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Notes on amenability

Miad Makareh Shireh

ABSTRACT: We show that for a Banach algebra A with a bounded approximate
identity, the amenability of AR A, the amenability of AR AP and the amenability of
A are equivalent. Also if A is a closed ideal in a commutative Banach algebra B,
then the weak amenability of A®B implies the weak amenability of A.

1 Introductions and Preliminaries

Let A to be a Banach algebra and X an A-bimodule that is a Banach space. We
say that X is a Banach A-bimodule if there exists constant C' > 0 such that

la.z|| < Cllalll|[],
[z.al] < Cllall]|z] (a €Az eX).

If X is a Banach A-bimodule, then X* is a Banach A-bimodule for the actions
defined by

{a.f,x) = (f,x.a)
(f.a,z) = (f,ax) (a€A fe X zeX).

The Banach A-bimodule X* defined in this way is said to be a dual Banach A-
bimodule.

A linear mapping D from A into X is a derivation if
D(ab) = a.D(b) + D(a).b (a,be A).

For x € X, the mapping ad, : A — X defined by ad,(a) = a.x —x.a is a continuous
derivation. The derivation D is inner if there exists € X such that D = ad,.

A is said to be amenable if for every Banach A-bimodule X , any continuous deriva-
tion from A into the dual Banach A-bimodule X* is inner. This notion has been
introduced in [4] and has been studied extensively since.

The Banach algebra A is said to be weakly amenable if any continuous derivation
from A into the dual Banach A-bimodule A* is inner. This notion was first intro-
duced in [1] for the commutative case and then in [6] for the general case. Every
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Amenable Banach algebra has a bounded approximate identity [ 8, Proposition 2.21].
Also if A and B are two amenable Banach algebras then also is A®B [ 4, Proposition
5.4].

The question is whether the converse is true or not. The only work on this question
is done by B.E. Johnson in the following:

Proposition 1.1. Suppose that A is a Banach algebra and B is another Banach
algebra such that there exists by € B with by ¢ Lin{bbg — bgb : b € B}. If A®B is
amenable then A is amenable.

Proof: See [5, Proposition 3.5] O
But still the question remains open for general A and B even for the case A = B.

In section 2, we prove that the amenability of A®A implies amenability of A in
the case that A has a bounded approximate identity. Indeed we show that for a Ba-
nach algebra A with a bounded approximate identity the following are equivalent:

(i) A is amenable;
(ii) A®A is amenable;

(iii) A®AP is amenable (Where as usual A is the Banach algebra obtaining by
reversing the product of A).

Since having a bounded approximate identity is a necessary condition for amenabil-
ity, we can not omit the condition that A has bounded approximate identity unless
we can prove that amenability of A®A necessitates having a bounded approximate
identity for A.

In section 3 we investigate the question but for weak amenability instead of amenabil-
ity. We prove that if B is a commutative Banach algebra and A is a closed ideal in
B, then the weak amenability of AQB implies the weak amenability of A.

2 The amenability results

In this section we try to answer the question whether amenability A®B implies the
amenability of A and B or not. We mainly concentrate on the special case where
A = B. However, we will also obtain some results about the case where A is not
necessarily equal to B.

First we start with a simple result:



Theorem 2.1. Suppose that A and B are Banach algebras and B has a non- zero
character. If ARB is amenable, then A is also amenable.

Proof: Let ¢ be a non- zero character in B and define the unique mapping
0: A®B —» A acting on elementary tensors by

O(a®b)=p(b)a (a€ AbeB).

We show that 6 is an algebra homomorphism (obviously € is continuous). Since 6 is
linear, it is enough to check this for elementary tensors. To see this we have

0((a®b)(c®d)) =0((ac ® bd) = p(bd)ac.
On the other hand
0((a ®b))0((c ® d)) = p(b)ap(d)c = p(bd)ac.

So
O((a®@b)(c@d) =0((a®b))f((c®d)).

And since ¢ is non - zero, 6 is surjective and hence A is amenable. O

Throughout the following we let 7 : ARA®” —» A be the so-called product map;
mapping specified by acting on elementary tensors by 7(a ® b) = ab  (a,b € A)
and we let K = kerm.

The Banach algebra A can be made into a left A®A°-module by the module mul-
tiplication specified by

(a®b).c=ach (a,b,c € A).

Theorem 2.2. Suppose that AQA is amenable and A has a bounded approzimate
identity. Then A is amenable.

Proof: Since A has a bounded approximate identity, the short exact sequence

(T1")* : 0 — A* AN (AR AP)* 5 K* — 0is an admissible short exact sequence
of right A®A°P-modules. (» is the inclusion map).
Since A* is a dual A®A°P-module, from [2, Theorem 2.3] , (J]?)* splits and since
A®A°P has a bounded approximate identity and 7 is onto , [2, Theorem 3.5] implies
that K has a bounded right approximate identity. Now since A has a bounded ap-
proximate identity, from [2, Theorem 3,10] A is amenable. O

Theorem 2.3 has been the motivation for us to consider the question of under which
conditions on the tensor products, A has a bounded approximate identity. The
following is one of them. Before going to next Theorem, we need a Lemma.



Lemma 2.3. Let A to be a Banach algebra with a two-sided bounded approximate
identity and X a Banach A-bimodule on which A acts trivially on one side. Then

for every continuous derivation D from A into X, there exists a bounded net ((;);
in X such that D(a) =lim; a.¢; — G.a  (a € A).

Proof: Since we can embed X into X** through the canonical injection, we
can consider D as a continuous derivation into the dual module X**. Also since the
action of A on one side of X is trivial, action of A on other side of X* is trivial.
Therefore D is inner. Hence there exists £ € X** such that

D(a)=a.§£ —&.a (a € A).

Now by Goldstein’s Theorem, there is a bounded net (7;);cs in X converging to £
in weak® topology of X**. Thus

D(a) = a.§{ —&.a=wk" —lima.7j — 7.2 (a € A),
]

and hence

D(a) = wk —lima.7; — 7j.a (a€A).
j

Let A = {a1,a2,...,an} be a finite subset of A. Then in ;. ; X, we have
(D(a1), ..., D(an)) € weak — cl(co({(a1.7j — 7j.a1, ..., an.Tj — Tj.an) : j € J}))
Therefore by Mazur’s Theorem
(D(ay), ..., D(ay)) € norm — cl(co({(a1.75 — 7j.a1, ..., an.7§ — 7j.2n)) : j € J})
And hence for € > 0, there exists (a ¢ € co({7j : h € J}) such that
|D(ai) — (ai-Cae — Cae-ai)|| <€ (a; € A)

So by ordering the set of the finite subsets of A by inclusion and positive real numbers
by decreasing order , the net (¢a ) is the desired net. O

Theorem 2.4. Suppose that ARA has a bounded approzimate identity and each
one of the topologies on A defined by the family of seminorms p, : b — ||abl| and
Yo : b ||ba|| is stronger than weak topology on A. Then A has a (two-sided) bound
approximate identity.

Proof: Suppose that A®A has a bounded approximate identity. we consider
A as an AR AP-bimodule by actions specified by:

(a®0b)ec=ach
ce(a®b)=0 (a,b,ceA)



It can be easily seen that A is a Banach A®A°-bimodule by the actions above .
Now we define a derivation D : ARA®? —s A by acting on elementary tensors as
D(a®b) =ab (a,b € A). D is obviously continuous and also D is a derivation
since

D((a®b) - (c®d)) = D(ac ® db) = acdb
(- is the product in A®A° ). On the other hand:

(a®@b)eD(c®d)+D(a®b)e(c®d) = (a®b)ecd=acdb

Therefore D € Z'(A®A, A). Now since the right action of A®A on A is trivial
and AR A has a bounded approximate identity, from Lemma 2.4, there exists a
bounded net(¢;); in A such that D(a ® b) = lim; ad¢,(a ®b).

So ab = lim; a(;b  (a,b € A). Thus for all a,b € A

lima(b— ¢;b) =0 lim(b — b;)a =0 (1)

If we denote the topology induced by the family of seminorms {p,|la € A} by 7 and
the topology induced by the family of seminorms {7,|a € A} by ¢, then from (1) we
have

al; —a (inT for alla € A) (2)

Ga—a (ing for alla € A) (3)

since we assume both 7 and ¢ to be stronger than weak topology on A, then by
(2) and (3), A has a weakly two-sided bounded approximate identity and hence A
has a two-sided bounded approximate identity. O

Theorem 2.5. Suppose that AQA is amenable and that A has the property that
each one of the topologies induced on A by the family of seminorms {psla € A}
where po(b) = ||abl| and {v.|la € A} where v4(b) = ||ba||, are stronger than the weak
topology on A. Then A is amenable.



Proof: Firstly by the fact that A®A% necessarily has a two-sided bounded ap-
proximate identity and from Theorem 2.5 we have that A has a two-sided bounded
approximate identity and then from Theorem 2.3 we have A is amenable. U

In next Theorem we attempt to relate amenability of A®A (in the case that A
has a bounded approximate identity) to the amenability of A® A and then by us-
ing the preceding theorems, we attempt to prove the amenability of A when ARA
is amenable. Before going to next Theorem, we need a Lemma.

Lemma 2.6. Let A be Banach algebra with a bounded approximate identity such
that for any neo-unital Banach A-bimodule X andY a closed submodule of X, every
f € ZA(Y*) can be extended to a functional f € Zx(X*). Then A is amenable.

proof: As in the proof of [7, Theorem 1], for concluding the amenability of
A, it is enough to have the property in the Lemma for the Banach A-bimodule
L= (ARA)*®(ARA) with the module actions specified by
a.(z* @x) =2"®ax,
(z*@r)a=2"®@za (a€Axc(ARDA), 2" € (ADA)*).

Since A has bounded approximate identity, X = A®A is neo-unital and hence by
the above definition of the actions of A on L, L is also neo-unital. O

Theorem 2.7. Suppose that A is a Banach algebra with a bounded approximate
identity such that AQA is amenable. Then ARA is also amenable.

proof: Suppose that X is a Banach neo-unital A®A°-bimodule and that e
denotes the action of AR A% on X. We define:

(a®@b)oxr=lima®@e;)oxe(e; D),
7
zo(a®b) =lim(e; @b)exre(a®e;) (re€ Xand a,beA).
7
First we note that the above limits exist because by the assumption that X is neo-
unital we have:

If x € X then there exist y € X and u,v € A@Aap such that x = u ey ewv and then
we have:

(ae)oxe(e;b)=(a®e;)oueyeve(c;, b)) = ((a®e;)xu)oye(vx(e; D)),

where x denotes the product in A®A. Since (ei)ien is a bounded approximate
identity for A, it can be easily seen that lim;(a®e;)*xu = a.u and lim; v*(e; ®b) = v.b,



where a.(e ® f) =ae® f and (e® f).b=e®bf.

So lim;(a ® ¢;) ® x @ (e; ® b) exists and we can similarly prove the existence of the
second limit. Also o induces a module action of A@A on X . To see the reason, by
linearity, it is enough to check the module conditions for elementary tensors.

(a@b)(c®d) o= (ac®bd) ox = lim(ac © ¢;) e x » (¢;  bd)
On the other hand:
(a®@b)o((c®d)ox)= (a®b)o(li]m(c®ej)oxo(ej ®d))
= 1i§n(a ®e;)e (1ijm(c Rej)oexe(e;®d))e(e; ®b)
= limilim; (ac © eje;) o z o (ee; @ bd)
= limj(ac ® e;) @ x ® (¢; @ bd).

Hence
((a®b)(c®d)oxr=(ac®@bd)ox=(a®b)o ((c®d)oux).

In a similar way we can show that
zo((a®b)(c®d)) =(ro(a®b))(c®d).
Also we have:
(a®@b)oz)o(c®d) =limi(e; ®d) e (limj(a®e;)exo(e;Rb))e(c®e;)

= lim;lim;((e; @ d) x (a @ ej)) ez o ((€j R b) x (c ® €;))
= lim;lim;(eja ® e;d) @ x ® (ejc @ e;b)
=(a®d)exe(c®b).

On the other hand:

(a®b)o(zo(c®d))=limlimjla®e;) o ((e;@d)exe(cRej)) e (e;@Db)
= lim;lim;((ae; ® de;) o z o (ce; @ bej)
=(a@d)eze(c®b).

Hence
((a®@b)ox)o(c®d)=(a®b)o(xo(c®d)).

So X is an A®A-bimodule for the action o. Also since the net (e;) is bounded, it
can be easily seen that X is indeed a Banach A®A-bimodule for o. For a Banach
A®A°P-bimodule X, X; denotes X as an A®A-bimodule (via the action o).



Now if Y is a closed submodule of X and f € Z 5 40,(Y™), we show that

[ € Zga(YY).
To prove the above statement we have:

(a®b)of:wk*—liim(a@)ei)ofo(ei@b)
:Wk*—li{nfo(a(@ei)o(ei@)b)
= wk* —liimfo(aei@)bei)
=fe(a®b).

Similarly
fola@b)=(amb)ef.
Thus
f € Zaga(Yy).
Now from [7, Theorem 1] , f has an extension to an f € Z(A@A,XJF‘) .
We show that f € Z (A@Aap , X*) For this purpose we have

(a®b) e f=wk"—lim—wk" —lim((a®ej)(ej@b)) efe(e;®e)
i j

= wk* — lim(a ® ¢;)(wk* — lim(ej @ b) o f @ (¢ @ ¢j))
i ]

= wk* — lign(a ®e) e (fo(eg®b))

= wk* — liim(a ®e;) e ((eg@b)of)

= wk* —lim(a ® e;) ® (Wk* — lim(e; ® ¢j) @ f ® (¢j @ b))
i J

= wk* — lim wk* — lim(ae; @ eje;) @ f @ (¢ @ b)
i ]

=wk* —lim(a®e;) ofo(e;®Db)

= (a@b)o f.

similarly we have fe(a®b) = fo(a®b) and since f € Z g 4(X]), then (a®b)ef =

fe(a®b). Hence

f 6 ZA@AOP(X*)'

Since Y was an arbitrary closed submodule of X and f was arbitrary in 7,5 4., (Y™),
again by exploiting [7,Theorem 1], we have that A®A° is amenable. O

Theorem 2.8. Suppose that ARA is amenable and A has a bounded approzimate
identity. Then A is amenable.



Proof: By the preceding Theorem we have that AR A% is amenable. Since A
has a bounded approximate identity, from Theorem 2.3 ;| A is amenable. U

Since having a bounded approximate identity is a necessary condition for an al-
gebra to be amenable, the Theorem 2.8 has the minimum conditions. If we can prove
that amenability of AR A implies that A has a bounded approximate identity, then
we can even drop the condition in Theorem 2.8 that A has a bounded approximate
identity.

3 Some results in commutative Banach algebras

Now we go to the case where our algebra A is commutative. First we prove the
following general result.
For the Banach algebra A, we define

A? = Lin{ab:a,b € A}.

Theorem 3.1. Suppose that B is a Banach algebra and A is a closed subalgebra of
B such that AQB is weakly amenable. Then (A?)~ = A

Proof: Suppose that (A®B) is weakly amenable and (A%)~ # A. Then from
Hahn-Banach Theorem there exists a A € A* such that A|,2 = 0 and A # 0. So

there exists an ag € A such that A(ag) = 1. We denote a Hahn-Banach extension of
Aon B by \. So A € B* and we specify D : (A®B) — (A®B)* by

D(a®b) = Ma)A(D)(A @ N) (a € A,b € B),

where (A @ A)(c ® d) = A(c)A(d).

Then we have

D((a ®b)(c®d)) = D(ac ® bd) = Aac)A(bd)(A @A) = 0

On the other hand for a,c,z € A and b,d,y € B we have
(0 ®B)D(c® d),x®y) = (D(c® d), 10 ® yb) = NOAd)Aza)A(yh) = 0
and similarly

(D(a®b).(c®@d),r®y) = (D(a®b),cx @ dy) = Ma)Ab)A(cz)\(dy) = 0.
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So D : A®B — (A®B)* is a continuous derivation and hence from weak
amenability of (A®B) it follows that D = ad() for some & € (ARB)*.

So

(D(ap ® ap), (ao ® ap))

((a0 ® ag).§ — &.(ap ® ap), ap @ agp)
(€, (a§ ® ag) — (af @ ap))
0

But we have:
(D(ao ® ag), (ag @ ag)) = A(ag)Mao)(A @ X)(ag © ag) = (Mao))* = 1.
So we have come up with a contradiction and hence (42)~ = A 0

Theorem 3.2. Suppose that B is a commutative Banach algebra and A is an ideal
in B such that ARB is weakly amenable. Then A is weakly amenable.

Proof Suppose that ARB is weakly amenable. Then we define ¢ : AQB — A
by ¢(a ® b) = ab. It can be easily seen that ¢ is continuous and is an algebra ho-
momorphism. Also by Theorem B.I]we have ¢(A)~ = A. Hence from [3, Proposition
2.11], A is weakly amenable. O
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