Perturbations of Banach algebras and amenability

Miad Makareh Shireh

Abstract

In this paper we prove that if (A, π) is an amenable Banach algebra and if ρ is another Banach algebra multiplication on A such that $\|\rho-\pi\|<\frac{1}{11}$, then (A, ρ) is also amenable.

1 Introductions

Let A to be a Banach algebra and X an A-bimodule that is a Banach space. We say that X is a Banach A-bimodule if there exists constant $C>0$ such that

$$
\begin{aligned}
& \|a . x\| \leq C\|a\|\|x\|, \\
& \|x . a\| \leq C\|a\|\|x\|
\end{aligned} \quad(a \in A, x \in X) .
$$

If X is a Banach A-bimodule, then X^{*} is a Banach A-bimodule for the actions defined by

$$
\begin{aligned}
& \langle a . f, x\rangle=\langle f, x . a\rangle \\
& \langle f . a, x\rangle=\langle f, a . x\rangle \quad\left(a \in A, f \in X^{*}, x \in X\right) .
\end{aligned}
$$

The Banach A-bimodule X^{*} defined in this way is said to be a dual Banach A bimodule.

A linear mapping D from A into X is a derivation if

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in A) .
$$

For $x \in X$, the mapping $a d_{x}: A \longrightarrow X$ defined by $a d_{x}(a)=a \cdot x-x . a$ is a continuous derivation. The derivation D is inner if there exists $x \in X$ such that $D=a d_{x}$. A is said to be amenable if for every Banach A-bimodule X, any continuous derivation from A into the dual Banach A-bimodule X^{*} is inner. This notion has been introduced in [2] and has been studied extensively.

Let A be an Banach algebra. $A^{o p}$ is another Banach algebra which is the same as A as Banach spaces but the product of $A^{o p}$ is the reverse of the product of A i.e.

$$
a \circ b=b a \quad(a, b \in A)
$$

where o denotes the multiplication of $A^{o p}$.
The so-called multiplication map, denoted by $\pi, \pi: A \hat{\otimes} A^{o p} \longrightarrow A$ is specified by

$$
\pi(a \otimes b)=a b \quad(a, b \in A)
$$

By the difference between the two multiplications π and ρ on a Banach algebra A, we mean the norm of $\pi-\rho$ as an operator from $A \hat{\otimes} A^{o p}$ to A. In [3] Johnson proved that if (A, π) is amenable, then there exists an $\epsilon>0$ such that if ρ is another Banach algebra multiplication on A such that on $\|\pi-\rho\|<\epsilon$, then (A, ρ) is also amenable. But that ϵ here depends on the structure of the Banach algebra A. In this paper we give a partially different proof for that theorem and we prove the following result:

If (A, π) is an amenable Banach algebra, then (A, ρ) is also amenable for every Banach algebra multiplication ρ on A such that $\|\pi-\rho\|<\frac{1}{11}$.

2 Perturbations of Banach algebras

Before going to the mail theorem, we bring two lemmas from [3] that are used in our proof.

For two closed subspaces Y and Z of a Banach space X,their Hausdorff distance is defined by

$$
d(Y, Z)=\max \{\sup \{d(y, Z):\|y\| \leq 1\}, \sup \{d(z, Y):\|z\| \leq 1\}\}
$$

Lemma 2.1. Let Y and Z be closed subspaces of a Banach space X. Suppose that there is a projection P of X onto Y with $\|P\|<d(Y, Z)^{-1}-1$. Then P maps Z one to one onto Y and the inverse α of $\left.P\right|_{Z}$ satisfies $(d=d(Y, Z))$

$$
\begin{aligned}
\|\alpha\| & \leq(1+d)(1-\|P\| d)^{-1} \\
\|\alpha(y)-y\| & \leq\left((1+d)(1-\|P\| d)^{-1}-1\right)\|y\| \\
\|P(z)-z\| & \leq d(1+\|P\|)\|z\|
\end{aligned}
$$

Proof: See [3, Lemma 5.2].
Lemma 2.2. Let X_{1} and X_{2} be Banach spaces and $S, T \in B\left(X_{1}, X_{2}\right)$ and let S be onto. Suppose that there exists $K>0$ such that for all $y \in X_{2}$, there is $x \in X_{1}$ with $\|x\| \leq K\|y\|$ and $S(x)=y$. If $K\|S-T\|<1$, then T will also be onto and for each $y \in X_{2}$, there exists $x \in X_{1}$ such that $\|x\| \leq K(1-K \epsilon)^{-1}\|y\|$ and $T(x)=y$, where $\epsilon=\|S-T\|$.

Proof: It is a special case of [3, Lemma 6.1].

In next theorem and note we denote all multiplications induced by π by a sign of π for example in order to show the product of a and b induced by π, we use $a_{\pi} b$, We have the same way to show them for ρ. Note: If $\pi^{\#}$ and $\rho^{\#}$ are the products respectively induced by π and ρ on $A^{\#}$ ($A^{\#}$ is the unitization of A) then we have

$$
\left\|\left(\pi^{\#}-\rho^{\#}\right)((a, \alpha) \otimes(b, \beta))\right\|=\left\|a_{\pi} b-a_{\rho} b\right\| \leq\|\pi-\rho\|\|a\|\|b\| \quad(a, b \in A)
$$

And hence

$$
\left\|\left(\pi^{\#}-\rho^{\#}\right)((a, \alpha) \otimes(b, \beta))\right\| \leq\|\pi-\rho\|\|(a, \alpha)\|\|(b, \beta)\|
$$

Thus we have

$$
\left\|\pi^{\#}-\rho^{\#}\right\| \leq\|\pi-\rho\|
$$

Theorem 2.3. Let (A, π) be an amenable Banach algebra. If ρ is another Banach algebra multiplication on A such that $\|\pi-\rho\|<\frac{1}{11}$, then (A, ρ) is also amenable.

Proof: $B y$ the note above, we can assume that A has and identity 1 for both multiplications π and ρ. Let $j: A \longrightarrow A \widehat{\bigotimes} A$ be defined by $j(a)=a \otimes 1$.
Then $\|j\| \leq 1$ and $\pi j=I d_{A}$. So $\pi^{* *} j^{* *}=I d_{A^{* *}}$. It can be easily checked that $P=\operatorname{Id}_{(A \widehat{\otimes} A)^{* *}}-j^{* *} \pi^{* *}$ is a projection onto $\operatorname{ker} \pi^{* *}$ with norm at most 2.
By Lemma 2.2, and letting $X_{1}=(A \widehat{\bigotimes} A)^{* *}$ and $X_{2}=A^{* *}, S_{1}=\pi^{* *}, T_{1}=\rho^{* *}$, by $K=1\left(\right.$ since $\left\|\mathrm{j}^{* *}\right\| \leq 1$), we get that for $\left\|S_{1}-T_{1}\right\|=\epsilon<1$, $\rho^{* *}$ will be onto and for every $F \in \operatorname{ker} \pi^{* *}$, there is $B \in(A \widehat{\bigotimes} A)^{* *}$ such that $\rho^{* *}(B)=\rho^{* *}(F)$ and

$$
\|B\| \leq(1-\epsilon)^{-1}\left\|\rho^{* *}(F)\right\|=(1-\epsilon)^{-1}\left\|\rho^{* *}(F)-\pi^{* *}(F)\right\| \leq(1-\epsilon)^{-1} \epsilon\|F\|
$$

So $F-B \in \operatorname{ker} \rho^{* *}$ and $\|F-(F-B)\|=\|B\| \leq \epsilon(1-\epsilon)^{-1}\|F\|$. So that

$$
\sup \left\{d\left(F, \operatorname{ker} \rho^{* *}\right): \mathrm{F} \in \operatorname{ker} \pi^{* *} \operatorname{and}\|\mathrm{~F}\| \leq 1\right\} \leq \epsilon(1-\epsilon)^{-1}
$$

And similarly by changing the role of S_{1} and T_{1}, we will obtain

$$
\sup \left\{d\left(F, \operatorname{ker} \pi^{* *}\right): F \in \operatorname{ker} \rho^{* *} \operatorname{and}\|\mathrm{~F}\| \leq 1\right\} \leq \epsilon(1-\epsilon)^{-1}
$$

Hence

$$
d:=d\left(\operatorname{ker} \pi^{* *}, \operatorname{ker} \rho^{* *}\right) \leq \epsilon(1-\epsilon)^{-1}
$$

So if $\epsilon<\frac{1}{4}$, then

$$
\|P\| \leq 2<\left(\epsilon(1-\epsilon)^{-1}\right)^{-1}-1 \leq d\left(\operatorname{ker} \pi^{* *}, \operatorname{ker} \rho^{* *}\right)^{-1}-1
$$

And hence by Lemma 2.1, there exists a linear homeomorphism α from $\operatorname{ker} \pi^{* *}$ onto $\operatorname{ker} \rho^{* *}$ such that

$$
\begin{gathered}
\|\alpha\| \leq(1-3 \epsilon)^{-1},\left\|\alpha^{-1}\right\| \leq\|P\| \leq 2 \\
\|F-\alpha(F)\| \leq 3 \epsilon(1-3 \epsilon)^{-1}\|F\| \quad\left(F \in \operatorname{ker} \pi^{* *}\right) \\
\left\|F-\alpha^{-1}(F)\right\| \leq 3 \epsilon(1-\epsilon)^{-1}\|F\| \\
\left(F \in \operatorname{ker} \rho^{* *}\right)
\end{gathered}
$$

Suppose that $F \in(A \widehat{\otimes} A)$ is an elementary tensor say $b \otimes c$ for $b, c \in A$. Then for $a \in A$, we have

$$
\begin{aligned}
\| a \cdot \pi \\
F-a \cdot \rho
\end{aligned}\|=\| a \cdot(b \otimes c)-a \cdot \rho(b \otimes c) \|,
$$

So that

$$
\|a \cdot \pi F-a \cdot \rho \mid=\epsilon\| a\|\|F\| \quad(a \in A, F \in A \widehat{\otimes} A)
$$

And by using Goldsteine's Theorem, we have

$$
\|a \cdot \pi F-a \cdot \rho\| \leq \epsilon\|F\| \quad\left(F \in(A \widehat{\otimes} A)^{* *}\right)
$$

Similarly

$$
\|F \cdot \pi a-F . \rho a\| \leq \epsilon\|a\|\|F\| \quad\left(a \in A, F \in(A \widehat{\otimes} A)^{* *}\right)
$$

Now consider the derivation $D: A \longrightarrow \operatorname{ker} \pi^{* *}\left(\cong(\operatorname{ker} \pi)^{* *}\right)$ by $D(a)=a \otimes 1-1 \otimes a$, then amenability of (A, π) implies the existence of an element $\xi \in \operatorname{ker} \pi^{* *}$ such that

$$
a \otimes 1-1 \otimes a=a \cdot \pi \xi-\xi \cdot \pi a \quad(a \in A)
$$

Let $\delta=\alpha(\xi) \in \operatorname{ker} \rho^{* *}$. Then we have

$$
\begin{aligned}
& \| a \cdot \pi \\
& \xi-a \cdot \rho \delta \|=\|a \cdot \pi \xi-a \cdot \rho(\alpha(\xi))\| \\
& \leq\|a \cdot \pi \xi-a \cdot \pi(\alpha(\xi))\|+\|a \cdot \pi(\alpha(\xi))-a \cdot \rho(\alpha(\xi))\| \\
& \leq 3 \epsilon(1-3 \epsilon)^{-1}\|a\|\|\xi\|+\epsilon(1-3 \epsilon)^{-1}\|a\|\|\xi\| . \quad(\text { By properties of } \alpha \text { and }(\dagger))
\end{aligned}
$$

And similarly

$$
\left\|\xi \cdot \pi a-\delta_{\cdot \rho} a\right\| \leq 4 \epsilon(1-3 \epsilon)^{-1}\|a\|\|\xi\| .
$$

So that

$$
\begin{aligned}
\|a \otimes 1-1 \otimes a-(a \cdot \rho \delta-\delta \cdot \rho a)\| & =\left\|a \cdot \pi \xi-\xi \cdot \pi a-\left(a \cdot \rho \delta-\delta_{\cdot \rho} a\right)\right\| \\
& \leq\left\|a_{\cdot \pi} \xi-a \cdot \rho \delta\right\|+\left\|\xi \cdot \pi a-\delta_{\cdot \rho} a\right\| \\
& \leq 8 \epsilon(1-3 \epsilon)^{-1}\|a\| .
\end{aligned}
$$

So

$$
\left\|a \otimes 1-1 \otimes a-\left(a . \rho \delta-\delta_{. \rho} a\right)\right\| \leq O(\epsilon)\|a\| \quad(a \in A)
$$

Where $O(\epsilon) \longrightarrow 0$ as $\epsilon \longrightarrow 0^{+}$.
From now on all the multiplications we consider are respect to the multiplication ρ on A. We denote the multiplication in $A \widehat{\otimes} A^{o p}$ by \star_{ρ}. Also we show the Arens product on $\left(A \widehat{\otimes} A^{o p}\right)^{* *}$ with the same notation. So for elementary tensors,

$$
(a \otimes b) \star_{\rho}(c \otimes d)=a c \otimes d b
$$

For $R=\sum_{i} a_{i} \otimes b_{i} \in \operatorname{ker} \rho$ we have

$$
\begin{aligned}
R \star_{\rho} \delta-R & =\sum_{i}\left(a_{i} \otimes b_{i}\right) \star_{\rho} \delta-\delta \sum_{i} a_{i} b_{i}-\sum_{i} a_{i} \otimes b_{i}+1 \otimes \sum_{i} a_{i} b_{i} \\
& =\sum_{i}\left(a_{i \cdot \rho} \delta-\delta \cdot \rho a_{i}-a_{i} \otimes 1+1 \otimes a_{i}\right) \cdot \rho b_{i}
\end{aligned}
$$

So

$$
\begin{aligned}
\left\|R \star_{\rho} \delta-R\right\| & =\left\|\sum_{i}\left(a_{i \cdot \rho} \delta-\delta \cdot \rho a_{i}-a_{i} \otimes 1+1 \otimes a_{i}\right) \cdot \rho b_{i}\right\| \\
& \leq \sum_{i}\left\|\frac{a_{i}}{\left\|a_{i}\right\|} \cdot \rho \delta-\delta \cdot \rho \frac{a_{i}}{\left\|a_{i}\right\|}+\frac{a_{i}}{\left\|a_{i}\right\|} \otimes 1+1 \otimes \frac{a_{i}}{\left\|a_{i}\right\|}\right\|\left\|a_{i}\right\|\left\|b_{i}\right\| \\
& \leq\|R\| \sup _{a \in A_{1}}\|a \cdot \rho \delta-\delta \cdot \rho a-a \otimes 1+1 \otimes a\| .
\end{aligned}
$$

Now if $R \in(\operatorname{ker} \rho)^{* *}$, then by Goldsteine's Theorem, there exists a net $\left(r_{i}\right)_{i}$ with $\left\|r_{i}\right\| \leq\|R\|$, in $\operatorname{ker} \pi$ such that $r_{i} \longrightarrow_{i} R \quad w^{*}$. Note that since $\operatorname{ker} \rho^{* *} \cong(\operatorname{ker} \rho)^{* *}$, isometrically, then for notational convenience, we don't disguise between δ as an element in $\operatorname{ker} \rho^{* *}$ and its image as an element of $(\operatorname{ker} \rho)^{* *}$.
Thus

$$
r_{i \cdot \rho} \delta-r_{i} \longrightarrow_{i} R . \rho-R \quad \mathrm{wk}^{*} .
$$

And hence $\|R . \rho-R\| \leq \sup _{i}\left\|r_{i \cdot \rho} \delta-r_{i}\right\|$. So we have

$$
\left\|R \star_{\rho} \delta-R\right\| \leq\|R\| \sup _{a \in A_{1}}\left\|a \cdot \rho \delta-\delta_{\cdot \rho} a-a \otimes 1+1 \otimes a\right\| \quad\left(R \in(\operatorname{ker} \rho)^{* *}\right)
$$

And hence by (\ddagger), we obtain

$$
\left\|R \star_{\rho} \delta-R\right\| \leq O(\epsilon)\|R\| \quad\left(R \in(\operatorname{ker} \rho)^{* *}\right)
$$

If we define $\lambda:(\operatorname{ker} \rho)^{* *} \longrightarrow(\operatorname{ker} \rho)^{* *}$ by $\lambda(S)=S \star_{\rho} \delta$, then for $\epsilon<\frac{1}{11}$,
$O(\epsilon)=\frac{8 \epsilon}{(1-3 \epsilon)}<1$ and hence $\left\|\lambda-I d_{(\operatorname{ker} \rho)^{* *}}\right\|<1$ and thus λ will be invertible.

Since λ is surjective, there exists $x \in(\operatorname{ker} \rho)^{* *}$ such that $\lambda(x)=\delta$. So $x \star_{\rho} \delta=\delta$ and therefore for every $y \in(\operatorname{ker} \rho)^{* *}$, we have $\left(y \star_{\rho} x-y\right) \star_{\rho} \delta=0$ but this means that

$$
\lambda\left(y \star_{\rho} x-y\right)=0 \quad\left(y \in(\operatorname{ker} \rho)^{* *}\right) .
$$

Now by injectivity of λ, we have

$$
y \star_{\rho} x=y \quad\left(y \in(\operatorname{ker} \rho)^{* *}\right) .
$$

Hence x will be a right identity for $(\operatorname{ker} \rho)^{* *}$ and hence $\operatorname{ker} \rho$ has a bounded right approximate identity. So from [1,Theorem 3.10] , (A, ρ) is amenable.

References

[1] P.C.Curtis, R.J.Loy,The structure of amenable Banach algebras, Journal of London Mathematical Society, 40(2)(1989) 89-104.
[2] B.E.Johnson, Cohomology in Banach Algebras. American Mathematical Society, Providence, RI, (1972).
[3] B.E.Johnson, Preturbations of Banach algebras. Proc. London Math. Soc. (3) 34 (1977), no 3, 439-458.

