Notes on amenability

Miad Makareh Shireh

ABSTRACT: We show that for a Banach algebra A with a bounded approximate identity, the amenability of $A \widehat{\otimes} A$, the amenability of $A \widehat{\otimes} A^{op}$ and the amenability of A are equivalent. Also if A is a closed ideal in a commutative Banach algebra B, then the weak amenability of $A \widehat{\otimes} B$ implies the weak amenability of A.

1 Introductions and Preliminaries

Let A to be a Banach algebra and X an A-bimodule that is a Banach space. We say that X is a Banach A-bimodule if there exists constant C > 0 such that

$$||a.x|| \le C||a|| ||x||,$$

 $||x.a|| \le C||a|| ||x||$ $(a \in A, x \in X).$

If X is a Banach A-bimodule, then X^* is a Banach A-bimodule for the actions defined by

$$\langle a.f, x \rangle = \langle f, x.a \rangle$$

 $\langle f.a, x \rangle = \langle f, a.x \rangle \quad (a \in A, f \in X^*, x \in X).$

The Banach A-bimodule X^* defined in this way is said to be a dual Banach A-bimodule.

A linear mapping D from A into X is a derivation if

$$D(ab) = a.D(b) + D(a).b \qquad (a, b \in A).$$

For $x \in X$, the mapping $ad_x : A \longrightarrow X$ defined by $ad_x(a) = a.x - x.a$ is a continuous derivation. The derivation D is inner if there exists $x \in X$ such that $D = ad_x$.

A is said to be amenable if for every Banach A-bimodule X, any continuous derivation from A into the dual Banach A-bimodule X^* is inner. This notion has been introduced in [4] and has been studied extensively since.

The Banach algebra A is said to be weakly amenable if any continuous derivation from A into the dual Banach A-bimodule A^* is inner. This notion was first introduced in [1] for the commutative case and then in [6] for the general case. Every

Amenable Banach algebra has a bounded approximate identity [8, Proposition 2.21]. Also if A and B are two amenable Banach algebras then also is $A \hat{\otimes} B$ [4, Proposition 5.4].

The question is whether the converse is true or not. The only work on this question is done by B.E. Johnson in the following:

Proposition 1.1. Suppose that A is a Banach algebra and B is another Banach algebra such that there exists $b_0 \in B$ with $b_0 \notin \overline{\text{Lin}\{bb_0 - b_0b : b \in B\}}$. If $A \widehat{\otimes} B$ is amenable then A is amenable.

Proof: See [5, Proposition 3.5]

But still the question remains open for general A and B even for the case A = B.

In section 2, we prove that the amenability of $A \hat{\otimes} A$ implies amenability of A in the case that A has a bounded approximate identity. Indeed we show that for a Banach algebra A with a bounded approximate identity the following are equivalent:

- (i) A is amenable;
- (ii) $A \widehat{\otimes} A$ is amenable;
- (iii) $A \widehat{\otimes} A^{op}$ is amenable (Where as usual A^{op} is the Banach algebra obtaining by reversing the product of A).

Since having a bounded approximate identity is a necessary condition for amenability, we can not omit the condition that A has bounded approximate identity unless we can prove that amenability of $A \hat{\otimes} A$ necessitates having a bounded approximate identity for A.

In section 3 we investigate the question but for weak amenability instead of amenability. We prove that if B is a commutative Banach algebra and A is a closed ideal in B, then the weak amenability of $A \hat{\otimes} B$ implies the weak amenability of A.

2 The amenability results

In this section we try to answer the question whether amenability $A \hat{\otimes} B$ implies the amenability of A and B or not. We mainly concentrate on the special case where A = B. However, we will also obtain some results about the case where A is not necessarily equal to B.

First we start with a simple result:

Theorem 2.1. Suppose that A and B are Banach algebras and B has a non-zero character. If $A \widehat{\otimes} B$ is amenable, then A is also amenable.

Proof: Let φ be a non-zero character in B and define the unique mapping $\theta: A \widehat{\otimes} B \longrightarrow A$ acting on elementary tensors by

$$\theta(a \otimes b) = \varphi(b)a \quad (a \in A, b \in B).$$

We show that θ is an algebra homomorphism (obviously θ is continuous). Since θ is linear, it is enough to check this for elementary tensors. To see this we have

$$\theta((a \otimes b)(c \otimes d)) = \theta((ac \otimes bd) = \varphi(bd)ac.$$

On the other hand

$$\theta((a \otimes b))\theta((c \otimes d)) = \varphi(b)a\varphi(d)c = \varphi(bd)ac.$$

So

$$\theta((a \otimes b)(c \otimes d)) = \theta((a \otimes b))\theta((c \otimes d)).$$

And since φ is non - zero, θ is surjective and hence A is amenable.

Throughout the following we let $\pi: A \widehat{\otimes} A^{op} \longrightarrow A$ be the so-called product map; mapping specified by acting on elementary tensors by $\pi(a \otimes b) = ab \quad (a, b \in A)$ and we let $K = \ker \pi$.

The Banach algebra A can be made into a left $A \widehat{\otimes} A^{op}$ -module by the module multiplication specified by

$$(a \otimes b).c = acb$$
 $(a, b, c \in A).$

Theorem 2.2. Suppose that $A \widehat{\otimes} A^{op}$ is amenable and A has a bounded approximate identity. Then A is amenable.

Proof: Since A has a bounded approximate identity, the short exact sequence $(\prod^{op})^*: 0 \longrightarrow A^* \xrightarrow{\pi^*} (A \widehat{\otimes} A^{op})^* \xrightarrow{\imath^*} K^* \longrightarrow 0$ is an admissible short exact sequence of right $A \widehat{\otimes} A^{op}$ -modules. (\imath is the inclusion map).

Since A^* is a dual $A \widehat{\otimes} A^{op}$ -module, from [2, Theorem 2.3], $(\prod^{op})^*$ splits and since $A \widehat{\otimes} A^{op}$ has a bounded approximate identity and π is onto, [2, Theorem 3.5] implies that K has a bounded right approximate identity. Now since A has a bounded approximate identity, from [2, Theorem 3.10] A is amenable.

Theorem 2.3 has been the motivation for us to consider the question of under which conditions on the tensor products, A has a bounded approximate identity. The following is one of them. Before going to next Theorem, we need a Lemma.

Lemma 2.3. Let A to be a Banach algebra with a two-sided bounded approximate identity and X a Banach A-bimodule on which A acts trivially on one side. Then for every continuous derivation D from A into X, there exists a bounded net $(\zeta_i)_i$ in X such that $D(a) = \lim_i a \cdot \zeta_i - \zeta_i \cdot a \quad (a \in A)$.

Proof: Since we can embed X into X^{**} through the canonical injection, we can consider D as a continuous derivation into the dual module X^{**} . Also since the action of A on one side of X is trivial, action of A on other side of X^{*} is trivial. Therefore D is inner. Hence there exists $\xi \in X^{**}$ such that

$$D(a) = a.\xi - \xi.a \qquad (a \in A).$$

Now by Goldstein's Theorem, there is a bounded net $(\tau_j)_{j\in J}$ in X converging to ξ in weak* topology of X^{**} . Thus

$$D(a) = a.\xi - \xi.a = wk^* - \lim_{j} a.\tau_j - \tau_j.a \qquad (a \in A).$$

and hence

$$D(a) = \text{wk} - \lim_{j} a.\tau_{j} - \tau_{j}.a$$
 $(a \in A).$

Let $\Delta = \{a_1, a_2, ..., a_n\}$ be a finite subset of A. Then in $\bigoplus_{i=1}^n X$, we have

$$(D(a_1),...,D(a_n)) \in weak - cl(co(\{(a_1.\tau_j - \tau_j.a_1,...,a_n.\tau_j - \tau_j.a_n): j \in J\}))$$

Therefore by Mazur's Theorem

$$(D(a_1),...,D(a_n)) \in \text{norm} - \text{cl}(\text{co}(\{(a_1.\tau_i - \tau_i.a_1,...,a_n.\tau_i - \tau_i.a_n)) : j \in J\})$$

And hence for $\epsilon > 0$, there exists $\zeta_{\Delta,\epsilon} \in \operatorname{co}(\{\tau_i : h \in J\})$ such that

$$||D(a_i) - (a_i \cdot \zeta_{\Delta, \epsilon} - \zeta_{\Delta, \epsilon} \cdot a_i)|| < \epsilon \qquad (a_i \in \Delta)$$

So by ordering the set of the finite subsets of A by inclusion and positive real numbers by decreasing order, the net $(\zeta_{\Delta,\epsilon})$ is the desired net.

Theorem 2.4. Suppose that $A \widehat{\otimes} A^{op}$ has a bounded approximate identity and each one of the topologies on A defined by the family of seminorms $\rho_a : b \mapsto ||ab||$ and $\gamma_a : b \mapsto ||ba||$ is stronger than weak topology on A. Then A has a (two-sided) bound approximate identity.

Proof: Suppose that $A \widehat{\otimes} A^{op}$ has a bounded approximate identity. we consider A as an $A \widehat{\otimes} A^{op}$ -bimodule by actions specified by:

$$(a \otimes b) \bullet c = acb$$

 $c \bullet (a \otimes b) = 0 \quad (a, b, c \in A)$

It can be easily seen that A is a Banach $A \widehat{\otimes} A^{op}$ -bimodule by the actions above . Now we define a derivation $D: A \widehat{\otimes} A^{op} \longrightarrow A$ by acting on elementary tensors as $D(a \otimes b) = ab \quad (a,b \in A)$. D is obviously continuous and also D is a derivation since

$$D((a \otimes b) \cdot (c \otimes d)) = D(ac \otimes db) = acdb$$

(· is the product in $A \widehat{\otimes} A^{op}$). On the other hand:

$$(a \otimes b) \bullet D(c \otimes d) + D(a \otimes b) \bullet (c \otimes d) = (a \otimes b) \bullet cd = acdb$$

Therefore $D \in \mathbb{Z}^1(A \widehat{\otimes} A^{op}, A)$. Now since the right action of $A \widehat{\otimes} A^{op}$ on A is trivial and $A \widehat{\otimes} A^{op}$ has a bounded approximate identity, from Lemma 2.4, there exists a bounded $\operatorname{net}(\zeta_i)_i$ in A such that $D(a \otimes b) = \lim_i ad_{\zeta_i}(a \otimes b)$.

So $ab = \lim_i a\zeta_i b$ $(a, b \in A)$. Thus for all $a, b \in A$

$$\lim_{i} a(b - \zeta_{i}b) = 0 \qquad \lim_{i} (b - b\zeta_{i})a = 0 \tag{1}$$

If we denote the topology induced by the family of seminorms $\{\rho_a|a\in A\}$ by τ and the topology induced by the family of seminorms $\{\gamma_a|a\in A\}$ by ς , then from (1) we have

$$a\zeta_i \longrightarrow a \quad (in \ \tau \ for \ all \ a \in A)$$
 (2)

$$\zeta_i a \longrightarrow a \quad (in \varsigma for \ all \ a \in A)$$
 (3)

since we assume both τ and ς to be stronger than weak topology on A, then by (2) and (3), A has a weakly two-sided bounded approximate identity and hence A has a two-sided bounded approximate identity.

Theorem 2.5. Suppose that $A \otimes A^{op}$ is amenable and that A has the property that each one of the topologies induced on A by the family of seminorms $\{\rho_a|a\in A\}$ where $\rho_a(b) = \|ab\|$ and $\{\gamma_a|a\in A\}$ where $\gamma_a(b) = \|ba\|$, are stronger than the weak topology on A. Then A is amenable.

Proof: Firstly by the fact that $A \widehat{\otimes} A^{op}$ necessarily has a two-sided bounded approximate identity and from Theorem 2.5 we have that A has a two-sided bounded approximate identity and then from Theorem 2.3 we have A is amenable.

In next Theorem we attempt to relate amenability of $A\widehat{\otimes}A$ (in the case that A has a bounded approximate identity) to the amenability of $A\widehat{\otimes}A^{op}$ and then by using the preceding theorems, we attempt to prove the amenability of A when $A\widehat{\otimes}A$ is amenable. Before going to next Theorem, we need a Lemma.

Lemma 2.6. Let A be Banach algebra with a bounded approximate identity such that for any neo-unital Banach A-bimodule X and Y a closed submodule of X, every $f \in Z_A(Y^*)$ can be extended to a functional $\tilde{f} \in Z_A(X^*)$. Then A is amenable.

proof: As in the proof of [7, Theorem 1], for concluding the amenability of A, it is enough to have the property in the Lemma for the Banach A-bimodule $L = (A \widehat{\otimes} A)^* \widehat{\otimes} (A \widehat{\otimes} A)$ with the module actions specified by

$$a.(x^* \otimes x) = x^* \otimes a.x,$$

$$(x^* \otimes x).a = x^* \otimes x.a \quad (a \in A, x \in (A \widehat{\otimes} A), x^* \in (A \widehat{\otimes} A)^*).$$

Since A has bounded approximate identity, $X = A \widehat{\otimes} A$ is neo-unital and hence by the above definition of the actions of A on L, L is also neo-unital.

Theorem 2.7. Suppose that A is a Banach algebra with a bounded approximate identity such that $A \widehat{\otimes} A$ is amenable. Then $A \widehat{\otimes} A^{op}$ is also amenable.

proof: Suppose that X is a Banach neo-unital $A \widehat{\otimes} A^{op}$ -bimodule and that \bullet denotes the action of $A \widehat{\otimes} A^{op}$ on X. We define:

$$(a \otimes b) \circ x = \lim_{i} (a \otimes e_{i}) \bullet x \bullet (e_{i} \otimes b),$$

 $x \circ (a \otimes b) = \lim_{i} (e_{i} \otimes b) \bullet x \bullet (a \otimes e_{i}) \quad (x \in X \text{and a, b} \in A).$

First we note that the above limits exist because by the assumption that X is neo-unital we have:

If $x \in X$ then there exist $y \in X$ and $u, v \in A \widehat{\otimes} A^{op}$ such that $x = u \bullet y \bullet v$ and then we have:

$$(a \otimes e_i) \bullet x \bullet (e_i \otimes b) = (a \otimes e_i) \bullet u \bullet y \bullet v \bullet (e_i \otimes b) = ((a \otimes e_i) \star u) \bullet y \bullet (v \star (e_i \otimes b)),$$

where \star denotes the product in $A \widehat{\otimes} A^{op}$. Since $(e_i)_{i \in \Lambda}$ is a bounded approximate identity for A, it can be easily seen that $\lim_i (a \otimes e_i) \star u = a.u$ and $\lim_i v \star (e_i \otimes b) = v.b$,

where $a.(e \otimes f) = ae \otimes f$ and $(e \otimes f).b = e \otimes bf$.

So $\lim_i (a \otimes e_i) \bullet x \bullet (e_i \otimes b)$ exists and we can similarly prove the existence of the second limit. Also \circ induces a module action of $A\widehat{\otimes} A$ on X. To see the reason, by linearity, it is enough to check the module conditions for elementary tensors.

$$((a \otimes b)(c \otimes d)) \circ x = (ac \otimes bd) \circ x = \lim_{i} (ac \otimes e_i) \bullet x \bullet (e_i \otimes bd)$$

On the other hand:

$$(a \otimes b) \circ ((c \otimes d) \circ x) = (a \otimes b) \circ (\lim_{j} (c \otimes e_{j}) \bullet x \bullet (e_{j} \otimes d))$$

$$= \lim_{i} (a \otimes e_{i}) \bullet (\lim_{j} (c \otimes e_{j}) \bullet x \bullet (e_{j} \otimes d)) \bullet (e_{i} \otimes b)$$

$$= \lim_{i} \lim_{j} (ac \otimes e_{j}e_{i}) \bullet x \bullet (e_{j}e_{i} \otimes bd)$$

$$= \lim_{i} (ac \otimes e_{i}) \bullet x \bullet (e_{i} \otimes bd).$$

Hence

$$((a \otimes b)(c \otimes d)) \circ x = (ac \otimes bd) \circ x = (a \otimes b) \circ ((c \otimes d) \circ x).$$

In a similar way we can show that

$$x \circ ((a \otimes b)(c \otimes d)) = (x \circ (a \otimes b))(c \otimes d).$$

Also we have:

$$((a \otimes b) \circ x) \circ (c \otimes d) = \lim_{\mathbf{i}} (e_i \otimes d) \bullet (\lim_{\mathbf{j}} (a \otimes e_j) \bullet x \bullet (e_j \otimes b)) \bullet (c \otimes e_i)$$

$$= \lim_{\mathbf{i}} \lim_{\mathbf{j}} ((e_i \otimes d) \star (a \otimes e_j)) \bullet x \bullet ((e_j \otimes b) \star (c \otimes e_i))$$

$$= \lim_{\mathbf{i}} \lim_{\mathbf{j}} (e_i a \otimes e_j d) \bullet x \bullet (e_j c \otimes e_i b)$$

$$= (a \otimes d) \bullet x \bullet (c \otimes b).$$

On the other hand:

$$(a \otimes b) \circ (x \circ (c \otimes d)) = \lim_{i} \lim_{j} (a \otimes e_{i}) \bullet ((e_{j} \otimes d) \bullet x \bullet (c \otimes e_{j})) \bullet (e_{i} \otimes b)$$
$$= \lim_{i} \lim_{j} ((ae_{j} \otimes de_{i}) \bullet x \bullet (ce_{i} \otimes be_{j})$$
$$= (a \otimes d) \bullet x \bullet (c \otimes b).$$

Hence

$$((a \otimes b) \circ x) \circ (c \otimes d) = (a \otimes b) \circ (x \circ (c \otimes d)).$$

So X is an $A \widehat{\otimes} A$ -bimodule for the action \circ . Also since the net (e_i) is bounded, it can be easily seen that X is indeed a Banach $A \widehat{\otimes} A$ -bimodule for \circ . For a Banach $A \widehat{\otimes} A^{op}$ -bimodule X, X_{\dagger} denotes X as an $A \widehat{\otimes} A$ -bimodule (via the action \circ).

Now if Y is a closed submodule of X and $f \in Z_{A \widehat{\otimes} A^{op}}(Y^*)$, we show that $f \in Z_{A \widehat{\otimes} A}(Y_{\uparrow}^*)$.

To prove the above statement we have:

$$(a \otimes b) \circ f = wk^* - \lim_{i} (a \otimes e_i) \bullet f \bullet (e_i \otimes b)$$
$$= wk^* - \lim_{i} f \bullet (a \otimes e_i) \bullet (e_i \otimes b)$$
$$= wk^* - \lim_{i} f \bullet (ae_i \otimes be_i)$$
$$= f \bullet (a \otimes b).$$

Similarly

$$f \circ (a \otimes b) = (a \otimes b) \bullet f.$$

Thus

$$f \in Z_{A\widehat{\otimes}A}(Y_{\dagger}^*).$$

Now from [7, Theorem 1], f has an extension to an $\tilde{f} \in Z(A \widehat{\otimes} A, X_{\dagger}^*)$. We show that $\tilde{f} \in Z(A \widehat{\otimes} A^{op}, X^*)$ For this purpose we have

$$\begin{split} (a \otimes b) \bullet \tilde{f} &= wk^* - \lim_i - wk^* - \lim_j ((a \otimes e_i)(e_j \otimes b)) \bullet \tilde{f} \bullet (e_i \otimes e_j) \\ &= wk^* - \lim_i (a \otimes e_i)(wk^* - \lim_j (e_j \otimes b) \bullet \tilde{f} \bullet (e_i \otimes e_j)) \\ &= wk^* - \lim_i (a \otimes e_i) \bullet (\tilde{f} \circ (e_i \otimes b)) \\ &= wk^* - \lim_i (a \otimes e_i) \bullet ((e_i \otimes b) \circ \tilde{f}) \\ &= wk^* - \lim_i (a \otimes e_i) \bullet (wk^* - \lim_j (e_i \otimes e_j) \bullet \tilde{f} \bullet (e_j \otimes b)) \\ &= wk^* - \lim_i (a \otimes e_i) \bullet (wk^* - \lim_j (e_i \otimes e_j) \bullet \tilde{f} \bullet (e_j \otimes b)) \\ &= wk^* - \lim_i (a \otimes e_i) \bullet \tilde{f} \bullet (e_i \otimes b) \\ &= wk^* - \lim_i (a \otimes e_i) \bullet \tilde{f} \bullet (e_i \otimes b) \\ &= (a \otimes b) \circ \tilde{f}. \end{split}$$

similarly we have $\tilde{f} \bullet (a \otimes b) = \tilde{f} \circ (a \otimes b)$ and since $\tilde{f} \in Z_{A \widehat{\otimes} A}(X_{\dagger}^{*})$, then $(a \otimes b) \bullet \tilde{f} = \tilde{f} \bullet (a \otimes b)$. Hence

$$\widetilde{f} \in Z_{A\widehat{\otimes}A^{op}}(X^*).$$

Since Y was an arbitrary closed submodule of X and f was arbitrary in $Z_{A\widehat{\otimes}A^{op}}(Y^*)$, again by exploiting [7,Theorem 1], we have that $A\widehat{\otimes}A^{op}$ is amenable. \square

Theorem 2.8. Suppose that $A \widehat{\otimes} A$ is amenable and A has a bounded approximate identity. Then A is amenable.

Proof: By the preceding Theorem we have that $A \widehat{\otimes} A^{op}$ is amenable. Since A has a bounded approximate identity, from Theorem 2.3, A is amenable.

Since having a bounded approximate identity is a necessary condition for an algebra to be amenable, the Theorem 2.8 has the minimum conditions. If we can prove that amenability of $A \widehat{\otimes} A$ implies that A has a bounded approximate identity, then we can even drop the condition in Theorem 2.8 that A has a bounded approximate identity.

3 Some results in commutative Banach algebras

Now we go to the case where our algebra A is commutative. First we prove the following general result.

For the Banach algebra A, we define

$$A^2 = \operatorname{Lin}\{ab : a, b \in A\}.$$

Theorem 3.1. Suppose that B is a Banach algebra and A is a closed subalgebra of B such that $A \widehat{\otimes} B$ is weakly amenable. Then $(A^2)^- = A$

Proof: Suppose that $(A \widehat{\otimes} B)$ is weakly amenable and $(A^2)^- \neq A$. Then from Hahn-Banach Theorem there exists a $\lambda \in A^*$ such that $\lambda|_{A^2} = 0$ and $\lambda \neq 0$. So there exists an $a_0 \in A$ such that $\lambda(a_0) = 1$. We denote a Hahn-Banach extension of λ on B by $\tilde{\lambda}$. So $\tilde{\lambda} \in B^*$ and we specify $D: (A \widehat{\otimes} B) \longrightarrow (A \widehat{\otimes} B)^*$ by

$$D(a \otimes b) = \tilde{\lambda}(a)\tilde{\lambda}(b)(\tilde{\lambda} \otimes \tilde{\lambda}) \qquad (a \in A, b \in B),$$

where $(\tilde{\lambda} \otimes \tilde{\lambda})(c \otimes d) = \tilde{\lambda}(c)\tilde{\lambda}(d)$.

Then we have

$$D((a \otimes b)(c \otimes d)) = D(ac \otimes bd) = \tilde{\lambda}(ac)\tilde{\lambda}(bd)(\tilde{\lambda} \otimes \tilde{\lambda}) = 0$$

On the other hand for $a, c, x \in A$ and $b, d, y \in B$ we have

$$\langle (a\otimes b)D(c\otimes d),x\otimes y\rangle = \langle D(c\otimes d),xa\otimes yb\rangle = \tilde{\lambda}(c)\tilde{\lambda}(d)\tilde{\lambda}(xa)\tilde{\lambda}(yb) = 0$$
 and similarly

 $\langle D(a \otimes b).(c \otimes d), x \otimes y \rangle = \langle D(a \otimes b), cx \otimes dy \rangle = \tilde{\lambda}(a)\tilde{\lambda}(b)\tilde{\lambda}(cx)\tilde{\lambda}(dy) = 0.$

So $D: A\widehat{\otimes} B \longrightarrow (A\widehat{\otimes} B)^*$ is a continuous derivation and hence from weak amenability of $(A\widehat{\otimes} B)$ it follows that $D = ad(\xi)$ for some $\xi \in (A\widehat{\otimes} B)^*$.

So

$$\langle D(a_0 \otimes a_0), (a_0 \otimes a_0) \rangle = \langle (a_0 \otimes a_0).\xi - \xi.(a_0 \otimes a_0), a_0 \otimes a_0 \rangle$$
$$= \langle \xi, (a_0^2 \otimes a_0^2) - (a_0^2 \otimes a_0^2) \rangle$$
$$= 0$$

But we have:

$$\langle D(a_0 \otimes a_0), (a_0 \otimes a_0) \rangle = \tilde{\lambda}(a_0)\tilde{\lambda}(a_0)(\tilde{\lambda} \otimes \tilde{\lambda})(a_0 \otimes a_0) = (\tilde{\lambda}(a_0))^4 = 1.$$

So we have come up with a contradiction and hence $(A^2)^- = A$

Theorem 3.2. Suppose that B is a commutative Banach algebra and A is an ideal in B such that $A \widehat{\otimes} B$ is weakly amenable. Then A is weakly amenable.

Proof Suppose that $A \widehat{\otimes} B$ is weakly amenable. Then we define $\varphi : A \widehat{\otimes} B \longrightarrow A$ by $\varphi(a \otimes b) = ab$. It can be easily seen that φ is continuous and is an algebra homomorphism. Also by Theorem 3.1 we have $\varphi(A)^- = A$. Hence from [3, Proposition 2.11], A is weakly amenable.

References

- [1] Bade, W.G; Curtisa, P.C., Jr.; Dales, H.G. Amenability and weak amenability for Beurling and Lipschitz alebras. ProcJ. Math. London Math. Soc. (3) 55 (1987), no. 2, 350-377.
- [2] P.C.Curtis, R.J.Loy, The structure of amenable Banach algebras, Journal of London Mathematical Society, 40(2)(1989) 89-104.
- [3] N.Groenbaek, A characterization of weakly amenable Banach algebras. Studia Math. 94 (1989), no.2, 149-162.
- [4] B.E.Johnson, Cohomology in Banach Algebras. American Mathematical Society, Providence, RI, (1972).
- [5] B.E.Johnson, Symmetric Amenability and the nonexistence of Lie and Jordan derivations, Math.Proc.Camb.Phil.Soc.120,455, (1996).

- [6] B.E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281-284.
- [7] A.T.M.Lau, Characterizations of amenable Banach algebras, Proceedings of the American Mathematical Society, 70(2)(1978).
- [8] V.Runde, Lectures on Amenability, Lecture notes in Mathematics, v.1774, Springer, Berlin, 2002.