcpgcbψap + ωcdJ
c
ag

dpψbp

= ψab − ψba

= 2ψab.

Thus (3.1) holds. Observe however that K is not determined by ψ alone. Indeed any skew-
Hermitian tensor can be added to K and (3.1) will still hold.

Lemma 3.4. Let (M2n, J) be an almost-complex manifold and let X be a vector field on M .
Then

JLXJ + LXJJ = 0. (3.2)

Furthermore, if ω is compatible with J , we have

(LXω)
(2,0)+(0,2) =

1

2
(ω(LXJ ·, J ·) + ω(J ·, LXJ ·)) .
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Proof. By [3] pg. 86, we have the formula for LXJ :

(LXJ) (Y ) = [X,JY ]− J [X,Y ].

Given this, the second equation follows by direct calculation. The final equation obviously
must hold since it is just the linearized compatibility condition (3.1) and the action of a
diffeomorphism preserves compatibility, but we just as well compute

0 = LX (ω(·, ·) − ω(J ·, J ·))

= (LXω)(·, ·) − (LXω) (J ·, J ·) − ω(LXJ ·, J ·) − ω(J ·, LXJ ·).

Rearranging the above formula gives the result. �

Lemma 3.5. Let (M2n, J) be an almost complex manifold and let X be a vector field on M .
Then

(LXJ)
l
k = J l

p∂kX
p − J

p
k∂pX

l +O(X).

Proof. Choose local coordinate vector fields ek. Then using Lemma 3.4 we see

(LXJ)
l
k e

k = −
(
Jek

)p

∂pX
l + J l

p

[
ek∂kX

p
]
+O(X)

= − J
p
k∂pX

l + J l
p∂kX

p +O(X).

as required. �

4. Parabolic Flows of Almost Hermitian structures

In this section we prove Theorem 1.1. Let us recall some definitions from the introduction
used in (1.1). In particular, let (M2n, ω, J) be an almost Hermitian manifold and let ∇ denote
the associated Chern connection (see Definition 2.1). Let Ω denote the (4, 0) curvature tensor
associated to ∇, and consider

Sij = ωklΩklij.

Furthermore, let N denote the Nijenhuis tensor associated to J , and let

Ki
j = ωkl∇kN

i
lj.

Let Q denote a (1, 1) tensor which is quadratic expression in the torsion of ∇, and let H
denote a J-skew endomorphism of the tangent bundle which again is quadratic in the torsion
of ∇. Let

H =
1

2
[ω(K −H, J) + ω(J,K −H)] . (4.1)

Consider the initial value problem

∂

∂t
ω = − 2S +Q+H

∂

∂t
J = −K +H

ω(0) = ω0

J(0) = J0.

(4.2)

The main goal of this section is to prove the short time existence for this flow as described
in Theorem 1.1. We begin by checking that indeed equation (1.1) defines a one-parameter
family of almost complex structures.
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Lemma 4.1. Let (M2n, J) be an almost-Hermitian manifold. Then, viewing the Nijenhuis
tensor N as a section of Λ1 ⊗ End(TM),

JN +NJ = 0.

Proof. We can derive this by direct calculation using the definition of the Nijenhuis tensor
(2.1). First

−4JN = J ([X,Y ] + J ([JX, Y ] + [X,JY ])− [JX, JY ])

= J [X,Y ]− [JX, Y ]− [X,JY ]− J [JX, JY ].

Next

−4NJ = [X,JY ] + J ([JX, JY ] + [X,JJY ])− [JX, JJY ]

= [X,JY ] + J [JX, JY ]− J [X,Y ] + [JX, Y ].

The result follows adding these two calculations together. �

Lemma 4.2. Let (M2n, ω, J) be an almost Hermitian manifold. Then

JK +KJ = 0.

Proof. We may write the result of Lemma 4.1 in coordinates as

Jm
k N

l
jm +Nm

jkJ
l
m = 0

We differentiate this using the Chern connection. Since J is parallel we see

0 = Jm
k ∇iN

l
jm +∇iN

m
jkJ

l
m

we can now take the required contraction of indices using ω to yield the statement of the
lemma. �

Definition 4.3. Let (M2n, ω, J) be an almost Hermitian manifold. Let ∇ denote some fixed
connection on TM . Define a vector field

Xp = X(ω, J,∇)p = ωkl∇kJ
p
l . (4.3)

Proposition 4.4. Let (M2n, ω, J) be an almost-Hermitian manifold and let ∇ denote some
fixed connection on TM . The map

J → K− LX(ω,J,∇)J

is a second order elliptic operator.

Proof. We recall a coordinate formula for the Nijenhuis tensor.

N i
jk = J

p
j ∂pJ

i
k − J

p
k∂pJ

i
j − J i

p∂jJ
p
k + J i

p∂kJ
p
j .

It follows that

Ki
j = ωkl∇kN

i
lj

= ωkl
(
J
q
l ∂k∂qJ

i
j − J

q
j ∂k∂qJ

i
l − J i

q∂k∂lJ
q
j + J i

q∂k∂jJ
q
l

)
+O(∂J, ∂ω)

= − gqk∂k∂qJ
i
j − ωkl

(
J
q
j ∂k∂qJ

i
l + J i

q∂k∂lJ
q
j − J i

q∂k∂jJ
q
l

)
+O(∂J, ∂ω)

(4.4)

where the notation O(∂J, ∂ω) means an expression which only depends on at most first
derivatives of J and ω (possibly in a nonlinear fashion). In particular, Chern connection
terms are of this form. Note that the matrix ω is skew-symmetric, but coordinate derivatives
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are symmetric, therefore the middle term in the parentheses in the last line vanishes. Also,
using (4.3) and Lemma 3.5 we express

[
LX(ω,J,∇)J

]i
j
= ωkl

(
J i
q∂j∂kJ

q
l − J

q
j ∂q∂kJ

i
l

)
+O(∂J, ∂ω)

Combining these two calculations yields
[
K − LX(ω,J,∇)J

]i
j
= −gkl∂k∂lJ

i
j +O(∂J, ∂ω).

The claim follows immediately. �

Proposition 4.5. Let (M2n, g, J) be an almost-Hermitian manifold. The map

ω → S(ω)

is a second order elliptic operator.

Proof. Fix a point p ∈ M , and choose a local frame of (1, 0) vector fields {ei} such that
gij(p) = δij . In this frame we compute using metric compatibility of ∇,

Skl = ωijΩijkl

= ωij
〈
∇i∇jek −∇j∇iek −∇[ei,ej ]

ek, el

〉

= ωij
(
ei

〈
∇jek, el

〉
−

〈
∇jek,∇iel

〉
− ej

〈
∇iek, el

〉
+
〈
∇iek,∇jel

〉)
+O(∂ω, ∂J)

= ωij
(
ei

〈
∇jek, el

〉
− ejei

〈
ek, el

〉
+ ej

〈
ek,∇iel

〉)
+O(∂ω, ∂J).

Now using J compatibility of the connection and the fact that the torsion T has no (1, 1)-
component we see that 〈

∇jek, el

〉
=

〈
∇jek −∇kej , el

〉

=
〈
Tjk + [ej , ek], el

〉

= O(ω, ∂J).

The last line follows since the only nonvanishing term is determined by the Nijenhuis tensor.
Likewise one concludes that

〈
ek,∇eiel

〉
= O(ω, ∂J). Therefore

Skl = − gijejeiωkl +O(∂ω, ∂2J)

= −
1

2
gab∂a∂bωkl +O(∂ω, ∂2J).

The result follows. �

We can now give the proof of Theorem 1.1.

Proof. First we show existence. Fix ∇ any connection on M and let X be defined as in
Definition 4.3. Consider the following gauge-fixed version of equation (4.2)

∂

∂t
ω = − 2S +Q+H + LX(g,J)ω = D1(ω, J)

∂

∂t
J = −K +H + LX(g,J)J = D2(ω, J).

(4.5)

First of all, it follows from Lemmas 3.4 and 4.2 that the evolution equation for J in fact defines
a family of almost complex structures. Furthermore, by (4.1), Lemma 3.4, and Lemma 3.2
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it follows that the pair (ω(t), J(t)) remains compatible along a solution to (4.5). We observe
that by definition the vector field X(g, J) can be expressed completely in terms of first
derivatives of J and therefore

(
LX(ω,J)ω

)
ij

is a first order operator in ω. Use Lω,LJ to

denote linearization in the ω and J variables respectively. It follows from Proposition 4.5
that

σ
[
L̂ωD1

]
(h)ij = σ

[
L̂(−2S)

]
(h)ij

= |ξ|2 hij .

Furthermore, from Proposition 4.4 we conclude that

σ
[
L̂JD2

]
(K)ji = |ξ|2Kj

i

We also need to check the linearization of D2 in the variable ω. Since by construction we
have that D2 only depends on first derivatives of ω, we conclude

σ
[
L̂ωD2

]
(h)ji = 0.

We note that second derivative terms of J appear in the evolution of ω, therefore these terms
appear in the full linearized operator. Collecting these observations we conclude that the
overall symbol is upper-triangular. In particular it takes the form

σ
[
L̂D

]
(h,K) =

(
I ∗
0 I

)(
h

K

)

It follows that (4.5) is a strictly parabolic system of equations, and therefore short-time
existence follows from standard theory. Now we want to pull back our solution by the
family of diffeomorphisms generated by X. Specifically let φt be a one-parameter family of
diffeomorphisms of M defined by the ODE

∂

∂t
φt = −X(ω(t), J(t),∇)

φ0 = idM .
(4.6)

It follows that

∂

∂t
(φ∗tω(t)) =

∂

∂s
|s=0

(
φ∗t+sω(t+ s)

)

= φ∗t

(
∂

∂t
ω(t)

)
+

∂

∂s
|s=0

(
φ∗t+sω(t)

)

= φ∗t
(
−S +Q+ F + LX(ω(t),J(t))ω

)

+
∂

∂s
|s=0

[(
φ−1
t ◦ φt+s

)∗
φ∗tωt

]

= (−S +Q+ F ) (φ∗t (ω), φ
∗

t (J))

+ φ∗t
(
LX(ω(t),J(t))

)
− L(φ−1

t )
∗
X(ω(t),J(t)) (φ

∗

tω(t))

= (−S +Q+ F ) (φ∗t (ω), φ
∗

t (J)) .
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Likewise we may compute

∂

∂t
(φ∗tJ(t)) =

∂

∂s
|s=0

(
φ∗t+sJ(t+ s)

)

= φ∗t

(
∂

∂t
J(t)

)
+

∂

∂s
|s=0

(
φ∗t+sJ(t)

)

= φ∗t
(
−K(ω, J) + LX(ω(t),J(t))

)

+
∂

∂s
|s=0

[(
φ−1
t ◦ φt+s

)∗
φ∗tJt

]

= −K(φ∗tω(t), φ
∗

tJ(t)) + φ∗tLX(ω(t),J(t))

− L(φ−1

t )∗X(ω(t),J(t)) (φ
∗

tJ(t))

= −K(φ∗tω(t), φ
∗

tJ(t)).

Therefore (φ∗tω(t), φ
∗
t (J(t))) is a solution to (4.2).

Next we show uniqueness. As in the proof of uniqueness for Ricci flow, we will show that
the diffeomorphism ODE (4.6), when written with respect to the changing metric, is in fact
a parabolic equation for φ. What is more, as we now show, our choice of X is essentially
equivalent to that used for Ricci flow short-time existence. Let ΓC ,Γ,Γ denote the connection
coefficients of the Chern , Levi-Civita, and background connections respectively. Consider
the following calculation:

Xp = ωkl∇kJ
p
l

= ωkl∂kJ
p
l +O(ω, J)

= ωkl
(
∇kJ

p
l + (ΓC)

q
kl J

p
q − (ΓC)

p
kq J

q
l

)
+O(ω, J)

= ωkl (ΓC)
q
kl J

p
q + gkq (ΓC)

p
kq +O(ω, J).

(4.7)

The first term is the contraction of the Chern connection coefficient with a skew-symmetric
one-form, and hence vanishes. Specifically we compute

ωkl (ΓC)
q
kl J

p
q =

1

2
ωkl

(
(ΓC)

q
kl − (ΓC)

q
lk

)
Jp
q

=
1

2
ωklT

q
klJ

p
q

= 0

(4.8)

since the torsion of ∇ has no (1, 1) component. Next observe that since g is symmetric, the
contraction gkqΓp

kq does note involve the torsion of the connection. In particular we conclude

gkq (ΓC)
p
kq = gkqΓp

kq

In particular, combining these calculations we may conclude that

Xp = gkl
[
Γp
kl − Γ

p

kl

]
+O(ω, J). (4.9)

In particular we have shown that, up to lower order terms, the vector field we used in our
short-time existence proof is the same as that used for Ricci flow. So, set g̃ = φ∗t g(t),

J̃ = φ∗tJ(t). It follows (see [4] pg. 89) that one may rewrite the solution to (4.6) as

∂

∂t
φt = ∆g̃(t),g0φi(t) +O (∂φ)

φ0 = idM

(4.10)
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where ∆g̃(t),g0 is the harmonic map Laplacian taken with respect to the metrics g̃(t) and g0.
We now proceed with the proof of uniqueness. Let g̃1(t), g̃2(t) be two solutions to (4.2)

with g̃1(0) = g̃2(0) = g0. Let φi(t) be solutions to (4.10) with respect to g̃i, which exists
in general because (4.10) is strictly parabolic and M is compact. Now, pushing forward by
these diffeomorphisms we observe that gi(t) := (φi(t))∗ g̃i(t) are both solutions of (4.5). Since
g1(0) = g2(0) and solutions to (4.5) are unique, it follows that g1(t) = g2(t) as long as these
metrics are defined. But now one observes that φ1(t) and φ2(t) are both solutions to the
same ODE (4.6) with the same initial condition, and are therefore equal. It follows that
g̃1(t) = g̃2(t) as long as they are both defined and the result follows. �

5. Symplectic Curvature Flow

5.1. Definition and Short Time Existence. In this section we will motivate and inves-
tigate the equation (1.3). Let (M2n, ω, J) be an almost-Kähler manifold, which as defined
in section 2 is an almost Hermitian manifold satisfying dω = 0. Also recall the remark at
the end of section 2 that on an almost Kähler manifold one has a canonical connection ∇
satisfying

∇XY = DXY −
1

2
J(DXJ)(Y )

where D is the Levi-Civita connection of g. To facilitate the discussion let us record some
useful curvature quantities in almost Kähler geometry. First, let Ric denote the usual Ricci
curvature of the Levi-Civita connection, and let RicJ denote the J-invariant part of the Ricci
tensor of g, i.e.

RicJ =
1

2
[Ric(·, ·) + Ric(J ·, J ·)] .

Furthermore set

ρ(·, ·) = RicJ(J ·, ·).

Note ρ ∈ Λ1,1. Next set

ρ∗ = R(ω)

i.e., the Levi-Civita curvature operator acting on the Kähler form ω. One can see [1] for
more information on these quantities. Returning to the canonical connection, ∇ induces a
Hermitian connection on the anticanonical bundle, and we denote the curvature form of this
connection by P . Alternatively, if Ω denotes the curvature of ∇, one has

Pij = ωklΩijkl.

By the general Chern-Weil theory, P is a closed form and P ∈ πc1(M,J). Let us record some
lemmas relating these different curvature tensors.

Lemma 5.1. Let (M2n, ω, J) be an almost Kähler manifold. Then

ρ∗ − ρ =
1

2
D∗Dω. (5.1)

Proof. By the Weitzenböck formula for 2-forms ([3] pg. 53) applied to ω we conclude

∆dω −D∗Dω = Ric(ω·, ·)− Ric(·, ω·)− 2R(ω).

Since dω = d∗ω = 0 we conclude

2R(ω) + [Ric(·, J ·) − Ric(J ·, ·)] = D∗Dω.
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The Ricci curvature terms simplify to −2ρ, and the result follows. �

Furthermore (see [1]) one has the relation

P = ρ∗ −
1

2
N1, (5.2)

where

N1(X,Y ) = 〈DJXω,DY ω〉 .

As a consequence of (5.1) and (5.2) we conclude

P = ρ+
1

2

(
D∗Dω −N1

)
. (5.3)

Lemma 5.2. Let (M2n, ω, J) be an almost Kähler manifold. Then

P (2,0)+(0,2) =
1

2

[
D∗Dω −N2

]
(5.4)

where

N2
ab = gijωpqDiJ

p
aDjJ

q
b . (5.5)

Proof. Starting from (5.3), we note that both ρ and N are (1, 1) forms, so it remains to deter-
mine the (2, 0) + (0, 2) component of D∗Dω. We do this by computing the (1, 1) component,
which we will compute in local coordinates.

− (D∗Dω)1,1ab = −
1

2
[(D∗Dω) (J, J) +D∗Dω]ab

=
1

2
gij

[
(DiDjωpq)J

p
aJ

q
b +DiDjωab

]

=
1

2
gij

[
DiDj

(
ωpqJ

p
aJ

q
b

)
+DiDjωab

−ωpq

(
(DiDjJ

p
a )J

q
b +DiJ

p
aDjJ

q
b +DjJ

p
aDiJ

q
b + Jp

aDiDjJ
q
b

)]
.

Using compatibility of ω with J ,

DiDj

(
ωpqJ

p
aJ

q
b

)
= DiDjωab.

Also, we have that

−ωpq(DiDjJ
p
a )J

q
b = − gpbDiDjJ

p
a

= −DiDj (gpbJ
p
a )

= −DiDj (ωab) .

Next we compute

−ωpqJ
p
aDiDjJ

q
b = gaqDiDjJ

q
b

= −DiDjωab.

It follows that

(D∗Dω)1,1ab = gijωpqDiJ
p
aDjJ

q
b .

The lemma follows. �
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With Lemma 3.2 in mind our motivation is clear: one would like to define a flow of
symplectic structures ∂

∂t
ω = −P as in the case of Kähler Ricci flow. However, P is not a

(1, 1)-form, so ω would not stay compatible with J , and then the definitions fall apart. Thus
one is naturally led to allowing J to flow as well. Lemma 3.2 suggests part, but not all of what
should appear in the evolution equation for J . Indeed, imagining ω as fixed, then specifying
a variation for J is equivalent to specifying one for g, and Lemma 3.2 is only saying that the
(2, 0)+(0, 2) portions must match up. There is still freedom to choose the (1, 1) part, and by
examining the relevant equations one is able to make an intelligent choice for this portion. It
is a small miracle that in the almost Kähler setting there is a very natural choice of evolution
for J which ends up being parabolic. Using the above discussion, let us now rewrite equation
(1.3) more explicitly. In particular, we set

N j
i = gjkN2

ik. (5.6)

Also, as in the introduction, set

Rj
i = Jk

i Rcjk −Rcki J
j
k (5.7)

where the index on the Ricci tensor has been raised with respect to the associated metric.
Then one sees that equation (1.3) is equivalent to

∂

∂t
ω = − 2P

∂

∂t
J = −D∗DJ +N +R

ω(0) = ω0

J(0) = J0.

(5.8)

Now we give the proof of Theorem 1.6.

Proof. Observe that an endomorphism of the form g−1ψ where ψ ∈ Λ(2,0)+(0,2) automatically
satisfies KJ + JK = 0. Also we may compute

Jb
a

(
Rcdb J

c
d −Rccd J

d
b

)
+

(
Rcda J

b
d − Rcbd J

d
a

)
Jc
b = Rcdb J

b
aJ

c
d +Rcca−Rcca−Rcbd J

d
aJ

c
b

= 0.

Thus it follows from Lemma 3.1 that the equation for J defines a flow through almost complex
structures. Furthermore recall from Remark 3.3 that an endomorphism g−1ψ, where ψ ∈
Λ(2,0)+(0,2) automatically satisfies (3.1). Also let us observe

(ω(R, J) + ω(J,R))ij = ωpqR
p
i J

q
j + ωpqJ

p
i R

q
j

= ωpq [Rc
m
i J

p
m − Jm

i Rcpm] Jq
j + ωpqJ

p
i

[
Rcmj J

q
m − Jm

j Rcqm
]

= gpj [Rc
m
i J

p
m − Jm

i Rcpm]− giq
[
Rcmj J

q
m − Jm

j Rcqm
]

= grsJ
r
pJ

s
j Rc

m
i J

p
m − gpjJ

m
i Rcpm−grsJ

r
i J

s
q Rc

m
j J

q
m + giqJ

m
j Rcqm

= − gmsJ
s
j Rc

m
i −gpjJ

m
i Rcpm+grmJ

r
i Rc

m
j +giqJ

m
j Rcqm

= − Rcis J
s
j − Jm

i Rcmj +J
r
i Rcjm+Jm

j Rcmi

= 0

where the last line follows from symmetry of the Ricci tensor and relabeling indices. Thus it
follows from Lemma 3.2 that the equation (1.3) preserves compatibility of (ω, J). Also, since
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P is closed, it follows that

∂

∂t
dω = d

∂

∂t
ω = − dP = 0,

so dω = 0 is preserved.
Turning now to the short time existence, let X be defined as in (4.3) and consider the

gauge-fixed operators

D1(ω, J) = − 2P + LXω

D2(ω, J) = −D∗DJ +N +R+ LXJ.

Consider first the equation for ω, and use the second Bianchi identity we conclude

[−2P + LXω]ij =
[
−2ωklΩijkl

]
+O(∂2J, ∂ω)

= − 2
[
ωklΩklij +

(
∇N +N∗2

)
ij

]
+O(∂2J, ∂ω)

= − 2Sij +O(∂2J, ∂ω)

(5.9)

In the first line we have just observed that the term LXω only involves terms which have two
derivatives of J and at most one derivative of ω, as is clear from the definition (4.3). The
second line is an application of the Bianchi identity. The fact that the torsion terms rely
only on the Nijenhuis tensor is a consequence of the almost Kähler condition, since in general
extra terms arising from the metric contributions to the torsion of the Hermitian connection
will appear when applying the Bianchi identity. Indeed, one does not expect in general the
operator P to be elliptic, since in essence it relies only on the volume form of ω. It follows
from the calculation of Proposition 4.5 that

D1(ω, J)ab = gij∂i∂jωab +O(∂2J, ∂ω).

Next we compute a coordinate formula for D2 in stages. First of all we have

[−D∗DJ ]lk = gij∂i [DJ ]
l
jk +O(∂J, ∂ω)

= gij∂i

[
∂jJ

l
k − Γp

jkJ
l
p + Γl

jpJ
p
k

]
+O(∂J, ∂ω)

= gij
[
∂i∂jJ

l
k − ∂iΓ

p
jkJ

l
p + ∂iΓ

l
jpJ

p
k

]
+O(∂J, ∂ω)

(5.10)

where here Γ denotes the Levi Civita connection. Next, using Lemma 3.5 and (4.9) we
compute

[LXJ ]
l
k = J l

p∂k

(
gijΓp

ij

)
− J

p
k∂p

(
gijΓl

ij

)
+O(∂J, ∂ω)

= J l
pg

ij∂kΓ
p
ij − J

p
kg

ij∂pΓ
l
ij +O(∂J, ∂ω).

Combining the above calculations we observe

D2(ω, J)
l
k = gij

[
∂i∂jJ

l
k − ∂iΓ

p
jkJ

l
p + ∂iΓ

l
jpJ

p
k

]
+ J l

pg
ij∂kΓ

p
ij − J

p
kg

ij∂pΓ
l
ij

+ J
p
k Rc

l
p−Rcpk J

l
p +O(∂J, ∂ω)

= gij∂i∂jJ
l
k + gijJ

p
k

[
∂iΓ

l
jp − ∂pΓ

l
ij +Rml

pij

]

+ gijJ l
p

[
∂kΓ

p
ij − ∂iΓ

p
jk − Rmp

kij

]
+O(∂J, ∂ω)

= gij∂i∂jJ
l
k +O(∂J, ∂ω).

(5.11)
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Now the proof of short time existence follows well understood lines. Let L denote lin-
earization, and let ψ,K denote variation vectors for ω and J respectively. From (5.9) and
Proposition 4.5 we conclude that

σ
[
L̂D1

]
(ψ)ij = σ

[
L̂(−S)

]
(ψ)ij

= |ξ|2 ψij .

Next it follows from (5.11) that

σ
[
L̂D2

]
(K)ba = |ξ|2Kb

a,

and also

σ
[
L̂D2

]
(ψ)ba = 0.

We conclude

σ
[
L̂D

]
(ψ,K) =

(
I ∗
0 I

)(
ψ

K

)
.

Thus the symbol of the linearization of D is upper triangular with strictly positive diagonal
entries, and is hence positive definite. The claim of short time existence and uniqueness now
follows as in the proof of Theorem 1.1. The claim that (1.3) is of the family of equations in
(1.1) is left to the next subsection. �

5.2. Equivalent Formulations. While the expression (5.8) certainly makes a number of its
properties transparent, we would like to derive some other forms of this equation which will
be relavent for other purposes. Specifically, we first want to relate (5.8) to (1.1).

Proposition 5.3. Let (M2n, ω(t), J(t)) be a one-parameter family of almost Kähler struc-
tures solving (1.3). Then the family (ω(t), J(t)) is a solution to

∂

∂t
ω = − S +Q1 +H

∂

∂t
J = −K +H1

(5.12)

where Q1 and H1 are defined in (5.13) and (5.14) respectively, and H is defined so that (4.1)
holds. In particular, (5.12) is a degenerate parabolic equation for almost Hermitian pairs
(ω, J) which preserves the almost Kähler condition.

Proof. Let (ω, J) be an almost Kähler structure, and let Ω denote the curvature of the Chern
connection. Let {ei} denote a local orthonormal frame for T 1,0(M). First recall the Bianchi
identity for a connection ∇:

ΣX,Y,Z [Ω(X,Y )Z − T (T (X,Y ), Z)−∇XT (Y,Z)] = 0

For our almost Kähler structure the torsion T is completely determined by the Nijenhuis
tensor, which is a (0, 2) form with values in (1, 0) vectors. Using this we compute an expression
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for the (1, 1) part of P .

P (ej , ek) = Ω(ej , ek, ei, ei)

= Ω(ei, ek, ej , ei) + 〈N(N(ei, ej), ek), ei〉+ 〈∇ekN(ei, ej), ei〉

= − Ω(ei, ek, ei, ej) + 〈N(N(ei, ej), ek), ei〉+ 〈∇ekN(ei, ej), ei〉

= S(ej , ek)− 〈N(N(ei, ek), ei), ej〉 − 〈∇eiN(ek, ei), ej〉

+ 〈N(N(ei, ej), ek), ei〉+ 〈∇ekN(ei, ej), ei〉 .

But since N takes values in (1, 0) vectors and ∇ is a Hermitian connection, it follows that

〈∇eiN(ek, ei), ej〉 = 〈∇ekN(ei, ej), ei〉 = 0.

It follows that

P 1,1 = S +Q1

where

Q1
ij
= ωkl

(
gmlN

p
kiN

m
pj

− gmjN
p

lj
Nm

pk

)
. (5.13)

Next we examine the evolution equation for J . Choose normal coordinates for the associated
metric at a point p. Then, including the precise lower order terms in (4.4), we see that

ωkl∇kN
i
lj = − gkl∂k∂lJ

i
j + ωkl

(
J i
q∂k∂jJ

q
l − J

q
j ∂k∂qJ

i
l

)

+ ωkl
(
DkJ

p
l DpJ

i
j −DkJ

p
jDpJ

i
l −DkJ

i
pDlJ

p
j +DkJ

i
pDjJ

i
l

)

+
1

2
ωkl

(
N i

kpN
p
lj −N

p
klN

i
pj −N

p
kjN

i
lp

)
.

Furthermore, by a calculation similar to (5.11), we can compute in normal coordinates at p,

(−D∗DJ +N +R)ij = gkl∂k∂lJ
i
j + gklJ

p
j ∂pΓ

i
kl − gklJ i

p∂jΓ
p
kl +N i

j .

Furthermore, calculating as in (4.7), (4.8), again using the normal coordinates,

gklJ
p
j ∂pΓ

i
kl = J

p
j ∂p

(
gklΓi

kl

)

= J
p
j ∂p

(
gkl(ΓC)

i
kl + ωkl(ΓC)

q
klJ

i
q

)

= J
p
j ∂p

(
ωkl∂kJ

i
l −∇kJ

i
l

)

= J
p
j ω

kl∂p∂kJ
i
l − J

p
j ω

krJ l
qDpJ

q
rDkJ

i
l .

Likewise

gklJ i
p∂jΓ

p
kl = ωklJ i

p∂j∂kJ
p
l − J i

pω
krJ l

qDjJ
q
rDkJ

p
l .

Combining these calculations yields

(−D∗DJ +N +R) = −K+H1

where
(
H1

)i
j
= ωkl

(
DkJ

p
l DpJ

i
j −DkJ

p
jDpJ

i
l −DkJ

i
pDlJ

p
j +DkJ

i
pDjJ

i
l

)

+
1

2
ωkl

(
N i

kpN
p
lj −N

p
klN

i
pj −N

p
kjN

i
lp

)

− J
p
j ω

krJ l
qDpJ

q
rDkJ

i
l + J i

pω
krJ l

qDjJ
q
rDkJ

p
l + gikgpqωrsDpJ

r
jDqJ

s
k .

(5.14)
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Finally, it is clear by construction that if we define H so that (4.1) holds, it must equal
−2P 2,0+0,2. It follows that a solution to (1.3) is a solution to (5.12), and the proposition
follows. �

Next we want to derive the evolution equation for the associated Riemannian metric.

Proposition 5.4. Let (M2n, ω(t), J(t)) be a one-parameter family of almost Kähler struc-
tures solving (1.3). Then the associated Riemannian metric g(t) satisfies

∂

∂t
g = − 2Ric+N1(·, J ·) −N2(·, J ·).

Proof. We begin with a general calculation using the notation of Lemma 3.2. Specifically, we
have

∂

∂t
g(·, ·) =

∂

∂t
[ω(·, J ·)]

= [φ(·, J ·) + ψ(·, J ·) + ω(·,K·)] .

Let us compute these three terms separately. First of all it follows from (5.3) and (5.4) that

P 1,1(·, J ·) =

(
ρ−

1

2
N1 +

1

2
N2

)
(·, J ·)

= RicJ(·, ·) −
1

2
N1(·, J ·) +

1

2
N2(·, J ·).

Thus

φ(·, J ·) = − 2P 1,1 (·, J ·)

= − 2RicJ (·, ·) +N1(·, J ·) −N2(·, J ·).

Now observe that

ψ (·, J ·) = − 2P 2,0+0,2 (·, J ·) .

Next consider

ω(·,K·)ij = ωikK
k
j = ωik

(
gkl

(
−2P 2,0+0,2

jl

)
+ J l

j Rc
k
l −Rclj J

k
l

)
.

The first term simplifies to

−2ωikg
klP

2,0+0,2
jl = − 2Jp

i gpkg
klP

2,0+0,2
jl

= − 2J l
iP

2,0+0,2
jl

= 2J l
i

(
Jm
j J

p
l P

2,0+0,2
mp

)

= − 2Jm
j P

2,0+0,2
mi

= 2P 2,0+0,2 (·, J ·)ij .

Next we calculate

ωik

(
Rclj J

k
l − J l

j Rc
k
l

)
= J

p
i gpk

(
J l
j Rc

k
l −Rclj J

k
l

)

= (J∗ Ric−Rc)ij

= − 2
(
Rc−RicJ

)
ij
.

Combining the above calculations, the result follows. �
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6. The structure of critical metrics

In this section we record some results on the structure of the limiting objects of equations
(1.3).

Definition 6.1. Let (M2n, ω, J) be an almost Kähler manifold. We say that this manifold
is static if there exists λ ∈ R such that

P = λω (6.1)

D∗DJ −N −R = 0. (6.2)

Let us say a word on the definition of this condition. We want to understand the limiting
behavior of equation (1.3), hence the first condition arises for solutions which simply rescale
the metric. Observe though that even for solutions which are scaling the metric, one expects
J to remain fixed as one cannot scale almost complex structures. Thus the static condition
defined above is a natural expression of the expected smooth limit points of (1.3).

Lemma 6.2. Let (M2n, ω, J) be a static structure. Then

Ric−J∗Ric = 0,

i.e. the Ricci tensor is J-invariant.

Proof. Equation (6.1) implies that P 2,0+0,2 = 0. Equation (6.2) may be expressed as

g−1
[
P 2,0+0,2 + (Ric−J∗ Ric)

]
= 0,

and so the lemma follows. �

Let us show some further structure in dimension 4. Let (M4, g) be an oriented Riemannian
manifold. Since one may decompose Λ2 = Λ+⊕Λ−, the action of the curvature tensor on Λ2

decomposes accordingly, and is typically written

R =


 W+ + s

12I
◦

Rc
◦

Rc W− + s
12I


 (6.3)

where
◦

Rc is a certain action of the traceless Ricci tensor and W+ and W− are the self-
dual and anti-self-dual Weyl curvatures. If one further has (M4, ω, J) an almost Hermitian
manifold, then one can refine the decomposition of Λ2 as

Λ2 =
(
(ω)⊕ Λ2,0

)
⊕ Λ1,1

0 (6.4)

where Λ1,1
0 are real (1, 1) forms orthogonal to ω. Using this further decomposition one yields,

adopting notation of [2],

R =




a W+
F RF

W+∗

F W+
00 +

1
2bI R00

R∗

F R∗
00 W−

00 +
1
3cI


 (6.5)

where the tensors in this equation are defined by comparing with (6.3) and using the refined
decomposition of forms of (6.4). The double bars indicate the original decomposition into self-
dual and anti-self-dual forms. Now we recall a curvature calculation in [2] which decomposes
the curvature tensor of the canonical connection of an almost Kähler manifold according to
(6.4).
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Proposition 6.3. ([2] Proposition 2)

Ω =




s∇

12 W+
F RF − 2C

0 0 0

R∗

F R00 W− + 1
3cI


 (6.6)

One may consult [2] for the precise definition of C, which is not relevant to us here. All the
other tensors are the same as what appears in (6.5). It is important to observe that this
matrix acts from the right on two-forms. For instance, the image acting from the right lies
entirely in (1, 1) forms, as required.

Proposition 6.4. Let (M4, ω, J) be a static structure. Then

WF ≡ 0.

Proof. This immediate from (6.6) and the fact that P = λω. �

Returning to (6.5) it follows that the ω is an eigenvector for the action of W+. This
condition is related to delicate topological estimates of LeBrun [9] related to the Seiberg-
Witten equations. It remains to be seen what topological consequences can be derived from
(6.1)

7. Remarks and open problems

Recall from [14], [15] we know that the solution to Kähler Ricci flow exists smoothly as long
as the associated cohomology class is in the Kähler cone. Therefore it is natural, for purposes
of understanding the long time existence and singularity formation of solutions to (7.1), to
understand the corresponding cone C of symplectic forms in H2(M,R). Note that C consists
of all cohomology classes in H2(M,R) which can be represented by a symplectic form. Any
symplectic form ω admits compatible almost complex structures, and moreover the space of
these almost complex structures is contractible. Thus one may define the canonical class

K = c1(M,ω) := c1(M,J)

where J is any almost complex structure compatible with ω and the orientation. It is clear
that the homotopy classes of symplectic structures define the same canonical class. Therefore,
associated to a solution of (1.3), one has the well-defined associated ODE in cohomology

d

dt
[ω] = −K. (7.1)

It is clear by the definition that given a solution to (1.3), the associated one parameter family
of cohomology classes satisfies (7.1). Thus, we have

Lemma 7.1. Given (M2n, ω(t), J(t)) a solution to (1.3), let

T ∗ := sup{t > 0|[ω(t)] = [ω(0)] − tK ∈ C}.

Furthermore, let T denote the maximal existence time of (ω(t), J(t)). Then

T ≤ T ∗

It is natural to conjecture: The maximal existence time for (1.3) with initial ω(0) is given
by T ∗. This is the analogue of the theorem of Tian-Zhang ([14], [15]) mentioned above for
Kähler Ricci flow.

If the above T ∗ <∞, then (1.3) develops finite-time singularity. The second basic problem
is to study the nature of such a singularity. Is it possible that such a singularity is caused by
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J-holomorphic spheres as we see in the case of Kähler manifolds? The case of 4-dimensional
symplectic manifolds is of particular interest and may be easier to study. We expect that ei-
ther (ω(t), J(t)) collapses to a lower dimensional space or converges to a smooth pair (ωT , JT )
outside a subvariety as t tends to T ≤ T ∗. If so, we may do surgery and extend (1.3) across
T . In a forthcoming paper, we will study how the curvature of the canonical connection
behaves near finite-time singularity. Presumably, the curvature blows up at the singularity.
By scaling, one may get ancient solutions for (1.3). A basic problem is to classify all the
ancient solutions. In dimension 4, it may be possible to classify.

Another natural problem is to find functionals which are monotonic along (1.3). In partic-
ular, is (1.3) a gradient flow like the Ricci flow and the pluriclosed flow of [12]? We showed
in [13] that the parabolic flow of pluriclosed metrics of [12] is in fact a gradient flow. This
was done by exhibiting that after change by a certain diffeomorphism solutions to this flow
are equivalent to solutions to the B-field renormalization group flow of string theory. In light
of Proposition 5.4, solutions to (1.3) have the metric evolving by the Ricci flow plus certain
lower order terms, therefore one expects to be able to add a certain Lagrangian to the Perel-
man functionals to obtain a gradient flow property for (1.3), as in the B-field renormalization
group flow.

Finally, we believe that this new symplectic curvature flow will be useful in studying the
topology of symplectic manifolds, particularly in dimension 4. It follows from the results in
section 6 that static solutions in dimension 4 are of anti-self-dual type, more precisely, the
self-dual part of curvature for the canonical connection is determined by its scalar curvature.
This gives a hope to use (1.3) to prove a symplectic version of the Miyaoka-Yau inequality for
complex surfaces. Such an inequality for symplectic 4-manifolds has been long speculated.
For still further applications, we are led to studying limits of (1.3) as time t tends to ∞
and after appropriate scalings. The limits should include the above static metrics, soliton
solutions as well as collapsed metrics which generalize the metrics studied by Song-Tian for
elliptic surfaces.
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