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1 Introduction

In [P07b], processes in form of
∫ t

0
ηsd〈B〉s−

∫ t

0
2G(ηs)ds, η ∈M1

G(0, T ) are
proved to be G-martingales. However, the uniqueness of the representation
remains unresolved. In order to prove the uniqueness, we must find ways to
distinguish the two classes of processes in forms of

∫ t

0
ηsd〈B〉s and

∫ t

0
ζsds,

η, ζ ∈M1
G(0, T ).

For a process {Kt} with finite variation, motivated by [Song10], we define

d(K) := lim sup
n→∞

Ê[

∫ T

0

δn(s)dKs],

∗Y. Song was supported by the National Basic Research Program of China (973 Pro-
gram) (No.2007CB814902), Key Lab of Random Complex Structures and Data Science,
Chinese Academy of Sciences (Grant No. 2008DP173182).
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where, for n ∈ N , δn(s) is defined in the following way:

δn(s) =
n−1∑

i=0

(−1)i1
] iT
n
,
(i+1)T

n
]
(s), for all s ∈ [0, T ].

We prove that d(K) = 0 if Kt =
∫ t

0
ζsds for some ζ ∈ M1

G(0, T ) and that

d(K) > 0 if Kt =
∫ t

0
ηsd〈B〉s for some η ∈M1

G(0, T ) such that Ê[
∫ T

0
|ηs|ds] >

0. By this, we distinguish these two classes of processes completely:

If
∫ t

0
ηsd〈B〉s =

∫ t

0
ζsds, for some η, ζ ∈ M1

G(0, T ), then we have

Ê[

∫ T

0

|ηs|ds] = Ê[

∫ T

0

|ζs|ds] = 0.

As an application, we prove the uniqueness of the representation for G-
martingales with finite variation.

This article is organized as follows: In section 2, we recall some basic no-
tions and results of G-expectation and the related space of random variables.
In section 3, we present the main results and some corollaries. In section 4,
we give the proofs to the main results.

2 Preliminaries

We recall some basic notions and results of G-expectation and the related
space of random variables. More details of this section can be found in [P07a,
P07b, P08, P10].

Definition 2.1 Let Ω be a given set and let H be a linear space of real valued
functions defined on Ω with c ∈ H for all constants c. H is considered as the
space of random variables. A sublinear expectation Ê on H is a functional
Ê : H → R satisfying the following properties: for all X, Y ∈ H, we have

(a) Monotonicity: If X ≥ Y then Ê(X) ≥ Ê(Y ).

(b) Constant preserving: Ê(c) = c.

(c) Sub-additivity: Ê(X)− Ê(Y ) ≤ Ê(X − Y ).

(d) Positive homogeneity: Ê(λX) = λÊ(X), λ ≥ 0.

(Ω,H, Ê) is called a sublinear expectation space.

Definition 2.2 Let X1 and X2 be two n-dimensional random vectors defined
respectively in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2).
They are called identically distributed, denoted by X1 ∼ X2, if Ê1[ϕ(X1)] =
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Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(R
n), where Cl,Lip(R

n) is the space of real continuous
functions defined on Rn such that

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|k + |y|k)|x− y|, ∀x, y ∈ Rn,

where k depends only on ϕ.

Definition 2.3 In a sublinear expectation space (Ω,H, Ê) a random vector
Y = (Y1, · · ·, Yn), Yi ∈ H is said to be independent to another random vector
X = (X1, · · ·, Xm), Xi ∈ H under Ê(·), denoted by Y⊥X , if for each test
function ϕ ∈ Cl,Lip(R

m × Rn) we have Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Definition 2.4 (G-normal distribution) A d-dimensional random vectorX =
(X1, · · ·, Xd) in a sublinear expectation space (Ω,H, Ê) is called G-normal
distributed if for each a, b ∈ R we have

aX + bX̂ ∼
√
a2 + b2X,

where X̂ is an independent copy of X . Here the letter G denotes the function

G(A) :=
1

2
Ê[(AX,X)] : Sd → R,

where Sd denotes the collection of d× d symmetric matrices.

The function G(·) : Sd → R is a monotonic, sublinear mapping on Sd and
G(A) = 1

2
Ê[(AX,X)] ≤ 1

2
|A|Ê[|X|2] =: 1

2
|A|σ̄2 implies that there exists a

bounded, convex and closed subset Γ ⊂ S+
d such that

G(A) =
1

2
sup
γ∈Γ

Tr(γA). (2.0.1)

If there exists some β > 0 such that G(A) − G(B) ≥ βTr(A − B) for any
A ≥ B, we call the G-normal distribution is non-degenerate.

Definition 2.5 i) Let ΩT = C0([0, T ];R
d) with the supremum norm, H0

T :=
{ϕ(Bt1 , ..., Btn)|∀n ≥ 1, t1, ..., tn ∈ [0, T ], ∀ϕ ∈ Cl,Lip(R

d×n)}, G-expectation
is a sublinear expectation defined by

Ê[ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1)]

= Ẽ[ϕ(
√
t1 − t0ξ1, · · ·,

√
tm − tm−1ξm)],

for all X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1), where ξ1, · · ·, ξn are
identically distributed d-dimensional G-normal distributed random vectors
in a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent to
(ξ1, · · ·, ξi) for each i = 1, · · ·, m. (ΩT ,H0

T , Ê) is called a G-expectation space.
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ii) For t ∈ [0, T ] and ξ = ϕ(Bt1 , ..., Btn) ∈ H0
T , the conditional expectation

defined by(there is no loss of generality, we assume t = ti)

Êti [ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1)]

= ϕ̃(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Bti −Bti−1
),

where

ϕ̃(x1, · · ·, xi) = Ê[ϕ(x1, · · ·, xi, Bti+1
−Bti , · · ·, Btm −Btm−1)].

Define ‖ξ‖p,G = [Ê(|ξ|p)]1/p for ξ ∈ H0
T and p ≥ 1. Then ∀t ∈ [0, T ],

Êt(·) is a continuous mapping on H0
T with norm ‖ · ‖1,G and therefore can be

extended continuously to the completion L1
G(ΩT ) of H0

T under norm ‖ · ‖1,G.
Let Lip(ΩT ) := {ϕ(Bt1 , ..., Btn)|n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ Cb,Lip(R

d×n)},
where Cb,Lip(R

d×n) denotes the set of bounded Lipschitz functions on Rd×n.
[DHP08] proved that the completions of Cb(ΩT ), H0

T and Lip(ΩT ) under
‖ · ‖p,G are the same and we denote them by Lp

G(ΩT ).

Definition 2.5 Let M0
G(0, T ) be the collection of processes in the following

form: for a given partition {t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =
N−1∑

j=0

ξj(ω)1]tj ,tj+1](t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For p ≥ 1 and η ∈ M0
G(0, T ),

let ‖η‖Mp
G
= {Ê(

∫ T

0
|ηs|pds)}1/p and denote by Mp

G(0, T ) the completion of

M0
G(0, T ) under the norm ‖ · ‖Mp

G
.

Theorem 2.6([DHP08]) There exists a tight subset P ⊂ M1(ΩT ) such that

Ê(ξ) = max
P∈P

EP (ξ) for all ξ ∈ H0
T .

P is called a set that represents Ê.

Remark 2.7 Let (Ω0, {F0
t },F0, P 0) be a filtered probability space and {Wt}

be a d-dimensional Brownian motion under P 0. [DHP08] proved that

PM := {P0 ◦X−1|Xt =

∫ t

0

hsdWs, h ∈ L2
F([0, T ]; Γ

1/2)}

is a set that represents Ê, where Γ1/2 := {γ1/2|γ ∈ Γ} and Γ is the set in the
representation of G(·) in the formula (2.0.1).
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3 Main results

In the sequel, we only consider the G-expectation space (ΩT , L
1
G(ΩT , Ê)) with

ΩT = C0([0, T ], R) and σ
2 = Ê(B2

1) > −Ê(−B2
1) = σ2 ≥ 0.

Proposition 3.1 For each η ∈M1
G(0, T ), let

d(η) = lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s].

Then

− σ2 − σ2

2
Ê[−

∫ T

0

|ηs|ds] ≤ d(η) ≤ σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds]. (3.0.2)

Proof. It suffices to prove the conclusion for η ∈ M0
G(0, T ). Let ηs =∑m−1

i=0 ξti1]ti,ti+1](s), ξti ∈ L1
G(Ωti), i = 0, · · ·, m− 1.

Ê[

∫ T

0

δn(s)ηsd〈B〉s]−
σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds]

= Ê[

m−1∑

i=0

|ξti|
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s]− Ê[

m−1∑

i=0

|ξti|
∫ ti+1

ti

σ2 − σ2

2
ds]

≤
m−1∑

i=0

Ê[|ξti|(
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)] → 0

as n goes to infinity. So

d(η) ≤ σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds].

On the other hand,

Ê[

∫ T

0

δn(s)ηsd〈B〉s] +
σ2 − σ2

2
Ê[−

∫ T

0

|ηs|ds]

= Ê[

m−1∑

i=0

|ξti|
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s] + Ê[

m−1∑

i=0

(−|ξti |)
∫ ti+1

ti

σ2 − σ2

2
ds]

≥ Ê[

m−1∑

i=0

|ξti|(
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)]

≥
m−1∑

i=0

[−Ê(|ξti |)ai(n)],
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where ai(n) = max{|Ê(
∫ ti+1

ti
δn(s)d〈B〉s−

∫ ti+1

ti

σ2−σ2

2
ds)|, |Ê(−

∫ ti+1

ti
δn(s)d〈B〉s−∫ ti+1

ti

σ2−σ2

2
ds)|} → 0 as n goes to infinity. So

−σ
2 − σ2

2
Ê[−

∫ T

0

|ηs|ds] ≤ d(η).

�

Remark 3.2 (i) A straightforward corollary of Proposition 3.1 is that if∫ T

0
|ηs|ds is symmetric (i.e., Ê[

∫ T

0
|ηs|ds] = −Ê[−

∫ T

0
|ηs|ds]), the equality

d(η) = σ2−σ2

2
Ê[

∫ T

0
|ηs|ds] holds.

(ii) By Lemma 3.1, we could not conclude that d(η) > 0 whenever

Ê[
∫ T

0
|ηs|ds] > 0, which is the conclusion of Theorem 3.3 below.

(iii) The inequalities in (3.0.2) may be strict:

Let ηs = 〈B〉T/21]T/2,T ](s) + a1[0,T/2](s), a = T (σ2 − σ2)/4.

Then

d(η) = lim
n→∞

Ê[

∫ T

0

δ2n(s)ηsd〈B〉s] = aσ2T/2,

σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds] = a2 + aσ2T/2,

−σ
2 − σ2

2
Ê[−

∫ T

0

|ηs|ds] = −a2 + aσ2T/2.

�

Now, we shall state the main result of this article, whose proof is post-
poned to Section 4.

Theorem 3.3 For η ∈M1
G(0, T ) with Ê[

∫ T

0
|ηs|ds] > 0, we have

d(η) = lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s] > 0.

Theorem 3.4 Let η ∈M1
G(0, T ). Then limn→∞ Ê[

∫ T

0
δn(s)ηsds] = 0.

Proof. For η ∈M0
G(0, T ), the claim is obvious. For η ∈ M1

G(0, T ), there

exists a sequence of {ηm} ⊂M0
G(0, T ) such that Ê[

∫ T

0
|ηms −ηs|ds] → 0. Then

|Ê[
∫ T

0
δn(s)ηsds]| ≤ |Ê[

∫ T

0
δn(s)η

m
s ds]|+ Ê[

∫ T

0
|ηms − ηs|ds]. First let n→ ∞,

then let m→ ∞, and we get the desired result. �

Remark 3.5 Let (Ω, F,F , P ) be a filtered probability space. We recall that

for any progressively measurable process η such that E[
∫ T

0
|ηs|ds] < ∞, we
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have

lim
n→∞

Ê[

∫ T

0

δn(s)ηsds] = 0.

Therefore, Theorem 3.3 presents a particular property of G-expectation space
relative to probability space.

Corollary 3.6 Let ζ, η ∈M1
G(0, T ). If

∫ t

0
ηsd〈B〉s =

∫ t

0
ζsds for all t ∈ [0, T ],

then E[
∫ T

0
|ηs|ds] = Ê[

∫ T

0
|ζs|ds] = 0.

Proof. By Theorem 3.4, we have

lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s] = lim
n→∞

Ê[

∫ T

0

δn(s)ζsds] = 0.

By Theorem 3.3, we have Ê[
∫ T

0
|ηs|ds] = 0, which leads to Ê[

∫ T

0
|ζs|ds] = 0.

�

The following corollary is about the uniqueness of representation for G-
martingales with finite variation.

Corollary 3.7 Let ζ, η ∈M1
G(0, T ). If for all t ∈ [0, T ],

∫ t

0

ηsd〈B〉s −
∫ t

0

2G(ηs)ds =

∫ t

0

ζsd〈B〉s −
∫ t

0

2G(ζs)ds, (3.0.3)

we have Ê[
∫ T

0
|ηs − ζs|ds] = 0.

Proof. By the assumption, we have

∫ t

0

(ηs − ζs)d〈B〉s =
∫ t

0

2[G(ηs)−G(ζs)]ds, for all t ∈ [0, T ].

Since η − ζ, 2[G(η) − G(ζ)] ∈ M1
G(0, T ), we have Ê[

∫ T

0
|ηs − ζs|ds] = 0 by

Corollary 3.6. �

Remark 3.8(i) In the setting considered in this article, G(a) = 1
2
(σ2a+ −

σ2a−). For ε ∈ (0, σ
2−σ2

2
), [HuP10] defined Gε in the following way:

Gε(a) = G(a)− ε

2
|a|, for all a ∈ R.

Indeed, Proof to Theorem 3.3 in the next section leads to the following con-
clusion:

d(η) ≥ εÊGε
[

∫ T

0

|ηs|ds]. (3.0.4)
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(ii) For η ∈ M1
G(0, T ), let Kt =

∫ T

0
ηsd〈B〉s −

∫ T

0
2G(ηs)ds. Then, by

Theorem 3.4, we have

Ê(−KT ) ≥ lim sup
n→∞

Ê(

∫ T

0

δn(s)dKs) = d(η). (3.0.5)

This, combined with (3.0.4), leads to the following estimate:

Ê[−KT ] ≥ εÊGε
[

∫ T

0

|ηs|ds],

which was already proved in [HuP10]. Then for η, ζ ∈ M1
G(0, T ) such that

(3.0.3) and
∫ t

0

2[G(ηs)−G(ζs)]ds =

∫ t

0

2[G(ηs − ζs)]ds for all t ∈ [0, T ] (3.0.6)

hold, we have Ê[
∫ T

0
|ηs−ζs|ds] = 0. However, (3.0.6) does not hold generally

since the nonlinearity of G, which is the main difficulty to deal with such
questions. �

4 Proof to Theorem 3.3

In order to prove Theorem 3.3, we first introduce two lemmas.

Let ΩT = Cb([0, T ];R) be endowed with the supremum norm and let
σ : [0, T ]× ΩT → R be a measurable mapping satisfying

i) σ is bounded;

ii) There exists C > 0 such that |σ(s, x) − σ(s, y)| ≤ C‖x − y‖ for any
s ∈ [0, T ] and x, y ∈ Cb([0, T ];R);

iii)For t ∈ [0, T ], σ(t, ·) is Bt(ΩT ) measurable.

Then the following lemma is easy.

Lemma 4.1 Let (Ω, F,F , P ) be a filtered probability space and let M be a
continuous F -martingale with 〈M〉t − 〈M〉s ≤ C(t− s) for some C > 0 and
any 0 ≤ s < t ≤ T . Let FX be the augmented filtration generated by X .
Then for any Y0 ∈ FX

0 , there exists a unique F -adapted continuous process
with E[supt∈[0,T ] |Yt|2] <∞ such that Yt = Y0 +

∫ t

0
σ(s, Y )dXs. Moreover, Y

is FX-adapted. �

Let (Ω,F , P ) be a probability space and let {Wt} be a standard 1-
dimensional Brownian motion on (Ω,F , P ). Let FW be the augmented fil-
tration generated by W .
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Denote by A0([c, C]), for some 0 < c ≤ C < ∞, the collection of FW

adapted processes in the following form

hs =
m−1∑

i=0

ξi1] iT
m

,
(i+1)T

m
]
(s),

where ξi = ψi(
∫ iT

m
(i−1)T

m

hsdWs, · · ·,
∫ T

m

0
hsdWs), ψi ∈ Cb,lip(R

i), c ≤ |ψi| ≤ C.

Denote by A([c, C]) the collection of FW adapted processes such that c ≤
|hs| ≤ C.

Lemma 4.2 A0([c, C]) is dense in A([c, C]) under the norm

‖h‖2 = [E(

∫ T

0

|hs|2ds)]1/2.

Proof. Let hs =
∑m−1

i=0 ξi1] iT
m

, (i+1)T
m

]
(s), where

ξi = ϕi(W iT
m
−W (i−1)T

m

, · · ·,W T
m
−W0),

ϕi ∈ Cb,lip(R
i), c ≤ |ϕi| ≤ C.

Then σ(s, x) = h−1
s (x) is a bounded Lipschitz function. Let Xt :=

∫ t

0
hsdWs.

Since Wt =
∫ t

0
σ(s,W )dXs, we conclude, by Lemma 4.1, that W is FX-

adapted.

For a process {Xt}, we denote the vector (XT −X (m−1)T
m

, · · ·, X T
m
−X0)

by Xm
[0,T ].

For arbitrary εi > 0, i = 0, · · ·, m− 1, there exists ψi ∈ Cb,lip(R
ini) with

the Lipschitz constant Li such that E[|ξi − ξ̃i|2] < ε2i . Here ξ̃i = ψi(X
ini

[0, iT
m

]
),

c ≤ |ψi| ≤ C. Without loss of generality, we assume that there existsKji ∈ N
such that nj = Kjini for m− 1 ≥ i > j ≥ 0.

Define ξ̂i in the following way:

ξ̂0 = ξ̃0,

For s ∈]0, T
m
], ĥs = ξ̂0,

Assume that we have defined ĥs for all s ∈ [0, iT
m
], 0 ≤ i ≤ m− 1,

Define X̂t :=
∫ t

0
ĥsdWs, for t ∈ [0, iT

m
],

ξ̂i = ψi(X̂
ini

[0, iT
m

]
),

For s ∈] iT
m
, (i+1)T

m
], ĥs = ξ̂i.
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We claim that for any m− 1 ≥ i ≥ 1,

Ê[|ξ̂i − ξ̃i|2] ≤
i−1∑

j=0

Ai
jε

2
j , (4.0.7)

where Ai
j = 2TL2

i (
∑i−1

k=j+1A
k
j + 1), for i ≥ j + 2, Ai

i−1 = 2TL2
i , which shows

that Ai
j depends only on Lj+1, · · ·, Li and T .

Indeed, E[|ξ̂1 − ξ̃1|2] ≤ L2
1E[|ξ̂0 − ξ0|2|]E[|W n1

[0, T
m
]
|2] = T

m
L2
1ε

2
0 ≤ A1

0ε
2
0.

Assume (4.0.7) holds for 1 ≤ i ≤ l. For i = l + 1,

E[|ξ̂l+1 − ξ̃l+1|2]

≤ L2
l+1

l∑

i=0

E[|ξ̂i − ξi|2]E[|W nl+1

[ iT
m

, (i+1)T
m

]
|2]

≤ 2TL2
l+1

l∑

i=0

E[(|ξ̂i − ξ̃i|2 + |ξ̃i − ξi|2)]

≤ 2TL2
l+1(

l∑

i=0

ε2i +

l∑

i=1

i−1∑

j=0

Ai
jε

2
j)

= 2TL2
l+1[

l−1∑

j=0

(
l∑

i=j+1

Ai
j + 1)ε2j + ε2l ]

=
l∑

j=0

Al+1
j ε2j .

Then

E[|ξ̂i − ξi|2]
≤ 2(E[|ξ̂i − ξ̃i|2] + E[|ξ̃i − ξi|2])

≤ 2ε2i + 2
i−1∑

j=0

Ai
jε

2
j

=:
i∑

j=0

Bi
jε

2
j ,

which shows that Bi
j depends only on Lj+1, · · ·, Li and T . So for any ε > 0,

we can choose ξ̂i, i = 0, · · ·, m − 1 defined above such that E[|ξ̂i − ξi|2] < ε
for all i = 0, · · ·, m− 1. Then

E[

∫ T

0

|hs − ĥs|2] < Tε.

10
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Proof to Theorem 3.3. For η ∈ M1
G(0, T ) with Ê[

∫ T

0
|ηs|ds] > 0, by

Theorem 2.6 and Remark 2.7, there exists ε > 0 and P ∈ PM such that
EP [

∫ T

0
|ηs|ds] =: A > 0 and for any 0 ≤ s < t ≤ T

(σ2 + ε)(t− s) ≤ 〈B〉t − 〈B〉s ≤ (σ2 − ε)(t− s), P-a.s..

For any Aε
(σ2+ε)

> δ > 0, there exists ζ ∈M0
G(0, T ) such that

Ê[

∫ T

0

|ηs − ζs|ds] < δ.

Let (Ω0, F = {F0
t },F0, P 0) be a filtered probability space, and {Wt} be a

d-dimensional Brownian motion under P 0. By Remark 2.7, there exists an F
adapted process h with σ2+ε ≤ h2s ≤ σ2−ε such that P = P 0◦(

∫ ·

0
hsdWs)

−1.

Without loss of generality, by Lemma 4.2, we assume that there exists
m ∈ N such that

ζs =
m−1∑

i=0

ξ iT
m
1
] iT
m

,
(i+1)T

m
]
(s)

where ξ iT
m

= ϕi(B iT
m
− B (i−1)T

m

, · · ·, B T
m
− B0), ϕi ∈ Cb,lip(R

i), for all 0 ≤ i ≤
m− 1;

hs =
m−1∑

i=0

a iT
m
1
] iT
m

,
(i+1)T

m
]
(s)

where a iT
m

= ψi(
∫ iT

m
(i−1)T

m

hsdWs, · · ·,
∫ T

m

0
hsdWs), σ

2 + ε ≤ |ψi|2 ≤ σ2 − ε,

ψi ∈ Cb,lip(R
i), for all 0 ≤ i ≤ m− 1.

1. Define H i : [σ2 + ε, σ2 − ε] → [σ, σ], i=1, -1 in the following way:

H1(x)2 = σ21
[x≥

σ2+σ2

2
]
+ (2x− σ2)1

[x<
σ2+σ2

2
]
;

H−1(x)2 = (2x− σ2)1
[x≥σ2+σ2

2
]
+ σ21

[x<σ2+σ2

2
]
.

It’s easily seen that H1(x)2 +H−1(x)2 = 2x and H1(x)2 −H−1(x)2 ≥ 2ε.

For n ∈ N , define H i
n : [0, 1/m]× [σ2 + ε, σ2 − ε] → [σ, σ], i = 1,−1 by

H i
n(s, x) =

2n−1∑

j=0

1
] jT
2mn

, (j+1)T
2mn

]
(s)H(−1)j i(x).

2. Fix n ∈ N .
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an0 = a0, ξ
n
0 = ξ0,

For s ∈]0, T
m
], hns = H

sgn(ξn0 )
n (s, (an0 )

2);

Assume that we have defined hns for all s ∈ [0, iT
m
], 0 ≤ i ≤ m− 1.

aniT
m

= ψi(
∫ iT

m
(i−1)T

m

hnsdWs, · · ·,
∫ T

m

0
hnsdWs),

ξniT
m

= ϕi(
∫ iT

m
(i−1)T

m

hnsdWs, · · ·,
∫ T

m

0
hns dWs),

For s ∈] iT
m
, (i+1)T

m
], hns = H

sgn(ξniT
m

)

n (s− iT
m
, (aniT

m

)2).

3. EP [
∫ T

0
|ζs|ds] = EPhn

[
∫ T

0
|ζs|ds].

In fact,

EP [

∫ T

0

|ζs|ds]

=
T

m
EP0 [

m−1∑

i=0

|ϕi(

∫ iT
m

(i−1)T
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)|]

= : EP0 [Φ(

∫ T

(m−1)T
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)]

and

EPhn
[

∫ T

0

|ζs|ds] = EP0 [Φ(

∫ T

(m−1)T
m

hns dWs, · · ·,
∫ T

m

0

hnsdWs)].

Let x = (xm−1, · · ·, x1). Noting that

Φm−1(x)

:= EP0{Φ(
∫ T

(m−1)T
m

Hsgn(ϕm−1(x))
n (s− (m− 1)T

m
, ψm−1(x)

2)dWs, x)}

= EP0{Φ(
∫ T

(m−1)T
m

ψm−1(x)dWs, x)},

we have

EP0[Φ(

∫ T

(m−1)T
m

hsdWs, ···,
∫ T

m

0

hsdWs)] = EP0 [Φm−1(

∫ (m−1)T
m

(m−2)T
m

hsdWs, ···,
∫ T

m

0

hsdWs)]

EP0[Φ(

∫ T

(m−1)T
m

hnsdWs, ···,
∫ T

m

0

hnsdWs)] = EP0 [Φm−1(

∫ (m−1)T
m

(m−2)T
m

hnsdWs, ···,
∫ T

m

0

hnsdWs)].
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By induction on m, we get the desired result.

4.

Ê[

∫ T

0

δ2mn(s)ηsd〈B〉s]

≥ Ê[

∫ T

0

δ2mn(s)ζsd〈B〉s]− Ê[

∫ T

0

|ηs − ζs|d〈B〉s]

≥ EPhn
[

∫ T

0

δ2mn(s)ζsd〈B〉s]− σ2δ

= EPhn
[

m−1∑

i=0

∫ (i+1)T
m

iT
m

δ2mn(s)ζsd〈B〉s]− σ2δ

= EPhn
[
m−1∑

i=0

ξ iT
m

∫ (i+1)T
m

iT
m

δ2mn(s)d〈B〉s]− σ2δ

≥ T

m
εEPhn

[

m−1∑

i=0

|ξ iT
m
|]− σ2δ

= εEPhn
[

∫ T

0

|ζs|ds]− σ2δ

= εEP [

∫ T

0

|ζs|ds]− σ2δ

≥ εEP [

∫ T

0

|ηs|ds]− εδ − σ2δ

≥ Aε− εδ − σ2δ > 0.

Since A, ε, δ do not depend on n, we have d(η) ≥ Aε − εδ − σ2δ > 0. The
proof is completed. �
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