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Abstract. A finite set nX    with a weight function 
0

:w X


   is called 

Euclidean t-design in n  (supported by p  concentric spheres) if the following 

condition holds:  
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for any polynomial    Pol nf  x  of degree at most t . Here n

i
S   is a 

sphere of radius 0,
i i i

r X X S   , and ( )
i

 x  is an   -invariantO n  measure 

on 
i

S  such that 1 1n n

i i
S r S  , with iS  is the surface area of iS  and 1nS   is 

a surface area of the unit sphere in n .  

Recently, Bajnok (2006) [1] constructed tight Euclidean t-designs in the plane 

 2n   for arbitrary t  and p . In this paper we show that for case 6t   and 

2p  , tight Euclidean 6-designs constructed by Bajnok is the unique 

configuration in n , for 2 8n  . 

Keywords: Euclidean designs; spherical designs; tight designs; distance sets; 
association schemes. 

1 Introduction and Result 

A combinatorial  , ,t v k   design X  is one of important objects in 

combinatorics. It might be viewed (see [2]), in a sense, as an approximation of 
the discrete sphere kS  of all k-subsets by the sub-collection X  of kS , where  

   2 2 2

1 2: : , 0,1 .v

k v iS x x x k x       x  

Later, Delsarte, Goethals and Seidel [3] introduced an analogue concept of 
designs for (continuous) sphere by defining what they called spherical t-design. 
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This new concept might be viewed as an approximation of the unit sphere 
1n nS     by the subset X  of 1nS   with respect to integral of polynomial 

functions of degree at most t. 

The concept of spherical t-design was generalized by Neumaier and Seidel ([4], 
see also Delsarte and Seidel [5]) by allowing weights and multiple spheres. In 
their papers, Neumaier and Seidel and also Delsarte and Seidel conjectured the 
non-existence of tight Euclidean 2e-designs except the trivial ones. 

Conjecture 1.1 (Delsarte-Neumaier-Seidel). The only tight Euclidean 2e-

designs in n , for 2e  , are regular simplices. 

The first breakthrough on this area was performed by Bannai and Bannai [6]. 
Having slightly generalized the previous concept of Euclidean t-designs by 
dropping the condition of excluding 0 vector, they constructed a tight Euclidean 

4-design in 2  supported by two concentric spheres as a counter-example for 
the conjecture. Moreover, they also completely classified tight Euclidean 4-

designs with constant weight in n , for 2n  , supported by two concentric 
spheres. Recently, in a joint work with Bannai and Bannai [7], the author 
introduced a new concept of strong non-rigidity for Euclidean t-designs. By 
using this new concept we also disproved Delsarte-Neumaier-Seidel’s 
conjecture by showing the existence of infinitely many tight Euclidean designs 
having certain parameters. 

Going back to Delsarte, Goethals and Seidel, regarding the spherical designs 
they showed that there is no tight spherical 6-designs in any Euclidean space 

except the one on 1S  (a unit sphere in a plane 2 ) ([3, Theorem 7.7]). Inspired 
by the situation in spherical designs, a natural question is what about tight 

Euclidean 6-designs? Are there any tight Euclidean 6-designs in n ? In 
answering this question, we divide them into two cases: the ones with constant 
weight and the others with non-constant weights. We observe that if the designs 
contain 0 vector, then by Lemma 2.15 given in the next section, 6

2
e   should be 

even, which is impossible. Moreover, if X  is a tight Euclidean 6-design with 
constant weight, then Lemma 2.11(3), Remark 2.14, and Lemma 2.15 below 
imply p = 2 or 3. The purpose of this paper is to give a partial answer for the 
question by restricting our observation only to tight Euclidean 6-designs 
supported by two concentric spheres, sitting on the Euclidean spaces of small 
dimension n. Namely, we prove the following main theorem. 
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Theorem 1.2   (Main theorem). The only tight Euclidean 6-design in n , for 

2 8n  , supported by two concentric spheres is the one in 2 : 

2 2
cos , sin :1 5,1 2

5 5kj k kX
j k j k

b r r j k 
                     

. 

The weight function of this design is   5
1

k
kj r

w b  , for 1, 2k  . 

We remark that the design in the theorem above was constructed by Bajnok [1]. 
Hence the theorem says that in the Euclidean space of small dimension, 
Bajnok’s construction of such designs is a unique configuration. 

The paper is organized as follows. In section 2 we lay the groundwork for our 
result. We begin with some basic facts about association schemes. We also 
recall some facts about distance sets, spherical designs as well as Euclidean 
designs. We proved our main theorem in Section 3. Section 4 summarize the 
current status of classification of tight Euclidean designs. We end the paper by 

giving a conjecture on the (non-)existence of tight Euclidean 6-designs in n , 
for 2n  , supported by two concentric spheres. 

2 Preliminaries 

This section contains some basic facts on association schemes, spherical 
designs, and Euclidean designs. We begin with association schemes. 

2.1 Association Schemes 

See [8] and [9] for undefined terms in association schemes. 

Let 0( ,{ } )i i dX R  X be a symmetric association scheme. Let P  and Q  be the 

first and second eigenmatrix whose  ,j i -entry is  ip j  and  iq j , 

respectively. Denote  0i ip k  and  0i iq m  for 0 i d  . Then the 

following relation is well-known: 

 
   j i

j j

q i p j

m k
  (2.1) 

An association scheme   
0

,
i i d

X R
 

X =  is imprimitive if there exists a non-

empty proper subset   0   of  0,1, , d  for which i iR  defines an 
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equivalence relation on the set X . If X  is not imprimitive, the X  is called 
primitive. 

Lemma 2.1 (see, e.g., [10,11]). Let   
0

,
i i d

X R
 

X =  be a symmetric 

association scheme. For any i such that 0 i d  , the set X  can be embedded 

in the unit sphere 1i im mS    , where  i im rank E , by 

 :
 :

im

i x

i

X

X
x x E

m















 e
 

with  0, ,0,1,0, 0 X

x    e  and 1 is in the x-th coordinate. If X  is 

primitive, then   is injective. Moreover, 

 
   

, ji

i j

p iq j
x y

m k
  . 

2.1.1 Krein Parameters 

Since the Bose-Mesner algebra is also closed under the Hadamard product, then 
we may write 

 
0

1 d
k

i j ij k
k

E E q E
X 

   

for some real numbers k

ijq , called Krein parameters. These parameters are 

uniquely determined by the eigenmatrices P and Q : 

Theorem 2.2   (Krein condition). For all  , , 0,1, ,i j k d   we have, 

      
0

1
0

d
k

ij l i j k
lk

q k q l q l q l
m X 

   

where  0l lk p  and  0k km q . 

Let   0
, i i d

X R
 

X  be a symmetric association scheme. Let also P  and Q  

be the eigenmatrices of the scheme. The association scheme X  is called P-
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polynomial [resp. Q-polynomial] scheme with respect to the ordering 

0 1, , dR R R [resp. 0 1, , dE E E ] if there exist some polynomials  iv x [resp. 

 *

iv x ] of degree  0i i d   such that  1iiA v A [resp.  *

1i iE v E  under 

the Hadamard product]. Regarding the Q-polynomial scheme, Delsarte gives 
necessary and sufficient conditions for any symmetric association scheme to 
become a Q-polynomial scheme ([9, Theorem 5.16]), which together with the 
Krein condition can be restated as follows. 

Theorem 2.3   A symmetric association scheme is Q-polynomial if and only if 

the Krein parameters k

ijq  satisfy the following two conditions: 1

1 0i

iq    and 

1 0k

iq   for 1k i    0 1i d   . 

In particular, for the case Q-polynomial scheme of class 3, the following 
corollary is immediate. 

Corollary 2.4   A symmetric association scheme is Q-polynomial of class 3 if 

and only if the Krein parameters k

ij
q  satisfy the conditions: 3

11
0q  , 2

11
0q  , and 

3

12
0q  . 

2.2 Distance Sets, Spherical and Euclidean Designs 

2.2.1 Distance Sets 

A finite subset nX    is called antipodal if X x , for any Xx . For a 

finite subset nX   , we define 

    : , , .A X X   x y x y x y  

X  is called an s-distance set if  A X s . For  A X  , we define 

    : .v X    x y x y  

Any subset X  is called distance invariant if  v x  does not depend on the 

choice of x X , and depend only on  , for any fixed  A X  . 

The upper bound for the cardinality of any s-distance set X  in 1nS    is given by 
([3, Theorem 4.8]): 
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1 2

1 1
.

n s n s
X

n n

   
 

 
   
   
   

 (2.2) 

2.2.2 Spherical t-designs 

Here is the exact definition of spherical t-designs as introduced by Delsarte, 
Goethals, and Seidel in 1977 [3]. 

Definition 2.5   Let t be a positive integer. A finite nonempty subset 1nX S   
is called spherical t-design if the following condition holds: 

      
1

1

1 1

n

n
XS

f d f
XS







 
x

x x x  (2.3) 

for any polynomial    1 2, , , nf x x x x  of degree at most t, where   x  

is the  O n -invariant measure on 1nS   and 1nS   is the area of the sphere 1nS  . 

The maximum value of t for which X  is a spherical t-design is called the 
strength of X . 

The lower bound for the cardinality of any spherical t-design X  in 1nS   is 
given by ([3, Theorem 5.11 and Theorem 5.12]): 

 
   1

2 2
1 2

1 1
.

t tn n
X

n n

   
 

 

   
   
   

 (2.4) 

An s-distance set [resp. spherical t-design] X  is called tight if the bound (2.2) 
[resp. (2.4)] is attained. 

Again, the theorem below was also proved by Delsarte, Goethal, and Seidel [3]. 

Theorem 2.6   [3, Theorem 7.4] Let X  be a spherical t-design as well as an s-

distance set in 1nS  . If 2 2t s  , then X  carries an s-class Q-polynomial 
scheme. 

Remark 2.7   In fact [3, Theorem 7.4], neither stated nor proved that the 
association scheme is Q-polynomial. The detail proof is given, e.g., in [12, 
Theorem 7.2.6], (c.f. [13, Theorem 9.6.4]) but Bannai and Bannai never claim 
the above theorem to be from them, instead they always refer the theorem to 
Delsarte, Goethal, and Seidel (see, e.g., [14, Theorem 3.5], [15]). 
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Now, let us turn to Euclidean designs. 

2.2.3 Euclidean t-designs 

Let X  be a finite set in n , 2n  . Let    1 2, , :pr r r X  x x , where x  

is a norm of x  defined by standard inner product in n  and ir  is possibly 0. 

For each i, we define  :n

i iS r  x x , the sphere of radius ir  centered at 

0. We say that X  is supported by the p concentric spheres 1 2, , , pS S S . If 

0ir  , then  0iS  . Let i iX X S  , for 1 i p  . Let   x be the  O n -

invariant measure on the unit sphere 1n nS    . We consider the measure 

 i x  on each iS  so that 1 1n n
i iS r S  , with iS  is the surface area of iS , 

namely 
 

21

2

2
nn

i
i n

r
S






. We associate a positive real valued function w on X , 

which is called weight of X . We define    i X
w X w


  x

x . Here if 0ir  , 

then we define      1 0
i

i
iS S

f d f  x x , for any function  f x  defined on 

n . Let 1

p

i iS S  . Let  0,1S   be defined by  

 
1,   0

0,   0S

S

S










. 

We give some more notation we use. Let    1 2
Pol , ,n

n
x x x    be the 

vector space of polynomials in n variables 1 2, , nx x x . Let  Hom n

l   be the 

subspace of  Pol n  spanned by homogeneous polynomials of degree l. Let 

 Harm n

l   be the subspace of  Pol n  consisting of all harmonic 

polynomials. Let      Harm Harm Homn n n

l l   . Then we have 

   0Pol Homn nl
l i i   . Let  Pol S ,  Poll S ,  Homl S ,  Harm S , and 

 Harml S  be the sets of corresponding polynomials restricted to the union S  of  

p concentric spheres. For example     Pol | : Pol n

SS f f   . 

With the notation mentioned above, we define a Euclidean t-design as follows. 



26 Djoko Suprijanto 

Definition 2.8   Let X  be a finite set with a weight function w  and let t be a 

positive integer. Then  ,X w  is called Euclidean t-design in n  if the 

following condition holds:  

 
         

1 i

p
i

iS
i x Xi

w X
f d w f

S


 

  x x x x , 

for any polynomial    Pol nf x    of degree at most t. The maximum value 

of t for which X  is a Euclidean t-design is called the strength of X . 

The following theorem gives a condition which is equivalent to the definition of 
Euclidean t-designs. 

Theorem 2.9   (Neumaier-Seidel). Let X  be a finite nonempty subset in n  
with weight function w. Then the following (1) and (2) are equivalent:  

(1) X  is a Euclidean t-design. 

(2)    2
0

j

X

w 



u

u u u ,  for any polynomial  Harm n

l    

with 1 l t   and  2
0 t lj   . 

Let X  be a Euclidean 2e-design in n . Then it is known that ([4, Theorem 
3.2], [5, Theorem 5.4]):  

   dim Pol .eX S  

Following [6], we define the tightness for the Euclidean designs as given below. 

Definition 2.10   Let X  be a Euclidean 2e-design supported by S . If 

   dim PoleX S  

holds we call X  tight Euclidean 2e-design on S . Moreover, if 

      dim Pol dim Pole e

nS    

holds, then X  is called tight Euclidean 2e-design. 

The following lemma is crucial in our study of Euclidean designs. 
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Lemma 2.11   [6, Lemma 1.10] Let X  be a tight Euclidean 2e-design on p 
concentric spheres. Then the following hold: 

(1) The weight function w is constant on each iX , for 1 i p  . 

(2) iX  is at most an e-distance set 1 i p  . 

(3) If the weight function w is constant on  \ 0X , then Sp e   . 

As an application of the above lemma, Et. Bannai [16] proved the following 
theorem. The theorem gives a certain connection between spherical designs and 
Euclidean designs. 

Theorem 2.12   [16, Theorem 1.8] Let X  be a tight Euclidean 2e-design on p 
concentric spheres. If Sp e  , then each iX  is (similar to) a spherical 

 2 2 2 2Se p    -design. Moreover, if 2 3

2
Sep       , then each iX  is a 

distance invariant set. 

Let  ,X w  be a finite weighted subset in n . Let 1 2, , pS S S  be the p 

concentric spheres supporting X  and let 1
p
i iS S  . 

For any  , Harm n    , we define the following inner-product 

       
11

1
,

nn S
d

S
    


  x x x . 

Then we have the following (see [17], [3],[5],[12],[16]). 

Lemma 2.13   The following three statements hold: 

(1)  Harm n  is a positive definite inner-product space under ,  and 

has the orthogonal decomposition    0 iHarm Harmn n

i


  . 

(2)    2

e
0 2

Pol Harm
jn n

i
i j e  

  x   with   edim Pol n
n e

e



 
 
 

 .  

(3)  
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 2 2

e 2 1

1
0 min 1,

2

Pol : 0 min 1, Harm

S

j je
ii e

e
j p

S j p S



 


     

  

     

 
  
 
 
  

x x

. 

(a) If 
2

Sep      then 

              
 2 1

e
0 0

1 1
dim Pol

1 1

Sp e

S
i i

n e i n e i n e
S

n n e




 

 

      
   

 
     
     
     

  ,  

where e is a non-negative integer. 

(b) If 
2

1Sep      , then 

  edim Pol
n e

S
e



 
 
 

, 

where e is a non-negative integer. 

Remark 2.14   Definition 2.10 and Lemma 2.13 show that a tight Euclidean 2e-
design is the same as a tight Euclidean 2e-design on p concentric spheres with 

2
1Sep      . 

The next lemma is stated in Bannai and Bannai [6]. 

Lemma 2.15   [6, Proposition 1.7] Let nX   be a tight Euclidean 2e-design. 
If 0 X , then e is even, 

2
1ep   , and  \ 0X  is a tight Euclidean 2e-design 

on 
2
e  concentric spheres. 

Let   1 dim Harm n

lh    and ,1 ,, ,
ll l h   be an orthonormal basis of 

 Harm n

l   with respect to the inner-product defined above. Then, by Lemma 

2.13, 

 

 

2

2

,

: 0 min 1,
2

:1 ,1 ,0 min 1,
2

j

j

l i l S

e
j p

e l
l e i h j p 

  


       

   
      
   
      

x

x x
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gives a basis of  Pole S . 

Now, we are going to construct a more convenient basis of  Pole S  for our 

purpose. Let  n  be the subspace of  Pole S  spanned by 

 2
: 0 1

j
j p  x .Let     | : n

XX g g   .Then  2
: 0 1

j
j p  x   

is a basis of  X . We define an inner-product ,
l

   on  X  by 

      2
,

l

l
X

f g w f g


 
x

x x x x , for 1 l e  . (2.5) 

We apply the Gram-Schmidt method to the basis  2
: 0 1

j
j p  x  to 

construct an orthonormal basis 

       ,0 ,1 , 1, , ,l l l pg g g x x x  

of  X  with respect to the inner-product ,
l

  . We can construct them so 

that for any l the following holds: 

 ,l jg x  is a linear combination of 
2 2

1, , ,
jx x , with 

 ,deg 2l jg j  for 0 1j p   . 

As an example, for 2p  , we can express ,l jg  in the following way: 

  ,0

1
l

l

g
a

x , 
2 1

,1 2

2 1

l l
l

l l l l

a a
g

a a a a


 

 


 
 
 

x   (2.6) 

with   2l

l X
a w


  x

x x . 

Now we are ready to give a new basis for  Pole S . Let us consider the 

following sets: 



30 Djoko Suprijanto 

0 0,

1 , ,

: 0 min 1, ,
2

: 0 min 1, ,1 ,  for 1 .
2

j

l j l i S l

e
g j p

e l
g j p i h l e 

   


        

   
      
   
       





 

Then 0
e
l l    is a basis of  Pole S . 

We close this section by the following lemma (see [6] or [7] for the proof.) 

Lemma 2.16. If  ,X w  is a tight Euclidean 2e-design on S , then the following 

(1) and (2) hold: 

(1) The weight function of X satisfies 

     
 

 

 

2

2

min 1,
2 2 2

, 0,
1 , 0

0 min 1,

1
1 ,    .

e

e l
S

p
l

l j l j
l e j

j p

g Q g for all X
w

 



  

   

  

  

   u u u u
u

(2.7) 

(2) For any distinct points , Xu v , we have 

       
 

 

2

2

min 1,

, , 0, 0,
1 , 0

0 min 1,

,
0.

e

e l
S

p
l l

l j l j l j j
l e j

j p

g g Q g g

 



  

   

  

  

 
 
 
 

 
u v

u v u v u v
u v

  

  (2.8) 

Here ,u v  is the standard inner-product in Euclidean space n and  lQ   is 

the Gegenbauer polynomial of degree l. 

3 Proof of Main Theorem 

We prove Theorem 1.2 by contradiction. The general idea is to show that the 
assumption of the existence of tight Euclidean 6-design of certain given 
parameters does not carry a Q-polynomial scheme of class 3. Hence we get a 
contradiction. The detail follows. 

Let 1 2X X X   be a tight Euclidean 6-design in n , for 2 8n  . By 

Theorem 2.12, we know that iX  is (similar to) a spherical 4-design. We also 
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know, by Lemma 2.11, that a tight spherical 4-design iX  is also a 2-distance 

set, while the non-tight one is also a 3-distance set. Therefore, Theorem 2.6 
guarantees that the non-tight spherical 4-design iX  should carry a 3-class Q-

polynomial scheme. 

On the other hand, van Dam [18] gives all feasible character tables of the 3-
class symmetric association schemes on points up to 100. By the help of 
Lemma 2.1, we know that the symmetric association scheme on iX  can be 

embedded into a unit sphere, which also give us the feasible 3-inner product set. 
Hence, keeping in mind that any distance set in the unit sphere has one-to-one 
correspondence with an inner product set, we can investigate whether the finite 
set iX  carries a 3-class Q-polynomial scheme, by comparing the numerical 3-

inner product sets (obtained from Lemma 2.16) with the feasible ones (given by 
van Dam’s character tables). 

Let us consider first some special cases. 

3.1 Some Special Cases 

We begin with some elementary facts. Let , iN N  denotes the cardinality of 

, iX X , for 1, 2i  , respectively. Suppose 1 2N N . Then the lower bound bL  

and upper bound bU  of 1N  is given by  

n 2 3 4 5 6 7 8 
N 10 20 35 56 84 120 165 

[Lb,Ub] 5 [9,10] [14,17] [20,28] [27,42] [35,60] [44,82] 

We notice that there are three kind 3-class symmetric association schemes of 
”degenerate” case (to follow van Dam [vDam-99]). They are: (1) the schemes 
generated by n disjoint union of strongly regular graphs  , , ,SRG v k    (2) the 

schemes generated by  , , , nSRG v k J   , and (3) the rectangular scheme 

 ,R m n . The character tables of each case are (see [18, p. 88]): 

(1)  

 1 1 1

1 1

1 1 0

1 1 0

k v k n v

k v k v

r r

s s

  

  

 

 

 
 
 
 
 
 

,  (2) 

 
 

 

1 1 1

1 1 1

1 0 1 0

1 1 1

nk n n v k

nr n n r

ns n n s
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and 

(3)  

  1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

m n n m

m m

n n

   

 

  

  

 
 
 
 
 
 

. 

By direct calculation it is easy to see that some values of Krein parameters are 

(1) 3 2

11 110, 0q q  , (2) 2 3

11 120, 0q q   

(3)      3 2 3

11 11 121 2 , 2 1 , 1q n m q n m q n        . 

Hence for the first two cases, the schemes are not Q-polynomial, while for the 
last case, the scheme is Q-polynomial if and only if 2n   or 2m  , that is if 
cardinality of the finite set carrying the scheme is even. Furthermore, the only 

feasible 3-inner product set given by this scheme is  1
1
, 1

m  , for 2m  . We 

will include this feasible set in our observation below. 

Remark 3.1   We checked the above degenerate cases for all possible ordering 
of the primitive idempotent basis E0, E1, E2, E3. Here we consider the character 
table P  obtained from P  by applying a permutation to the set of its rows but 

the first (there are six possibilities) and we have: two of them give 3

11 0q  , 
2

11 0q   and the others 3

11 0q  . (for type (1) and (2)); and two of them give 

  3

11 1 2q n m   ,   2

11 2 1q n m   , 3

12 1q n   and the others 3

11 0q  , 
2

11 0q   (for type (3)). 

Next, let us consider the following cases. 

3.1.1 Case ( 1,n N ) = (3, 9), (4, 14), (5, 20), (7, 35), (8, 44).  

These are the cases where 1X  is a tight spherical 4-design. By Bannai-

Damarell’s criteria (see [19], c.f. [6, Remark 4]), it is known that if a tight 

spherical 4-design 1

1

nX S   exists, then  2
2 1 3n m    holds, for some 

integer m. Since there is no m satisfying  2
2 1 6m   , [resp. 7, 8, 10, and 11], 

then there does not exist tight spherical 4-design on S2, [resp. S3, S4, S6, and S7]. 
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Hence there is no tight Euclidean 6-design in 3  [resp. 4 , 5 , 7 , and 8 ] 
supported by two concentric spheres with such parameters. 

Remark 3.2   Results for the cases (n, N1) = (3, 9), (4, 14), and (5, 20) are also a 
direct consequence of a work of Boyvalenkov and Nikova [20], where they 
improved the lower bound of tight spherical 4-designs on S2, S3, and S4, from 9, 
14, and 20 to 10, 15, and 21, respectively. 

Now, let us turn to the general treatment. We begin with the constant weight 
case. 

3.2 Case 1: Constant Weight  

For n = 2, then iN = 5, i.e., iX  are regular pentagon (5-gon). We may assume 

that 1x  , for 1x X  and   1w x  , for x X  (see [6, Proposition 2.4], c.f. 

Theorem 2.9). From equation (2.7) we have that the weight function for any 
point sitting on the second sphere is  

5

1

x
w x  . Our assumption implies 

1x  , for any 2x X , which is impossible. Hence tight Euclidean 6-design in 
2  supported by two concentric spheres does not exist. 

Next, let us consider the other cases. We mention first the procedure we use in 
our observation. Let 1 2X X X   be a tight Euclidean 6-design with constant 

weight in n  2 8n  , let 1 1X N , and 2 2X N . We may assume 

that 1x  , for 1x X , and   1w x  , for x X . 

Step 1: Given n, N1, and N2. 
Step 2: If there exist 3-class symmetric association schemes on N1 and N2 

points simultaneously, then further check if Xi carries a Q-polynomial 
scheme (by Corollary 2.4). If such a polynomial scheme exists then  

– Calculate the radius of the second sphere x R , for 2x X  by 

equation (2.7) in Lemma 2.16. 
– If 1R  , then substitute R  to equation (2.8) in Lemma 2.16 to get 

the 3-inner product set  1 2 3, ,   . 

Step 3: Compare  1 2 3, ,    with the entries of corresponding character table 
      1 2 3

1 2 3
, ,p i p i p i

k k k
, for 2 4i  .  

(See the Appendix for example of calculation results.) 
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3.3 Case 2: Non-constant Weight  

For n=2, then Ni = 5, i.e. Xi are regular 5-gons. Bajnok [1] has constructed an 
example of such a design: 

 
2 2

cos , :1 5,1 2 .
5 5

kj k k

j k j k
X b r r j k 

 
     
     
          

 

The weight function is given by   5

1

k
kj r

w b  , for k =1,2. Hence there exists a 

tight Euclidean 6-design in 2 supported by two concentric spheres. Moreover, 

it is easy to show that in fact it is the only tight Euclidean 6-design in 2 . The 

argument is as follows. Let 1 2X X X     be a tight Euclidean 6-design in 2 . 

Then 1X  and 2X   should be tight spherical 4-designs, namely regular pentagons. 

Hence, up to the action of orthogonal group  2 ,O  we can write 1 1X X   and 

 2 2X X  , for some rotation  2O . Using the Neumaier-Seidel's 

Theorem above it can be shown that I  , the identity, namely 2 2X X  . 

Next, let us consider the other cases. We mention first the procedure we use in 
our observation. Let 1 2X X X   be a tight Euclidean 6-design with non-

constant weight in  3 8n n  , let 11 NX   and 22 NX  . Again, we may 

assume that 1x  , for 1x X  and ( ) 1w x  , for 1x X .   

Step 1: Given n, N1, and N2.  
Step 2: If there exist 3-class symmetric association schemes on N1 and N2 

points simultaneously, then further check if Xi carries a Q-polynomial 
scheme (by Corollary 2.4). If such a polynomial scheme exists, then   
– Calculate the weight function w by equation (7) in Lemma 2.16.  
– Substitute the weight function w to equation (8) in Lemma 2.16 to 

get the 3-inner product set 1 2 3{ , , }   . (Here (1 3)i i    are 

functions of the second radius R).  
Step 3: Compare 1 2 3{ , , }    with the entries of corresponding character table 

 1 2

21

3

3

( )( ) ( ), , p ip i p i
k k k , for 2 4i  . (Here we consider at most 3 9 27   

equations for one corresponding character table).   
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– If, say, 1

11

( )p i
k   implies the positive real value of radius 0 ( 1)R  , 

then substitute 0R  to 2  and 3 .  

– Check whether  1 2
1 0 2 0 3 0

3

2 31

( )( ) ( )
{ ( ), ( ), ( )} , , p ip i p i

k k kR R R    , for 

some {2,3, 4}i .  
  

(See the Appendix for example of calculation results.) 

In summary, our assumption of the existence of tight Euclidean 6-designs with 
certain given parameters implies:   

1. the non-existence of tight spherical 4-design in a Euclidean space of given 
dimension (by Bannai-Damarell's criteria), or  

2. the non-existence of 3-class symmetric association scheme on N1 or N2 
points (by checking on van Dam's table), or  

3. the non-existence of 3-class Q-polynomial scheme on N1 or N2 points (by 
Krein condition), or  

4. the 3-class symmetric association scheme on N1 points does not provide the 
3-inner product set (by looking at van Dam's table), or  

5. the numerical 3-inner product set does not appear, or  
6. the numerical 3-inner product set does not coincide with the 3-inner product 

set provided by the character table of Q-polynomial scheme on N1 points.  
 
All of these lead to a contradiction. Hence, we have proved the main theorem. 

4 Concluding Remarks 

As we have seen, there is no tight Euclidean 6-design supported by two 

concentric spheres in Euclidean spaces of small dimensions, namely in n  

 2 8n  , for almost all feasible parameters. The only exception is tight 

Euclidean 6-designs of non-constant weight in 2 . The designs was 
constructed by Bajnok ([1, Theorem 9]). Our effort here might be regarded as a 
continuation of the work on giving classifications of tight Euclidean designs in 

n . Hence, the current status of this work is as follows:   

1. tight Euclidean 2-designs in n , for 2n  , supported by all feasible 
concentric spheres [7].  

2. tight Euclidean 3-designs in n , for 2n  , supported by all feasible 
concentric spheres [16].  
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3. tight Euclidean 4-designs in n , for 2n  , with constant weight, supported 
by two concentric spheres [6].  

4. tight Gaussian 4-designs, i.e. a special kind of tight Euclidean designs, in 
n , for 2n   supported by two concentric spheres [21].  

5. tight Euclidean 5-designs in n , for 2n   supported by two concentric 
spheres [16].  

6. tight Euclidean 6-designs in n , for 2 8n  , supported by two concentric 
spheres.  

 
Recently Et. Bannai [14] has constructed some examples of (non-constant 
weight) tight Euclidean 4-designs supported by two concentric spheres, but the 
problem of classification of such designs still far of being solved. Besides, 
Bajnok [1, 22] has also constructed some other sporadic examples of Euclidean 
designs. Very recently, Bannai, Bannai, Hirao, and Sawa [23] announced that 
they have classified tight Euclidean 7-designs supported by two concentric 
spheres completely, but the complete proof is now in preparation by Bannai and 
Bannai. 

Regarding the tight Euclidean 6-designs on two concentric spheres, all existing 
phenomena mentioned above lead us to a conjecture on the complete 
classification of such designs. We end this paper by the conjecture: 

Conjecture 4.1 The only tight Euclidean 6-designs in n , for 2n   supported 
by two concentric spheres are:  

2 2
cos , sin :1 5,1 2

5 5
kj k k

j k j k
X b r r j k 

 
     
     
          

. 

The weight function of these designs are 5
1( )kj
kr

w b   for 1, 2k  .  

Remark 4.2  One of the referee, Eiichi Bannai, sent me the paper [11], where 

they give a new example of tight Euclidean 6-design in 22 . It becomes the 
first example of tight Euclidean 6-design in n-dimensional Euclidean space, for 
3 438n  , supported by two concentric spheres. It also gives a counter-exam- 
ple of the above Conjecture. However, Bannai et.al. seem to believe that it is the 

only existing tight Euclidean 6-design in n , for 3n  . Hence, we modify the 
conjecture to the following question. 
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Question 4.2. Find another example of tight Euclidean 6-design in n , for 
3n  , on two concentric spheres, or prove that there exist no such tight 

Euclidean 6-design except the ones given in the above conjecture and in [11].  
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Appendix: Example of Calculation Results 

The table below contains our calculation results. It shows that in almost all 
cases, our assumption on the existence of tight Euclidean 6-designs having 
given parameters do not imply the structure of Q-polynomial schemes for 1X  or 

2X . In some cases, either the tight Euclidean 6-designs in certain given 

parameters do not give 3-inner product set, or provide numerical 3-inner 
product set which does not coincide with the feasible 3-inner product set. All of 
these results lead to a contradiction. 

In the following tables, "feasible" 3-inner product sets refer to the sets which are 
coming from the first eigenmatrix P of related 3-class symmetric association 
schemes, as given by van Dam [18], while "numerical" 3-inner product sets 
come from the calculation results. The number [ ]  in the "feasible" column 

refers to the page where the sets are mentioned in [18].   in the "Krein 

parameters" column means the 3-class symmetric association scheme on   
points does not exist. We give here only the case 7n  , for only one ordering 
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of primitive idempotent basis 0 1 2 3, , ,E E E E . The treatment for another cases is 

exactly the same. 

Case n = 7 

Here we have : 120N   and 135 60N  . We have shown that there exist no 

tight Euclidean 6-design in 7  supported by two concentric spheres, consisting 
of 1 35N   (see Case 3.1.1 for the detail). 

N1 Krein parameters feasible 3-i.p.set 

43 
77

   

44 

3 2 3

11 11 12
0.000, 0.000, 1.000q q q    

 
 

2.236 2.2361
7 21 15

2.236 2.2361
7 21 15

[100],

[100]

, ,

, ,

 
 

 

3 2 3

11 11 12
0, 0, 11.00q q q     4.583 4.583

21 21 1 [100], ,   

45 

3 2 3

11 11 12

325 425 225
32 32 32, ,q q q    

 
 

1 1 1
4 20 8

1 1 1
2 4 8

[93],

[93]

, ,

, ,

 
 

 

3 2 3

11 11 12

3
2 , 3, 3q q q     1 1 1

2 8 4 [93], ,   

3 2 3

11 11 12

105 165 75
32 32 8, ,q q q     1 1 1

4 8 4 [93], ,   

3 2 3

11 11 12

15 25
2 2, 10,q q q     1 1 1

8 8 4 [93], ,   

3 2 3

11 11 12

513 621 27
32 32 4, ,q q q     1 1 1

12 8 4 [93], ,   

3 2 3

11 11 12
7.500, 7.500, 7.500q q q     4.873 2.873 1

16 16 4 [100], ,   

46 3 2 3

11 11 12
0.000, 0.000, 1.000q q q    

 
 

2.449 2.4491
11 22 12

2.449 2.4491
11 22 12

[100],

[100]

, ,

, ,

 
 

 

47 
47

   

48 
3 2 3

11 11 12

52
315, , 15q q q  

 
 

1 1 1
6 15 10

3 5 5
11 1

1

[93],

[93]

, ,

, ,

 
 

 

 
3 2 3

11 11 12

3
2 , 4, 6q q q  

 
 

1 1 1
3 6 2

1 1 1
5 10 2

[93],

[93]

, ,

, ,

 
 

 

49 
71
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N1 Krein parameters feasible 3-i.p.set 

50 
3 2 3

11 11 12
0.000, 0.000, 1.000q q q  

 
 

2.449 2.4491
9 24 16

2.449 2.4491
9 24 16

[100],

[100]

, ,

, ,

 
 

 

51 
3 2 3

11 11 12

51 255 17
16 32 2, ,q q q  

 
 

1 1 1
4 8 2

1 1 1
4 8 2

[93],

[93]

, ,

, ,

 
 

 

52 
3 2 3

11 11 12

156
250, , 13(*)q q q    1 1

5 5 1 [93], ,   

 
3 2 3

11 11 12
13.42, 19.81, 6.000q q q    

 
 
 

1 1 1
3 9 27

3.732 0.464 5.196
6 18 27

0.268 6.464 5.196
6 18 27

[100],

[100],

[100]

, ,

, ,

, ,

 



 

 

3 2

11 11

3

12

4.000, 6.000,

7.000

q q

q

 


 4.302 1.548 3.754

17 17 17 [104], ,   

53 
53



54 
3 2 3

11 11 12
0.000, 0.000, 10.00q q q  

 
 

2.646 2.6461
13 26 14

2.646 2.6461
13 26 14

[100],

[100]

, ,

, ,

 
 

 

55 
3 2 3

11 11 12
1.358, 1.358, 5.432q q q    3.854 2.8541

18 9 18 [100], ,   

56 
3 2 3

11 11 12

448 14
225 50, , (*)q q q    

 
 
 

7 31
15 15 5

31 1
15 6 10

1 1 1
5 10 10

[93],

[93],

[93]

, ,

, ,

, ,

 


 
 

 
3 2 3

11 11 12

140
90, , 21(*)q q q  

 
 

1 1
9 9

1 1
3 3

1 [94],

1 [94]

, ,

, ,

 
 

 

 
3 2 3

11 11 12
2.718, 7.568, 6.000q q q    

 
 
 

3 1 1
5 5 15

2.414 0.828 4.243
5 20 30

0.414 4.828 4.243
5 20 30

[100],

[100],

[100]

, ,

, ,

, ,

 


 
 

57 

3 2

11 11

3

12

7.355, 11.59,

6.000

q q

q

 


 

 
 
 

1 1 1
2 10 20

2.618 0.854 4.472
6 30 20

0.382 5.854 4.472
6 30 20

[100],

[100],

[100]

, ,

, ,

, ,

 



 

58 
3 2 3

11 11 12
0.000, 0.000, 1.000q q q  

 
 

2.449 2.4491
8 28 21

2.449 2.4491
8 28 21

[100],

[100]

, ,

, ,
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N1 Krein parameters feasible 3-i.p.set 

59 
59



60 
3 2 3

11 11 12

25 25 20
3 2 3, ,q q q    

 
 
 

1 1
5 5

1 1
4

1
3

1

4

6

0 [94],

0 [94],

0 [94]

, ,

, ,

, ,







 

 
3 2 3

11 11 12

96 816 128
7 49 7, ,q q q  

 
 

1 1 1
7 14 8

4 1 1
21 14 6

[94],

[94]

, ,

, ,

 
 

 

 
3 2 3

11 11 12
0, 0, 6.000q q q  

 
 

3.317 3.317 1
11 44 4

3.317 3.317 1
11 44 4

[100],

[100]

, ,

, ,

 
 

 

 
3 2 3

11 11 12
0, 0, 10.00q q q  

 
 

4.359 4.359 1
19 38 2

4.359 4.359 1
19 38 2

[100],

[100]

, ,

, ,

 
 

 

 
3 2 3

11 11 12
0, 0, 15q q q    5.385 5.385

29 29 [100], , 1   

 

We continue to step 3, for some tight Euclidean 6-designs carrying Q-
polynomial schemes (marked by ( ) ), by comparing feasible and numerical 3-
inner product set. Consider the table below. 

[N, N1] 
 3-inner product set 

Feasible 
Numerical 

constant weight non-constant weight 

[120, 36]   1 1
17 17 1, ,   { 0.471, 0.067, 0.255}     

[120, 38]   1 1
18 18 1, ,   { 0.489, 0.074, 0.280}     

[120, 40]   1 1
19 19 1, ,   { 0.503, 0.078, 0.300}     

[120, 42]  

 
 

2 1 1
5 20 8

2 1 1
5 20 8

[93],

[93]

, ,

, ,

 
 

 
{ 0.515, 0.082, 0.317}   

  

 1 1
20 20 1, ,     

[120, 44]   1 1
21 21 1, ,   { 0.525, 0.084, 0.331}     

[120, 46]   1 1
22 22 1, ,   { 0.534, 0.087, 0.343}   

 
 

1
22

1
22

0.385 0.046 ,

0.353 0.046

, ,

, , 
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[N, N1] 
 3-inner product set 

Feasible 
Numerical 

constant weight non-constant weight 

[120, 48]   1 1
23 23 1, ,   { 0.542, 0.088, 0.354}   

 
 

1
23

1
23

0.399 0.044

0.365 0.044 ,

{ 1, 0.308 0.007 , 1.001 0.007 },

, ,

, ,

i i   

   

[120, 50]   1 1
24 24 1, ,   { 0.549, 0.090, 0.363}   { 1, 0.317 0.015 , 1.000 0.016 }i i     

[120, 52]  
 1 1

5 5 1 [93], ,   
{ 0.556, 0.091, 0.372}   

{ 1,1.075, 1.049 1.033 }i    

 1 1
25 25 1, ,   { 1,1.075, 1.049 1.033 }i    

[120, 54]   1 1
26 26 1, ,   { 0.562, 0.092, 0.379}   { 1, 0.087 0.313 , 1.184}i    

[120, 56]  

 
 
 

7 31
15 15 5

31 1
15 6 10

1 1 1
5 10 10

[93],

[93],

[93]

, ,

, ,

, ,

 


 
 

{ 0.567, 0.093, 0.386}   

  

 
 

1 1
9 9

1 1
3 3

1 [94],

1 [94]

, ,

, ,

 
 

   

 1 1
27 27 1, ,     

[120, 58]   1 1
28 28 1, ,   { 0.571, 0.094, 0.392}     

[120, 60]   1 1
29 29 1, ,   ( 1)R   

{0.034, 0.452, 0.035},

{ 0.034, 0.418, 0.035} 
 

 

We see that none of numerical 3-inner product sets coincide with the feasible 
ones. We note that in case 1 42N   (constant weight) our assumption that 

( ) 1,w x   for all ,x X  implies the square of second radius 1R   which is 
impossible. 

 
 

 


