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A BRYLINSKI FILTRATION FOR AFFINE KAC-MOODY
ALGEBRAS

WILLIAM SLOFSTRA

ABSTRACT. Braverman and Finkelberg have recently proposed a conjectural
analogue of the geometric Satake isomorphism for untwisted affine Kac-Moody
groups. As part of their model, they conjecture that (at dominant weights)
Lusztig’s g-analog of weight multiplicity is equal to the Poincare series of
the principal nilpotent filtration of the weight space, as occurs in the finite-
dimensional case. We show that the conjectured equality holds for all affine
Kac-Moody algebras if the principal nilpotent filtration is replaced by the
principal Heisenberg filtration. The main body of the proof is a Lie alge-
bra cohomology vanishing result. We also give an example to show that the
Poincare series of the principal nilpotent filtration is not always equal to the g¢-
analog of weight multiplicity. Finally, we give some partial results for indefinite
Kac-Moody algebras.

1. INTRODUCTION

Let £(\) be an integrable highest-weight representation of a symmetrizable Kac-
Moody algebra g. The Kostant partition functions K(3; q) are defined for weights
B by

S (Ege = T[ (e e,
B acAt
where AT is the set of positive roots and mult & = dimg,. The g-character of a
weight space L(\), is the function

(1) mi(q) = > e(w)K (w* A —p;q),
weWw

where W is the Weyl group of g, € is the usual sign representation of W, and
w* XA = w(\+ p) — p is the shifted action of W. The name “g-character” is used
because m;,(1) = dim L(A),,.

When g is finite-dimensional it is well-known that the g-analogs ml’)(q) are equal
to Kostka-Foulkes polynomials, which express the characters of highest-weight rep-
resentations in terms of Hall-Littlewood polynomials [§], and are Kazhdan-Lusztig
polynomials for the affine Weyl group [10]. When 4 is dominant the coefficients of
m,’)(q) are non-negative. There is an explanation for this phenonemon, first conjec-
tured by Lusztig [10]: the weight space £(\),, has an increasing filtration *F* such

that m;,(q) is equal to the Poincare polynomial
(2) “Pr(g) =) ¢ dim F'L(N), [ “F" L),
i>0
of the associated graded space. This identity was first proved by Brylinski for

w regular or g of classical type; the filtration *F* is known as the Brylinski or
1
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Brylinski-Kostant filtration, and is defined by
CFU L)) = {v € L)y : e o =0},

where e is a principal nilpotent. Brylinki’s proof was extended to all dominant
weights by Broer [2]. More recently Joseph, Letzter, and Zelikson gave a purely
algebraic proof of the identity mf; = GP:‘, and determined ePlf‘ for p non-dominant
[7]. The g-analogs of weight multiplicity of an arbitrary symmetrizable Kac-Moody
have been studied by Viswanath [I4]; he shows that m)(¢) are Kostka-Foulkes
polynomials for generalized Hall-Littlewood polynomials, and determines ml);(q) at
some simple p for an untwisted affine Kac-Moody.

The point of this paper is to extend Brylinski’s result to affine (ie. indecompos-
able of affine type) Kac-Moody algebras. We show that, as in the finite-dimensional
case, there is a filtration on £(\), such that when p is dominant, mﬁ (q) is equal
to the Poincare series of the associated graded space. Unlike the finite-dimensional
case, the principal nilpotent is not sufficient to define the filtration in the affine case;
instead, we use the positive part of the principal Heisenberg (this form of Brylinski’s
identity was first conjectured by Teleman). Brylinski’s original proof of the identity
m;\L = GP;L\ uses a cohomology vanishing result for the flag variety. Our proof is
based on the same idea, but uses the Lie algebra cohomology approach of [5]. In
particular we prove a vanishing result for Lie algebra cohomology by calculating
the Laplacian with respect to a Kahler metric. Although we concentrate on the
affine case for simplicity, our results generalize easily to the case when g is a direct
sum of algebras of finite or affine type. There are two difficulties in extending this
result to indefinite symmetrizable Kac-Moody algebras: there does not seem to be
a simple analogue of the Brylinski filtration, and the cohomology vanishing result
does not extend for all dominant weights ;1. We can overcome these difficulties by
replacing the Brylinski filtration with an intermediate filtration, and by requiring
that the root A — p has affine support. Thus we get some partial non-negativity
results for the coefficients of m;\L (q) even when g is of indefinite type.

The primary motivation for this paper is a recent conjecture of Braverman and
Finkelberg. Recall that when g is finite-dimensional, the geometric Satake iso-
morphism is an equivalence between the representation category of any group G
associated to g, and the category of equivariant perverse sheaves on the loop Grass-
mannian Gr = GV ((2))/G"][[z]] of the Langlands dual group GV. The loop Grass-
mannian Gr is an ind-variety, realized as an increasing disjoint union of Schubert
varieties Gr* parametrized by weights of G. Under the equivalence, a highest-
weight representation £(\) is sent to the intersection cohomology complex IC* of

Gr*. In addition to conjecturing the equality mf; = ePﬁ\, Lusztig showed in [10]
that mfl(q) is equal (after a degree shift) to the generating function ICﬁ(q) for the

dimensions of the stalk of the complex ICI); at a point in Gr* c Gr*. A direct
isomorphism between the stalks ICf; and the graded spaces gr L(\),, appears in the
geometric Satake isomorphism [4] [I1], leading to another proof that mj = P}
(see [] in particular). Braverman and Finkelberg have proposed a conjectural ana-
logue of the geometric Satake isomorphism for affine Kac-Moody groups [1]. Their
conjecture relates representations of g to perverse sheaves on an analogue of the
loop Grassmannian for g when gV is an untwisted affine Kac-Moody. Their model
leads them to conjecture that mf‘t(q) = ePﬁ\ in the affine case, with both related



A BRYLINSKI FILTRATION FOR AFFINE KAC-MOODY ALGEBRAS 3

to the intersection cohomology stalks as in the finite-dimensional case[] Since we
will demonstrate by example that mﬁ(q) is not necessarily equal to EPS, our paper
gives a correction of Braverman and Finkelberg’s conjecture.

1.1. Acknowledgements. I thank my advisor, Constantin Teleman, for suggest-
ing the project and for many helpful conversations. This work was supported in
part by NSERC. Additional support was received from NSF grants DMS-1007255
and DMS-0709448.

1.2. Organization. The definition of the Brylinski filtration and the statements
of the main results for affine Kac-Moody algebras are given in Section Proofs
follow in Sections [Bl and @l Partial results for indefinite Kac-Moody algebras are
given in Section

1.3. Notation and terminology. Throughout, g will refer to a symmetrizable
Kac-Moody algebra. For standard notation and terminology, we mostly follow [9].
We assume a fixed presentation of g, from which we get a choice of Cartan b, simple
roots {a;}, simple coroots {a}}, and Chevalley generators {e;, f;}. We can then
grade g via the principal grading, ie. by assigning degree 1 to each e; and degree —1
to each f;. By choosing a real form hr of h we get an anti-linear Cartan involution
x — T, defined as the anti-linear involution sending e; — — f; for all ¢ and h — —h
for all h € hgr. As usual g has the triangular decompostion g = n® h ®n, where n is
the standard nilpotent €, g». The standard Borel is the subalgebra b = h @ n.

Associated to n and b are the pro-algebras n = lim, n/n; and b = lim. b /nyg,
where n = @,,. . On-

2. THE BRYLINSKI FILTRATION FOR AFFINE KAC-MOODY ALGEBRAS

A principal nilpotent (with respect to a given presentation) of a symmetrizable
Kac-Moody algebra is an element e € gy of the form e = 3 ¢;e;, where ¢; € C\ {0}
for all simple roots e;. If g is affine it is well-known that the algebras s, = {x €
g : [x,e] € Z(g)} are Heisenberg algebras, and these algebras are called principal
Heisenberg subalgebras.

Definition 2.1. Let L(\) be a highest-weight module of an affine Kac-Moody al-
gebra g. Define the Brylinski filtration with respect to the principal Heisenberg s
by

SFLN), ={ve L), : 2 v =0 for all v € s},

Let 5P;L\(q) be the Poincare series of the associated graded space of L(\),,.

Note that the principal nilpotents form a single H-orbit, so the filtration *F* is
independent of the choice of principal Heisenberg.

Recall that a weight p is real-valued if p(h) € R for all h € hg, and dominant if
w(ey) > 0 for all simple coroots «,

Theorem 2.2. Let L(\) be an integrable highest weight representation of an affine
Kac-Moody algebra g, where X is a real-valued dominant weight. If i is a dominant

weight of L(X) then P (q) = m)(q).

IThere seems to be a typo in [1I]: root multiplicities are omitted in the definition of the Kostant
partition functions.
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The dual n* of a pro-algebra will refer to the continuous dual. If V' is a b-module
then HY (b, h;V) will denote the relative continuous cohomology of (b,5). The

cts

proof of Theorem depends on

Theorem 2.3. Let L(\) be an integrable highest weight representation of an affine
Kac-Moody algebra g, where X is a real-valued dominant weight. Let V. = L()\) ®
S*n* @ C_,,, where p is a dominant weight of L(X). Then HY (6,5;V) = 0 for
q > 0, and in addition there is a graded isomorphism gr L(\), = H%,(b,h;V),
where the latter space is graded by symmetric degree.

Proof of Theorem[2.2 from Theorem[2.3 Let VP = L(\) ® SPu* ® C_,,. By The-
orem 23, P} (q) = > p>0 dim HY, (b, h; VP)g? = S x(b,bh; VP)gP, where y is the
Euler characteristic (the second equality follows from cohomology vanishing). Since
n* has finite-dimensional weight spaces and all weights belong to the negative root
cone, A\ 1* ® L(\) ® SPi* has finite-dimensional weight spaces. Thus we can write

k b
> x(0,5;VP)g” = Y (—1)F¢? dim (/\ i ® Vp>
p=>0 p,k>0
_ [6#] Chﬁ()\) H (1 _ efa)multa(l _ qefa)fmulta'
acAt

Applying the Weyl-Kac character formula

Chﬁ()\) _ Z E(w)ew*k . H (1 _ e—a)—multoz
weW aeAt
we get the result.
[l

The proof of Theorem [2.3] will be given in Sections BlandHEl If g = Pg; is a
direct sum of indecomposables of finite and affine type, the conclusions of Theorems
and remain true with s replaced by a direct sum of principal nilpotents (for
the finite components) and principal Heisenbergs (for the affine components).

2.1. Examples. We now give some elementary examples to show that *F is differ-
ent from ¢F. Consider sl, the affine Kac-Moody algebra realized as slz[zF] @ Cc®
Cd, where c is a central element, and d is the derivation %. Let {H,E, F} be an
slp-triple in slp, and take principal nilpotent e = E + F'z. The principal Heisenberg
5 is spanned by the elements e/z\”, n € Z, along with c.

The Cartan subalgebra of sly is span{H,c,d}. Denote a weight aH* + hc* +
nd* by (a, h,n). The weight A\ = («, h,n) is dominant if 0 < o < h, and the
corresponding irreducible highest-weight representation L(A) can be realized as the
quotient of the Verma module U(g) ®p) Ca by the U(g)-submodule generated by

Fotl®1 and (B2~ 1)h—o+1 @ 1. Let
w= (Fz"Y)(Ez ),

where v is the highest weight vector in L(c*). Note that w is a weight vector of
weight (0,1,—2). It is easy to check, using the defining relations for L(c*), that
e?w = 0, while (ez)ew = 3v, so w € ¢F? but not in *F2.

The same idea can be used to calculate Poincare series. For the above example,
where A = (0,1,0) and p = (0,1, —2), we have dim £()),, = 2. The Poincare series
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for ¢F is ¢+ q*, while the Poincare series for *F is mfl(q) = ¢%>+¢*. For an example
with a dominant regular weight, let A = (0,3,0) and p = (2,3, —3). The Poincare
series of ¢F is q + 2¢% + ¢ + ¢°, while mﬁ(q) =q+ ¢ +2¢+ ¢°.

3. REDUCTION TO COHOMOLOGY VANISHING

In this section we introduce an equivalent filtration to the Brylinski filtration,
which will allow us to reduce Theorem to a cohomology vanishing statment.
The line of argument is inspired by [3] and [5]. As usual, g will be an arbitrary
symmetrizable Kac-Moody algebra except where stated.

Associated to g is a Kac-Moody group G. The standard Borel subgroup B of G is
a solvable pro-group with Lie algebra b. The standard unipotent subgroup U C B
is a unipotent pro-group with Lie algebra n. The Borel B also contains a torus H
corresponding to h. Defining the new filtration requires two lemmas.

Lemma 3.1. There are pro-algebraic morphisms U = B/H = n giving U the
structure of an affine pro-variety with an affine B-action.

Proof. Pick § € b acting on g, as multiplication by n, and define 7 : B — @ by
Ad(b)d = 6 + w(b). Then the composition U — B — B/H — f is an isomorphism.
i is naturally an affine pro-variety by the identification of n/n; with EBZIl On,
while B/H has a left-translation action of B. If by,bs € B then Ad(b1b2)d =
Ad(bl)(5 + 7T(b2)) =0 + 7T(b1) + Ad(b1>7T(b2), SO W(blbg) = Ad(bl)ﬂ'(bg) + 7T(b1) and
the resulting action of B on n is affine. O

Lemma 3.2. Let V be a pro-representation of B. Then evaluation at the identity
gives an isomorphism (V @ ClU])? — VH.

Proof. Any element v € V' extends to a B-invariant function & — V by [b]
bv. 0

If V is a pro-representation of B then V¥ can be filtered via polynomial degree
on C[]. If p is a weight of g then extending p by zero on U makes C_, into a
pro-representation of B. The reason for introducing a new filtration is the following
lemma, which reduces the proof of Theorem to a vanishing result.

Lemma 3.3. Let W = L(\) ® C_,,, and filter L(\),, = W via the isomorphism
WH =~ (W @ ClU)B. If HL.(b,b; W @ S*@*) = 0 then HY, (b,b; W @ S*i*) =
gr LA

Proof. Let FP be the subset of C[U] of polynomials of degree at most p. Then
grClU] = S*n* as B-modules, so there are short exact sequences

0-WRFPF 1 oWeFP - WeSPH* =0

of B-modules for all p. The corresponding long exact sequence in Lie algebra
cohomology is

Hzts([;a ba w ®]:p—1) - Hzts(év va ®‘Fp) %Hits([;a ba w & Spﬁ*)
— HI 0,5 W @ FPY).

cts

Since H',, (b, bh; W ®5P4*) = 0 for i = 1, the inclusion W@ FP~! < W @ F? induces
a surjection in degree one cohomology for all p. Since = = 0, HL (b,h; W ®

FP) =0 for all p. The long exact sequence in degree i = 0 gives an isomorphism
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HY, (b, b; W ®SPa*) = (W @ FP)° /(W @ FP~1)°. This latter quotient is the graded
space of (W @ C[U])® as required. O

Now we show that the new filtration is equal to the Brylinski filtration when g
is affine.

Proposition 3.4. Let L(\) be an integrable highest-weight representation of an an
affine Kac-Moody g. Then the Brylinski filtration on a weight space L()\), agrees
with the filtration of L(\), = (L(\) ® C_,, ® C[U])® by polynomial degree.

The proof of Proposition [3.4] requires two lemmas.

Lemma 3.5. If g is affine and s is a principal Heisenberg then Ad(B)(sMn) is
dense in .

Proof. The principal nilpotents form a dense orbit, so it is only necessary to prove
this fact for a single principal nilpotent. We claim that there is a principal nilpotent
such that f = —€ € s, so that in particular [e, f] € Z(g). Indeed, let A be the
generalized Cartan matrix defining g, ie. A;; = «;(a)). Since g is affine there
is a vector ¢ > 0, unique up to a scalar multiple, such that Afc = 0. If we pick
e = > ./ce; then [e, f] = Y ¢, and a;(fe, f]) = D ¢;Ai; = (A'e); = 0 for all
simple roots «;.

Now we show that n = (s.Nn) + [b,e]. In degree one we have [h,e] = g;. For
higher degrees, let {, } denote the standard non-degenerate contragradient Hermit-
ian form on g which is positive definite on n. An element x € n is orthogonal to
[b,¢e] if and only if 0 = {[e, z],z} = {z,[f,z]} for all z € b, or in other words if
and only if z € Cy(f). Suppose = € g,,, n > 2 belongs to [b,e]t. Using the fact
that [e, f] € Z(g) we get that {[e,z], [e,z]} = {[f, =], [f,z]} = 0, and conclude that
T € 5.

(s M)+ [b, e] = n implies that B x (s Mn) — A is a submersion in a neighbourhood
of (1,e). Since B acts algebraically on s Nn C b, the subset B(sNn) is dense in f. [

Lemma 3.6. Let L£()\) be an integrable highest-weight module. Considered as a
B-module, L(X) is a submodule of C[U] ® Cj.

Proof. This statement would follow immediately from a Borel-Weil theorem for the
thick flag variety of a Kac-Moody group. As we are not aware of a formal statement
of the Borel-Weil theorem in this context, we recover the result from the dual of
the quotient map Moy (—A) = Ligw(—A), where Mo, (—A) = U(g) ®u(®) C_,isa
lowest weight Verma module, and £;5,,(—]) is the irreducible representation with
lowest weight —\. Both these spaces are g-modules with finite gradings induced
by the principal grading of g. Let My, (—\)* and L£(—)\)* denote the finitely-
supported duals, consisting of linear functions which are supported on a finite
number of components.

Using the fact that Mje,(—2A) is a free U(n)-module, we can identity Moy (—A)
with S*n ® C_, where S*n has the b-action (y,z) — [y,0] o x + ad(y)z, and &
is defined as in Lemma [3.I] as an element of § which acts on g,, as multiplication
by n. The finitely supported dual of Mj,,(—A) can be identified with S*n* @ C,
where b acts on S*i* by (y, f) — ad’(y)f + ¢([5,y])f. Tt is not hard to check
that this action integrates to the B-action coming from identifying S*n* with C[].
Since the quotient map preserves the principal grading, the dual of the surjection
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Miow(—X) = Liow(—A) is an inclusion L(A\) = Liow (—A)* — Mo (—\)* = ClU] ®
C, as required. (I

Proof of Proposition[3.4 Let V = Cg®C[U], where 8 = A — p. By the last lemma,
we can prove the Proposition with £()\), replaced by VH  where the filtration on
VH is defined by V# = (V @ ClU])®. An element f of this latter set can be
identified with a B-invariant function ¢ x &/ — Cg. The polynomial degree on
the second factor is the maximum t-degree of f(u,tx) as u ranges across U and x
ranges across i = {. Suppose this maximum is achieved at (ug, zo). Since B(sMn)
is dense in n, we can assume that g = Ad(b)s for b € B and s € sMn. Now
sMn is abelian and graded, so the graded components of s commute with each
other. This allows us to find § € sNn such that 7(e!®) = ts. Since the degree
of f(up,-) is achieved on the line Ad(b)w(e*®), it is also achieved on the parallel
line Ad(b)m(e'®) + 7 (b) = w(be!®). Thus the polynomial degree of f is equal to the
t-degree of f(ug,br(e'¥)) = B(b)f(b~ ug, 7(e'¥)). Since B(b) is a non-zero scalar,
we conclude that there is u € U and s € sMn such that the degree of f is equal
to the t-degree of f(u,m(e’*)). Conversely if s € s n then 7(e'®) is a line in A, so
the degree of f is equal to the t-degree of f(u,m(e®)) as u ranges across U and s
ranges across §Mn.

Given f € (Cs ® ClU] @ CU]) let f € Cp @ C[U] be the restriction to U x {1}.
The t-degree of f(u,m(e')) is equal to the t-degree of (¢~ f)(u). Since

eftsf: Z (_1)'77, nsan,

n
n>0

the degree of f is clearly equal to the smallest n such that s"t1f = 0 for all
sesM. O

The proof of Proposition 34 works just as well with s "n replaced by any graded
abelian subalgebra a of o such that Ad(B)a is dense in . For example, in the
finite-dimensional case we could take a = Ce. If g = @g; is a direct sum of
indecomposables of finite or affine type then we can take a = @ a;, where q;
is either the positive part of the principal Heisenberg, or the positive nilpotent,
depending on whether g; is affine or finite.

4. COHOMOLOGY VANISHING

4.1. Nakano’s identity and the Laplacian. We need some tools to prove the
necessary cohomology vanishing result. Throughout this section g will be an arbi-
trary symmetrizable Kac-Moody algebra. (V,7) will be a b-module such that 7|g,
extends to an action of b (also denoted by 7). Note that since n = g/b, #* is both
a b-module and a b-module. T = g/ b has the same property.

Definition 4.1. The semi-infinite chain complex (C**(V),d, D) is the bicomplex

CPI(V) = </q\n @f\ﬁ@V) .

with differentials 0 and D, where the former is the Lie algebra cohomology differ-
ential of & with coefficients in N\"T® V, and the latter is the Lie algebra homology
differential of ™ with coefficients in \* #4* ® V, both restricted to go-invariants.
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To make the definition of d and D more explicit, identify C** (V) with \*(f* @
) ® V. Then the Clifford algebra of n @ n @ a* @ n* with the dual pairing acts
on C**(V), where n* and n act by exterior multiplication, and n and n* act by
interior multiplication. Pick a homogeneous basis {z;};>1 for n, let {2} denote the
dual basis, and let z_; = Z;. Then

0= Ze(zk) (% ad! (zx) + ads(zx) + W(Zk)) ;

k>1

where € is exterior multiplication, while

D= Z( w(z_k) +adi (2 )+7T(Zk)> Wz h),

k>1

where ¢ is interior multiplication.
The semi-infinite cocycle is defined by 7|g,.xg, = 0 if m +n # 0 and by

S trg, (ad(x) ad(y))

0<n<k

for x € gk, y € g—k, k > 0. Since h = go is abelian, (x,y) = —v(z,7) defines a
Hermitian form on n.

Lemma 4.2. Let (,) be the symmetric invariant form on n (real-valued on a real-
form of g) such that {-,-} = —(-,7) is contragradient and positive-definite on n.
Then the Hermitian form (-,-) = —(-,%) agrees with the form defined by

(:I;a y) = 2<p7 O(>{£L', y}7 T € ga-
Proof. Suppose x,y € gqo. If {u;} and {u'} are dual bases of h with respect to (,)
then
trg, (ad(2) ad(y)) = D (ui, [, [7, u']])
= (z,7) (o, o).
Next, let {e}} and {e’ 5} be dual bases of g5 and g_s with respect to (,). Let
p € b* be such that p(a;’) = 1 for all coroots af. Then

Y, y) = (z, + Y0 e g [ [T el D),

BeAt i
where z_ is the projection of x € g to 1 using the triangular decomposition. Rear-
ranging (e’ g, [z, [, e5]-]) = (z,[e" 4, [e};,7]-]) and applying Lemma 2.3.11 of [9],
we get that (z,7) = 2(p, a) (z, ). 0

The result of Lemma [£2is that (,) defines a go-contragradient Kahler metric on
n. Suppose V has a positive-definite Hermitian form contragradient with respect to
7. Using the Kahler metric on n, we can give C**(V') a positive-definite Hermitian
form by defining (z,7) = (z,y) for z,y € n. Let O = d9* + 8*0 be the d-Laplacian,
and 00 = DD* + D*D be the D-Laplacian. Then a version of Nakano’s identity
holds:

Proposition 4.3 (Nakano’s identity [12] [13]). The 0-Laplacian O and the D-
Laplacian O are related by

O = O+ deg + Curv,
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where deg acts on CP4(V') as multiplication by p + q, and
Curv = = Y e(z")ul(zy) ([m(2:), w(z—5)] = 7([202-5))) ,
i,j>1
on CO94UV) for {2} a homogeneous basis of n orthonormal in (,).
4.2. Laplacian calculation for symmetrizable Kac-Moody algebras. Given

an operator T' on #*, let dg(T') and dr(T) denote the operators on A" A* ® S*a*
defined by

Ao Nog @By (—1)'ar AL b Aok @T(a;) o3
=1

and

1
a®ﬁlo...0ﬁlHZT(&)/\@@&O...OBiO...Oﬁl
i=1
respectively. Define an operator J on n* by f — f/2(p,a) if f € g&. As in the
last section, let (,) be a real-valued symmetric invariant bilinear form such that
{,} = —{(,,7) is contragradient and positive-definite on n.

Proposition 4.4. Eztend the contragradient Hermitian form {,} on n to V =
S*n*. On CY4(V),

Curvy =Y dr(ad’(y}))dr(ad’ (ys)J) — deg,
s>0

where {ys} is a homogeneous basis for b and {y.} is a basis for b dual with respect

to (,).

Proof. Let V' = S*n, and let m denote the actions of b and b on V’. From Propo-
sition we see that Curvy. is a second-order differential operator, and thus is
determined by its action on 1* @ . We claim that if f € A* and w € 7 then

CU.I'va f & w Z adt *® adﬁ(ys)¢_1 (f)u
s>0

where ¢ : ® — 7* is the isomorphism induced by the Kahler metric, and {y,} is any
homogeneous basis of b. To prove this claim, let {2;} be orthonormal with respect
to the Kahler metric, and think about f = 2*, w = z_;. Observe that

m(2)w = Zzz([z, w])z;.
i<0
Using this expression, we get that if z_; € g_,, then
([r(zi), m(z—5)] = w([zi, 2 = > Y e [ wlDase
—m<n<0z_g€Jn

We can then remove the reference to m and write

([r(zi), w(z—)] = w((zir 2 D))w = > > 27 [z, ys))y* (21, w]) 2 &

k>0 5>0
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Now «(277) is zero on (0, g)-forms so
Curvy: (zk ®z_)=— Z 2t ([m(z:), m(2—k)] — 7([2i, 2—&])) 21
>0

== Fe (e y)y (2 22

i,5>0 s>0

By summing over z; € g,, for fixed n, it is possible to move the z_; action from z;
to z%. The last expression becomes

- Z Z(adt(Z—z)ys)Z_j([Z—kv Ys))z—j = Z(adt(Z—l)ys)W(ys)(Z—k)-
520 j>0 50

The proof of the claim is finished by noting that z_; = ¢~!(z¥).

Next, the contragradient metric {, } gives an isomorphism ¢ : # — 7* of b and
b-modules. J = ¢!, while ad’ (w)y® = ad’(y})1(w) where {3} is the dual basis
to {ys}. Identifying V' with V' via 1) gives

Curvy (f @g) = Y ad"(y})g @ ad"(ys) I f.
s>0

Given S,T € End(n*), define a second-order operator Switch(S,7) on A" f* ®
S*n* by f@g— Tg®Sf. Then Switch(S,T) = d(T)dr(S)— (T'S)", where (T'S)"
is the extension of T'S to A" * as a derivation. We have shown that

Curvy = Z Switch(ad’ (y,)J, ad’ (y.)) = ZdL(adt(yg))dR(adt(ys)J) —(TJI)",

s>0 s>0
where ' = 3" . ad’(y.)ad’(ys). Tt is not hard to see that that (T4(y))(z) =
—y(z,y) forz €n,y €n, so T = J~ ! by Lemma L2 O

Note that dr(TJ) = dr(T*), where T* is the adjoint of T € End(?#*) in the
contragradient metric. The map J appears because the Kahler metric is used on
A" 7* while the contragradient metric is used on S*f*. Since the isomorphism
appearing in the proof is an isometry, ad’(z)* = —ad(Z)* in the contragradient
metric.

4.3. Cohomology vanishing for affine Kac-Moody algebras. If g is affine
then g can be realized as the algebra (L[z*!] @ Cc @ Cd)?, where L is a simple Lie
algebra and & is an automorphism of g defined by

d(c)=c,6(d) =d,o(xz") =q¢ "o(x)z", z€L

for o a diagram automorphism of L of finite order k and ¢ a fixed kth root of unity.
The bracket is defined by

[£2™ +y1c+ frd,yz" + Yac + Pad] =
[:Eu y]2m+n+ﬁlnyzn - Bgmxzm + 5m,—nm<x7 y>cu

for x,y € L, y1,72, 51, B2 € C, where (,) is the basic symmetric invariant bilinear
form on L. The diagram automorphism acts diagonalizably on L, so that
k—1
g= @ Liz' ® Clz** @ Ce @ Cd,
i=0
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where L; is the ¢’ e1genspace of 0. The eigenspace LO is a simple Lie algebra, and
there is a Cartan f)C L compatible with ¢ such that f)o [) NLg is a Cartan in L.
The algebra b ho @Cc @ Cd is a Cartan for g. The eigenspaces L; are irreducible

Lp-modules. Choose a set of simple roots aq,...,q; for Ly, and let ¢ be either
the highest weight of Ly (if k¥ > 1), or the highest root of Ly (if ¥ = 0). Then
ag =d* —1,a1,...,0q 18 a set of simple roots for g, and of = c— ¢V, ey, ..., a)

is a set of simple coroots. There is a unique real form hr = spang{«a) } ® Rd, and
the anti-linear Cartan involution sends z2™ + ac + d — Tz~™ — ac — d, where
x +— T is the compact involution of x in L.

The following lemma finishes the proof of Theorem

Lemma 4.5. Let o be a dominant weight of an integrable highest weight g-module
L(N), where X is a real-valued dominant weight and g is affine. If p is dominant
then HY, (b,b; L(\) @ S*A* ®C_,) =0 for all ¢ > 0.

Proof. The result is trivial if A = g = 0, so assume that A and p have positive level.

S*n* has a contragradient positive-definite Hermitian form from {,}. Since p
is a real-valued weight, C_,, has a contragradient positive-definite Hermitian form.
Finally, £(\) has a contragradient positive-definite Hermitian form because X is a
real-valued dominant weight. Putting everything together, V = L(A) @ S*a*®@C_,
has a contragradient positive-definite Hermitian form.

The cohomology H *(5, h; V) can be identified with the kernel of the Laplacian
O on the zero column C%*(V) of the semi-infinite chain complex. By Nakano’s
identity, O = O + deg + Curv. O is positive semi-definite by definition. The cur-
vature term splits into a sum Curv = Curvg(y) + Curvg- + Curve_,. Since L())
is representation of g, Curv.(y) is zero. Next consider Curvg« +deg. We use the
realisation of g via the loop algebra. The contragradient metric {,} induces a
positive-definite metric on the loop algebra g’/Cc, so we can pick a homogeneous
basis for b consisting of an orthonormal basis {ys} for g’/Ce, as well as ¢ and d.
The dual basis to {¢,d,yo,...,¥s, ...} is {d,¢, —%g,...,—7s,...}. Since ¢ is in the
centre, we have ad’(c) = 0, so the terms dy,(ad’(c)) and dr(ad’(c).J) in Curvg- are
zero. Consequently

Curvs. +deg = Y dr(ad"(—75))dr(ad’ (ys)J) = Y _ dr(ad’(ys)J) dr(ad’ (ys)])
s>0 s>0

is semi-positive. Finally we get that

Curv(cw = — Z Z Za,j ([za,hm])?

aEAT 4,5

where 2, ; runs through a basis for g, orthonormal in the Kahler metric. Now

—1([zais Zaj1) = {Zacis Za; H s @),
The result is that Curvcw is a derivation which multiplies occurences of zfl by the
non-negative number 2(p, a){u, o), and thus is semi-positive.

Now we look more closely at the kernel of . The operator Curve_ . is strictly
positive on 2811 A+ A 280k @p unless all B; € Z[Y], where Y = {a; : u(a)) = 0}.
Let Ay be the submatrix of the defining matrix A of g with rows and columns
indexed by {i: a; € Y'}. Recall that the Kac-Moody algebra g(Ay) defined by Ay
embeds in g. The standard nilpotent of g(Ay) is ny = @aeA+mZ[Y] ga C 9. Let
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Uy = EBaeA+\Z[Y] go.- Since p has positive level, Y is a strict subset of simple roots,
and since g is affine, g(Ay) is finite-dimensional. Harmonic cocycles must belong
to the kernel of Curvce_,, so any harmonic cocycle w must be in the h-invariant
part of

o

A\ By @SR @ L) @ Cy.
As a vector space, this set can be identified with 7 iy ®@Clity | L()), where Q7 ; is
the ring of polynomial differential forms and tty is pro-Lie algebra associated to uy-.
For w to be in the kernel of deg + Curvg«, w must lie in the kernel of the operators
dr(ad’(ys)J), s > 0. Since dr(ad’(c)J) = 0, we get that dr(ad’(z)J)w = 0 for
every © € by C g’ N b, where by is the standard Borel of g(Ay). Let ng denote
the diagonal extension of J~! to A" #*. Then ngw vanishes under contraction
by the vector fields ny — Tny : z — (x,[z,y]), y € b. At a point = € ny,
these vector fields span the tangents to By-orbits. ny is the positive nilpotent of
a finite-dimensional Kac-Moody, so ny has a dense By-orbit and thus w must be

Zero. O

The same proof applies with slight modification if g is a direct sum of indecom-
posables of finite or affine type.

5. A BRYLINSKI FILTRATION FOR INDEFINITE KAC-MOODY ALGEBRAS

In this section g will be an arbitrary symmetrizable Kac-Moody algebra. Recall
from the proof of Lemma [£.5 that if A is the defining matrix of g and Z is a subset
of the simple roots then Az refers to the submatrix of A with rows and columns
indexed by {i: a; € Z}.

Proposition 5.1. Let g be the symmetrizable Kac-Moody algebra defined by the
generalized Cartan matriz A, and suppose p is a dominant weight of an integrable
highest weight representation L(X), where X is real-valued. Write A — p = > k;au;,
ki >0, and let Z = {«a; : k; > 0}. If Az is a direct sum of indecomposables of
finite and affine type then HY, (b,h; S*7* @ LN) @ C_,) = 0 for ¢ > 0.

Recall that the weight space £()),, of an integrable highest weight representation
is filtered via polynomial degree on the isomorphic space (£L(\) ® C_, ® CU])5.
Let deng(q) be the corresponding Poincare polynomial. Excepting Proposition
B4l the results of Sections 2 and [3] imply the following corollary:

Corollary 5.2. If the hypotheses of Proposition [5.1] hold then mﬁ(q) = degPlf‘ (9)

The conclusions of Theorem [2.3] hold similarly, with the Brylinski filtration re-
placed by the degree filtration.

Proof of Proposition[53.1l . We continue to use the notation of Section M For
instance, V = S*n* ® L(\) ® C_,. Recall that O = O 4 deg+ Curvy, and
Curvy = Curvp(y) + Curve_, + Curvgs. The operators U, Curvg(yy, and Curve_,
are positive semi-definite as before, while

deg + Curvgs = Z dr(ad’(zy)J)*dr(ad’ (z)J) + Z dr(ad" (u?))dg(ad* (u;)J),
k>1 i

where {x} is a basis for n orthonormal in the contragradient metric, and {u;}
and {u'} are dual bases for h. The first summand in this equation is positive
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semidefinite, but the second is not if there are roots with (o, ) < 0. Indeed,
writing

3) ZdL(adt(ui))dR(adt(uz')J ) =

Z Switch(ad (u®)J, ad (u;)) + Z(adt(ui) ad’ (ug)J)",

3 K2

we see that the first summand in Equation (B)) is the second order operator defined
by
(o, 8)
2(p, a)
while the second summand in Equation (@) is the derivation of A" #* induced by
the map

(o,

2(p, o)

TRY YR, r €g,,Y € g5

x,x € g

on n*.

Let g(Az) be the corresponding Kac-Moody subalgebra of g, and let nz be the
standard nilpotent. g(Az) has a Cartan subalgebra hz C b, and the real-valued
non-degenerate symmetric invariant form on g restricts to such a form on g(Az).
Any b-invariant element of A" #* @ V must belong to A" 73 ® S*n% @ L(A) @ C_,,.
We claim that the operator Y, dr,(ad"(u?))dgr(ad’(u;).J) on A" #* @ S*i* restricts
on \" i}, ® S*fi} to the operator >, dr,(ad"(v*))dr(ad’(v;)J), where {v;} and {v'}
are dual bases of hz. To verify this claim, note that a choice of symmetric invariant
form corresponds to a choice of a diagonal matrix D with positive diagonal entries,
such that DA is a symmetric matrix. If z € h* the invariant form satisfies (x, ;) =
Dj;z(a)). The operator in Equation (B]) thus depends only on A and D; the claim
follows from the observation that the action of the operator on A" f% @ S*i},
depends only on Ay and Dy.

Now suppose Ay is a direct sum of indecomposables of finite and affine type.
The operator . dr(ad"(v?))dr(ad’(v;).J) decomposes into a summand for each
component, each of which is positive semi-definite as in the proof of Lemma
We finish as in the proof of Lemma[£5] but taking Y = {a; € Z : p(e;) =0}. O
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