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A BRYLINSKI FILTRATION FOR AFFINE KAC-MOODY

ALGEBRAS

WILLIAM SLOFSTRA

Abstract. Braverman and Finkelberg have recently proposed a conjectural
analogue of the geometric Satake isomorphism for untwisted affine Kac-Moody
groups. As part of their model, they conjecture that (at dominant weights)
Lusztig’s q-analog of weight multiplicity is equal to the Poincare series of
the principal nilpotent filtration of the weight space, as occurs in the finite-
dimensional case. We show that the conjectured equality holds for all affine
Kac-Moody algebras if the principal nilpotent filtration is replaced by the
principal Heisenberg filtration. The main body of the proof is a Lie alge-
bra cohomology vanishing result. We also give an example to show that the
Poincare series of the principal nilpotent filtration is not always equal to the q-
analog of weight multiplicity. Finally, we give some partial results for indefinite
Kac-Moody algebras.

1. Introduction

Let L(λ) be an integrable highest-weight representation of a symmetrizable Kac-
Moody algebra g. The Kostant partition functions K(β; q) are defined for weights
β by ∑

β

K(β; q)eβ =
∏

α∈∆+

(1− qeα)−multα,

where ∆+ is the set of positive roots and multα = dim gα. The q-character of a
weight space L(λ)µ is the function

(1) mλ
µ(q) =

∑

w∈W

ǫ(w)K(w ∗ λ− µ; q),

where W is the Weyl group of g, ǫ is the usual sign representation of W , and
w ∗ λ = w(λ + ρ) − ρ is the shifted action of W . The name “q-character” is used
because mλ

µ(1) = dimL(λ)µ.
When g is finite-dimensional it is well-known that the q-analogs mλ

µ(q) are equal
to Kostka-Foulkes polynomials, which express the characters of highest-weight rep-
resentations in terms of Hall-Littlewood polynomials [8], and are Kazhdan-Lusztig
polynomials for the affine Weyl group [10]. When µ is dominant the coefficients of
mλ

µ(q) are non-negative. There is an explanation for this phenonemon, first conjec-
tured by Lusztig [10]: the weight space L(λ)µ has an increasing filtration eF ∗ such
that mλ

µ(q) is equal to the Poincare polynomial

(2) ePλ
µ (q) =

∑

i≥0

qi dim eF iL(λ)µ / eF i−1L(λ)µ

of the associated graded space. This identity was first proved by Brylinski for
µ regular or g of classical type; the filtration eF ∗ is known as the Brylinski or
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Brylinski-Kostant filtration, and is defined by

eF i(L(λ)µ) = {v ∈ L(λ)µ : ei+1v = 0},

where e is a principal nilpotent. Brylinki’s proof was extended to all dominant
weights by Broer [2]. More recently Joseph, Letzter, and Zelikson gave a purely
algebraic proof of the identity mλ

µ = ePλ
µ , and determined ePλ

µ for µ non-dominant
[7]. The q-analogs of weight multiplicity of an arbitrary symmetrizable Kac-Moody
have been studied by Viswanath [14]; he shows that mλ

µ(q) are Kostka-Foulkes

polynomials for generalized Hall-Littlewood polynomials, and determines mλ
µ(q) at

some simple µ for an untwisted affine Kac-Moody.
The point of this paper is to extend Brylinski’s result to affine (ie. indecompos-

able of affine type) Kac-Moody algebras. We show that, as in the finite-dimensional
case, there is a filtration on L(λ)µ such that when µ is dominant, mλ

µ(q) is equal
to the Poincare series of the associated graded space. Unlike the finite-dimensional
case, the principal nilpotent is not sufficient to define the filtration in the affine case;
instead, we use the positive part of the principal Heisenberg (this form of Brylinski’s
identity was first conjectured by Teleman). Brylinski’s original proof of the identity
mλ

µ = ePλ
µ uses a cohomology vanishing result for the flag variety. Our proof is

based on the same idea, but uses the Lie algebra cohomology approach of [5]. In
particular we prove a vanishing result for Lie algebra cohomology by calculating
the Laplacian with respect to a Kahler metric. Although we concentrate on the
affine case for simplicity, our results generalize easily to the case when g is a direct
sum of algebras of finite or affine type. There are two difficulties in extending this
result to indefinite symmetrizable Kac-Moody algebras: there does not seem to be
a simple analogue of the Brylinski filtration, and the cohomology vanishing result
does not extend for all dominant weights µ. We can overcome these difficulties by
replacing the Brylinski filtration with an intermediate filtration, and by requiring
that the root λ − µ has affine support. Thus we get some partial non-negativity
results for the coefficients of mλ

µ(q) even when g is of indefinite type.
The primary motivation for this paper is a recent conjecture of Braverman and

Finkelberg. Recall that when g is finite-dimensional, the geometric Satake iso-
morphism is an equivalence between the representation category of any group G
associated to g, and the category of equivariant perverse sheaves on the loop Grass-
mannian Gr = G∨((z))/G∨[[z]] of the Langlands dual group G∨. The loop Grass-
mannian Gr is an ind-variety, realized as an increasing disjoint union of Schubert
varieties Grλ parametrized by weights of G. Under the equivalence, a highest-
weight representation L(λ) is sent to the intersection cohomology complex ICλ of

Grλ. In addition to conjecturing the equality mλ
µ = ePλ

µ , Lusztig showed in [10]

that mλ
µ(q) is equal (after a degree shift) to the generating function ICλ

µ(q) for the

dimensions of the stalk of the complex ICλ
µ at a point in Grµ ⊂ Grλ. A direct

isomorphism between the stalks ICλ
µ and the graded spaces grL(λ)µ appears in the

geometric Satake isomorphism [4] [11], leading to another proof that mλ
µ = ePλ

µ

(see [4] in particular). Braverman and Finkelberg have proposed a conjectural ana-
logue of the geometric Satake isomorphism for affine Kac-Moody groups [1]. Their
conjecture relates representations of g to perverse sheaves on an analogue of the
loop Grassmannian for g∨ when g∨ is an untwisted affine Kac-Moody. Their model
leads them to conjecture that mλ

µ(q) = ePλ
µ in the affine case, with both related
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to the intersection cohomology stalks as in the finite-dimensional case.1 Since we
will demonstrate by example that mλ

µ(q) is not necessarily equal to ePλ
µ , our paper

gives a correction of Braverman and Finkelberg’s conjecture.

1.1. Acknowledgements. I thank my advisor, Constantin Teleman, for suggest-
ing the project and for many helpful conversations. This work was supported in
part by NSERC. Additional support was received from NSF grants DMS-1007255
and DMS-0709448.

1.2. Organization. The definition of the Brylinski filtration and the statements
of the main results for affine Kac-Moody algebras are given in Section 2. Proofs
follow in Sections 3 and 4. Partial results for indefinite Kac-Moody algebras are
given in Section 5.

1.3. Notation and terminology. Throughout, g will refer to a symmetrizable
Kac-Moody algebra. For standard notation and terminology, we mostly follow [9].
We assume a fixed presentation of g, from which we get a choice of Cartan h, simple
roots {αi}, simple coroots {α∨i }, and Chevalley generators {ei, fi}. We can then
grade g via the principal grading, ie. by assigning degree 1 to each ei and degree −1
to each fi. By choosing a real form hR of h we get an anti-linear Cartan involution
x 7→ x, defined as the anti-linear involution sending ei 7→ −fi for all i and h 7→ −h
for all h ∈ hR. As usual g has the triangular decompostion g = n⊕h⊕n, where n is
the standard nilpotent

⊕
n>0 gn. The standard Borel is the subalgebra b = h⊕ n.

Associated to n and b are the pro-algebras n̂ = lim← n/nk and b̂ = lim← b /nk,
where nk =

⊕
n>k gn.

2. The Brylinski filtration for affine Kac-Moody algebras

A principal nilpotent (with respect to a given presentation) of a symmetrizable
Kac-Moody algebra is an element e ∈ g1 of the form e =

∑
ciei, where ci ∈ C \ {0}

for all simple roots ei. If g is affine it is well-known that the algebras se = {x ∈
g : [x, e] ∈ Z(g)} are Heisenberg algebras, and these algebras are called principal
Heisenberg subalgebras.

Definition 2.1. Let L(λ) be a highest-weight module of an affine Kac-Moody al-
gebra g. Define the Brylinski filtration with respect to the principal Heisenberg s

by
sF iL(λ)µ = {v ∈ L(λ)µ : xi+1v = 0 for all x ∈ s∩n}.

Let sPλ
µ (q) be the Poincare series of the associated graded space of L(λ)µ.

Note that the principal nilpotents form a single H-orbit, so the filtration sF ∗ is
independent of the choice of principal Heisenberg.

Recall that a weight µ is real-valued if µ(h) ∈ R for all h ∈ hR, and dominant if
µ(α∨i ) ≥ 0 for all simple coroots α∨i ,

Theorem 2.2. Let L(λ) be an integrable highest weight representation of an affine
Kac-Moody algebra g, where λ is a real-valued dominant weight. If µ is a dominant
weight of L(λ) then Pλ

µ (q) = mλ
µ(q).

1There seems to be a typo in [1]: root multiplicities are omitted in the definition of the Kostant
partition functions.
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The dual n̂∗ of a pro-algebra will refer to the continuous dual. If V is a b̂-module

then H∗cts(b̂, h;V ) will denote the relative continuous cohomology of (b̂, h). The
proof of Theorem 2.2 depends on

Theorem 2.3. Let L(λ) be an integrable highest weight representation of an affine
Kac-Moody algebra g, where λ is a real-valued dominant weight. Let V = L(λ) ⊗
S∗n̂∗ ⊗ C−µ, where µ is a dominant weight of L(λ). Then Hq

cts(b̂, h;V ) = 0 for

q > 0, and in addition there is a graded isomorphism grL(λ)µ ∼= H0
cts(b̂, h;V ),

where the latter space is graded by symmetric degree.

Proof of Theorem 2.2 from Theorem 2.3. Let V p = L(λ) ⊗ Spn̂∗ ⊗ C−µ. By The-

orem 2.3, Pλ
µ (q) =

∑
p≥0 dimH0

cts(b̂, h;V
p)qp =

∑
χ(b̂, h;V p)qp, where χ is the

Euler characteristic (the second equality follows from cohomology vanishing). Since
n̂∗ has finite-dimensional weight spaces and all weights belong to the negative root
cone,

∧∗
n̂∗⊗L(λ)⊗Spn̂∗ has finite-dimensional weight spaces. Thus we can write

∑

p≥0

χ(b̂, h;V p)qp =
∑

p,k≥0

(−1)kqp dim

(
k∧
n̂∗ ⊗ V p

)h

= [eµ] chL(λ)
∏

α∈∆+

(1 − e−α)multα(1− qe−α)−multα.

Applying the Weyl-Kac character formula

chL(λ) =
∑

w∈W

ǫ(w)ew∗λ ·
∏

α∈∆+

(1 − e−α)−multα

we get the result.
�

The proof of Theorem 2.3 will be given in Sections 3 and 4. If g =
⊕

gi is a
direct sum of indecomposables of finite and affine type, the conclusions of Theorems
2.2 and 2.3 remain true with s replaced by a direct sum of principal nilpotents (for
the finite components) and principal Heisenbergs (for the affine components).

2.1. Examples. We now give some elementary examples to show that sF is differ-

ent from eF . Consider ŝl2, the affine Kac-Moody algebra realized as sl2[z
±1]⊕Cc⊕

Cd, where c is a central element, and d is the derivation ∂
∂z
. Let {H,E, F} be an

sl2-triple in sl2, and take principal nilpotent e = E+Fz. The principal Heisenberg
s is spanned by the elements ezn, n ∈ Z, along with c.

The Cartan subalgebra of ŝl2 is span{H, c, d}. Denote a weight αH∗ + hc∗ +
nd∗ by (α, h, n). The weight λ = (α, h, n) is dominant if 0 ≤ α ≤ h, and the
corresponding irreducible highest-weight representation L(λ) can be realized as the
quotient of the Verma module U(g)⊗U(b) Cλ by the U(g)-submodule generated by

Fα+1 ⊗ 1 and (Ez−1)h−α+1 ⊗ 1. Let

w = (Fz−1)(Ez−1)v,

where v is the highest weight vector in L(c∗). Note that w is a weight vector of
weight (0, 1,−2). It is easy to check, using the defining relations for L(c∗), that
e2w = 0, while (ez)ew = 3v, so w ∈ eF 2 but not in sF 2.

The same idea can be used to calculate Poincare series. For the above example,
where λ = (0, 1, 0) and µ = (0, 1,−2), we have dimL(λ)µ = 2. The Poincare series
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for eF is q+q4, while the Poincare series for sF is mλ
µ(q) = q2+q4. For an example

with a dominant regular weight, let λ = (0, 3, 0) and µ = (2, 3,−3). The Poincare
series of eF is q + 2q2 + q3 + q5, while mλ

µ(q) = q + q2 + 2q3 + q5.

3. Reduction to cohomology vanishing

In this section we introduce an equivalent filtration to the Brylinski filtration,
which will allow us to reduce Theorem 2.3 to a cohomology vanishing statment.
The line of argument is inspired by [3] and [5]. As usual, g will be an arbitrary
symmetrizable Kac-Moody algebra except where stated.

Associated to g is a Kac-Moody group G. The standard Borel subgroup B of G is

a solvable pro-group with Lie algebra b̂. The standard unipotent subgroup U ⊂ B
is a unipotent pro-group with Lie algebra n̂. The Borel B also contains a torus H
corresponding to h. Defining the new filtration requires two lemmas.

Lemma 3.1. There are pro-algebraic morphisms U ∼= B/H ∼= n̂ giving U the
structure of an affine pro-variety with an affine B-action.
Proof. Pick δ ∈ h acting on gn as multiplication by n, and define π : B → n̂ by
Ad(b)δ = δ + π(b). Then the composition U →֒ B → B/H → n̂ is an isomorphism.

n̂ is naturally an affine pro-variety by the identification of n/nk with
⊕k

n=1 gn,
while B/H has a left-translation action of B. If b1, b2 ∈ B then Ad(b1b2)δ =
Ad(b1)(δ+ π(b2)) = δ+ π(b1) +Ad(b1)π(b2), so π(b1b2) = Ad(b1)π(b2) + π(b1) and
the resulting action of B on n̂ is affine. �

Lemma 3.2. Let V be a pro-representation of B. Then evaluation at the identity
gives an isomorphism (V ⊗ C[U ])B → V H .

Proof. Any element v ∈ V H extends to a B-invariant function U → V by [b] 7→
bv. �

If V is a pro-representation of B then V H can be filtered via polynomial degree
on C[U ]. If µ is a weight of g then extending µ by zero on U makes C−µ into a
pro-representation of B. The reason for introducing a new filtration is the following
lemma, which reduces the proof of Theorem 2.3 to a vanishing result.

Lemma 3.3. Let W = L(λ) ⊗ C−µ, and filter L(λ)µ = WH via the isomorphism

WH ∼= (W ⊗ C[U ])B. If H1
cts(b̂, h;W ⊗ S∗n̂∗) = 0 then H0

cts(b̂, h;W ⊗ S∗n̂∗) ∼=
grL(λ)µ.
Proof. Let Fp be the subset of C[U ] of polynomials of degree at most p. Then
grC[U ] = S∗n̂∗ as B-modules, so there are short exact sequences

0 →W ⊗Fp−1 →W ⊗Fp →W ⊗ Spn̂∗ → 0

of B-modules for all p. The corresponding long exact sequence in Lie algebra
cohomology is

Hi
cts(b̂, h;W ⊗Fp−1) → Hi

cts(b̂, h;W ⊗Fp) →Hi
cts(b̂, h;W ⊗ Spn̂∗)

→ Hi+1
cts (b̂, h;W ⊗Fp−1).

Since Hi
cts(b̂, h;W⊗Spn̂∗) = 0 for i = 1, the inclusionW⊗Fp−1 →֒W⊗Fp induces

a surjection in degree one cohomology for all p. Since F−1 = 0, H1
cts(b̂, h;W ⊗

Fp) = 0 for all p. The long exact sequence in degree i = 0 gives an isomorphism
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H0
cts(b̂, h;W ⊗Spn̂∗) ∼= (W ⊗Fp)b/(W ⊗Fp−1)b. This latter quotient is the graded

space of (W ⊗ C[U ])b as required. �

Now we show that the new filtration is equal to the Brylinski filtration when g

is affine.

Proposition 3.4. Let L(λ) be an integrable highest-weight representation of an an
affine Kac-Moody g. Then the Brylinski filtration on a weight space L(λ)µ agrees
with the filtration of L(λ)µ ∼= (L(λ) ⊗ C−µ ⊗ C[U ])B by polynomial degree.

The proof of Proposition 3.4 requires two lemmas.

Lemma 3.5. If g is affine and s is a principal Heisenberg then Ad(B)(s∩n) is
dense in n̂.

Proof. The principal nilpotents form a dense orbit, so it is only necessary to prove
this fact for a single principal nilpotent. We claim that there is a principal nilpotent
such that f = −e ∈ se, so that in particular [e, f ] ∈ Z(g). Indeed, let A be the
generalized Cartan matrix defining g, ie. Aij = αj(α

∨
i ). Since g is affine there

is a vector c > 0, unique up to a scalar multiple, such that Atc = 0. If we pick
e =

∑√
ciei then [e, f ] =

∑
ciα
∨
i , and αj([e, f ]) =

∑
ciAij = (Atc)j = 0 for all

simple roots αj .
Now we show that n = (se ∩n) + [b, e]. In degree one we have [h, e] = g1. For

higher degrees, let {, } denote the standard non-degenerate contragradient Hermit-
ian form on g which is positive definite on n. An element x ∈ n is orthogonal to
[b, e] if and only if 0 = {[e, z], x} = {z, [f, x]} for all z ∈ b, or in other words if
and only if x ∈ Cg(f). Suppose x ∈ gn, n ≥ 2 belongs to [b, e]⊥. Using the fact
that [e, f ] ∈ Z(g) we get that {[e, x], [e, x]} = {[f, x], [f, x]} = 0, and conclude that
x ∈ se.

(s∩n)+[b, e] = n implies that B×(s∩n) → n̂ is a submersion in a neighbourhood

of (1, e). Since B acts algebraically on s∩n ⊂ b̂, the subset B(s∩n) is dense in n̂. �

Lemma 3.6. Let L(λ) be an integrable highest-weight module. Considered as a
B-module, L(λ) is a submodule of C[U ]⊗ Cλ.

Proof. This statement would follow immediately from a Borel-Weil theorem for the
thick flag variety of a Kac-Moody group. As we are not aware of a formal statement
of the Borel-Weil theorem in this context, we recover the result from the dual of
the quotient map Mlow(−λ) → Llow(−λ), where Mlow(−λ) = U(g)⊗U(b) C−λ is a

lowest weight Verma module, and Llow(−λ) is the irreducible representation with
lowest weight −λ. Both these spaces are g-modules with finite gradings induced
by the principal grading of g. Let Mlow(−λ)∗ and L(−λ)∗ denote the finitely-
supported duals, consisting of linear functions which are supported on a finite
number of components.

Using the fact that Mlow(−λ) is a free U(n)-module, we can identity Mlow(−λ)
with S∗n ⊗ C−λ where S∗n has the b-action (y, x) 7→ [y, δ] ◦ x + ad(y)x, and δ
is defined as in Lemma 3.1 as an element of h which acts on gn as multiplication
by n. The finitely supported dual of Mlow(−λ) can be identified with S∗n̂∗ ⊗ Cλ

where b acts on S∗n̂∗ by (y, f) 7→ adt(y)f + ι([δ, y])f . It is not hard to check
that this action integrates to the B-action coming from identifying S∗n̂∗ with C[U ].
Since the quotient map preserves the principal grading, the dual of the surjection
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Mlow(−λ) → Llow(−λ) is an inclusion L(λ) = Llow(−λ)∗ →֒ Mlow(−λ)∗ = C[U ]⊗
Cλ as required. �

Proof of Proposition 3.4. Let V = Cβ ⊗C[U ], where β = λ−µ. By the last lemma,
we can prove the Proposition with L(λ)µ replaced by V H , where the filtration on
V H is defined by V H ∼= (V ⊗ C[U ])B. An element f of this latter set can be
identified with a B-invariant function U × U → Cβ . The polynomial degree on
the second factor is the maximum t-degree of f(u, tx) as u ranges across U and x
ranges across n̂ ∼= U . Suppose this maximum is achieved at (u0, x0). Since B(s∩n)
is dense in n̂, we can assume that x0 = Ad(b)s for b ∈ B and s ∈ s∩n. Now
s∩n is abelian and graded, so the graded components of s commute with each
other. This allows us to find s̃ ∈ s∩n such that π(ets̃) = ts. Since the degree
of f(u0, ·) is achieved on the line Ad(b)π(ets̃), it is also achieved on the parallel
line Ad(b)π(ets̃) + π(b) = π(bets̃). Thus the polynomial degree of f is equal to the
t-degree of f(u0, bπ(e

ts̃)) = β(b)f(b−1u0, π(e
ts̃)). Since β(b) is a non-zero scalar,

we conclude that there is u ∈ U and s ∈ s∩n such that the degree of f is equal
to the t-degree of f(u, π(ets)). Conversely if s ∈ s∩n then π(ets) is a line in n̂, so
the degree of f is equal to the t-degree of f(u, π(ets)) as u ranges across U and s
ranges across s∩n.

Given f ∈ (Cβ ⊗ C[U ] ⊗ C[U ]) let f̃ ∈ Cβ ⊗ C[U ] be the restriction to U × {1}.
The t-degree of f(u, π(ets)) is equal to the t-degree of (e−tsf̃)(u). Since

e−tsf̃ =
∑

n≥0

(−1)ntn

n!
snf̃ ,

the degree of f is clearly equal to the smallest n such that sn+1f̃ = 0 for all
s ∈ s∩n. �

The proof of Proposition 3.4 works just as well with s∩n replaced by any graded
abelian subalgebra a of n̂ such that Ad(B) a is dense in n̂. For example, in the
finite-dimensional case we could take a = Ce. If g =

⊕
gi is a direct sum of

indecomposables of finite or affine type then we can take a =
⊕

ai, where ai
is either the positive part of the principal Heisenberg, or the positive nilpotent,
depending on whether gi is affine or finite.

4. Cohomology vanishing

4.1. Nakano’s identity and the Laplacian. We need some tools to prove the
necessary cohomology vanishing result. Throughout this section g will be an arbi-
trary symmetrizable Kac-Moody algebra. (V, π) will be a b̂-module such that π|g0

extends to an action of b (also denoted by π). Note that since n = g/b, n̂∗ is both

a b̂-module and a b-module. n = g/ b has the same property.

Definition 4.1. The semi-infinite chain complex (C∗,∗(V ), ∂̄, D) is the bicomplex

C−p,q(V ) =

(
q∧
n̂∗ ⊗

p∧
n⊗ V

)g0

.

with differentials ∂̄ and D, where the former is the Lie algebra cohomology differ-
ential of n̂ with coefficients in

∧∗
n⊗ V , and the latter is the Lie algebra homology

differential of n with coefficients in
∧∗

n̂∗ ⊗ V , both restricted to g0-invariants.
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To make the definition of ∂̄ and D more explicit, identify C∗,∗(V ) with
∧∗

(n̂∗⊕
n̄) ⊗ V . Then the Clifford algebra of n ⊕ n̄ ⊕ n̂∗ ⊕ ˆ̄n∗ with the dual pairing acts
on C∗,∗(V ), where n̂∗ and n̄ act by exterior multiplication, and n and ˆ̄n∗ act by
interior multiplication. Pick a homogeneous basis {zi}i≥1 for n, let {zi} denote the
dual basis, and let z−i = zi. Then

∂̄ =
∑

k≥1

ǫ(zk)

(
1

2
adtn(zk) + adn(zk) + π(zk)

)
,

where ǫ is exterior multiplication, while

D =
∑

k≥1

(
1

2
adn(z−k) + adtn(z−k) + π(z−k)

)
ι(z−k),

where ι is interior multiplication.
The semi-infinite cocycle is defined by γ|gm×gn

= 0 if m+ n 6= 0 and by

γ(x, y) =
∑

0≤n<k

trgn
(ad(x) ad(y))

for x ∈ gk, y ∈ g−k, k ≥ 0. Since h = g0 is abelian, (x, y) = −γ(x, y) defines a
Hermitian form on n.

Lemma 4.2. Let 〈, 〉 be the symmetric invariant form on n (real-valued on a real-
form of g) such that {·, ·} = −〈·, ·〉 is contragradient and positive-definite on n.
Then the Hermitian form (·, ·) = −γ(·, ·) agrees with the form defined by

(x, y) = 2〈ρ, α〉{x, y}, x ∈ gα.

Proof. Suppose x, y ∈ gα. If {ui} and {ui} are dual bases of h with respect to 〈, 〉
then

trg0
(ad(x) ad(y)) =

∑

i

〈ui, [x, [y, ui]]〉

= 〈x, y〉〈α, α〉.
Next, let {eiβ} and {ei−β} be dual bases of gβ and g−β with respect to 〈, 〉. Let

ρ ∈ h∗ be such that ρ(α∨i ) = 1 for all coroots α∨i . Then

γ(x, y) = 〈x, y〉〈α, α〉 +
∑

β∈∆+

∑

i

〈ei−β, [x, [y, eiβ ]−]〉,

where x− is the projection of x ∈ g to n using the triangular decomposition. Rear-
ranging 〈ei−β, [x, [y, eiβ ]−]〉 = 〈x, [ei−β , [eiβ , y]−]〉 and applying Lemma 2.3.11 of [9],

we get that γ(x, y) = 2〈ρ, α〉〈x, y〉. �

The result of Lemma 4.2 is that (, ) defines a g0-contragradient Kahler metric on
n. Suppose V has a positive-definite Hermitian form contragradient with respect to
π. Using the Kahler metric on n, we can give C∗,∗(V ) a positive-definite Hermitian

form by defining (x, y) = (x, y) for x, y ∈ n. Let � = ∂̄∂̄∗+ ∂̄∗∂̄ be the ∂̄-Laplacian,
and � = DD∗ + D∗D be the D-Laplacian. Then a version of Nakano’s identity
holds:

Proposition 4.3 (Nakano’s identity [12] [13]). The ∂̄-Laplacian � and the D-
Laplacian � are related by

� = �+ deg+Curv,
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where deg acts on Cp,q(V ) as multiplication by p+ q, and

Curv = −
∑

i,j≥1

ǫ(zi)ι(zj) ([π(zi), π(z−j)]− π([zi, z−j ])) ,

on C0,q(V ) for {zi} a homogeneous basis of n orthonormal in (, ).

4.2. Laplacian calculation for symmetrizable Kac-Moody algebras. Given
an operator T on n̂∗, let dR(T ) and dL(T ) denote the operators on

∧∗
n̂∗ ⊗ S∗n̂∗

defined by

α1 ∧ . . . ∧ αk ⊗ β 7→
k∑

i=1

(−1)iα1 ∧ . . . α̌i . . . ∧ αk ⊗ T (αi) ◦ β

and

α⊗ β1 ◦ . . . ◦ βl 7→
l∑

i=1

T (βi) ∧ α⊗ β1 ◦ . . . ◦ β̌i ◦ . . . ◦ βl

respectively. Define an operator J on n̂∗ by f 7→ f/2〈ρ, α〉 if f ∈ g∗α. As in the
last section, let 〈, 〉 be a real-valued symmetric invariant bilinear form such that
{, } = −〈·, ·〉 is contragradient and positive-definite on n.

Proposition 4.4. Extend the contragradient Hermitian form {, } on n to V =
S∗n̂∗. On C0,q(V ),

CurvV =
∑

s≥0

dL(ad
t(y′s))dR(ad

t(ys)J)− deg,

where {ys} is a homogeneous basis for b and {y′s} is a basis for b dual with respect
to 〈, 〉.

Proof. Let V ′ = S∗n, and let π denote the actions of b and b on V ′. From Propo-
sition 4.3 we see that CurvV ′ is a second-order differential operator, and thus is
determined by its action on n̂∗ ⊗ n. We claim that if f ∈ n̂∗ and w ∈ n then

CurvV ′(f ⊗ w) =
∑

s≥0

adtn(w)y
s ⊗ adn(ys)φ

−1(f),

where φ : n → n̂∗ is the isomorphism induced by the Kahler metric, and {ys} is any
homogeneous basis of b. To prove this claim, let {zi} be orthonormal with respect
to the Kahler metric, and think about f = zk, w = z−l. Observe that

π(z)w =
∑

i<0

zi([z, w])zi.

Using this expression, we get that if z−j ∈ g−m then

([π(zi), π(z−j)]− π([zi, z−j ]))w =
∑

−m≤n<0

∑

z−k∈gn

z−k([z−j , [zi, w]])z−k.

We can then remove the reference to m and write

([π(zi), π(z−j)]− π([zi, z−j]))w =
∑

k>0

∑

s≥0

z−k([z−j , ys])y
s([zi, w])z−k.
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Now ι(z−j) is zero on (0, q)-forms so

CurvV ′(zk ⊗ z−l) = −
∑

i>0

zi ([π(zi), π(z−k)]− π([zi, z−k])) z−l

= −
∑

i,j>0

∑

s≥0

ziz−j([z−k, ys])y
s([zi, z−l])z−j

.

By summing over zi ∈ gn for fixed n, it is possible to move the z−l action from zi
to zi. The last expression becomes

−
∑

s≥0

∑

j>0

(adt(z−l)y
s)z−j([z−k, ys])z−j =

∑

s≥0

(adt(z−l)y
s)π(ys)(z−k).

The proof of the claim is finished by noting that z−k = φ−1(zk).
Next, the contragradient metric {, } gives an isomorphism ψ : n → n̂∗ of b and

b-modules. J = ψφ−1, while adt(w)ys = adt(y′s)ψ(w) where {y′s} is the dual basis
to {ys}. Identifying V with V ′ via ψ gives

CurvV (f ⊗ g) =
∑

s≥0

adt(y′s)g ⊗ adt(ys)Jf.

Given S, T ∈ End(n̂∗), define a second-order operator Switch(S, T ) on
∧∗

n̂∗ ⊗
S∗n̂∗ by f⊗g 7→ Tg⊗Sf . Then Switch(S, T ) = dL(T )dR(S)−(TS)∧, where (TS)∧

is the extension of TS to
∧∗

n̂∗ as a derivation. We have shown that

CurvV =
∑

s≥0

Switch(adt(ys)J, ad
t(y′s)) =

∑

s≥0

dL(ad
t(y′s))dR(ad

t(ys)J)− (TJ)∧,

where T =
∑

s≥0 ad
t(y′s) ad

t(ys). It is not hard to see that that (Tψ(y))(x) =

−γ(x, y) for x ∈ n, y ∈ n, so T = J−1 by Lemma 4.2. �

Note that dR(TJ) = dL(T
∗), where T ∗ is the adjoint of T ∈ End(n̂∗) in the

contragradient metric. The map J appears because the Kahler metric is used on∧∗
n̂∗ while the contragradient metric is used on S∗n̂∗. Since the isomorphism ψ

appearing in the proof is an isometry, adt(x)∗ = − ad(x)∗ in the contragradient
metric.

4.3. Cohomology vanishing for affine Kac-Moody algebras. If g is affine
then g can be realized as the algebra (L[z±1]⊕Cc⊕Cd)σ̃, where L is a simple Lie
algebra and σ̃ is an automorphism of g defined by

σ̃(c) = c, σ̃(d) = d, σ̃(xzn) = q−nσ(x)zn, x ∈ L

for σ a diagram automorphism of L of finite order k and q a fixed kth root of unity.
The bracket is defined by

[xzm + γ1c+ β1d, yz
n + γ2c+ β2d] =

[x, y]zm+n+β1nyz
n − β2mxz

m + δm,−nm〈x, y〉c,
for x, y ∈ L, γ1, γ2, β1, β2 ∈ C, where 〈, 〉 is the basic symmetric invariant bilinear
form on L. The diagram automorphism acts diagonalizably on L, so that

g =

k−1⊕

i=0

Liz
i ⊗ C[z±k]⊕ Cc⊕ Cd,
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where Li is the q
i-eigenspace of σ. The eigenspace L0 is a simple Lie algebra, and

there is a Cartan
◦

h⊂ L compatible with σ such that
◦

h0=
◦

h ∩L0 is a Cartan in L0.

The algebra h =
◦

h0 ⊕Cc⊕Cd is a Cartan for g. The eigenspaces Li are irreducible
L0-modules. Choose a set of simple roots α1, . . . , αl for L0, and let ψ be either
the highest weight of L1 (if k > 1), or the highest root of L0 (if k = 0). Then
α0 = d∗ − ψ, α1, . . . , αl is a set of simple roots for g, and α∨0 = c− ψ∨, α∨1 , . . . , α

∨
l

is a set of simple coroots. There is a unique real form hR = spanR{α∨i } ⊕ Rd, and

the anti-linear Cartan involution sends xzm + αc + βd 7→ xz−m − αc − βd, where
x 7→ x is the compact involution of x in L.

The following lemma finishes the proof of Theorem 2.3.

Lemma 4.5. Let µ be a dominant weight of an integrable highest weight g-module
L(λ), where λ is a real-valued dominant weight and g is affine. If µ is dominant

then Hq
cts(b̂, h;L(λ) ⊗ S∗n̂∗ ⊗ C−µ) = 0 for all q > 0.

Proof. The result is trivial if λ = µ = 0, so assume that λ and µ have positive level.
S∗n̂∗ has a contragradient positive-definite Hermitian form from {, }. Since µ

is a real-valued weight, C−µ has a contragradient positive-definite Hermitian form.
Finally, L(λ) has a contragradient positive-definite Hermitian form because λ is a
real-valued dominant weight. Putting everything together, V = L(λ)⊗S∗n̂∗⊗C−µ

has a contragradient positive-definite Hermitian form.

The cohomology H∗(b̂, h;V ) can be identified with the kernel of the Laplacian
� on the zero column C0,∗(V ) of the semi-infinite chain complex. By Nakano’s
identity, � = � + deg+Curv. � is positive semi-definite by definition. The cur-
vature term splits into a sum Curv = CurvL(λ) +CurvS∗ +CurvC−µ

. Since L(λ)
is representation of g, CurvL(λ) is zero. Next consider CurvS∗ +deg. We use the
realisation of g via the loop algebra. The contragradient metric {, } induces a
positive-definite metric on the loop algebra g′/Cc, so we can pick a homogeneous
basis for b consisting of an orthonormal basis {ys} for g′/Cc, as well as c and d.
The dual basis to {c, d, y0, . . . , ys, . . .} is {d, c,−y0, . . . ,−ys, . . .}. Since c is in the
centre, we have adt(c) = 0, so the terms dL(ad

t(c)) and dR(ad
t(c)J) in CurvS∗ are

zero. Consequently

CurvS∗ +deg =
∑

s≥0

dL(ad
t(−ys))dR(adt(ys)J) =

∑

s≥0

dR(ad
t(ys)J)

∗dR(ad
t(ys)J)

is semi-positive. Finally we get that

CurvC−µ
= −

∑

α∈∆+

∑

i,j

ǫ(ziα)ι(zα,j)µ([zα,i, zα,j]),

where zα,i runs through a basis for gα orthonormal in the Kahler metric. Now

−µ([zα,i, zα,j]) = {zα,i, zαj
}〈µ, α〉,

The result is that CurvC−µ
is a derivation which multiplies occurences of zjα by the

non-negative number 2〈ρ, α〉〈µ, α〉, and thus is semi-positive.
Now we look more closely at the kernel of �. The operator CurvC−µ

is strictly

positive on zβ1,i1 ∧· · ·∧zβk,ik ⊗v unless all βi ∈ Z[Y ], where Y = {αi : µ(α
∨
i ) = 0}.

Let AY be the submatrix of the defining matrix A of g with rows and columns
indexed by {i : αi ∈ Y }. Recall that the Kac-Moody algebra g(AY ) defined by AY

embeds in g. The standard nilpotent of g(AY ) is nY =
⊕

α∈∆+∩Z[Y ] gα ⊂ g. Let
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uY =
⊕

α∈∆+\Z[Y ] gα. Since µ has positive level, Y is a strict subset of simple roots,

and since g is affine, g(AY ) is finite-dimensional. Harmonic cocycles must belong
to the kernel of CurvC−µ

, so any harmonic cocycle ω must be in the h-invariant
part of

∗∧
n̂∗Y ⊗ S∗n̂∗ ⊗ L(λ) ⊗ C−µ.

As a vector space, this set can be identified with Ω∗poln̂Y ⊗C[ûY ]⊗L(λ), where Ω∗pol is
the ring of polynomial differential forms and ûY is pro-Lie algebra associated to uY .
For ω to be in the kernel of deg+CurvS∗ , ω must lie in the kernel of the operators
dR(ad

t(ys)J), s ≥ 0. Since dR(ad
t(c)J) = 0, we get that dR(ad

t(x)J)ω = 0 for
every x ∈ bY ⊂ g′ ∩ b, where bY is the standard Borel of g(AY ). Let J−1∆ denote

the diagonal extension of J−1 to
∧∗

n̂∗. Then J−1∆ ω vanishes under contraction
by the vector fields nY → TnY : x 7→ (x, [x, y]), y ∈ b. At a point x ∈ nY ,
these vector fields span the tangents to BY -orbits. nY is the positive nilpotent of
a finite-dimensional Kac-Moody, so nY has a dense BY -orbit and thus ω must be
zero. �

The same proof applies with slight modification if g is a direct sum of indecom-
posables of finite or affine type.

5. A Brylinski filtration for indefinite Kac-Moody algebras

In this section g will be an arbitrary symmetrizable Kac-Moody algebra. Recall
from the proof of Lemma 4.5 that if A is the defining matrix of g and Z is a subset
of the simple roots then AZ refers to the submatrix of A with rows and columns
indexed by {i : αi ∈ Z}.
Proposition 5.1. Let g be the symmetrizable Kac-Moody algebra defined by the
generalized Cartan matrix A, and suppose µ is a dominant weight of an integrable
highest weight representation L(λ), where λ is real-valued. Write λ − µ =

∑
kiαi,

ki ≥ 0, and let Z = {αi : ki > 0}. If AZ is a direct sum of indecomposables of

finite and affine type then Hq
cts(b̂, h;S

∗n̂∗ ⊗ L(λ) ⊗ C−µ) = 0 for q > 0.

Recall that the weight space L(λ)µ of an integrable highest weight representation
is filtered via polynomial degree on the isomorphic space (L(λ) ⊗ C−µ ⊗ C[U ])B.
Let degPλ

µ (q) be the corresponding Poincare polynomial. Excepting Proposition
3.4, the results of Sections 2 and 3 imply the following corollary:

Corollary 5.2. If the hypotheses of Proposition 5.1 hold then mλ
µ(q) =

degPλ
µ (q)

The conclusions of Theorem 2.3 hold similarly, with the Brylinski filtration re-
placed by the degree filtration.

Proof of Proposition 5.1. . We continue to use the notation of Section 4. For
instance, V = S∗n̂∗ ⊗ L(λ) ⊗ C−µ. Recall that � = � + deg+CurvV , and
CurvV = CurvL(λ) +CurvC−µ

+CurvS∗ . The operators �, CurvL(λ), and CurvC−µ

are positive semi-definite as before, while

deg+CurvS∗ =
∑

k≥1

dR(ad
t(xk)J)

∗dR(ad
t(xk)J) +

∑

i

dL(ad
t(ui))dR(ad

t(ui)J),

where {xk} is a basis for n orthonormal in the contragradient metric, and {ui}
and {ui} are dual bases for h. The first summand in this equation is positive
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semidefinite, but the second is not if there are roots with 〈α, α〉 < 0. Indeed,
writing

(3)
∑

i

dL(ad
t(ui))dR(ad

t(ui)J) =

∑

i

Switch(adt(ui)J, adt(ui)) +
∑

i

(adt(ui) adt(ui)J)
∧,

we see that the first summand in Equation (3) is the second order operator defined
by

x⊗ y 7→ 〈α, β〉
2〈ρ, α〉y ⊗ x, x ∈ g∗α, y ∈ g∗β ,

while the second summand in Equation (3) is the derivation of
∧∗

n̂∗ induced by
the map

x 7→ 〈α, α〉
2〈ρ, α〉x, x ∈ g∗α

on n̂∗.
Let g(AZ) be the corresponding Kac-Moody subalgebra of g, and let nZ be the

standard nilpotent. g(AZ) has a Cartan subalgebra hZ ⊂ h, and the real-valued
non-degenerate symmetric invariant form on g restricts to such a form on g(AZ).
Any h-invariant element of

∧∗
n̂∗⊗ V must belong to

∧∗
n̂∗Z ⊗ S∗n̂∗Z ⊗L(λ)⊗C−µ.

We claim that the operator
∑

i dL(ad
t(ui))dR(ad

t(ui)J) on
∧∗

n̂∗ ⊗ S∗n̂∗ restricts

on
∧∗

n̂∗Z ⊗S∗n̂∗Z to the operator
∑

i dL(ad
t(vi))dR(ad

t(vi)J), where {vi} and {vi}
are dual bases of hZ . To verify this claim, note that a choice of symmetric invariant
form corresponds to a choice of a diagonal matrix D with positive diagonal entries,
such that DA is a symmetric matrix. If x ∈ h∗ the invariant form satisfies 〈x, αi〉 =
Diix(α

∨
i ). The operator in Equation (3) thus depends only on A and D; the claim

follows from the observation that the action of the operator on
∧∗

n̂∗Z ⊗ S∗n̂∗Z
depends only on AY and DY .

Now suppose AY is a direct sum of indecomposables of finite and affine type.
The operator

∑
i dL(ad

t(vi))dR(ad
t(vi)J) decomposes into a summand for each

component, each of which is positive semi-definite as in the proof of Lemma 4.5.
We finish as in the proof of Lemma 4.5, but taking Y = {αi ∈ Z : µ(αi) = 0}. �
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