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Abstract. In this paper we have discusses I'-left, I'-right, I'-bi-, I'-quasi-, I'-
interior and I'-ideals in I'-AG**-groupoids and regular I'-AG**-groupoids. Moreover
we have proved that the set of I'-ideals in a regular I'-AG**-groupoid form a semi-
lattice structure. Also we have characterized a regular I'-AG**-groupoid in terms
of left ideals.

1. INTRODUCTION

Kazim and Naseeruddin [4] have introduced the concept of an LA-semigroup.
This structure is the generalization of a commutative semigroup. It is closely re-
lated with a commutative semigroup and commutative groups because if an LA-
semigroup contains right identity then it becomes a commutative semigroup and
if a new binary operation is defined on a commutative group which gives an LA-
semigroup [9]. The connection of the class of LA-semigroups with the class of vector
spaces over finite fields and fields has been given as: Let W be a sub-space of a
vector space V over a field F' of cardinal 2r such that » > 1. Many authors have
generalized some useful results of semigroup theory.

In 1981, the notion of I'-semigroups was introduced by M. K. Sen [6] and [7].

T. Shah and I. Rehman [14] defined I'-AG-groupoids analogous to I'-semigroups
and then they introduce the notion of I'-ideals and I'-bi-ideals in I'~AG-groupoids.
It is easy to see that I'-ideals and I'-bi-ideals in I-AG-groupoids are infect a gener-
alization of ideals and bi-ideals in AG-groupoids (for a suitable choice of T").

In this paper we define I'-quasi-ideals and T'-interior ideals in I'-AG**-groupoids
and generalize some results. Also we have proved that I'-AG-groupoids with left
identity and AG-groupoids with left identity coincide.

Let G and I' be two non-empty sets. G is said to be a I'-AG-groupoid if there
exist a mapping G x I' x G — G, written (a, 7, b) as ayb, such that G satisfies the
identity (ayb) dc = (¢yb) da, for all a, b, c € G and ~, 6 € T [14].
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Definition 1. An elemente € S is called a left identity of I'-AG-groupoid if eya = a
forallae S andyeTl.

Lemma 1. If a I'-AG-groupoid contains left identity, then it becomes an AG-
groupoid with left identity.

Proof. Let G be a I'~AG-groupoid and e be the left identity of G and let a, b € G
and «, # € I" therefore we have

aab = aa(efb) = ea(afb) = afb.

Hence I'-AG-groupoid with left identity becomes and an AG-groupoid with left
identity. (|

Remark 1. From Lemma 1, it is easy to see that all the results given in [14] and
[15] for a T'-AG-groupoid with left identity is identical to the results given in [10]
and [I1].

Definition 2. A I'-AG-groupoid is called a T'-AG**-groupoid if it satisfies the fol-
lowing law

aa(bBc) = ba(apc), for all a,b,c € S and o, 5 € T.

The following results and definition from definitionBlto lemma[Bhave been taken
from [14].

Definition 3. Let G be a I'-AG-groupoid, a non-empty subset S of G is called sub
T'-AG-groupoid if ayb € S for all a, b € S and v € T or S is called sub I'-AG-
groupoid if ST'S C S.

Definition 4. A subset I of a T-AG-groupoid G is called left(right) T-ideal of G if
GTI CI(ITG CI) and I is called T-ideal of G if it is both left and right T-ideal.

Definition 5. An element a of a I'-AG-groupoid G is called regular if there exist
x € G and B, v € T such that a = (afz)vya. G is called regular T'-AG-groupoid if
all elements of G are reqular.

Definition 6. A sub I'-AG-groupoid B of a I'-AG-groupoid G is called I'-bi-ideal
of G if (BTG)T'B C B.

Definition 7. Let G and I' be any non-empty sets. If there exists a mapping
G xT x G — G, written (z, v, y) as xvy, G is called a T-medial if it satisfies
(xay) B (Iym) = (zal) B (yym), and called T'-paramedial if it satisfies (xay) B (Iym)
(mad) B (yvyzx) for allx, y, I, m e G and o, B, vy €T.

Lemma 2. If A and B are any I'-ideals of a reqular I'-AG-groupoid G then AT'B =
BT A.

Definition 8. A T'-ideal P of a T'-AG-groupoid G is called T'-prime(T-semiprime)
if for any T-ideals A and B, ATB C P (AT'A C P) implies either A C P or B C
P(ACP).

Lemma 3. Any I'-ideal A of a regular I'-AG-groupoid is a I'-idempotent that is
AT'A = A.

It is important to note that every I'-AG-groupoid G is I'-medial and every I'-
AG**-groupoid G is I'-paramedial because for any z, y, [, m € G and «, 3, v € T,
we have

(zay) B (Iym) = ((Iym) ay) Bx = ((yym) ol) Bz = (zal) B (yym).
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We call it as I'-medial law.

Theorem 1. If L and R are left and right I'-ideals of a I'-AG**-groupoid G then
LULTG and RUGTR are I'-ideals of G.

Proof. Let L be a left I'-ideal of G then we have
(LULTGTG (LTG)U(LTG)TG = (LTG) U (GTG)TL
ITGU(GTL) C LTGUL = LULTG and
GT'(LULTG) = GITLUGT(LTG) C LULT (GTG)=LULTG.

Again let R be a right I'-ideal of G then we have

(RUGTR)TG = RI'GU(GTR)TG C RU(GTR)T (GTG)

= RU(GI'G)T (RI'G) C RUGTR, and

GTRUGT (GT'R) = GTRU (GTG)T (GTR)
GTRU (RI'G)T (GT'G) C GTRU RI'G
GI'RUR = RUGTR.

N

GT (RUGTR)

N

O

Lemma 4. Right identity in a I'-AG-groupoid G becomes identity of G and hence
G becomes commutative T'-semigroup.

Proof. Let e be the right identity of G , g € G, a and 5 € ', then
eag = (efle) ag = (gfe) ae = gae = g.
Again for a, b, c € G and «, B € T" we have
avb = (eaa) vb = (eaa) y(eab) = (bae)y (ace) = bya.
Now
(aab) pc = (aad) B (eac) = (aae) B (bac) = ea ((ace) B (bac))

(ace) a (ef (bac)) = ac (e (bac)) = aa (bf (eac))
= a«a(bBc).

O

Definition 9. A sub I'-AG-groupoid Q of a T'-AG-groupoid G is called a quasi-ideal
of G if GTQN QTG C Q.

Definition 10. A sub I'-AG-groupoid I of a T'-AG-groupoid G is called a I'-interior
ideal of G if (GT'I)T'G C I.

Lemma 5. FEvery one sided (left or right) I'-ideal of a T-AG-groupoid G is a T'-
quasi ideal of G.

Proof. Let L be a left I'-ideal of G then we have
LTGNGTL CGI'L C L.

Which implies L is a I'-quasi ideal of G. Similarly if R is a right I'-ideal of G then
it is a I'-quasi ideal of G. O

Lemma 6. Every right I'-ideal and left I'-ideal of a I'-AG-groupoid G is a I'-bi-ideal
of G.
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Proof. Let R be a right I'-ideal of G then we have
(RTG)TR C RTR C RT'G C R.
Again let L be a left I'-ideal of G then we have
(LTG)TL C (GTG)TLCGTL C L.

O
Corollary 1. Every I'-ideal of a I'-AG-groupoid G is a I'-bi-ideal of G.
Proof. 1t follows from lemma O

Lemma 7. If By and By are I'-bi-ideals of a T'-AG**-groupoid G then B1I'Bs is
also a I'-bi-ideals of G.

Proof. Let By and By be I'-bi-ideals of G then we have

((BiI'B2) I'G) T (B1I'Bz) ((BiI'Bz) I' (GI'G)) I' (B1I'Bz)
((BiI'G) ' (B2I'G)) I' (B1I'B2)
((BiI'G)I'By) T ((B:I'G) I'B)
BI'Bs,.

N

O

Lemma 8. FEvery I'-idempotent quasi-ideal of a I'-AG-groupoid G is a T'-bi-ideal
of G.

Proof. Let @ be an I'-idempotent quasi-ideal of G. Now
(QTGTQ C (GIG)TQ C GrQ, and
(QIG)rQ = (Qré)r(Qre) = (Qre)r(GrQ) = Qr(Gre)

C QI (GT'G) C QT'G, which implies that
(QTG)TQ C GIQNQIG C Q.
O
Lemma 9. FEvery I'-ideal of a T'-AG-groupoid G is a I'-interior ideal of G.
Proof. Let I be a I'-ideal of G then we have
(GTI)TG CITG =1.
O

Lemma 10. A subset I of a I'-AG**-groupoid G is a I'-interior ideal if and only
if it is right I'-ideal.

Proof. Let I be a right I'-ideal G then it becomes a left I'-ideal so is I'-ideal and
by lemma [0 it is I-interior ideal.

Conversely assume that I is a I'-interior ideal of G. Using I'-paramedial law, we
have

TG

IT (GTG) = GT (ITG) = (GTG)T (ITG)
= (GI'I)T'(GTG) C (GT'ITG CG.
Which shows that I is a right I'-ideal of G. O
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Example 1. Let G = {1,2,3,4,5} with binary operation ”-” given in the following
Cayley’s table, an AG-groupoid with left identity 4.

2

Ul W N
U N W |
=N W = Ot

N W b O W
Lo U = N
B O~ N Wl ot

It is easy to observe that G is a simple AG-groupoid that is there is no left or
right ideal of G. Now let T' = {a, 3, v} defined as

TR W N RO
— == = | =
i el e )
— === =W
e e ] IS
e i S e S e [
T W N~
l\Dl\D[\D[\Dl\D:
DD DN DN DD
NN DN NDW
NN NN DN
NN DN DN DN Ot
T W N~
e e )
i el e )
e i S S e V)
W = ==
W = = ot

It is easy to prove that G is a I'-AG-groupoid because (awb) ¢c = (cmb) a for
all a, b, ¢ € G and 7, ¢ € T also G is non-associative because (1a2) 83 # 1a (243).
This I'-AG-groupoid does not contain left identity because 4ab # 5, 485 # 5 and
445 # 5. It is easy to see that every AG-groupoid with left identity not necessarily
implies I-AG-groupoid with left identity. Clearly A = {1,2,3} is a I'-ideal of G.
B = {1,2,4} is aright I-ideal but is not a left I'-ideal. A and B both are I'-bi-ideals
of G. C =11, 2, 3, 4} is a T'-interior ideal of G.

Lemma 11. For a regular I'-AG-groupoid G ATG = A and GI'B = B for every
right T'-ideal A and for every left I'-ideal B.

Proof. Let A be a right I'- ideal of G then AT'G C A. Let a € A, since G is regular
so there exist © € G and «, v € I such that

a = (aax)va € (ATG)TA C (ATG)T'G C ATG.

Now again let B be a left I'-ideal of G then GI'B C B. Let b € B, also G is
regular so there exist t € G and 7w, ¢ € ' such that

b= (brt)ob € (BTG)TB C (GIT'G)TB C GTB.
O

Lemma 12. If G is a I'-AG**-groupoid then g'G and GT'g are I'-bi-ideals for all
gea@qG.

Proof. Using the definition of I'-AG**-groupoid we have
(4TGTG)T (9T'G)

((GTG)Tg)T (9T'G) € (GTg) T (9T'G)
gT ((GTg)TG) C gT ((GTG)TG) C ¢gT (GTG)
gI'G.

N
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Again using I'-paramedial law we have

(GTg)TG)T (GTg) = (((GTg)Tg)TG)TG = (((gTg) TG)TG) TG
(GTG)TG)T (gTg) € (GTG)T (g9Tg)
glg) T (GI'G) € (9I'g) I'G = (GTg)T'g
GI'G)T'g C GT'g.

-

~ o~~~

O

Corollary 2. If G is a reqular I'-AG**-groupoid then al'G is a I'-bi-ideal in G, for
alla € G.

Proof. Let G be a regular I-AG-groupoid then for every a € G there exist z € G
and «, € I such that a = ((aax) fa) therefore we have

(
((aTG)TG)T (aT'G) = ((((aax)Ba)TG)TG)T (al'G)
— ((GTG)T ((ac) a)) T (aT'G)
C (GT ((aax) Ba)) T (aT'G) = ((acx) T (GBa)) T (aT'G)
C ((aax)T (GBG))T(GTG) C ((aax)TG) TG
= (GI'G)T (aax) C GT (aax) = al’ (Gax) C ol (GT'G)
C al'G.

O
Lemma 13. For a T'-bi-ideal B in a reqular T-AG-groupoid G, (BT'G)T'B = B.

Proof. Let B be a I-bi-ideal in G then (BI'G)I'B C B. Let x € B, since G is a
regular I'-AG-groupoid therefore there exist a € G and «, 5 € I such that

x = (zaa) pz € (BTG)T'B.
Which implies that B C (BI'G) I'B. O
Lemma 14. If G is a reqular I'-AG-groupoid then, GTG = G.

Proof. Since GT'G C G. Let xz € G, since G is a regular I'-AG-groupoid therefore
there exist a € G and «, 8 € I" such that
z = (zaa) fz € (GI'G)I'G C GT'G.
Which implies that G C GT'G. O
Lemma 15. A subset I of a regular I'-AG**-groupoid G is a left '-ideal if and
only if it is a right I'-ideal of G.

Proof. Let I be a left I'-ideal of G then GI'I C I. Let ivg € ITG for g€ G,i €I
and v € T, also G is a regular I'~-AG-groupoid therefore there exist z, y € G and «,
B8, v, 6, m € I' such that

((iazx) Bi) v ((90y) mg) = ((iax) B (gdy)) 7 (img)

((((lax) Bi) ax) B (g6y)) v (img) = ((yag) B ((iB (icwx)) b2)) 7 (img)
(i8 v (i '
(

g

i (((yag) (iaz)) éx)) y (img) = ((img) B (((yayg) B (iaz)) éz)) vi
€ (GrI)C

Conversely let I be a right I'-ideal then there exist z € G and «, 8 € I such that
gvi = ((gax) Bg) vi = (iBg) ¥ (gax) € (ITG)T'G CITG C 1.
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Theorem 2. for a I'-AG**-groupoid G, following statements are equivalent.

(i) G is regular T'-AG-groupoid.

(i1) Fvery left T-ideal of G is T'-idempotent.
Proof. (i) = (i4)

Let G be a regular I'-AG-groupoid then by lemma [3 every T-ideal of G is T-
idempotent.

(ii) = (i)

Let every left I'-ideal of a I'-AG**-groupoid G is I'-idempotent, since GT'a is a
left T-ideal of G for all @ € G [14], so is I-idempotent and by I'-paramedial law,
lemma 7?7 and I'-medial law, we have, a € GI'a implies

a € (GTa)T (GTa) = ((GTa)Ta)TG = ((al'a)TG) TG
(aT'a) T (GTGQ)) TG = ((GTG) T (ala)) TG
al ((GTG)Ta)) TG = (GT ((GTG)Ta)) Ta
GT (GTa))Ta = (GT ((GT'a) T (GT'a))) T'a
GT ((aT'G)T (aT'G)))Ta = ((GTG)T ((aT'G) T (aI'G))) Ta
(GT (a'G)) T (GT (aI'G))) Ta = (((aI'G) TG) T ((aI'G) TG)) Ta
((aI'G)TATGE)T (aI'G)) Ta = (ol ((((aI'G)TG)TG)T'G)) Ta
C (aI'G)Ta.
Which shows that G is a regular I'-AG**-groupoid. O

~ o~ o~ o~ o~ o~

Lemma 16. Any I'-ideal of a regular I'-AG-groupoid G is I'-semiprime.
Proof. Tt is an easy consequence of lemma [3] O

Theorem 3. Set of all I'-ideals in a regular I'-AG-groupoid G with forms a semi-
lattice (G, o) where Ao B = AI'B, for all I'-ideals A and B of G.

Proof. Let A and B be any I'-ideals in G, then by I'-medial law we have
(ATB)TG = (AT'B)T(GI'G) = (ATG)T (BI'G) C AT'B. And
GT (ATB) = (GI'G)T'(AT'B)= (GTA)T (GTB) C AT'B.
Also by lemma 2, we have AT'B = BT'A which implies that
(ATB)TC = CT (AT'B) = AT (CTB) = AT (BI'C).
And by lemma 3] ATA = A.
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