
ar
X

iv
:1

01
2.

19
24

v2
  [

m
at

h.
C

O
] 

 8
 J

an
 2

01
1

A REMARK ON SOME BASES IN THE HECKE ALGEBRA

R. VIRK

Contents

1. Introduction 1
2. The Hecke algebra 2
3. The Ext form 4
4. Dualities between the bases 5
References 6

1. Introduction

In this brief note we consider some bases in the Hecke algebra and exhibit certain
dualities between them. Our results and arguments are completely combinatorial.
However, to explain the motivation and put the contents of this note in perspective
we need to discuss some results from geometric representation theory.

Let G be a reductive group, B ⊆ G a Borel subgroup and let B be the flag variety
of G. Then the Iwahori-Hecke algebra of G realizes the Grothendieck group of B-
equivariant perverse sheaves on B. Multiplication in the Hecke algebra corresponds
to convolution of sheaves.

In his streamlined treatment of the Hecke algebra, Soergel [So1] considers sev-
eral pairwise commuting automorphisms (see [So1, Thm. 2.7]. The geometric sig-
nificance of some of these is well known. For instance, the automorphism d (2.3.1)
corresponds to Verdier duality on sheaves. This note was motivated by trying to
understand the geometric significance of the automorphism b (3.4.1). I will now
outline the contents of this note from this perspective.

A cornerstone of Kazhdan-Lusztig theory is the identification of IC-complexes
(=simple objects) on B with the Kazhdan-Lusztig basis of the Hecke algebra. In
Thm. 3.7 we identify/construct the basis corresponding to projective objects. In
Thm. 4.2 we explain how b connects the projective basis with the Kazhdan-Lusztig
basis. Actually, Thm. 4.2 implies that b switches the Kazhdan-Lusztig basis with
the basis corresponding to tilting objects (see [Virk, §9] for the precise statement).
Now, Soergel’s ‘tilting duality’ [So2] switches tilting objects with projective objects
and the Koszul duality of [BGS] switches projective objects with simple objects.
It follows that b is the composition of these two dualities. Another way to see this
is to use [So3, Thm. 4.4] to directly deduce that b switches the Kazhdan-Lusztig
basis with the tilting basis. The aforementioned Koszul duality does not commute
with convolution (it doesn’t preserve the monoidal unit). In particular, it does not
descend to a ring automorphism of the Hecke algebra. However, Thm. 4.2 is a com-
binatorial shadow of the statement that the tilting duality intertwines convolution
and Koszul duality (cf. [BG, Conjecture 5.18, Thm. 5.24, Thm. 6.10]).
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2. The Hecke algebra

2.1. Let (W,S) be a Coxeter system, ℓ : W → Z≥0 the corresponding length func-
tion and let ≤ denote the Bruhat order on W . In particular, x < y means x ≤ y

and x 6= y. The identity element in W is denoted by e.

2.2. The Hecke algebra H is the free Z[v, v−1]-module
⊕

x∈W Z[v, v−1]Tx with

Z[v, v−1]-algebra structure given by

TxTy = Txy if ℓ(xy) = ℓ(x) + ℓ(y), (2.2.1)

(Ts + 1)(Ts − v−2) = 0 for all s ∈ S. (2.2.2)

Set Hx = vℓ(x)Tx for all x ∈ W . Then (2.2.2) implies that each Hx is invertible. In
particular, if s ∈ S, then H2

s = 1− (v − v−1)Hs. Hence,

H−1
s = Hs + (v − v−1). (2.2.3)

Note that Te = 1.

2.3. Define a ring involution d : H → H by

d(v) = v−1, d(Hx) = H−1
x−1 . (2.3.1)

We will often write H instead of d(H). We call C ∈ H self-dual if C = C. For each
s ∈ S set

Cs = Hs + v. (2.3.2)

Then, by (2.2.3), each Cs is self-dual. In the sequel we will need the following well
known formulae:

2.4. Lemma. Let s ∈ S and let x ∈ W be arbitrary. Then

CsHx =

{

Hsx + vHx if sx > x;

Hsx + v−1Hx if sx < x.

Proof. This is a direct computation and is left to the reader. �

The following classical result is due to Kazhdan and Lusztig [KL], the proof
presented here is stolen from [So1].

2.5. Lemma. For each x ∈ W there exists a self dual element Cx ∈ H such that

Cx ∈ Hx +
∑

y<x vZ[v]Hy.

Proof. Proceed by induction on the Bruhat order. Certainly we can start our in-
duction with Ce = He = 1. Now let x ∈ W be given and suppose we know the
existence of Cy for all y < x. If x 6= e find s ∈ S such that sx < x. Then by
the induction hypothesis CsCsx = Hx +

∑

y<x hyHy for some hy ∈ Z[v]. Set

Cx = CsCsx −
∑

y<x hy(0)Cy . By construction Cx satisfies the required condi-
tions. �

2.6. Lemma. Suppose C ∈
∑

x vZ[v]Hx is self dual. Then C = 0.

Proof. Write C =
∑

x hxHx for hx ∈ vZ[v, v−1]. Using (2.2.3) one sees that

Hy ∈ Hy +
∑

z<y

Z[v, v−1]Hz

for all y ∈ W . Pick y maximal such that hy 6= 0. Then C = C implies that hy = hy.
Thus, hy = 0, contradicting our assumption. So C = 0. �
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2.7. Theorem ([KL]). For each x ∈ W there exists a unique self-dual element

Cx ∈ H such that Cx ∈ Hx +
∑

y vZ[v]Hy.

Proof. The existence is given by Lemma 2.5, the uniqueness is provided by Lemma
2.6. �

2.8. For each x, y ∈ W define polynomials hy,x ∈ Z[v] by

Cx =
∑

y

hy,xHy.

The following result is well known. It will be key in the sequel.

2.9. Lemma ([KL]). Let s ∈ S and let x ∈ W . If sx < x then

Cx = CsCsx −
∑

y<sx,
sy<y

µ(y, sx)Cy

where µ(y, sx) is the coefficient of v in hy,sx.

Proof. We have

CsCsx = Cs(Hsx +
∑

y<sx

hy,sxHy

= Cs

(

Hsx +
∑

y<sx,
sy<y

hy,sxHy +
∑

y<sx,
sy>y

hy,sxHy

)

= Hx + vHsx +
∑

y<sx,
sy<y

hy,sx(Hsy + v−1Hy) +
∑

y<sx,
sy>y

hy,sx(Hsy + vHy).

We need to look slightly more carefully at the construction of Cx in Lemma 2.5.
Note that for y < sx each hy,sx ∈ vZ[v]. So, by the proof of Lemma 2.5,

Cx = CsCsx −
∑

y<sx,
sy<y

µ(y, sx)Cy . �

2.10. Proposition. Let s ∈ S and let x ∈ W . For each y ∈ W let µ(y, x) denote

the coefficient of v in hy,x, then

CsCx =

{

Csx +
∑

y<x,
sy<y

µ(y, x)Cy if sx > x;

(v + v−1)Cx if sx < x.

Proof. Suppose sx < x, then by Lemma 2.9

Cx = CsCsx −
∑

y<sx,
sy<y

µ(y, sx)Cy .

Further, C2
s = (v + v−1)Cs by (2.2.3) and so the result follows by the induction

hypothesis. If sx > x, then once again by Lemma 2.9

Csx = CsCx −
∑

y<x,
sy<y

µ(y, x)Cy ,

whence the result. �

The following is originally due to Kazhdan-Lusztig [KL], I learnt the proof pre-
sented here from [So1].
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2.11. Proposition ([KL]). Suppose W is finite. Let w0 ∈ W be the longest element.

Then

Cw0
=

∑

x∈W

vℓ(w0)−ℓ(x)Hx.

Proof. Let H =
∑

y hyHy, hy ∈ Z[v, v−1], be an element ofH such that b(Cs)H = 0
for all s ∈ S. Then, by Lemma 2.4

∑

sy>y

hy(Hsy − v−1Hy) +
∑

sy<y

hy(Hsy − vHy) = 0

for all s ∈ S. Consequently, hs = v−1he for all s ∈ S. Proceeding by induction we
see that H = he

∑

y v
ℓ(y)Hy. By Prop. 2.10 CsCw0

= (v + v−1)Cw0
for all s ∈ S.

The result follows. �

3. The Ext form

3.1. Define a symmetric Z[v, v−1]-bilinear form 〈·, ·〉 : H⊗H → Z[v, v−1] by

〈Hx, Hy〉 = δx,y. (3.1.1)

3.2. Remark. This form corresponds to the form considered in the proof of [BGS,
Thm. 3.11.4]. Namely, it corresponds to

∑

i,n

(−1)idim Exti(M,DN〈n〉)v−n,

where M,N are perverse sheaves on the flag variety, D is Verdier duality, 〈n〉 is
shift + (half) Tate twist in the derived category and v is a formal variable.

3.3. Proposition. If s ∈ S, then

〈CsH,H ′〉 = 〈H,CsH
′〉

for all H,H ′ ∈ H.

Proof. It suffices to prove the assertion for H = Hx and H ′ = Hy with x, y ∈ W .
By Lemma 2.4 we have

〈CsHx, Hy〉 =

{

δsx,y + vδx,y if sx > x;

δsx,y + v−1δx,y if sx < x;

and

〈Hx, CsHy〉 =

{

δx,sy + vδx,y if sy > y;

δx,sy + v−1δx,y if sy < y.

So there are four cases to consider: if sx > x and sy > y, then the assertion is
evident; if sx > x and sy < y, then certainly x 6= y and so the assertion holds; if
sx < x and sy > y, then once again x 6= y and the assertion holds; finally, if sx < x

and sy < y, then the assertion is evident. �

3.4. Define a ring involution b : H → H by

b(v) = −v−1, b(Hx) = Hx. (3.4.1)

Then b commutes with d. Furthermore:

3.5. Proposition. If s ∈ S, then

〈b(Cs)H,H ′〉 = 〈H, b(Cs)H
′〉

for all H,H ′ ∈ H.

Proof. Since b(Cs) = Cs − (v + v−1), the result follows from Prop. 3.3. �
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3.6. Lemma. Assume W is finite. Then for each x ∈ W there exists a Px ∈
Hx +

∑

y>x vZ[v]Hy such that 〈Px, Cz〉 = δx,z for all z ∈ W .

Proof. Proceed by induction. Let w0 be the longest element in W . We start our
induction with Pw0

= Hw0
. Now let x ∈ W be given and suppose we know the

existence of Py for all y > x. If x 6= w0 find s ∈ S such that sx > x. Then by the
induction hypothesis

b(Cs)Psx ∈ Hx +
∑

y>x

hyHy

for some hy ∈ Z[v]. For each y > x let py = 〈b(Cs)Psx, Cy〉. Set

Px = b(Cs)Psx −
∑

y>x

pyPy.

Let’s show that Px ∈ Hx +
∑

y>x vZ[v]Hy. To do this we must demonstrate that

(a) py ∈ Z[v] and (b) py(0) = hy(0), for each y > x. Both of these follow from
the fact that each hy ∈ Z[v] and each Cy ∈ Hy +

∑

z vZ[v]Hz . By construction
〈Px, Cz〉 = δx,z for all z ∈ W . �

3.7. Theorem. Assume W is finite. Then for each x ∈ W there exists a unique

Px ∈ H such that 〈Px, Cy〉 = δx,y for all y ∈ W .

Proof. Existence was established in the previous Lemma. Uniqueness follows from
the evident fact that the form 〈·, ·〉 is non-degenerate. �

4. Dualities between the bases

4.1. Lemma. Assume W is finite. Let w0 be the longest element in W . Then for

all x ∈ W , Px = CxHw0
for some self-dual Cx ∈ H.

Proof. Proceed by induction. We start our induction with Pw0
= Hw0

. Now let
x ∈ W be given and suppose we know that Py = CyHw0

, with Cy = Cy, for all
y > x. If x 6= w0 find s ∈ S such that sx > x. Then, by the proof of Lemma 3.6
and the induction hypothesis,

Px = b(Cs)Psx −
∑

y>x

pyPy = b(Cs)C
sxHw0

−
∑

y>x

pyC
yHw0

,

where py = 〈b(Cs)Psx, Cy〉. To complete the proof it suffices to show that py ∈
Z[v + v−1] for each y. By Prop. 3.5

〈b(Cs)Psx, Cy〉 = 〈Psx, b(Cs)Cy〉.

If sy < y, then b(Cs)Cy = (Cs − (v + v−1))Cy = 0 by Prop. 2.10. If sy > y, then
once again using Prop. 2.10,

b(Cs)Cy = (Cs − (v + v−1))Cy = Csy − (v + v−1)Cy +
∑

z

mzCz

for appropriate integers mz ∈ Z. The result follows. �

4.2. Theorem. Assume W is finite. Let w0 be the longest element in W . Then

b(Cx)Hw0
= Pxw0

for all x ∈ W .

Proof. By Lemma 4.1 Pxw0
H−1

w0
is self-dual. On the other hand, by Lemma 3.6,

Pxw0
H−1

w0
∈ Hxw0

H−1
w0

+
∑

y>xw0

vZ[v]HyH
−1
w0

.
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Using the fact that HzH
−1
w0

= HzH
−1
z H−1

w0z−1 = H−1
w0z−1 and applying d we obtain

Pxw0
H−1

w0
∈ Hx +

∑

y>xw0

v−1Z[v−1]Hyw0
.

By the uniqueness of Cxw0
(Thm. 2.7) we must have that

Pxw0
H−1

w0
= b(Cx). �
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