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1 Introduction

In [PO7b], processes in form of [} n,d(B),— [, 2G(ns)ds, n € ML(0,T) are
proved to be G-martingales. However, the uniqueness of the representation
remains unresolved. In order to prove the uniqueness, we must find ways to
distinguish the two classes of processes in forms of f(f nsd(B)s and f(f (sds,

1,¢ € Mg(0, 7).
For a process { K;} with finite variation, motivated by [Song10], we define

d(K) := limsup E[/O dn(s)dKs],

n—o0
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where, for n € N, §,(s) is defined in the following way:
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n—

On(s) = (_1)i1]£ (i+1)T}(8), for all s € [0,T7.
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We prove that d(K) = 0 if K; = f(f (sds for some ¢ € M}L(0,T) and that
d(K) > 0if K, = [} n,d(B), for some n € M&(0,T) such that E[ [ |n|ds] >
0. By this, we distinguish these two classes of processes completely:

If [ nsd(B)s = [} (sds, for some 1,¢ € ME(0,T), then we have

B[ las = 21 fcasl =0

As an application, we prove the uniqueness of the representation for G-
martingales with finite variation.

This article is organized as follows: In section 2, we recall some basic no-
tions and results of G-expectation and the related space of random variables.
In section 3, we present the main results and some corollaries. In section 4,
we give the proofs to the main results.

2 Preliminaries

We recall some basic notions and results of G-expectation and the related
space of random variables. More details of this section can be found in [P07a,
P07b, P08, P10].

Definition 2.1 Let €2 be a given set and let H be a linear space of real valued
functions defined on 2 with ¢ € H for all constants ¢. H is considered as the
space of random variables. A sublinear expectation E on H is a functional
E:H—R satisfying the following properties: for all X, Y € H, we have

(a) Monotonicity: If X >V then E(X) > E(Y).

(b) Constant preserving: E(c) = c.

(c) Sub-additivity: E(X)—E(Y) < E(X —Y).

(d) Positive homogeneity: E(AX) = AE(X), X > 0.
(Q,H, E) is called a sublinear expectation space.

Definition 2.2 Let X; and X3 be two n-dimensional random vectors defined
respectively in sublinear expectation spaces (1, Hi, E1) and (2, Ha, Es).
They are called identically distributed, denoted by X; ~ Xs, if E1[p(X;)] =
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E, [0(X2)], Vo € CiLip(R"), where Cj 1;,(R") is the space of real continuous
functions defined on R™ such that

() — ()] < O+ |2* + [y*) |z — y|, Yo,y € R,

where k depends only on .

Definition 2.3 In a sublinear expectation space (2, H, E) a random vector
Y = (Y1,--,Y,), Y; € H is said to be independent to another random vector
X = (X1, -+, X)), X; € H under E(), denoted by Y LX), if for each test
function ¢ € Cy 1i,(R™ x R") we have E[p(X,Y)] = E[E[(z,Y)].—x]-

Definition 2.4 (G-normal distribution) A d-dimensional random vector X =
(X1, -+, Xy) in a sublinear expectation space (£, H, E) is called G-normal
distributed if for each a,b € R we have

aX +bX ~ Va2 + b2X,

where X is an independent copy of X. Here the letter G denotes the function

G(A) = %E[(AX, X)|: Si— R,

where Sy denotes the collection of d x d symmetric matrices.

The function G (1) : Sy — R is a monotonic, sublinear mapping on Sy and
G(A) = 1E[(AX, X)] < 1|A|E[|X|*] =: 1|A|6? implies that there exists a
bounded, convex and closed subset I' C S such that

G(A) = %sup Tr(vA). (2.0.1)

vel

If there exists some > 0 such that G(A) — G(B) > pTr(A — B) for any
A > B, we call the G-normal distribution is non-degenerate.

Definition 2.5 i) Let Q7 = Cy([0, T]; RY) with the supremum norm, H9 :=
{o(Biy, ..., By,)|Vn > 1,1y, ..., t, € [0,T],Vp € Cyrip(R>")}, G-expectation
is a sublinear expectation defined by

A

E[@(Btl - Btov Bt2 - Btu ) Btm - Btm71>]

= E[QO(\/ tl — t0§1, T\ tm - tm—1£m>]7

for all X = ¢(B;, — By,, Bi, — By,,- -+, By,, — B, ,), where &, - -, &, are
identically distributed d-dimensional G-normal distributed random vectors
in a sublinear expectation space (2, H, E) such that &;,; is independent to

A

(&, &) foreach i =1, -+, m. (Qp, HY, E) is called a G-expectation space.
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ii) Fort € [0,7] and £ = @(By,, ..., By,) € H%, the conditional expectation
defined by(there is no loss of generality, we assume t = t;)

Eti [(p(Bh - Btoa Btz - Btla T Btm - Btm,l)]

= @(Btl - BtoaBtz - Bt1> T 'aBti - Bti,l)a

where

@(xlv o '7:1:1') = E[gp(xla Ty Ty Bti+1 - Btiv T Btm - Btmfl)]-

Define |||, = [E(|€[?)]'/? for € € H) and p > 1. Then V¢ € [0,T],
Ey(-) is a continuous mapping on H$ with norm || - ||1.¢ and therefore can be
extended continuously to the completion L5 (Qr) of H3 under norm || - |1 6.

Let Liy(Qr) := {@(Byy, ..., B, )[n > 1,t1, .., t, € [0,T], ¢ € Cprip(R>*™)},
where Cj, Lip(RdX") denotes the set of bounded Lipschitz functions on R%*".
[DHPO08] proved that the completions of Cy(Qr), H} and L;(Qr) under
| - |lp.c are the same and we denote them by L% (7).

Definition 2.5 Let M2(0,T) be the collection of processes in the following

form: for a given partition {¢g,- - -, tx} = mp of [0, T,
N-1
nt(w) = Z gj(w)l]tjvtjﬂ}(t)v
=0

where & € L;,(Q,), i = 0,1,2,-- N —1. For p > 1 and n € M2(0,T),
let [Inllaz, = {E(fOT ns[Pds)}1/P and denote by MZ(0,T) the completion of
Mg(0,T) under the norm || - ||z,

Theorem 2.6([DHP08]) There exists a tight subset P C M;(€Qr) such that

~

E€) = IES%(EP(S) for all & € HY.

P is called a set that represents E.

Remark 2.7 Let (Q0, {FP}, F°, P%) be a filtered probability space and {WW;}
be a d-dimensional Brownian motion under P°. [DHPOS8] proved that

t
P = {Pyo XX, :/ hedWy, h € L%([0,T];T/%)}
0

is a set that represents £, where I'Y/2 := {4'/2|y € I'} and T is the set in the
representation of G(-) in the formula (2.0.1]).



3 Main results

In the sequel, we only consider the G-expectation space (§2r, LE(Qr, E )) with
Qr = Cy([0,T], R) and 7% = F(B?) > —E(—B?) = ¢ > 0.

Proposition 3.1 For each n € M}(0,T), let

) = tmsup B[ 6 (sm.d(5).]

n— o0

Then

G2 — g2

ST / inelds] < d(n)

5 / |ns|ds]. (3.0.2)

Proof. It suffices to prove the conclusion for n € M2(0,T). Let n, =
ZZZ?)I gtil]ti,ti+1](8)7 gti € Lé(Qtz)’ L= O> coem— 1L

T =2 _ 2 T
B[ du(sinat)) = QQE[ / n.lds]
m—1 tit1 i+l 52
= B fal [ sl Zm / 72y

tit1 tiy1 =2 2
I s, - [ diswo

< ) F

On the other hand,

B / 5.(s)nd(B).] +

/ In.]ds]

_ stz| [ Y su(esn(e)d(B)] + B[S (e ) /

i=0 ti

Zmz (" aeseteaim, - [T )

=0

tir1 52 _ O_

ds]

v

-

=0

v

Jai(n)l;




where a;(n) = max{|E([;"" 6,(s)d(B)s— [} T57ds)|, | E(~ [ 8,(s)d(B)s—

fti_”l E%fdsﬂ} — 0 as n goes to infinity. So

G2 — g2

TS5 E [ ndas) < dlo)

0J
Remark 3.2 (i) A stralghtforward corollary of Pl"OpOSlthIl 3.1 is that if
fo |ns|ds is symmetrlc ie., fo Ins|ds] = — fo Ins|ds]), the equality

d(n) = ik g” E| fo |ns|ds] holds.

(ii) By Lemma 3.1, we could not conclude that d(n) > 0 whenever
E| fOT |ns|ds] > 0, which is the conclusion of Theorem 3.3 below.

(iii) The inequalities in (3.0.2) may be strict:

Let s = (B)r/2lir/om(s) + alpr/g(s), a =T(c? — g?)/4.

Then

n—o0

d(n) = lim E[/O Son(8)nsd(B),] = a5T/2,

72 — g2
2
72 _ 52

o2 . T
5 E[—/ ns|ds] = —a® + a5>T/2.
0

T
E[/ ns|ds] = a® + a5>T/2,
0

O

Now, we shall state the main result of this article, whose proof is post-
poned to Section 4.

Theorem 3.3 For n € M}(0,T) with E[fOT Inslds] > 0, we have

T
d(n) = lim sup £ / 5 (8)nsd(B)s] > 0.
n—00 0
Theorem 3.4 Let n € MA(0,T). Then lim,, E[fOT dn(8)nsds] = 0.
Proof. For n € M2(0,T), the claim is obvious. For n € M}(0,T), there
exists a sequence of {n™} C ]\40 9(0,T) such that £ fOT In™—ns|ds] — 0. Then
|E fo W (8)nsds]| < |E fo W (8)nmds]| +E fo |n™ — n4|ds]. First let n — oo,
then let m — oo, and we get the desired result. [

Remark 3.5 Let (2, F, F, P) be a filtered probability space. We recall that
for any progressively measurable process 1 such that E| fOT Ins|ds] < oo, we
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have T
lim E[/ dn(s)nsds] = 0.
0

n—oo

Therefore, Theorem 3.3 presents a particular property of G-expectation space
relative to probability space.

Corollary 3.6 Let ¢,n € ML(0,T). If [} n.d(B)s = [ (.ds for all t € [0,T],
then B[ |ns|ds] = B[ |¢|ds] = 0.
Proof. By Theorem 3.4, we have
N T . T
lim sup E[/O On(5)nsd(B)s] = lim E[/O dn(5)Csds] = 0.

n—o0 n—o0

By Theorem 3.3, we have E[fOT Ins|ds] = 0, which leads to E[fOT |Cslds] = 0.
U

The following corollary is about the uniqueness of representation for G-
martingales with finite variation.

Corollary 3.7 Let ¢,n € M5(0,T). If for all ¢ € [0,T],

/0 tnsd<B>s— /0 tQG(ns)dSZ /0 tgsd(B>S— /0 t 2G(¢)ds,  (3.0.3)

we have E[fOT Ins — Cslds] = 0.

Proof. By the assumption, we have

/0 (s — Cs)d(B)s :/0 2[G(n,) — G(¢,)]ds, for all t € [0,T].

Since n — (,2[G(n) — G(¢)] € MA(0,T), we have E[fOT Ins — (slds] = 0 by
Corollary 3.6. [

Remark 3.8(i) In the setting considered in this article, G(a) = 3(c%at —

o%a™). For € € (0, #), [HuP10] defined G, in the following way:

G.(a) = G(a) — %|a|, for all a € R.

Indeed, Proof to Theorem 3.3 in the next section leads to the following con-
clusion:

d(n) > eEo.| / nelds]. (3.0.4)



(i) For n € M&(0,T), let K, = [ n.d(B), — [ 2G(n,)ds. Then, by
Theorem 3.4, we have

E(—Kr) > limsup E( /O 0, (5)dK,) = d(n). (3.0.5)

n—oo

This, combined with (3.0.4]), leads to the following estimate:

T
Bl-Fr] > eBe.| / nalds),
0

which was already proved in [HuP10]. Then for n,¢ € MA(0,T) such that
B0.3) and

/0 2[G(ns) — G(¢s)]ds = /0 2[G(ns — (s)|ds for all t € [0,T]  (3.0.6)

hold, we have E| fOT Ins — (slds] = 0. However, (B.0.6) does not hold generally
since the nonlinearity of G, which is the main difficulty to deal with such
questions. [

4 Proof to Theorem 3.3

In order to prove Theorem 3.3, we first introduce two lemmas.

Let Qr = Cy([0,T]; R) be endowed with the supremum norm and let
0 :10,T] x Q7 — R be a measurable mapping satisfying

i) o is bounded;

ii) There exists C' > 0 such that |o(s,z) — o(s,y)| < C|lx — y|| for any
s €1[0,T) and z,y € Cy([0,T]; R);

iii)For ¢t € [0, T, o(t,-) is B:(€2r) measurable.

Then the following lemma is easy.
Lemma 4.1 Let (Q, F, F, P) be a filtered probability space and let M be a
continuous F-martingale with (M), — (M), < C(t — s) for some C' > 0 and
any 0 < s <t < T. Let FX be the augmented filtration generated by X.
Then for any Yy € Fi<, there exists a unique F-adapted continuous process
with E[sup,c(o 7y [Y:|?] < 0o such that Y; = Y, + [y a(s,Y)dX,. Moreover, Y
is FX-adapted. O

Let (2, F,P) be a probability space and let {W;} be a standard 1-

dimensional Brownian motion on (2, F, P). Let F'"V be the augmented fil-
tration generated by W.



Denote by A°([c,C]), for some 0 < ¢ < C' < oo, the collection of FW
adapted processes in the following form

hS == 5 ]-]ZT (l+1)T]( )?
iT T .
where & = ([ yr hsdW, - - wfo’" hsdWs), i € Coip(R'), ¢ < || < C.

Denote by A(]c, C’T) the collection of F"W' adapted processes such that ¢ <
|hs| < C.

Lemma 4.2 A%([c, C]) is dense in A([c, C]) under the norm
T
Iills = B[ Ihfas)

Proof. Let hy = S0 &1 i (z+1)T}( s), where

m

&= SOi(W% —Wenr, - Wz — Wo),

i € Coip(R'), ¢ < || < C.

Then o(s,x) = h;'(z) is a bounded Lipschitz function. Let X; := fot hsdW;.
Since W; = fo s,W)dX,, we conclude, by Lemma 4.1, that W is FX-
adapted.

For a process {X;}, we denote the vector (X7 — Xm-yr, -+, Xz — X)
by X" 01"

m m

For arbitrary ¢; > 0,7 =0, - - -1, there ex1sts Y; € C’b 1ip(R™) with
the Lipschitz constant L; such that E[|& — &% < €2. Here & = wZ(X[ZO"QT ),

¢ < |[¢;] < C. Without loss of generality, we assume that there exists K;; € N
such that n; = K;n; form—-1>14> j > 0.

Define EZ in the following way:

2

For s €]0, %], /}\LS = a),

Assume that we have defined h, for all s € 0, L], 0<i<m—1,
Define X, := fOtTLSdWS, for ¢ € [0, L],

& = (X,

m

For s €], GEOTY 3 = &,

m



We claim that for any m —1 >4 > 1,
~1

E[& - & 2: (4.0.7)

7=0

where A} = L2 (Si _ip Af 1), fori > j+2, A} | = 2T'L}, which shows
that A; depends only on LJH, cvo Ly and T.

Indeed, Ell&y ~ &7 < LIE[lG — &PIENWs P = TL3e) < Afet.
Assume (£.0.7) holds for 1 <i <. Fori=1+1,
[\5+1 — &)

< Ll—l-lZE |€z fz ] H [:Lér+1(z+1)T]|2]
< oTLZ, ZEK@ — &P+ & - &)
< TS5 A
i=1 7=0
-1 !
= 2TL7 ) () A+ 1) + <7
j=0 i=j+1

I

_ 1+1_2

= E Aj £
=0

Then
E[l&; N &\i] B
< mm@—¢ﬂ+ﬂm—&m
g2e+ﬂzﬁ2

. i 2
o ZBJ €
=0

which shows that B;- depends only on L;y,---,L; and T So for any € > 0,

we can choose é, 1 =0,---,m — 1 defined above such that E[|§AZ &Gl <e
forall i =0,---,m —1. Then

T
EM\@—@M<%.
0
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0]
Proof to Theorem 3.3. For n € M}(0,T) with E[fOT Ins|ds] > 0, by

Theorem 2.6 and Remark 2.7, there exists ¢ > 0 and P € Pj; such that
Ep fOT Ins|ds] =: A >0 and for any 0 < s <t <T

(g2 +e)(t—3s) < (B)—(B), < (@ —¢)(t—3s), P-as.
;> 0> 0, there exists ¢ € Mg(0,T) such that

T
B / ne — Golds] < 8

Let (Q°, F = {F}, F°, P°) be a filtered probability space, and {W;} be a

) - t
d-dimensional Brownian motion under P°. By Remark 2.7, there exists an F
7 —e such that P = P ( [, hedW,)™".

adapted process h with g?+¢e < h? <&
Without loss of generality, by Lemma 4.2, we assume that there exists

m—1
= Z g% 1]£7 (i+1)T](S)

Br — By), @i € Cyuip(RY), for all 0 < i <

For any (

m € N such that

where fg = gOi(BzT — B(z 1)T,

m 1’ m m
m—
Z le 'LT7(1+1)T )
P m
i T
where Qir = ¢i(f(i"il)T h’deS7 t Ufom hdes>7 g2 + ¢ S ‘wl|2 S 52 -5

i € Cyuip(R), for all 0 < i < m — 1.
1. Define H' : [0® 4+ £,5% — €] — [0,7], i=1, -1 in the following way

1,02 _ =2 2 )
H (SL’) =0 1[x232;22}+(2x a )1[I<32J2r£2}7

—2 2
(21’ —0 )1[1‘232;22} +0o 1[:c<32;22 .

It’s easily seen that H'(z)* + H'(x)? = 2z and H'(z)* — H

HY(z)? = }
For n € N, define H! : [0,1/m] x [¢% +¢,5% — €] — [o,7],

“Hz)? > 2e.
t=1,—1 by

2n—1

HZ S l’ Z 1 ZJT (]2+1)T H( 1)”(1’).

2. Fixn € N.
11



ag = ao, & = o,

For s €0, 771, ht = B (s, (af)?);

Assume that we have defined A? for all s € [0,L], 0 <i <m — 1.
i T

ayil = wi(f(ﬁl)T h?dst Tt fom h?dWs)7

m

N

3

T T
£ = %-(f(;’il)T REdWs, - - -, me h?dWs),
, , sgn(&hr) .
For s €], WHUT) pn— [, % (s — L (gn,)?2)

3. Eplfy |Glds] = Er, L[y |GIds),

In fact,
T
Bel [ 1G1ds
0

T m—1 T T

= EEPO[Z |90i([i1)T hedW,, - - '>/0 hdeS)H
i=0 —
7 z
- EPO [(I)([ml)tr hsdWs, - - '7/0 hSdWS)]
and

T T T
Ephn[/ Icslds]zEpo[cb% ) hg‘dWS,---,/ R dW)].
0 m—1)T

0

Let = (2,_1,- - -, 21). Noting that

(bm_l(l')
T
son . m—1)T
— EPO{(I)(/(‘ml)T H® (pm—1( ))(8 — %7wm—l(x>2>dwsax>}

= Enfo([ | dnea@)dV o)

m

we have
T T (m—1)T T
EPO [é(/ hdesa a/ h’des)] = EPO [ém—l(/ hdesa a/ h’des)]
(m—1)T 0 (m—2)T 0
T T (m=-1)T T
Enle([ | waWee [T i) = Enlen([ 7 wawe, [T maw)
(m—1)T 0 (m—2)T 0

12



By induction on m, we get the desired result.
4.

~

B / o (5)7l{B)

v

B / Somn (5)Cod(BY,] — B / ns — Co|d(B)4]

v

S
.
3

T
[/0 S2mn ()Csd(B)s] — 76
m—1 G+HT

= EnalY [T ()] -

1
=0 Y m
m—1 @+)T

= BnalX 6 [ bens)iB)]

vV
|
™
&
.
3

=0

T
= 6EPh"[ ‘C8|d3] — 7%
0
T

5Ep[/ IC,|ds] — 725
0

vV

T

5Ep[/ ns|ds] — €6 — %6
0

> Ae—ed—3% > 0.

Since A, e,6 do not depend on n, we have d(n) > Ae —ed — 325 > 0. The
proof is completed. [
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