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ALMOST-ISOMETRY BETWEEN TEICHMÜLLER METRIC AND

LENGTH-SPECTRA METRIC ON MODULI SPACE

LIXIN LIU AND WEIXU SU

Abstract. We prove an analogue of Farb-Masur’s theorem that the length-
spectra metric on moduli space is “almost isometric” to a simple model V(S)
which is induced by the cone metric over the complex of curves. As an appli-
cation, we know that the Teichmüller metric and the length-spectra metric are
“almost isometric” on moduli space, while they are not even quasi-isometric
on Teichmüller space.
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1. Introduction

Let S = Sg,n be an oriented surface of genus g with n punctures. We assume
that 3g − 3 + n ≥ 1. Let T (S) denote the Teichmüller space of equivalence classes
of marked Riemann surfaces on S. A marked Riemann surface is a pair (X, f)
where X is a Riemann surface, considered as a surface with either a conformal
structure or hyperbolic metric on S, and f : S → X is an orientation preserving
homeomorphism. Two markings (Xi, fi), i = 1, 2 are equivalent if and only if there
exists a conformal map h : X1 → X2 which is homotopic to f2 ◦ f−1

1 . In the
following, we will often denote (X, f) ∈ T (S) by X , without explicit reference to
the marking or the equivalence relation.

There are several natural metrics on T (S). In this paper we will consider the
Teichmüller metric dTeich and the length-spectra metric dls. Both of the two metrics
are complete Finsler metrics. For the Teichmüller metric, this is a classical well-
known result. The fact that the length spectrum metric is Finsler follows from the
fact that this metric is a symmetrization of Thurston’s asymmetric metric, which is
Finsler, which was proved by Thurston in [17]. In this paper, the Finsler property
of the length-spectra metric to used to show that any two points in the Teichmüller
metric can be connected by a geodesic.

Recall that for marked conformal structures X1, X2 ∈ T (S), the Teichmüller
metric is defined by

dTeich(X1, X2) =
1

2
logK

where K ≥ 1 is the least number such that there exists a K-quasiconformal map
between the marked structures X1 and X2. Teichmüller’s Theorem states that
there exists a unique extremal quasiconformal map realizing dTeich(X1, X2). See
Abikoff [1] for details.

The length-spectra metric (also called the Lipschitz metric [3] ) on T (S) is defined
by

dls(X1, X2) =
1

2
logmax{K1,K2}
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where K1 ≥ 1 is the least number such that there is a global K1-Lipschitz homeo-
morphism between the marked hyperbolic metrics X1 and X2, and where K2 ≥ 1 is
the least number such that there is a global K2-Lipschitz homeomorphism between
the marked hyperbolic metrics X2 and X1. Note that there are two asymmetric
metrics (called Thurston’s asymmetric metrics) defined by d1(X1, X2) =

1
2 logK1

and d2(X1, X2) =
1
2 logK2. Thurston [17] showed that the extremal Lipschitz maps

exist.
The mapping class group Mod(S) is the group of homotopy classes of orientation-

preserving homeomorphisms of S. This group acts properly discontinuously and
isometrically on (T (S), dTeich) and (T (S), dls), thus inducing two metrics dT and
dL on the quotient moduli space M(S) := T (S)/Mod(S). Let π : T (S) → M(S)
be the natural projection.

Kerckhoff [7] discovered an elegant and useful formula to compute the Teichmüller
metric in terms of extremal length:

dTeich(X1, X2) =
1

2
log sup

γ

ExtX1
(γ)

ExtX2
(γ)

where the supremum is taken over all isotopy classes of essential (neither homotopic
to a point nor to a puncture) simple closed curves on S. The extremal length of γ
in X , denoted by ExtX(γ), is defined by

ExtX(γ) := sup
ρ

Lρ(γ)
2

Areaρ

where the supremum is taken over all conformal metrics ρ on X of finite positive
area.

On the other hand, it was shown by Thurston [17] that the minimal Lipschitz
constant is given by the ratios of hyperbolic length:

K1 = sup
γ

lX2
(γ)

lX1
(γ)

,K2 = sup
γ

lX1
(γ)

lX2
(γ)

where the supremum is taken over all isotopy classes of essential simple closed
curves on S. Thus the length-spectra metric is given by

(1) dls(X1, X2) = max{
1

2
log sup

γ

lX2
(γ)

lX1
(γ)

,
1

2
log sup

γ

lX1
(γ)

lX2
(γ)

}.

It is of interest to study the relation between the metrics dTeich and dls. The
following lemma of Wolpert [18] implies that dls(X1, X2) ≤ dTeich(X1, X2).

Lemma 1.1. For any K-quasiconformal mapping f from X1 to X2 and any simple

closed curves γ, we have
lX2

(f(γ))

lX1
(γ)

≤ K.

It was shown by Li [9] that dTeich and dls induce the same topology on T (S).
Moreover, dls(X1, X2) ≤ dTeich(X1, X2) ≤ 2dls(X1, X2) +C(X1), where C(X1) is a
constant depending on X1. The proof can be shown by considering the ratios of

extremal length and square of hyperbolic length ExtX(γ)
l2
X
(γ)

, which defines a function

on the compact space of projective measured foliations.
However, Li [10] also proved that dTeich and dls are not metrically equivalent;

that is, there is no constant C > 0 such that dls(X1, X2) ≤ dTeich(X1, X2) ≤
Cdls(X1, X2) for any X1 and X2 in T (S). In particular, Choi and Rafi [3] (see also
Liu, Sun and Wei [12]) showed that although the two metrics are quasi-isometric
to each other on the thick part of T (S), there are sequences Xn, Yn, n = 1, 2, · · · in
the thin part of T (S), such that dls(Xn, Yn) → 0, while dTeich(Xn, Yn) → ∞.
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In fact, all the well-known examples that illustrate the divergence of dTeich and
dls are constructed by Dehn twists. Choi and Rafi [3] also noticed the fact that
for any two points X1, X2 in the thin part of T (S), if they have no short curves in
common, then dTeich(X1, X2) is comparable to dls(X1, X2). These give evidences
that dTeich and dls may be quasi-isometric on the moduli space M(S).

For more recent progress on the length-spectra metric and Teichmüller metric in
Teichmüller space, please see [13], [14] and [15].

Recently, Farb and Masur [5] studied the large-scale geometry of moduli space.
They built an “almost isometric” simplicial model for M(S) with the Teichmüller
metric, from which they determine the tangent cone at infinity of M(S). Their
result can be seen as a step in providing a ”reduction theory” for the action of
Mod(S) on T (S), in analogy with the case of locally symmetric spaces. See Farb
and Masur [5], Leuzinger [8] for details.

Let C(S) be the complex of curves on S. This was introduced by Harvey [6] as an
analogue in the context of Teichmüller space of the Tits building associated to an
arithmetic group.The vertices of C(S) are the free isotopy classes of essential simple
closed curves on S, and a k-simplex consist of k + 1 isotopy classes of mutually
disjoint essential simple closed curves. Note that C(S) is a simplicial complex of
dimension (d − 1), where d = 3g − 3 + n. A (d − 1)-simplex is called a maximal
simplex. Every simplex is the face of a maximal simplex. While C(S) is locally infi-
nite, the mapping class group Mod(S) acts on C(S) and the quotient C(S)/Mod(S)
is a finite orbi-complex. See [6] for reference.

Denote Ṽ(S) to be the topological cone

Ṽ(S) :=
[0,∞)× C(S)

{0} × C(S)
.

For each maximal simplex σ of C(S), we will think of the cone over σ as an orthant
with coordinates (x1, · · · , xd) ∈ R

d
≥0. This orthant is endowed with the standard

sup metric:

d((x1, · · · , xd), (y1, · · · , yd)) :=
1

2
max
1≤i≤d

|xi − yi|.

Since the metrics on the cones on any two such maximal simplices agree on (the

cone on) any common face, we can endow Ṽ(S) with the corresponding path metric.

The natural action of Mod(S) on C(S) induces an isometric action on Ṽ(S), thus
induces a well-defined metric dV on the quotient

V(S) := Ṽ(S)/Mod(S).

Given C ≥ 0 and λ ≥ 1, a map f : X → Y is called a (λ,C) quasi-isometry if

1

λ
dX(x, y)− C ≤ dY (f(x), f(y)) ≤ λdX(x, y) + C

for any x, y ∈ X , and the C-neighborhood of f(X) in Y is all of Y . A (1, C)
quasi-isometry is called an “almost isometry”.

The following theorem is the main result of Farb and Masur [5], which provides
a simple and geometric model for M(S).

Theorem 1.2. There is a map Ψ : (V(S), dV) → (M(S), dT ) which is an almost

isometry. That is, there is a constant D that depends on S such that:

• |dV(x, y)− dT (Ψ(x),Ψ(y))| ≤ D for each x, y ∈ V(S), and
• the D-neighborhood of Ψ(V(S)) in (M(S), dT ) is all of M(S).

As a corollary of Theorem 1.2, the tangent cone at infinity of M(S) with the
Teichmüller metric is isometric to V(S) and has dimension d.

The main goal of our article is to show that:
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Theorem 1.3. Endow M(S) with the length-spectrum metric dL, then the map

Ψ : V(S) → M(S) in Theorem 1.2 is an almost isometry. That is, there is a

constant D′ that depends on S such that:

• |dV(x, y)− dL(Ψ(x),Ψ(y))| ≤ D′ for each x, y ∈ V(S), and
• the D′-neighborhood of Ψ(V(S)) in M(S) is all of M(S).

As a result, the tangent cone at infinity ofM(S) with the length-spectrum metric
is also isometric to V(S). Since quasi-isometry is an equivalence relation between
metric spaces, it is clear that Theorem 1.2 and Theorem 1.3 together imply that

Theorem 1.4. The Teichmüller metric and the length-spectrum metric are almost

isometric on M(S). That is, there is a constant D′′ that depends on S, such that

dL(X1, X2) ≤ dT (X1, X2) ≤ dL(X1, X2) +D′′

for any X1, X2 ∈ M(S).

We will give a proof of Theorem 1.3 in Section 3. The method of the proof of
the theorem relies on Minsky’s product theorem [16]. Another ingredient of the
proof is that any two points of Ψ(V(S)) can be joined by a quasi-geodesic that lies
in Ψ(V(S)) and enters each simplex of Ψ(V(S)) at most once, as observed by Farb
and Masur [5].
Acknowledgements. The authors would like to thank Professor Benson Farb
and Professor Howard Masur for their helpful suggestions and their interest in this
project. They also thank the referee for his (or her) suggestions.

2. The map Ψ

We will define the map Ψ : V(S) → M(S) as constructed by Farb-Masur [5].
Let us first fix some notations. Given a maximal simplex σ ∈ C(S), the cone

over σ is denoted by ∆̄(σ) and the open cone over σ (with no xi = 0) is denoted by
∆(σ). Let Mod(σ) be the subgroup of Mod(S) that fixes σ. It acts on ∆(σ) with
finite orbit. Let Λ(σ) be a sector inside ∆(σ) which is a fundamental domain for
the action of Mod(σ).

Now fix a maximal simplex σ of C(S). σ is represented by a maximal collection
of disjoint simple closed curves {α1, · · · , αd}. The choice of curves determines a
set of Fenchel-Nielsen coordinates on T (S), where a point X ∈ T (S) is given by
coordinates as following:

X → (lX(α1), · · · , lX(αd), θ1(X), · · · , θd(X))

where lX(αi) is the length of αi with respect to the hyperbolic metric X , and θi
are the so-called ”twist coordinates”.

We now define a map Ψ̃ : Ṽ(S) → M(S) in the following way. First Ψ̃ is
restricted to the sector Λ(σ) to be:

(2) Ψ̃(x1, · · · , xd) = π(X)

where X is a point of T (S) with ℓX(αi) = ǫ0e
−xi and with twist coordinates all

equal to 0. Here the constant ǫ0 = ǫ0(S) is a sufficiently small constant such that
for any hyperbolic surface X homeomorphic to S, any two simple closed curves α, β
with length not larger than ǫ0 are disjoint. Note that ǫ0e

−xi ≤ ǫ0 and the image of

Ψ̃ lies on Ωσ(ǫ0), where

Ωσ(ǫ0) = {X ∈ T (S) : ℓX(αi) < ǫ, for each i = 1, · · · , d}.

We use the action of Mod(σ) to extend Ψ̃ from Λ(σ) to ∆(σ). Since there are
finitely many collection of maximal simplices that represent all combinatorial types,

we define the map Ψ̃ for each maximal cone in the finite collection. Then we use
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the action of Mod(S) to extend Ψ̃ to the open cones on all maximal simplices by
having it be constant on orbits.

To define the map Ψ̃ on Ṽ(S), we have to define it on the cone over any simplex
τ of C(S) that is not maximal. Since a simplex is a face of some maximal simplex
(maybe not unique), we can choose some maximal simplex σ that containing τ .
The cone over τ is given by the coordinates (x1, · · · , xd) for the cone over σ. We

define the map Ψ̃ on the cone over τ via the equation (2) by setting the coordinates

xi corresponding curves in σ− τ to be 0. It follows that Ψ̃ is Mod(S)-invariant and
thus induces a map Ψ : V(S) → M(S).

It is noticed that Ψ is not continuous in general because of the choices made at
a face of a maximal simplex. Nevetheless we know that the jump in the function
at any face is uniformly bounded. Such an argument for the Teichmüller metric
is proved by Farb and Masur [5]. Moreover, they proved that the map Ψ satisfies
the condition of Theorem 1.2, that is, Ψ : (V(S), dV) → (M(S), dT ) is almost onto
and almost isometric. To prove an analogue for (M(S), dL), we will show that the
propositions that were used in the proof of Theorem 1.2 are also applied to the
length-spectra metric.

Let σ = {α1, · · · , αd} be a maximal simplex. Following Minsky [16], we change
the Fenchel-Nielsen coordinates to

X → (θ1(X),
1

lX(α1)
, · · · , θd(X),

1

lX(αd)
) ∈ (H2)d.

We give H2 the Poincaré metric ds2 = dx2+dy2

4y2 and endow (H2)d with the sup

metric.
We need the following lemma, which is a special case of the product region

theorem of Minsky [16].

Lemma 2.1. With the notations above, there exists a constant C depending on ǫ0,
such that for any X,Y ∈ Ωσ(ǫ0).

|dTeich(X,Y )− sup
i=1,··· ,d

{dH2((θi(X),
1

lX(αi)
), (θi(X),

1

lX(αi)
))}| ≤ C.

The following proposition is due to Farb and Masur [5], which shows that Ψ is
almost onto. We include a proof here for completeness.

Proposition 2.2. There is a constant C1 = C1(S), such that for any X ∈ M(S),
there exist a Z ∈ Ψ(V(S)) such that dT (X,Z) ≤ C1.

Proof. By a theorem of Bers, there is a constant c = c(S) such that everyX ∈ M(S)
has a pants decomposition corresponding to a maximal simplex σ such that every
curve of σ has length at most c on X . With respect to these pants curves, each of
the twist coordinates is bounded by 2πc, modulo the action of Dehn twist about
the curves in σ.

Now for a given X , we choose a point of Ψ(V(S)) whose corresponding simplex
has the topological type of σ. For each curves α in σ whose length is at most ǫ0,
we choose the corresponding Fenchel-Nielsen coordinate of a point in Ψ(V(S)) to
be lX(α). For each curves β in σ whose length is between ǫ0 and c, we choose the
corresponding Fenchel-Nielsen coordinates of a point of Ψ(V(S)) to be ǫ0. In this
way we have chosen all the coordinates which determine a point Z in Ψ(V(S)).

SinceX and Z have bounded ratios of hyperbolic lengths and bounded differences
in twist coordinates, both X and Z either project to a given thick part of moduli
space or to the thin part. In the first case, this implies the ratios of extremal lengths
are proportional to the ratios of hyperbolic lengths, and so one can use Kerckhoff’s
distance formula to show that dT (X,Z) are bounded by some constant. In the
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second case one can use Minsky’s product theorem, noting that the constant C in
his formula is universal, depending only on the topological type of S. �

3. The proof of Theorem 1.3

Since dL(X1, X2) ≤ dT (X1, X2), by Proposition 2.2, we have shown that Ψ :
(V(S), dV) → (M(S), dL) is almost onto . By Theorem 1.2, there is a constant D
such that

dL(Ψ(x),Ψ(y)) ≤ dT (Ψ(x),Ψ(y)) ≤ dV(x, y) +D.

For the proof of Theorem 1.3, it remains to show the opposite inequality

(3) dV(x, y) ≤ dL(Ψ(x),Ψ(y)) +D′.

Let σ be a maximal simplex and P be the quotient map from C(S) to C(S)/Mod(S).
Denote the cone over P (σ) by ∆(P (σ)).

Proposition 3.1. For any Z1, Z2 ∈ Ψ(∆(P (σ))), there is a constant C, such that

dT (Z1, Z2) ≤ dL(Z1, Z2) + C.

Proof. Since Zi ∈ Ωσ(ǫ0) and the “ twist coordinates ” of Zi are all vanishing, by
Lemma 2.1, we have

|dT (Z1, Z2)−
1

2
log sup

α1,··· ,αd

lZ2
(αi)

lZ1
(αi)

| ≤ C,

By the the length-spectra metric equation (1), we have

dT (Z1, Z2) ≤
1

2
log sup

α1,··· ,αd

lZ2
(αi)

lZ1
(αi)

+ C

≤ dL(Z1, Z2) + C.

�

We need the following technical lemma.

Lemma 3.2. There is a constant C′ = C′(S) such that any two points of Ψ(V(S))
can be joined by a (1, C′) quasi-geodesic in the metric dL that stays in Ψ(V(S)) and
enters each simplex of Ψ(V(S)) at most once.

Proof. Denote the length of a path η in M(S) with respect to the Teichmüller
metric and the length-spectra metric by ‖η‖T and ‖η‖L.

As shown by Lemma 8 of Farb and Masur [5], there is a constant C′′ such
that if Ψ(x),Ψ(y) lie in the same simplex Ψ(∆(P (σ))) of M(S), then there is a
(1, C′′) quasi-geodesic ρ(x, y) in the metric dT joining Ψ(x) and Ψ(y) that stays in
Ψ(∆(P (σ))). By Proposition 3.1,

‖ρ(x, y)‖L ≤ ‖ρ(x, y)‖T

≤ dT (Ψ(x),Ψ(y)) + C′′

≤ dL(Ψ(x),Ψ(y)) + C′′ + C.

As a result, ρ(x, y) is a (1, C′′ + C) quasi-geodesic in the metric dL.
Now suppose that Ψ(x) ∈ Ψ(∆(P (σ1))) and Ψ(y) ∈ Ψ(∆(P (σ2))). If Ψ(y) ∈

Ψ(∆(P (σ1))) then we are done by the argument above. Thus we can assume that
Ψ(y) 6∈ Ψ(∆(σ1)). Suppose that ρ is a geodesic about the length-spectrum metric
from Ψ(x) to Ψ(y) (the existence of geodesics about the length-spectrum metric was
shown by Thurston [17], though maybe not unique). Suppose ρ leaves Ψ(∆(P (σ1)))
and returns to it for a last time at some Ψ(z) ∈ Ψ(∆(P (σ1)))

⋂
Ψ(∆(P (σ3))) for

some simplex Ψ(∆(P (σ3))). Then we can replace ρ by a quasi-geodesic ρ′ that stays
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in Ψ(∆(P (σ1))) from Ψ(x) to Ψ(z) and then follows ρ from Ψ(z) to Ψ(y) never
returning to Ψ(∆(P (σ1))). Note that the length ‖ρ′‖L is less than ‖ρ‖L +C +C′′.

Continue with the above method, we now find the last point Ψ(w) that lies in
Ψ(∆(P (σ3))) and replace a segment of ρ′ with the one that stays in Ψ(∆(P (σ3)))
and never returns again to Ψ(∆((σ3))). Then we get a quasi-geodesic with length-
spectra length less than ‖ρ‖L + 2(C + C′′).

Since there are only a finite number of maximal simplices in C(S)/Mod(S), we
can repeat the above operation in a uniformly finite step. Then we get a path
with length-spectra length larger dL(Ψ(x),Ψ(y)) by an additive constant, which is
a (1, C′) quasi-geodesic. This prove the lemma.

�

We now continue with the final step in the proof of inequality (3). Let ρ be the
(1, C′)-quasi-geodesic in the length-spectra metric as in Lemma 3.2. Suppose that
ρ =

⋃
i=1,··· ,n ρi such that each ρi ⊂ Ψ(∆(P (σi))). By Theorem 1.2, we have

dV(S)(x, y) ≤ dT (Ψ(x),Ψ(y)) +D

≤ ‖ρ‖T +D

≤
∑

i=1,··· ,n

‖ρi‖T +D

It follows from the proof of Lemma 3.2 that each ρi is also a Teichmüller (1, C′′)
quasi-geodesic. As a result, we know that the length ‖ρi‖T is less than the Te-
ichmüller distance between the two endpoints of ρi. By Proposition 3.1, we have

‖ρi‖T ≤ ‖ρi‖L + C + C′′.

Therefore,

dV(S)(x, y) ≤
∑

i=1,··· ,n

‖ρi‖L +D + n(C + C′′)

= ‖ρ‖L +D + n(C + C′′)

≤ dL(Ψ(x),Ψ(y)) + C′ +D + n(C + C′′).

As a result, we have proved the inequality (3).

Remark 3.3. Combining the known results, we can see that the Teichmüller met-
ric, the length-spectra metric, Bergman metric, Carathéodory mtric, McMullen
metric, Ricci metric and perturbed Ricci metric (see Liu, Sun and Yau [11]) are
quasi-isometric to each other on moduli space. Note that Leuzinger [6], Farb and
Weinberger [3] proved that, while M(S) admits a metric of positive scalar curva-
ture for most S(when g > 2), it admits no metric of positive scalar curvature with
the same quasi-isometry type as the Teichmuller metric on M(S).

There is a natural question that whether the length-spectra metric and the
Teichmüller metric are bi-Lipschitz on moduli space. That is, is there a con-
stant K = K(S) such that dL(X1, X2) ≤ dT (X1, X2) ≤ KdL(X1, X2) for any
X1, X2 ∈ M(S) ?

Here the left side inequality is trivial. If dL(X1, X2) is sufficiently large, the
additive constant in Theorem 1.4 can be absorbed into multiplicative constant to
conclude that dT ≤ KdL(X1, X2). Thus this problem concerns mainly the local
comparison. In a preprint [2], we have shown that such a constantK depends on the
injective radius of X1, X2. There exists sequence {Xn, Yn} in the thin part of the
Teichmüller space (or moduli space) such that the ratio dTeich(Xn, Yn)/dls(Xn, Yn)
tends to infinity. As a result, the two metrics are not bi-Lipschitz in general.
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