Uniqueness of the representation for G-martingales with finite variation

Yongsheng Song *
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China;
yssong@amss.ac.cn

Abstract

Our purpose is to prove the uniqueness of the representation for G-martingales with finite variation.

Key words: uniqueness; representation theorem; G-martingale; finite variation; G-expectation

MSC-classification: 60G48, 60G44

1 Introduction

In [P07b], processes in form of $\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s, \eta \in M_{G}^{1}(0, T)$ are proved to be G-martingales. However, the uniqueness of the representation remains unresolved. In order to prove the uniqueness, we must find ways to distinguish the two classes of processes in forms of $\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}$ and $\int_{0}^{t} \zeta_{s} d s$, $\eta, \zeta \in M_{G}^{1}(0, T)$.

For a process $\left\{K_{t}\right\}$ with finite variation, motivated by [Song10], we define

$$
d(K):=\limsup _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) d K_{s}\right],
$$

[^0]where, for $n \in N, \delta_{n}(s)$ is defined in the following way:
$$
\delta_{n}(s)=\sum_{i=0}^{n-1}(-1)^{i} 1_{] \frac{i T}{n}, \frac{(i+1) T}{n}\right]}(s), \text { for all } s \in[0, T]
$$

We prove that $d(K)=0$ if $K_{t}=\int_{0}^{t} \zeta_{s} d s$ for some $\zeta \in M_{G}^{1}(0, T)$ and that $d(K)>0$ if $K_{t}=\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}$ for some $\eta \in M_{G}^{1}(0, T)$ such that $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]>$ 0 . By this, we distinguish these two classes of processes completely:

If $\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}=\int_{0}^{t} \zeta_{s} d s$, for some $\eta, \zeta \in M_{G}^{1}(0, T)$, then we have

$$
\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]=\hat{E}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]=0
$$

As an application, we prove the uniqueness of the representation for G martingales with finite variation.

This article is organized as follows: In section 2, we recall some basic notions and results of G-expectation and the related space of random variables. In section 3, we present the main results and some corollaries. In section 4, we give the proofs to the main results.

2 Preliminaries

We recall some basic notions and results of G-expectation and the related space of random variables. More details of this section can be found in [P07a, P07b, P08, P10].
Definition 2.1 Let Ω be a given set and let \mathcal{H} be a linear space of real valued functions defined on Ω with $c \in \mathcal{H}$ for all constants c. \mathcal{H} is considered as the space of random variables. A sublinear expectation \hat{E} on \mathcal{H} is a functional $\hat{E}: \mathcal{H} \rightarrow R$ satisfying the following properties: for all $X, Y \in \mathcal{H}$, we have
(a) Monotonicity: If $X \geq Y$ then $\hat{E}(X) \geq \hat{E}(Y)$.
(b) Constant preserving: $\hat{E}(c)=c$.
(c) Sub-additivity: $\hat{E}(X)-\hat{E}(Y) \leq \hat{E}(X-Y)$.
(d) Positive homogeneity: $\hat{E}(\lambda X)=\lambda \hat{E}(X), \lambda \geq 0$.
$(\Omega, \mathcal{H}, \hat{E})$ is called a sublinear expectation space.
Definition 2.2 Let X_{1} and X_{2} be two n-dimensional random vectors defined respectively in sublinear expectation spaces $\left(\Omega_{1}, \mathcal{H}_{1}, \hat{E}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{H}_{2}, \hat{E}_{2}\right)$. They are called identically distributed, denoted by $X_{1} \sim X_{2}$, if $\hat{E}_{1}\left[\varphi\left(X_{1}\right)\right]=$
$\hat{E}_{2}\left[\varphi\left(X_{2}\right)\right], \forall \varphi \in C_{l, L i p}\left(R^{n}\right)$, where $C_{l, L i p}\left(R^{n}\right)$ is the space of real continuous functions defined on R^{n} such that

$$
|\varphi(x)-\varphi(y)| \leq C\left(1+|x|^{k}+|y|^{k}\right)|x-y|, \forall x, y \in R^{n}
$$

where k depends only on φ.
Definition 2.3 In a sublinear expectation space $(\Omega, \mathcal{H}, \hat{E})$ a random vector $Y=\left(Y_{1}, \cdots, Y_{n}\right), Y_{i} \in \mathcal{H}$ is said to be independent to another random vector $X=\left(X_{1}, \cdots, X_{m}\right), X_{i} \in \mathcal{H}$ under $\hat{E}(\cdot)$, denoted by $Y \perp X$, if for each test function $\varphi \in C_{l, L i p}\left(R^{m} \times R^{n}\right)$ we have $\hat{E}[\varphi(X, Y)]=\hat{E}\left[\hat{E}[\varphi(x, Y)]_{x=X}\right]$.
Definition 2.4 (G-normal distribution) A d-dimensional random vector $X=$ $\left(X_{1}, \cdots, X_{d}\right)$ in a sublinear expectation space $(\Omega, \mathcal{H}, \hat{E})$ is called G-normal distributed if for each $a, b \in R$ we have

$$
a X+b \hat{X} \sim \sqrt{a^{2}+b^{2}} X
$$

where \hat{X} is an independent copy of X. Here the letter G denotes the function

$$
G(A):=\frac{1}{2} \hat{E}[(A X, X)]: S_{d} \rightarrow R
$$

where S_{d} denotes the collection of $d \times d$ symmetric matrices.
The function $G(\cdot): S_{d} \rightarrow R$ is a monotonic, sublinear mapping on S_{d} and $G(A)=\frac{1}{2} \hat{E}[(A X, X)] \leq \frac{1}{2}|A| \hat{E}\left[|X|^{2}\right]=: \frac{1}{2}|A| \bar{\sigma}^{2}$ implies that there exists a bounded, convex and closed subset $\Gamma \subset S_{d}^{+}$such that

$$
\begin{equation*}
G(A)=\frac{1}{2} \sup _{\gamma \in \Gamma} \operatorname{Tr}(\gamma A) \tag{2.0.1}
\end{equation*}
$$

If there exists some $\beta>0$ such that $G(A)-G(B) \geq \beta \operatorname{Tr}(A-B)$ for any $A \geq B$, we call the G-normal distribution is non-degenerate.
Definition 2.5 i) Let $\Omega_{T}=C_{0}\left([0, T] ; R^{d}\right)$ with the supremum norm, $\mathcal{H}_{T}^{0}:=$ $\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \mid \forall n \geq 1, t_{1}, \ldots, t_{n} \in[0, T], \forall \varphi \in C_{l, L i p}\left(R^{d \times n}\right)\right\}, G$-expectation is a sublinear expectation defined by

$$
\begin{aligned}
\hat{E} & {\left[\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)\right] } \\
& =\tilde{E}\left[\varphi\left(\sqrt{t_{1}-t_{0}} \xi_{1}, \cdots, \sqrt{t_{m}-t_{m-1}} \xi_{m}\right)\right]
\end{aligned}
$$

for all $X=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)$, where ξ_{1}, \cdots, ξ_{n} are identically distributed d-dimensional G-normal distributed random vectors in a sublinear expectation space $(\tilde{\Omega}, \tilde{\mathcal{H}}, \tilde{E})$ such that ξ_{i+1} is independent to $\left(\xi_{1}, \cdots, \xi_{i}\right)$ for each $i=1, \cdots, m .\left(\Omega_{T}, \mathcal{H}_{T}^{0}, \hat{E}\right)$ is called a G-expectation space.
ii) For $t \in[0, T]$ and $\xi=\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \in \mathcal{H}_{T}^{0}$, the conditional expectation defined by (there is no loss of generality, we assume $t=t_{i}$)

$$
\begin{aligned}
& \hat{E}_{t_{i}}\left[\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)\right] \\
& \quad=\tilde{\varphi}\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{i}}-B_{t_{i-1}}\right)
\end{aligned}
$$

where

$$
\tilde{\varphi}\left(x_{1}, \cdots, x_{i}\right)=\hat{E}\left[\varphi\left(x_{1}, \cdots, x_{i}, B_{t_{i+1}}-B_{t_{i}}, \cdots, B_{t_{m}}-B_{t_{m-1}}\right)\right]
$$

Define $\|\xi\|_{p, G}=\left[\hat{E}\left(|\xi|^{p}\right)\right]^{1 / p}$ for $\xi \in \mathcal{H}_{T}^{0}$ and $p \geq 1$. Then $\forall t \in[0, T]$, $\hat{E}_{t}(\cdot)$ is a continuous mapping on \mathcal{H}_{T}^{0} with norm $\|\cdot\|_{1, G}$ and therefore can be extended continuously to the completion $L_{G}^{1}\left(\Omega_{T}\right)$ of \mathcal{H}_{T}^{0} under norm $\|\cdot\|_{1, G}$.

Let $L_{i p}\left(\Omega_{T}\right):=\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \mid n \geq 1, t_{1}, \ldots, t_{n} \in[0, T], \varphi \in C_{b, L i p}\left(R^{d \times n}\right)\right\}$, where $C_{b, L i p}\left(R^{d \times n}\right)$ denotes the set of bounded Lipschitz functions on $R^{d \times n}$. [DHP08] proved that the completions of $C_{b}\left(\Omega_{T}\right), \mathcal{H}_{T}^{0}$ and $L_{i p}\left(\Omega_{T}\right)$ under $\|\cdot\|_{p, G}$ are the same and we denote them by $L_{G}^{p}\left(\Omega_{T}\right)$.
Definition 2.5 Let $M_{G}^{0}(0, T)$ be the collection of processes in the following form: for a given partition $\left\{t_{0}, \cdots, t_{N}\right\}=\pi_{T}$ of $[0, T]$,

$$
\eta_{t}(\omega)=\sum_{j=0}^{N-1} \xi_{j}(\omega) 1_{\left[t_{j}, t_{j+1}\right]}(t)
$$

where $\xi_{i} \in L_{i p}\left(\Omega_{t_{i}}\right), i=0,1,2, \cdots, N-1$. For $p \geq 1$ and $\eta \in M_{G}^{0}(0, T)$, let $\|\eta\|_{M_{G}^{p}}=\left\{\hat{E}\left(\int_{0}^{T}\left|\eta_{s}\right|^{p} d s\right)\right\}^{1 / p}$ and denote by $M_{G}^{p}(0, T)$ the completion of $M_{G}^{0}(0, T)$ under the norm $\|\cdot\|_{M_{G}^{p}}$.
Theorem 2.6([DHP08]) There exists a tight subset $\mathcal{P} \subset \mathcal{M}_{1}\left(\Omega_{T}\right)$ such that

$$
\hat{E}(\xi)=\max _{P \in \mathcal{P}} E_{P}(\xi) \text { for all } \xi \in \mathcal{H}_{T}^{0}
$$

\mathcal{P} is called a set that represents \hat{E}.
Remark 2.7 Let $\left(\Omega^{0},\left\{\mathcal{F}_{t}^{0}\right\}, \mathcal{F}^{0}, P^{0}\right)$ be a filtered probability space and $\left\{W_{t}\right\}$ be a d-dimensional Brownian motion under P^{0}. [DHP08] proved that

$$
\mathcal{P}_{M}:=\left\{P_{0} \circ X^{-1} \mid X_{t}=\int_{0}^{t} h_{s} d W_{s}, h \in L_{\mathcal{F}}^{2}\left([0, T] ; \Gamma^{1 / 2}\right)\right\}
$$

is a set that represents \hat{E}, where $\Gamma^{1 / 2}:=\left\{\gamma^{1 / 2} \mid \gamma \in \Gamma\right\}$ and Γ is the set in the representation of $G(\cdot)$ in the formula (2.0.1).

3 Main results

In the sequel, we only consider the G-expectation space $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}, \hat{E}\right)\right)$ with $\Omega_{T}=C_{0}([0, T], R)$ and $\bar{\sigma}^{2}=\hat{E}\left(B_{1}^{2}\right)>-\hat{E}\left(-B_{1}^{2}\right)=\underline{\sigma}^{2} \geq 0$.
Proposition 3.1 For each $\eta \in M_{G}^{1}(0, T)$, let

$$
d(\eta)=\limsup _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d\langle B\rangle_{s}\right] .
$$

Then

$$
\begin{equation*}
-\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[-\int_{0}^{T}\left|\eta_{s}\right| d s\right] \leq d(\eta) \leq \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right] . \tag{3.0.2}
\end{equation*}
$$

Proof. It suffices to prove the conclusion for $\eta \in M_{G}^{0}(0, T)$. Let $\eta_{s}=$ $\sum_{i=0}^{m-1} \xi_{t_{i}} 1_{\left.t_{i}, t_{i+1}\right]}(s), \xi_{t_{i}} \in L_{G}^{1}\left(\Omega_{t_{i}}\right), i=0, \cdots, m-1$.

$$
\begin{aligned}
& \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d\langle B\rangle_{s}\right]-\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right] \\
= & \hat{E}\left[\sum_{i=0}^{m-1}\left|\xi_{t_{i}}\right| \int_{t_{i}}^{t_{i+1}} \delta_{n}(s) \operatorname{sgn}\left(\xi_{t_{i}}\right) d\langle B\rangle_{s}\right]-\hat{E}\left[\sum_{i=0}^{m-1}\left|\xi_{t_{i}}\right| \int_{t_{i}}^{t_{i+1}} \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} d s\right] \\
\leq & \sum_{i=0}^{m-1} \hat{E}\left[\left|\xi_{t_{i}}\right|\left(\int_{t_{i}}^{t_{i+1}} \delta_{n}(s) \operatorname{sgn}\left(\xi_{t_{i}}\right) d\langle B\rangle_{s}-\int_{t_{i}}^{t_{i+1}} \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} d s\right)\right] \rightarrow 0
\end{aligned}
$$

as n goes to infinity. So

$$
d(\eta) \leq \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right] .
$$

On the other hand,

$$
\begin{aligned}
& \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d\langle B\rangle_{s}\right]+\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[-\int_{0}^{T}\left|\eta_{s}\right| d s\right] \\
= & \hat{E}\left[\sum_{i=0}^{m-1}\left|\xi_{t_{i}}\right| \int_{t_{i}}^{t_{i+1}} \delta_{n}(s) \operatorname{sgn}\left(\xi_{t_{i}}\right) d\langle B\rangle_{s}\right]+\hat{E}\left[\sum_{i=0}^{m-1}\left(-\left|\xi_{t_{i}}\right|\right) \int_{t_{i}}^{t_{i+1}} \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} d s\right] \\
\geq & \hat{E}\left[\sum_{i=0}^{m-1}\left|\xi_{t_{i}}\right|\left(\int_{t_{i}}^{t_{i+1}} \delta_{n}(s) \operatorname{sgn}\left(\xi_{t_{i}}\right) d\langle B\rangle_{s}-\int_{t_{i}}^{t_{i+1}} \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} d s\right)\right] \\
\geq & \sum_{i=0}^{m-1}\left[-\hat{E}\left(\left|\xi_{t_{i}}\right|\right) a_{i}(n)\right],
\end{aligned}
$$

where $a_{i}(n)=\max \left\{\left|\hat{E}\left(\int_{t_{i}}^{t_{i+1}} \delta_{n}(s) d\langle B\rangle_{s}-\int_{t_{i}}^{t_{i+1}} \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} d s\right)\right|, \mid \hat{E}\left(-\int_{t_{i}}^{t_{i+1}} \delta_{n}(s) d\langle B\rangle_{s}-\right.\right.$ $\left.\left.\int_{t_{i}}^{t_{i+1}} \frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} d s\right) \mid\right\} \rightarrow 0$ as n goes to infinity. So

$$
-\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[-\int_{0}^{T}\left|\eta_{s}\right| d s\right] \leq d(\eta)
$$

Remark 3.2 (i) A straightforward corollary of Proposition 3.1 is that if $\int_{0}^{T}\left|\eta_{s}\right| d s$ is symmetric (i.e., $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]=-\hat{E}\left[-\int_{0}^{T}\left|\eta_{s}\right| d s\right]$), the equality $d(\eta)=\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]$ holds.
(ii) By Lemma 3.1, we could not conclude that $d(\eta)>0$ whenever $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]>0$, which is the conclusion of Theorem 3.3 below.
(iii) The inequalities in (3.0.2) may be strict:

Let $\eta_{s}=\langle B\rangle_{T / 2} 1_{] T / 2, T]}(s)+a 1_{[0, T / 2]}(s), a=T\left(\bar{\sigma}^{2}-\underline{\sigma}^{2}\right) / 4$.
Then

$$
\begin{gathered}
d(\eta)=\lim _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{2 n}(s) \eta_{s} d\langle B\rangle_{s}\right]=a \bar{\sigma}^{2} T / 2, \\
\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]=a^{2}+a \bar{\sigma}^{2} T / 2, \\
-\frac{\bar{\sigma}^{2}-\underline{\sigma}^{2}}{2} \hat{E}\left[-\int_{0}^{T}\left|\eta_{s}\right| d s\right]=-a^{2}+a \bar{\sigma}^{2} T / 2 .
\end{gathered}
$$

Now, we shall state the main result of this article, whose proof is postponed to Section 4.
Theorem 3.3 For $\eta \in M_{G}^{1}(0, T)$ with $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]>0$, we have

$$
d(\eta)=\limsup _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d\langle B\rangle_{s}\right]>0
$$

Theorem 3.4 Let $\eta \in M_{G}^{1}(0, T)$. Then $\lim _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d s\right]=0$.
Proof. For $\eta \in M_{G}^{0}(0, T)$, the claim is obvious. For $\eta \in M_{G}^{1}(0, T)$, there exists a sequence of $\left\{\eta^{m}\right\} \subset M_{G}^{0}(0, T)$ such that $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}^{m}-\eta_{s}\right| d s\right] \rightarrow 0$. Then $\left|\hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d s\right]\right| \leq\left|\hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s}^{m} d s\right]\right|+\hat{E}\left[\int_{0}^{T}\left|\eta_{s}^{m}-\eta_{s}\right| d s\right]$. First let $n \rightarrow \infty$, then let $m \rightarrow \infty$, and we get the desired result.
Remark 3.5 Let $(\Omega, F, \mathcal{F}, P)$ be a filtered probability space. We recall that for any progressively measurable process η such that $E\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]<\infty$, we
have

$$
\lim _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d s\right]=0
$$

Therefore, Theorem 3.3 presents a particular property of G-expectation space relative to probability space.
Corollary 3.6 Let $\zeta, \eta \in M_{G}^{1}(0, T)$. If $\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}=\int_{0}^{t} \zeta_{s} d s$ for all $t \in[0, T]$, then $E\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]=\hat{E}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]=0$.

Proof. By Theorem 3.4, we have

$$
\limsup _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \eta_{s} d\langle B\rangle_{s}\right]=\lim _{n \rightarrow \infty} \hat{E}\left[\int_{0}^{T} \delta_{n}(s) \zeta_{s} d s\right]=0 .
$$

By Theorem 3.3, we have $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]=0$, which leads to $\hat{E}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]=0$.

The following corollary is about the uniqueness of representation for G martingales with finite variation.
Corollary 3.7 Let $\zeta, \eta \in M_{G}^{1}(0, T)$. If for all $t \in[0, T]$,

$$
\begin{equation*}
\int_{0}^{t} \eta_{s} d\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s=\int_{0}^{t} \zeta_{s} d\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\zeta_{s}\right) d s \tag{3.0.3}
\end{equation*}
$$

we have $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}-\zeta_{s}\right| d s\right]=0$.
Proof. By the assumption, we have

$$
\int_{0}^{t}\left(\eta_{s}-\zeta_{s}\right) d\langle B\rangle_{s}=\int_{0}^{t} 2\left[G\left(\eta_{s}\right)-G\left(\zeta_{s}\right)\right] d s, \text { for all } t \in[0, T]
$$

Since $\eta-\zeta, 2[G(\eta)-G(\zeta)] \in M_{G}^{1}(0, T)$, we have $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}-\zeta_{s}\right| d s\right]=0$ by Corollary 3.6.
Remark 3.8(i) In the setting considered in this article, $G(a)=\frac{1}{2}\left(\bar{\sigma}^{2} a^{+}-\right.$ $\left.\underline{\sigma}^{2} a^{-}\right)$. For $\varepsilon \in\left(0, \frac{\bar{\sigma}^{2}-\sigma^{2}}{2}\right),[H u P 10]$ defined G_{ε} in the following way:

$$
G_{\varepsilon}(a)=G(a)-\frac{\varepsilon}{2}|a|, \text { for all } a \in R .
$$

Indeed, Proof to Theorem 3.3 in the next section leads to the following conclusion:

$$
\begin{equation*}
d(\eta) \geq \varepsilon \hat{E}_{G_{\varepsilon}}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right] \tag{3.0.4}
\end{equation*}
$$

(ii) For $\eta \in M_{G}^{1}(0, T)$, let $K_{t}=\int_{0}^{T} \eta_{s} d\langle B\rangle_{s}-\int_{0}^{T} 2 G\left(\eta_{s}\right) d s$. Then, by Theorem 3.4, we have

$$
\begin{equation*}
\hat{E}\left(-K_{T}\right) \geq \limsup _{n \rightarrow \infty} \hat{E}\left(\int_{0}^{T} \delta_{n}(s) d K_{s}\right)=d(\eta) \tag{3.0.5}
\end{equation*}
$$

This, combined with (3.0.4), leads to the following estimate:

$$
\hat{E}\left[-K_{T}\right] \geq \varepsilon \hat{E}_{G_{\varepsilon}}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]
$$

which was already proved in $[\mathrm{HuP10}]$. Then for $\eta, \zeta \in M_{G}^{1}(0, T)$ such that (3.0.3) and

$$
\begin{equation*}
\int_{0}^{t} 2\left[G\left(\eta_{s}\right)-G\left(\zeta_{s}\right)\right] d s=\int_{0}^{t} 2\left[G\left(\eta_{s}-\zeta_{s}\right)\right] d s \text { for all } t \in[0, T] \tag{3.0.6}
\end{equation*}
$$

hold, we have $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}-\zeta_{s}\right| d s\right]=0$. However, (3.0.6) does not hold generally since the nonlinearity of G, which is the main difficulty to deal with such questions.

4 Proof to Theorem 3.3

In order to prove Theorem 3.3, we first introduce two lemmas.
Let $\Omega_{T}=C_{b}([0, T] ; R)$ be endowed with the supremum norm and let $\sigma:[0, T] \times \Omega_{T} \rightarrow R$ be a measurable mapping satisfying
i) σ is bounded;
ii) There exists $C>0$ such that $|\sigma(s, x)-\sigma(s, y)| \leq C\|x-y\|$ for any $s \in[0, T]$ and $x, y \in C_{b}([0, T] ; R) ;$
iii)For $t \in[0, T], \sigma(t, \cdot)$ is $\mathcal{B}_{t}\left(\Omega_{T}\right)$ measurable.

Then the following lemma is easy.
Lemma 4.1 Let $(\Omega, F, \mathcal{F}, P)$ be a filtered probability space and let M be a continuous F-martingale with $\langle M\rangle_{t}-\langle M\rangle_{s} \leq C(t-s)$ for some $C>0$ and any $0 \leq s<t \leq T$. Let F^{X} be the augmented filtration generated by X. Then for any $Y_{0} \in \mathcal{F}_{0}^{X}$, there exists a unique F-adapted continuous process with $E\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{2}\right]<\infty$ such that $Y_{t}=Y_{0}+\int_{0}^{t} \sigma(s, Y) d X_{s}$. Moreover, Y is F^{X}-adapted.

Let (Ω, \mathcal{F}, P) be a probability space and let $\left\{W_{t}\right\}$ be a standard 1dimensional Brownian motion on (Ω, \mathcal{F}, P). Let F^{W} be the augmented filtration generated by W.

Denote by $\mathcal{A}^{0}([c, C])$, for some $0<c \leq C<\infty$, the collection of F^{W} adapted processes in the following form

$$
h_{s}=\sum_{i=0}^{m-1} \xi_{i} 1_{] \frac{i T}{m}, \frac{(i+1) T}{m}\right]}(s),
$$

where $\xi_{i}=\psi_{i}\left(\int_{\frac{i(1-1)}{m}}^{\frac{i T}{m}} h_{s} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s} d W_{s}\right), \psi_{i} \in C_{b, l i p}\left(R^{i}\right), c \leq\left|\psi_{i}\right| \leq C$. Denote by $\mathcal{A}\left([c, \stackrel{m}{C]})\right.$ the collection of F^{W} adapted processes such that $c \leq$ $\left|h_{s}\right| \leq C$.
Lemma $4.2 \mathcal{A}^{0}([c, C])$ is dense in $\mathcal{A}([c, C])$ under the norm

$$
\|h\|_{2}=\left[E\left(\int_{0}^{T}\left|h_{s}\right|^{2} d s\right)\right]^{1 / 2}
$$

Proof. Let $h_{s}=\sum_{i=0}^{m-1} \xi_{i} 1_{\left.j \frac{i T}{m}, \frac{(i+1) T}{m}\right]}(s)$, where

$$
\begin{gathered}
\xi_{i}=\varphi_{i}\left(W_{\frac{i T}{m}}-W_{\frac{(i-1) T}{m}}, \cdots, W_{\frac{T}{m}}-W_{0}\right), \\
\varphi_{i} \in C_{b, l i p}\left(R^{i}\right), c \leq\left|\varphi_{i}\right| \leq C
\end{gathered}
$$

Then $\sigma(s, x)=h_{s}^{-1}(x)$ is a bounded Lipschitz function. Let $X_{t}:=\int_{0}^{t} h_{s} d W_{s}$. Since $W_{t}=\int_{0}^{t} \sigma(s, W) d X_{s}$, we conclude, by Lemma 4.1, that W is $F^{X_{-}}$ adapted.

For a process $\left\{X_{t}\right\}$, we denote the vector $\left(X_{T}-X_{\frac{(m-1) T}{m}}, \cdots, X_{\frac{T}{m}}-X_{0}\right)$ by $X_{[0, T]}^{m}$.

For arbitrary $\varepsilon_{i}>0, i=0, \cdots, m-1$, there exists $\psi_{i} \in C_{b, l i p}\left(R^{i n_{i}}\right)$ with the Lipschitz constant L_{i} such that $E\left[\left|\xi_{i}-\widetilde{\xi}_{i}\right|^{2}\right]<\varepsilon_{i}^{2}$. Here $\widetilde{\xi}_{i}=\psi_{i}\left(X_{\left[0, \frac{i T}{m}\right]}^{i n_{i}}\right)$, $c \leq\left|\psi_{i}\right| \leq C$. Without loss of generality, we assume that there exists $K_{j i} \in N$ such that $n_{j}=K_{j i} n_{i}$ for $m-1 \geq i>j \geq 0$.

Define $\widehat{\xi}_{i}$ in the following way:
$\widehat{\xi}_{0}=\widetilde{\xi}_{0}$,
For $\left.s \in] 0, \frac{T}{m}\right], \widehat{h}_{s}=\widehat{\xi}_{0}$,
Assume that we have defined \widehat{h}_{s} for all $s \in\left[0, \frac{i T}{m}\right], 0 \leq i \leq m-1$,
Define $\widehat{X}_{t}:=\int_{0}^{t} \widehat{h}_{s} d W_{s}$, for $t \in\left[0, \frac{i T}{m}\right]$,
$\widehat{\xi}_{i}=\psi_{i}\left(\widehat{X}_{\left[0, \frac{i T}{m}\right]}^{i n_{i}}\right)$,
For $\left.s \in] \frac{i T}{m}, \frac{(i+1) T}{m}\right], \widehat{h}_{s}=\widehat{\xi}_{i}$.

We claim that for any $m-1 \geq i \geq 1$,

$$
\begin{equation*}
\hat{E}\left[\left|\widehat{\xi}_{i}-\widetilde{\xi}_{i}\right|^{2}\right] \leq \sum_{j=0}^{i-1} A_{j}^{i} \varepsilon_{j}^{2} \tag{4.0.7}
\end{equation*}
$$

where $A_{j}^{i}=2 T L_{i}^{2}\left(\sum_{k=j+1}^{i-1} A_{j}^{k}+1\right)$, for $i \geq j+2, A_{i-1}^{i}=2 T L_{i}^{2}$, which shows that A_{j}^{i} depends only on L_{j+1}, \cdots, L_{i} and T.

Indeed, $\left.E\left[\left|\widehat{\xi}_{1}-\widetilde{\xi}_{1}\right|^{2}\right] \leq L_{1}^{2} E\left[\left|\widehat{\xi}_{0}-\xi_{0}\right|^{2} \mid\right] E\left[\left\lvert\, W_{\left[0, \frac{T}{m}\right]}^{n_{1}}\right.\right]^{2}\right]=\frac{T}{m} L_{1}^{2} \varepsilon_{0}^{2} \leq A_{0}^{1} \varepsilon_{0}^{2}$. Assume (4.0.7) holds for $1 \leq i \leq l$. For $i=l+1$,

$$
\begin{aligned}
& E\left[\left|\widehat{\xi}_{l+1}-\widetilde{\xi}_{l+1}\right|^{2}\right] \\
\leq & L_{l+1}^{2} \sum_{i=0}^{l} E\left[\left|\widehat{\xi}_{i}-\xi_{i}\right|^{2}\right] E\left[\left|W_{\left[\frac{i T}{m}, \frac{(i+1) T}{m}\right]}^{n_{l+1}}\right|^{2}\right] \\
\leq & 2 T L_{l+1}^{2} \sum_{i=0}^{l} E\left[\left(\left|\widehat{\xi}_{i}-\widetilde{\xi}_{i}\right|^{2}+\left|\widetilde{\xi}_{i}-\xi_{i}\right|^{2}\right)\right] \\
\leq & 2 T L_{l+1}^{2}\left(\sum_{i=0}^{l} \varepsilon_{i}^{2}+\sum_{i=1}^{l} \sum_{j=0}^{i-1} A_{j}^{i} \varepsilon_{j}^{2}\right) \\
= & 2 T L_{l+1}^{2}\left[\sum_{j=0}^{l-1}\left(\sum_{i=j+1}^{l} A_{j}^{i}+1\right) \varepsilon_{j}^{2}+\varepsilon_{l}^{2}\right] \\
= & \sum_{j=0}^{l} A_{j}^{l+1} \varepsilon_{j}^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& E\left[\left|\widehat{\xi}_{i}-\xi_{i}\right|^{2}\right] \\
\leq & 2\left(E\left[\left|\widehat{\xi}_{i}-\widetilde{\xi}_{i}\right|^{2}\right]+E\left[\left|\widetilde{\xi}_{i}-\xi_{i}\right|^{2}\right]\right) \\
\leq & 2 \varepsilon_{i}^{2}+2 \sum_{j=0}^{i-1} A_{j}^{i} \varepsilon_{j}^{2} \\
= & \sum_{j=0}^{i} B_{j}^{i} \varepsilon_{j}^{2}
\end{aligned}
$$

which shows that B_{j}^{i} depends only on L_{j+1}, \cdots, L_{i} and T. So for any $\varepsilon>0$, we can choose $\widehat{\xi}_{i}, i=0, \cdots, m-1$ defined above such that $E\left[\left|\widehat{\xi}_{i}-\xi_{i}\right|^{2}\right]<\varepsilon$ for all $i=0, \cdots, m-1$. Then

$$
E\left[\int_{0}^{T}\left|h_{s}-\widehat{h}_{s}\right|^{2}\right]<T \varepsilon .
$$

Proof to Theorem 3.3. For $\eta \in M_{G}^{1}(0, T)$ with $\hat{E}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]>0$, by Theorem 2.6 and Remark 2.7, there exists $\varepsilon>0$ and $P \in \mathcal{P}_{M}$ such that $E_{P}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]=: A>0$ and for any $0 \leq s<t \leq T$

$$
\left(\underline{\sigma}^{2}+\varepsilon\right)(t-s) \leq\langle B\rangle_{t}-\langle B\rangle_{s} \leq\left(\bar{\sigma}^{2}-\varepsilon\right)(t-s), P-a . s . .
$$

For any $\frac{A \varepsilon}{\left(\bar{\sigma}^{2}+\varepsilon\right)}>\delta>0$, there exists $\zeta \in M_{G}^{0}(0, T)$ such that

$$
\hat{E}\left[\int_{0}^{T}\left|\eta_{s}-\zeta_{s}\right| d s\right]<\delta .
$$

Let $\left(\Omega^{0}, F=\left\{\mathcal{F}_{t}^{0}\right\}, \mathcal{F}^{0}, P^{0}\right)$ be a filtered probability space, and $\left\{W_{t}\right\}$ be a d-dimensional Brownian motion under P^{0}. By Remark 2.7, there exists an F adapted process h with $\underline{\sigma}^{2}+\varepsilon \leq h_{s}^{2} \leq \bar{\sigma}^{2}-\varepsilon$ such that $P=P^{0} \circ\left(\int_{0}^{1} h_{s} d W_{s}\right)^{-1}$.

Without loss of generality, by Lemma 4.2, we assume that there exists $m \in N$ such that

$$
\zeta_{s}=\sum_{i=0}^{m-1} \xi_{\frac{i T}{m}} 1_{\left.1 \frac{i T}{m}, \frac{(i+1) T}{m}\right]}(s)
$$

where $\xi_{\frac{i T}{m}}=\varphi_{i}\left(B_{\frac{i T}{m}}-B_{\frac{(i-1) T}{m}}, \cdots, B_{\frac{T}{m}}-B_{0}\right), \varphi_{i} \in C_{b, l i p}\left(R^{i}\right)$, for all $0 \leq i \leq$ $m-1$;

$$
h_{s}=\sum_{i=0}^{m-1} a_{\frac{i T}{m}} 1_{\left.j \frac{i T}{m}, \frac{(i+1) T}{m}\right]}(s)
$$

where $a_{\frac{i T}{m}}=\psi_{i}\left(\int_{\frac{(i-1) T}{m}}^{\frac{i T}{m}} h_{s} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s} d W_{s}\right), \underline{\sigma}^{2}+\varepsilon \leq\left|\psi_{i}\right|^{2} \leq \bar{\sigma}^{2}-\varepsilon$, $\psi_{i} \in C_{b, l i p}\left(R^{i}\right)$, for all $0 \leq i \leq m-1$.

1. Define $H^{i}:\left[\underline{\sigma}^{2}+\varepsilon, \bar{\sigma}^{2}-\varepsilon\right] \rightarrow[\underline{\sigma}, \bar{\sigma}], \mathrm{i}=1,-1$ in the following way:

$$
\begin{aligned}
& H^{1}(x)^{2}=\bar{\sigma}^{2} 1_{\left[x \geq \frac{\bar{\sigma}^{2}+\sigma^{2}}{2}\right]}+\left(2 x-\underline{\sigma}^{2}\right) 1_{\left[x<\frac{\bar{\sigma}^{2}+\underline{\sigma}^{2}}{2}\right]} ; \\
& H^{-1}(x)^{2}=\left(2 x-\bar{\sigma}^{2}\right) 1_{\left[x \geq \frac{\bar{\sigma}^{2}+\underline{\underline{\sigma}}^{2}}{2}\right]}+\underline{\sigma}^{2} 1_{\left[x<\frac{\bar{\sigma}^{2}+\underline{\sigma}^{2}}{2}\right]}
\end{aligned}
$$

It's easily seen that $H^{1}(x)^{2}+H^{-1}(x)^{2}=2 x$ and $H^{1}(x)^{2}-H^{-1}(x)^{2} \geq 2 \varepsilon$.
For $n \in N$, define $H_{n}^{i}:[0,1 / m] \times\left[\underline{\sigma}^{2}+\varepsilon, \bar{\sigma}^{2}-\varepsilon\right] \rightarrow[\underline{\sigma}, \bar{\sigma}], i=1,-1$ by

$$
H_{n}^{i}(s, x)=\sum_{j=0}^{2 n-1} 1_{\left[\frac{j T}{2 m n}, \frac{(j+1) T}{2 m n}\right]}(s) H^{(-1)^{j} i}(x)
$$

2. Fix $n \in N$.
$a_{0}^{n}=a_{0}, \xi_{0}^{n}=\xi_{0}$,
For $\left.s \in] 0, \frac{T}{m}\right], h_{s}^{n}=H_{n}^{\operatorname{sgn}\left(\xi_{0}^{n}\right)}\left(s,\left(a_{0}^{n}\right)^{2}\right)$;
Assume that we have defined h_{s}^{n} for all $s \in\left[0, \frac{i T}{m}\right], 0 \leq i \leq m-1$.
$a_{\frac{i T}{m}}^{n}=\psi_{i}\left(\int_{\frac{(i-1) T}{m}}^{\frac{i T}{m}} h_{s}^{n} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s}^{n} d W_{s}\right)$,
$\xi_{\frac{i T}{m}}^{n}=\varphi_{i}\left(\int_{\frac{(i-1) T}{m}}^{\frac{i T}{m}} h_{s}^{n} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s}^{n} d W_{s}\right)$,
For $\left.s \in] \frac{i T}{m}, \frac{(i+1) T}{m}\right], h_{s}^{n}=H_{n}^{\operatorname{sgn}\left(\xi_{\frac{T T}{n}}^{n}\right)}\left(s-\frac{i T}{m},\left(a_{\frac{i T}{m}}^{m}\right)^{2}\right)$.
3. $E_{P}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]=E_{P_{h^{n}}}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]$.

In fact,

$$
\begin{aligned}
& E_{P}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right] \\
= & \frac{T}{m} E_{P_{0}}\left[\sum_{i=0}^{m-1}\left|\varphi_{i}\left(\int_{\frac{(i-1) T}{m}}^{\frac{i T}{m}} h_{s} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s} d W_{s}\right)\right|\right] \\
= & : E_{P_{0}}\left[\Phi\left(\int_{\frac{(m-1) T}{m}}^{T} h_{s} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s} d W_{s}\right)\right]
\end{aligned}
$$

and

$$
E_{P_{h^{n}}}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]=E_{P_{0}}\left[\Phi\left(\int_{\frac{(m-1) T}{m}}^{T} h_{s}^{n} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s}^{n} d W_{s}\right)\right]
$$

Let $x=\left(x_{m-1}, \cdots, x_{1}\right)$. Noting that

$$
\begin{aligned}
& \Phi_{m-1}(x) \\
: & E_{P_{0}}\left\{\Phi\left(\int_{\frac{(m-1) T}{m}}^{T} H_{n}^{\operatorname{sgn}\left(\varphi_{m-1}(x)\right)}\left(s-\frac{(m-1) T}{m}, \psi_{m-1}(x)^{2}\right) d W_{s}, x\right)\right\} \\
= & E_{P_{0}}\left\{\Phi\left(\int_{\frac{(m-1) T}{m}}^{T} \psi_{m-1}(x) d W_{s}, x\right)\right\}
\end{aligned}
$$

we have
$E_{P_{0}}\left[\Phi\left(\int_{\frac{(m-1) T}{m}}^{T} h_{s} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s} d W_{s}\right)\right]=E_{P_{0}}\left[\Phi_{m-1}\left(\int_{\frac{(m-2) T}{m}}^{\frac{(m-1) T}{m}} h_{s} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s} d W_{s}\right)\right]$
$E_{P_{0}}\left[\Phi\left(\int_{\frac{(m-1) T}{m}}^{T} h_{s}^{n} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s}^{n} d W_{s}\right)\right]=E_{P_{0}}\left[\Phi_{m-1}\left(\int_{\frac{(m-2) T}{m}}^{\frac{(m-1) T}{m}} h_{s}^{n} d W_{s}, \cdots, \int_{0}^{\frac{T}{m}} h_{s}^{n} d W_{s}\right)\right]$.

By induction on m, we get the desired result.
4.

$$
\begin{aligned}
& \hat{E}\left[\int_{0}^{T} \delta_{2 m n}(s) \eta_{s} d\langle B\rangle_{s}\right] \\
\geq & \hat{E}\left[\int_{0}^{T} \delta_{2 m n}(s) \zeta_{s} d\langle B\rangle_{s}\right]-\hat{E}\left[\int_{0}^{T}\left|\eta_{s}-\zeta_{s}\right| d\langle B\rangle_{s}\right] \\
\geq & E_{P_{h^{n}}}\left[\int_{0}^{T} \delta_{2 m n}(s) \zeta_{s} d\langle B\rangle_{s}\right]-\bar{\sigma}^{2} \delta \\
= & E_{P_{h^{n}}}\left[\sum_{i=0}^{m-1} \int_{\frac{i T}{m}}^{\frac{(i+1) T}{m}} \delta_{2 m n}(s) \zeta_{s} d\langle B\rangle_{s}\right]-\bar{\sigma}^{2} \delta \\
= & E_{P_{h^{n}}}\left[\sum_{i=0}^{m-1} \xi_{\frac{i T}{m}}^{m} \int_{\frac{i T}{m}}^{\frac{(i+1) T}{m}} \delta_{2 m n}(s) d\langle B\rangle_{s}\right]-\bar{\sigma}^{2} \delta \\
\geq & \frac{T}{m} \varepsilon E_{P_{h^{n}}}\left[\sum_{i=0}^{m-1}\left|\xi_{\frac{i T}{m}}^{m}\right|\right]-\bar{\sigma}^{2} \delta \\
= & \varepsilon E_{P_{h^{n}}}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]-\bar{\sigma}^{2} \delta \\
= & \varepsilon E_{P}\left[\int_{0}^{T}\left|\zeta_{s}\right| d s\right]-\bar{\sigma}^{2} \delta \\
\geq & \varepsilon E_{P}\left[\int_{0}^{T}\left|\eta_{s}\right| d s\right]-\varepsilon \delta-\bar{\sigma}^{2} \delta \\
\geq & A \varepsilon-\varepsilon \delta-\bar{\sigma}^{2} \delta>0 .
\end{aligned}
$$

Since A, ε, δ do not depend on n, we have $d(\eta) \geq A \varepsilon-\varepsilon \delta-\bar{\sigma}^{2} \delta>0$. The proof is completed.

References

[DHP08] Denis, L., Hu, M. and Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes. To appear in Potential Anal.
[HP09] Hu, M. and Peng, S. (2009) On representation theorem of Gexpectations and paths of G-Brownian motion. Acta Math Appl Sinica English Series, 25(3): 1-8.
[HuP10] Hu, Y. and Peng, S. (2010) Some Estimates for Martingale Representation under G-Expectation. arXiv:1004.1098v1 [math.PR] 7 Apr 2010.
[P07a] Peng, S. (2007) G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type. Stochastic analysis and applications, 541C567, Abel Symp., 2, Springer, Berlin.
[P07b] Peng, S. (2007) G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty. arXiv:0711.2834v1 [math.PR] 19 Nov 2007.
[P08] Peng, S. (2008) Multi-Dimensional G-Brownian Motion and Related Stochastic Calculus under G-Expectation, in Stochastic Processes and their Applications, 118(12), 2223-2253.
[P10] Peng, S. (2010) Nonlinear Expectations and Stochastic Calculus under Uncertainty, arXiv:1002.4546v1 [math.PR] 24 Feb 2010.
[Song10] Song, Y. Characterizations of processes with stationary and independent increments under G-expectation arXiv:1009.0109v1 [math.PR] 1 Sep 2010.

[^0]: ${ }^{*}$ Y. Song was supported by the National Basic Research Program of China (973 Program) (No.2007CB814902), Key Lab of Random Complex Structures and Data Science, Chinese Academy of Sciences (Grant No. 2008DP173182).

