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A GENERALIZATION OF THE DRESS CONSTRUCTION FOR A

TAMBARA FUNCTOR, AND POLYNOMIAL TAMBARA

FUNCTORS

HIROYUKI NAKAOKA

Abstract. For a finite group G, (semi-)Mackey functors and (semi-)Tambara
functors are regarded as G-bivariant analogs of (semi-)groups and (semi-)rings
respectively. In fact if G is trivial, they agree with the ordinary (semi-)groups
and (semi-)rings, and many naive algebraic properties concerning rings and
groups have been extended to these G-bivariant analogous notions.

In this article, we investigate a G-bivariant analog of the semi-group rings
with coefficients. Just as a coefficient ring R and a monoid Q yield the semi-
group ring R[Q], our constrcution enables us to make a Tambara functor T [M ]
out of a semi-Mackey functor M , and a coefficient Tambara functor T . This
construction is a composant of the Tambarization and the Dress construction.

As expected, this construction is the one uniquely determined by the right-
eous adjoint property. Besides in analogy with the trivial group case, if M is
a Mackey functor, then T [M ] is equipped with a natural Hopf structure.

Moreover, as an application of the above construction, we also obtain some
G-bivariant analogs of the polynomial rings.

1. Introduction and preliminaries

For a finite group G, a (resp. semi-)Mackey functor is a pair of a contravariant
functor and a covariant functor to the category of abelian groups Ab (resp. of
commutative monoids Mon), satisfying some conditions (Definition 1.2). Since the
category of Mackey functors is a symmetric monoidal abelian category which agrees
with Ab when G is trivial, it is regarded as a G-bivariant analog of Ab. Similarly a
semi-Mackey functor is regarded as a G-bivariant analog of a commutative monoid.

In this view, a Tambara functor is regarded as a G-bivariant analog of a commu-
tative ring. It consists of an additive Mackey functor structure and a multiplicative
semi-Mackey functor structure, satisfying the ‘distributive law’ (Definition 1.6).

Some naive algebraic properties concerning rings and groups have been extended
to these G-bivariant analogous notions. For example, in our previous result ([4]),
as a G-bivariant analog of the functor taking semi-group rings

Z[−] : Mon → Ring,

we constructed a functor called the Tambarization functor

T : SMack (G) → Tam(G),
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which is characterized by some natural adjoint property (Fact 2.2). Here SMack (G)
denotes the category of semi-Mackey functors, and Tam(G) denotes the category
of Tambara functors.

In this article, more generally, we investigate a G-bivariant analog of the semi-
group ring with a coefficient ring. In the trivial group case, from any commutative
ring R and any commutative monoid Q we can make the semi-group ring R[Q], and
this gives a functor

Ring ×Mon → Ring ; (R,Q) 7→ R[Q].

In section 2, analogously we construct a functor

Tam(G)× SMack (G) → Tam(G),

which unifies the Tambarization ([4]) and the Dress construction ([5]) as follows:

Theorem 2.5 . For any finite group G, there is a functor

F : Tam(G) × SMack (G) → Tam(G)

which satisfies the following.

(i) If G is trivial, then F agrees with the functor taking semi-group rings with
coefficients

Ring ×Mon → Ring ; (R,Q) 7→ R[Q].

(ii) If T = Ω, we have a natural isomorphism F(Ω,M) ∼= T (M) for each semi-
Mackey functor M .

(iii) If Q is a finite G-monoid, then we have a natural isomorphism F(T,PQ) ∼=
TQ for each Tambara functor T . Here, TQ is the Tambara functor obtained
through the Dress construction ([5]).

As expected from the trivial group case, F is the unique functor characterized
by the following adjoint property:

Theorem 2.5 (iv) . For each Tambara functor T and semi-Mackey functor M ,
naturally F(T,M) becomes a T -Tambara functor. Moreover if we fix T , then the
induced functor

F(T,−) : SMack (G) → T -Tam(G)

is left adjoint to the composition of forgetful functors

T -Tam(G) → Tam(G)
(−)µ

−→ SMack(G) ; (S, σ) 7→ Sµ.

Besides in analogy with the trivial group case, ifM is a Mackey functor, then T [M ]
is equipped with a natural Hopf structure (T [M ],∆, ε, η) (Corollary 2.9).

In the last section, as an application of the construction above, we consider
some G-bivariant analogs of the polynomial ring. In the trivial group case, the
polynomial ring R[X] over R with one variable X was characterized by the natural
bijection

R-Alg(R[X], S)
∼=
→ S

for each R-algebra S. To any Tambara functor T , we associate two types of ‘poly-
nomial’ Tambara functors T [x] and T [X]. Analogously, we obtain natural bijections
for each T -Tambara functor S

T -Tam(G)(T [x], S) ∼= S(G/e)G,

T -Tam(G)(T [X], S) ∼= S(G/G),
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and thus T [x] and T [X] are characterized by these bijections (Theorem 3.2).

Throughout this article, we fix a finite group G, whose unit element is denoted
by e. H ≤ G means H is a subgroup of G. Gset denotes the category of finite
G-sets and G-equivariant maps. A monoid is always assumed to be unitary and
commutative. Similarly a (semi-)ring is assumed to be commutative, and have an
additive unit 0 and a multiplicative unit 1. We denote the category of monoids by
Mon , the category of (resp. semi-)rings by Ring (resp. SRing), and the category of
abelian groups by Ab. A monoid homomorphism preserves units, and a (semi-)ring
homomorphism preserves 0 and 1.

For any category K and any pair of objects X and Y in K, the set of morphisms
from X to Y in K is denoted by K(X,Y ). For each X ∈ Ob(K), the slice category
of K over X is denoted by K/X .

Definition 1.1. An additive contravariant functor F on G means a contravariant
functor

F : Gset → Mon ,

which sends coproducts in Gset to products in Mon . A morphism from one addi-
tive contravariant functor to another merely means a natural transformation. The
category of additive contravariant functors is denoted by Madd(G).

Definition 1.2. A semi-Mackey functor M on G is a pair M = (M∗,M∗) of a
covariant functor

M∗ : Gset → Mon

and an additive contravariant functor

M∗ : Gset → Mon ,

satisfying M∗(X) = M∗(X) for any X ∈ Ob(Gset), and the following Mackey
condition:

• (Mackey condition)
If we are given a pull-back diagram

X ′ Y ′

X Y

�

f ′

//

x

��
y

��

f
//

in Gset , then

M(X ′) M(Y ′)

M(X) M(Y )

M∗(f ′)oo

M∗(x)

��
M∗(y)

��

M∗(f)
oo

�

is commutative.
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Here we put M(X) =M∗(X) =M∗(X) for each X ∈ Ob(Gset). Those M∗(f) and
M∗(f) for morphisms f in Gset are called structure morphisms of M . For each
f ∈ Gset(X,Y ), M∗(f) is called the restriction, and M∗(f) is called the transfer

along f .
For semi-Mackey functors M and N , a morphism from M to N is a family of

monoid homomorphisms

ϕ = {ϕX : M(X) → N(X)}X∈Ob(Gset),

natural with respect to both of the contravariant and the covariant parts. The
category of semi-Mackey functors is denoted by SMack (G).

If M(X) is an abelian group for each X ∈ Ob(Gset), namely if M∗ and M∗ are
functors to Ab, then a semi-Mackey functorM = (M∗,M∗) is called aMackey func-

tor. The full subcategory of Mackey functors in SMack(G) is denoted by Mack (G).

Example 1.3.

(1) The Burnside ring functor Ω ∈ Ob(Mack (G)) (see for example [1], [5] or
[4]).

(2) If Q is a (not necessarily finite) G-monoid, then the correspondence

PQ(X) = {G-equivariant maps from X to Q}

forms a semi-Mackey functor PQ ∈ Ob(SMack (G)) with structure mor-
phisms defined by

P∗
Q(f) : PQ(Y ) → PQ(X) ; β 7→ β ◦ f

(PQ)∗(f) : PQ(X) → PQ(Y ) ; α 7→ (Y ∋ y 7→
∏

x∈f−1(y)

α(x) ∈ Q)

for each f ∈ Gset(X,Y ), where
∏

denotes the multiplication of elements
in Q. This PQ is called the fixed point functor associated to Q (see for
example [6] or [4]). If we denote the category of G-monoids by G-Mon , this
construction gives a fully faithful functor

P : G-Mon → SMack (G) ; Q 7→ PQ.

Thus G-Mon can be regarded as a full subcategory of SMack (G) through
P .

Remark 1.4. For each pair of Mackey functorsM and N , its tensor productM⊗
Ω
N

is defined (also denoted by M⊗̂N in [1]), and Mack (G) becomes a symmetric
monoidal category with this tensor product and the unit Ω.

The category of monoids in Mack (G) is denoted by Green(G), and a monoid A
in Mack (G) is called a Green functor on G.

By definition of the tensor product ([1]), for each X ∈ Ob(Gset)

(M ⊗
Ω
N)(X) = (

⊕

A
p
→X

M(A)⊗
Z

N(A))/ I,

where A
p
→ X runs over the objects in Gset/X , and I is the submodule generated

by the elements

M∗(a)(s′)⊗ t− s′ ⊗N∗(a)(t), M∗(a)(s) ⊗ t′ − s⊗N∗(a)(t′)

(a∈Gset/X((A
p
→ X), (A′ p′

→ X)), s ∈M(A), t ∈ N(A), s′ ∈M(A′), t′ ∈ N(A′)).
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In the component of A
p
→ X , the image of s ⊗ t in (M ⊗

Ω
N)(X) is denoted by

[s⊗ t](A,p) for each s ∈M(A) and t ∈ N(A).
A priori an element ω in (M⊗

Ω
N)(X) is a finite sum of the elements of the above

form
ω =

∑

1≤i≤n

[si ⊗ ti](Ai,pi),

however ω can be written by one such an element. In fact, if we put

A =
∐

1≤i≤n

Ai, p =
⋃

1≤i≤n

pi, ιi : Ai →֒ A (inclusion)

and put

s =
∑

1≤i≤n

(ιi)∗(si), t =
∑

1≤i≤n

(ιi)∗(ti),

then we have
[s⊗ t](A,p) =

∑

1≤i≤n

[si ⊗ ti](Ai,pi).

Definition 1.5. For each f ∈ Gset(X,Y ) and p ∈ Gset(A,X), the canonical

exponential diagram generated by f and p is the commutative diagram

X

Y

A X ×
Y
Πf (A)

Πf (A)

expf

��

poo eoo

f ′

��

π
oo

where

Πf (A) =



 (y, σ)

∣∣∣∣∣∣

y ∈ Y,
σ : f−1(y) → A is a map of sets,
p ◦ σ is identity on f−1(y)



 ,

π(y, σ) = y, e(x, (y, σ)) = σ(x),

and f ′ is the pull-back of f by π. A diagram in Gset isomorphic to one of the
canonical exponential diagrams is called an exponential diagram. For the properties
of exponential diagrams, see [6].

Definition 1.6. A semi-Tambara functor T on G is a triplet T = (T ∗, T+, T•) of
two covariant functors

T+ : Gset → Mon , T• : Gset → Mon

and one additive contravariant functor

T ∗ : Gset → Mon

which satisfies the following.

(1) Tα = (T ∗, T+) and T µ = (T ∗, T•) are objects in SMack (G). Tα is called
the additive part of T , and T µ is called the multiplicative part of T .

(2) (Distributive law) If we are given an exponential diagram

X

Y

A Z

B

expf

��

poo λoo

ρ

��
q

oo
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in Gset , then

T (X)

T (Y )

T (A) T (Z)

T (B)

T•(f)

��

T+(p)oo T∗(λ) //

T•(ρ)

��

T+(q)
oo

�

is commutative.

If T = (T ∗, T+, T•) is a semi-Tambara functor, then T (X) becomes a semi-ring
for each X ∈ Ob(Gset), whose additive (resp. multiplicative) monoid structure
is induced from that on Tα(X) (resp. T µ(X)). Those T ∗(f), T+(f), T•(f) for
morphisms f in Gset are called structure morphisms of T . For each f ∈ Gset(X,Y ),

• T ∗ : T (Y ) → T (X) is a semi-ring homomorphism, called the restriction

along f .
• T+(f) : T (X) → T (Y ) is an additive homomorphism, called the additive

transfer along f .
• T•(f) : T (X) → T (Y ) is a multiplicative homomorphism, called the multi-

plicative transfer along f .

T ∗(f), T+(f), T•(f) are often abbreviated to f∗, f+, f•.
A morphism of semi-Tambara functors ϕ : T → S is a family of semi-ring homo-

morphisms
ϕ = {ϕX : T (X) → S(X)}X∈Ob(Gset),

natural with respect to all of the contravariant and the covariant parts. We denote
the category of semi-Tambara functors by STam(G).

If T (X) is a ring for each X ∈ Ob(Gset), then a semi-Tambara functor T is
called a Tambara functor. The full subcategory of Tambara functors in STam(G)
is denoted by Tam(G).

Remark 1.7. A semi-Tambara functor T is a Tambara functor if and only if Tα is a
Mackey functor. Taking the additive parts and the multiplicative parts, we obtain
functors

(−)α : Tam(G) → Mack (G),

(−)µ : Tam(G) → SMack (G).

(In fact, (−)α factors through the category Green(G). For this, see [4] or [7].)
If G is trivial, these functors are nothing other than the forgetful functors

(−)α : Ring → Ab,

(−)µ : Ring → Mon ,

where, for each ring R, its image Rα (resp. Rµ) is the underlying additive (resp.
multiplicative) monoid of R.

Example 1.8. The Burnside ring functor Ω is the initial object in Tam(G). Ω can
be regarded as the G-bivariant analog of Z.

The following is shown in [7].

Remark 1.9 ( §12 in [7]). If T and S are Tambara functors, then so is T⊗
Ω
S. Besides,

there exist morphisms ιT ∈ Tam(G)(T, T ⊗
Ω
S) and ιS ∈ Tam(G)(S, T ⊗

Ω
S), which
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make T ⊗
Ω
S the coproduct of T and S in Tam(G). Ω is the unit for this tensor

product.

Proof. A simple proof using a functor category will be found in [7]. For the later
use, we briefly introduce an explicit construction of the structure morphisms of
T ⊗

Ω
S.

Let f ∈ Gset(X,Y ) be any morphism. For any [v ⊗ u](B,q) ∈ (T ⊗
Ω
S)(Y ), we

define f∗([v ⊗ u](B,q)) by

f∗([v ⊗ u](B,q)) = [T ∗(pB)(v) ⊗ S∗(pB)(u)](X×
Y
B,pX ),

where

(1.1)

X ×Y B B

X Y

�

pB //

pX

��
q

��

f
//

is the canonical pull-back.
For any [t ⊗ s](A,p) ∈ (T ⊗

Ω
S)(X), we define f+([t ⊗ s](A,p)) and f•([t ⊗ s](A,p))

by

f+([t⊗ s](A,p)) = [t⊗ s](A,f◦p),

f•([t⊗ s](A,p)) = [T•(f
′)T ∗(e)(t)⊗ S•(f

′)S∗(e)(s)](Πf (A),π),

where

(1.2)

X

Y

A X ×
Y
Πf (A)

Πf (A)

f

��

poo eoo

f ′

��

π
oo

�

is the canonical exponential diagram. With these structure morphisms, T ⊗
Ω
S

becomes a Green functor as shown in [1]. Moreover for these (to-be-)structure
morphisms, the functoriality of (T ⊗

Ω
S)• follows from (1.3) in [6], the Mackey

condition for (T ⊗
Ω
S)µ follows from (1.1) in [6], the distributive law for T ⊗

Ω
S

follows from (1.2) in [6], and thus T ⊗
Ω
S becomes a Tambara functor. �

Definition 1.10. Fix a Tambara functor T ∈ Ob(Tam(G)). A T -Tambara functor

is a pair (S, σ) of a Tambara functor S and σ ∈ Tam(G)(T, S). We often represent
(S, σ) merely by S.

If (S, σ) and (S′, σ′) are T -Tambara functors, then a morphism ϕ from (S, σ) to
(S′, σ′) is a morphism ϕ ∈ Tam(G)(S, S′) satisfying σ′ = ϕ ◦ σ. The category of
T -Tambara functors is denoted by T -Tam(G). Remark that Ω-Tam(G) is nothing
other than Tam(G).

By Remark 1.9, for any T, S ∈ Ob(Tam(G)), their tensor product T ⊗
Ω
S can be

naturally regarded as a T -Tambara functor (T ⊗
Ω
S, ιT ), or a S-Tambara functor

(T ⊗
Ω
S, ιS).



8 HIROYUKI NAKAOKA

2. Generalization of the Dress construction

The Dress construction of a Tambara functor is a process making a Tambara
functor TQ out of a Tambara functor T and a finite G-monoid Q. This is realized
as a functor

Tam(G)×G-mon → Tam(G)

where G-mon is the category of finite G-monoids. Remark here G-mon is a full
subcategory of G-Mon , and thus can be regarded as a full subcategory of SMack (G)
through P (Example 1.3).

In this section, we extend this functor to

Tam(G)× SMack (G) → Tam(G),

through a G-bivariant analogical construction of a semi-group ring with a coeffi-
cient, by means of the Tambarization functor. First, we recall the Dress construction
for a Tambara functor:

Definition 2.1 (Theorem 2.9 in [5]). Let Q be a finite G-monoid, and T be a
Tambara functor on G. In [5], TQ ∈ Ob(Tam(G)) is defined by TQ(X) = T (X×Q)
for each X ∈ Ob(Gset), whose structure morphisms are given by

(TQ)
∗(f) = T ∗(f ×Q)

(TQ)+(f) = T+(f ×Q)

(TQ)•(f) = T+(µf ) ◦ T•(f
′) ◦ T ∗(e)

for each morphism f ∈ Gset(X,Y ). Here,

X

Y

X ×Q X ×Y Πf (X ×Q)

Πf (X ×Q)

expf

��

pXoo eoo

f ′

��

π
oo

is the canonical exponential diagram with pX : X × Q → X the projection, and
µf : Πf (X ×Q) → Y ×Q is the morphism defined by

µf (y, σ) = (y,
∏

x∈f−1(y)

pQ ◦ σ(x)),

where pQ : X ×Q→ Q is the projection.
Especially if T = Ω, then ΩQ is called the crossed Burnside ring functor.

The crossed Burnside ring functors were generalized by the following Theorems.

Fact 2.2 (Theorem 2.15 in [4]). (−)µ : Tam(G) → SMack (G) has a left adjoint
functor

T : SMack (G) → Tam(G),

which we call the Tambarization functor.

Proof. We briefly review the structure of T (M). For the entire proof, see [4].
For each X ∈ Ob(Gset), we define T (M) to be the Grothendieck ring of the

category of pairs (A
p
→ X,mA) of (A

p
→ X) ∈ Ob(Gset/X) and mA ∈M(A).

For each f ∈ Gset(X,Y ), the structure morphisms induced from f are those
determined by

T (M)∗(f)(B
q
→ Y,mB) = (X ×Y B

pX
→ X,M∗(pB)(mB))
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T (M)+(A
p
→ X,mA) = (A

f◦p
−→ Y,mA)

T (M)•(A
p
→ X,mA) = (Πf (A)

π
→ Y,M∗(f

′)M∗(e)(mA))

for each (A
p
→ X,mA) and (B

q
→ Y,mB), where (1.1) is the canonical pull-back,

and (1.2) is the canonical exponential diagram. �

Fact 2.3 (Proposition 3.2 in [4]). If Q is a finite G-monoid, then we have an
isomorphism of Tambara functors ΩQ

∼= T (PQ).

Thus T (M), where M can be taken as an arbitrary semi-Mackey functor on G,
is regarded as a generalization of the crossed Burnside ring functors.

Remark 2.4. By the adjoint property in Fact 2.2, T (M) can be also regarded as a
G-bivariant analog of the semi-ring. In fact if G is trivial, then T is nothing other
than the functor taking semi-group rings

Z[−] : Mon → Ring.

In this view, from here we denote T (M) by Ω[M ] instead, for each semi-Mackey
functor M on G.

Our aim is to show the following, which unifies the Tambarization and the Dress
construction.

Theorem 2.5. For any finite group G, there is a functor

F : Tam(G) × SMack (G) → Tam(G)

which satisfies the following.

(i) If G is trivial, then F agrees with the functor taking semi-group rings with

coefficients

Ring ×Mon → Ring ; (R,Q) 7→ R[Q].

(ii) If T = Ω, we have a natural isomorphism F(Ω,M) ∼= Ω[M ] for each semi-

Mackey functor M .

(iii) If Q is a finite G-monoid, then we have a natural isomorphism F(T,PQ) ∼=
TQ for each Tambara functor T .

(iv) For each T and M , naturally F(T,M) becomes a T -Tambara functor.

Moreover if we fix a Tambara functor T , then the induced functor

F(T,−) : SMack (G) → T -Tam(G)

is left adjoint to the composition of forgetful functors

T -Tam(G) → Tam(G)
(−)µ

−→ SMack (G) ; (S, σ) 7→ Sµ.

Proof. As a consequence of Remark 1.9, we obtain a functor

Tam(G) × Tam(G) → Tam(G) ; (T, S) 7→ T ⊗
Ω
S.

Combining this with the Tambarization functor, we define F by

F : Tam(G) × SMack (G) → Tam(G) ; (T,M) 7→ T ⊗
Ω
Ω[M ].

Then properties (i) and (iv) follows immediately from the adjoint property of
the Tambarization functor, and the universality of the coproduct. Also, (ii) follows
from the unit isomorphism Ω⊗

Ω
Ω[M ] ∼= Ω[M ]. Thus it remains to show (iii).
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To show (iii), let T be a Tambara functor, and let Q be a finite G-monoid. We
construct a natural isomorphism TQ ∼= T ⊗

Ω
Ω[PQ] of Tambara functors. Remark

that for each X ∈ Ob(Gset), any element ω in (T ⊗
Ω
Ω[PQ])(X) can be written in

the form of

(2.1) ω = [s⊗ (R
r
→ A,mR)](A,p),

where s ∈ T (A), (A
p
→ X) ∈ Ob(Gset/X), r ∈ Gset(R,A) and mR ∈ Gset(R,Q).

For each X ∈ Ob(Gset), define

ϕX : TQ(X) → (T ⊗
Ω
Ω[PQ])(X)

ψX : (T ⊗
Ω
Ω[PQ])(X) → TQ(X)

by

ϕX(t) = [t⊗ (X ×Q
id
→ X ×Q, pQ)](X×Q,pX ) (∀t ∈ TQ(X)),

ψX(ω) = T+((p ◦ r,mR))T
∗(r)(s) (∀ω as in (2.1)).

Then we have

ψX ◦ ϕX(t) = T+((pX ◦ idX×Q, pQ))T
∗(id)(t) = t

for any t, and

ϕX ◦ ψX(ω) = [T+((p ◦ r,mR))T
∗(r)(s) ⊗ (X ×Q

id
→ X ×Q, pQ)](X×Q,pX)

= [s⊗ ΩQ+(r)Ω
∗
Q((p ◦ r,mR))(X ×Q

id
→ X ×Q, pQ)](A,p)

= [s⊗ (R
r
→ A,mR)](A,p) = ω

for any ω, namely ϕX and ψX are mutually inverses. Thus it remains to show the
following:

Claim 2.6. ϕ = {ϕX}X∈Ob(Gset) gives a morphism of Tambara functors

ϕ : TQ → T ⊗
Ω
Ω[PQ].

Proof. Let f ∈ Gset(X,Y ) be any morphism. It suffices to show ϕ is compatible
with f∗, f+ and f•. Denote the projections onto Q by pQ : X × Q → Q and
p′Q : Y ×Q→ Q.

(a) (compatibility with f∗)
Let u be any element in TQ(Y ). Then we have

f∗ϕY (u) = f∗([u⊗ (Y ×Q
id
→ Y ×Q, p′Q)](Y×Q,pY ))

= [T ∗(f ×Q)(u)⊗ (X ×Q
id
→ X ×Q, pQ)](X×Q,pX )

= ϕX(T ∗(f ×Q)(u))

= ϕXT
∗
Q(f)(u).

(b) (compatibility with f+)
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Let t be any element in TQ(X). Then we have

f+ϕX(t) = f+([t⊗ (X ×Q
id
→ X ×Q)](X×Q,pX ))

= [t⊗ (X ×Q
id
→ X ×Q)](X×Q,f◦pX )

= [t⊗ (Ω[PQ]
∗(f ×Q))(Y ×Q

id
→ Y ×Q, p′Q)](X×Q,f◦pX )

= [T+(f ×Q)(t)⊗ (Y ×Q
id
→ Y ×Q, p′Q)](X×Q,f◦pX )

= ϕY (T+(f ×Q)(t))

= ϕY TQ+(f)(t).

(c) (compatibility with f•)
We use the notation in Definition 2.1. For any element t in TQ(X), we have

ϕY TQ•(t) = ϕY (T+(µf )T•(f
′)T ∗(e)(t))

= [T+(µf )T•(f
′)T ∗(e)(t)⊗ (Y ×Q

id
→ Y ×Q, p′Q)](Y ×Q,pY )

= [T•(f
′)T ∗(e)(t)⊗ Ω[PQ]

∗(µf )(Y ×Q
id
→ Y ×Q, p′Q)](Πf (X×Q),π).

On the other hand, we have

f•ϕX(t) = f•([t⊗ (X ×Q
id
→ X ×Q, pQ)](X×Q,pX ))

= [T•(f
′)T ∗(e)(t)⊗ Ω[PQ]•(f

′)Ω[PQ]
∗(e)(X ×Q

id
→ X ×Q, pQ)](Πf (X×Q),π).

Thus it suffices to show

Ω[PQ]
∗(µf )(Y ×Q

id
→ Y ×Q, p′Q)(2.2)

= Ω[PQ]•(f
′)Ω[PQ]

∗(e)(X ×Q
id
→ X ×Q, pQ).

The left hand side of (2.2) is equal to

(2.3) (Πf (X ×Q)
id
→ Πf (X ×Q), p′Q ◦ µf ).

Remark that p′Q ◦ µf : Πf (X ×Q) → Q is the morphism which satisfies

p′Q ◦ µf (y, σ) = p′Q(y,
∏

x∈f−1(y)

pQ ◦ σ(x)) =
∏

x∈f−1(y)

pQ ◦ σ(x)

for any (y, σ) ∈ Πf (X ×Q).
On the other hand, since there is an exponential diagram

X ×
Y
Πf (X ×Q)

Πf (X ×Q)

X ×
Y
Πf (X ×Q) X ×

Y
Πf (X ×Q)

Πf (X ×Q)

exp

,

f ′

��

idoo idoo

f ′

��

id
oo

the right hand side of (2.2) is equal to

(Πf (X ×Q)
id
→ Πf (X ×Q), (PQ)∗(f

′)(pQ ◦ e)),

where (PQ)∗(f
′)(pQ ◦ e) : Πf (X ×Q) → Q is the morphism satisfying

(2.4) ((PQ)∗(f
′)(pQ ◦ e))(y, σ) =

∏

(x,(y,σ))∈f ′−1(y,σ)

pQ ◦ e(x, (y, σ))

for each (y, σ) ∈ Πf (X ×Q).
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Since f ′−1(y, σ) = {(x, (y, σ)) | x ∈ f−1(y)}, we have
∏

(x,(y,σ))∈f ′−1(y,σ)

pQ ◦ e(x, (y, σ)) =
∏

(x,(y,σ))∈f ′−1(y,σ)

pQ ◦ σ(x)(2.5)

=
∏

x∈f−1(y)

pQ ◦ σ(x)

By (2.3), (2.4) and (2.5), we obtain

p′Q ◦ µf = (PQ)∗(f
′)(pQ ◦ e),

and the equality of (2.2) follows. �

�

Remark 2.7. By (i) and (iv) in Theorem 2.5, F can be regarded as a G-bivariant
analog of the functor taking semi-group rings with coefficients. In this view, from
here we denote F(T,M) by T [M ] instead.

As in the trivial group case, T [M ] is equipped with a natural Hopf structure if
M is a Mackey functor. To state this, first we remark the following.

Remark 2.8. For each pairM,N ∈ Ob(Mack (G)), the coproduct of T [M ] and T [N ]
in Tam(G) is nothing other than T [M ⊕N ], where M ⊕N is the coproduct of M
andN in Mack (G) defined in an obvious way. T [M⊕N ] is denoted by T [M ]⊗

T
T [N ].

Proof. This immediately follows from the adjointness in Theorem 2.5. �

Corollary 2.9. For any M ∈ Ob(Mack (G)), there exist morphisms of T -Tambara

functors

∆ : T [M ] → T [M ]⊗
T
T [M ]

ε : T [M ] → T

η : T [M ] → T [M ]

satisfying

(∆⊗
T
id) ◦ T = (id⊗

T
∆) ◦ T, (ε⊗

T
id) ◦∆ = id = (id⊗

T
ε) ◦∆

and

(mult) ◦ (η ⊗
T
id) ◦∆ = ε ◦ ιT = (mult) ◦ (id⊗

T
η) ◦∆,

where (mult) is the multiplication morphism (i.e. the morphism inducing idT [M ] on

each components of T [M ]⊗
T
T [M ].)

T [M ] T [M ]⊗T T [M ]

T [M ]⊗T T [M ] T [M ]⊗T T [M ]⊗T T [M ]

∆ //

∆
��

∆⊗
T
id

��

id⊗
T
∆

//

�
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T [M ] T ⊗T T [M ]

T [M ]⊗T T T [M ]⊗T T [M ]

∼= //

∼=
��

ε⊗
T
id

OO

id⊗
T
ε

oo

∆

**UUUUUUUUUUUUUUUU
�

�

T [M ]⊗T T [M ] T [M ]⊗T T [M ]

T [M ] T T [M ]

T [M ]⊗T T [M ] T [M ]⊗T T [M ]

∆
II���

η⊗
T
id

//

mult
��,

,,

ε // ιT //

∆ ��,
,,

id⊗
T
η

//
mult

II���

�

�

Proof. We define ∆, ε, η to be those morphisms corresponding to

M
∆M−→M ⊕M, M

0
−→ 0, M

(−)−1

−→ M

which are the diagonal morphism for M , the zero morphism, and the inverse, re-
spectively (defined in an obvious way). Then the required compatibility conditions
immediately follows from the functoriality of F(T,−). �

3. Polynomial Tambara functors

In this section, we consider G-bivariant analogs of the polynomial ring. Remark
that, in the trivial group case, the polynomial ring satisfies the following properties.

Remark 3.1. Let R be a ring, and let R[X] be the polynomial ring over R with one
variable. Then we have the following.

(1) (Existence of the indeterminate element) For any R-algebra S, we have a
natural bijection

R-Alg(R[X], S)
∼=
−→ S ; ϕ 7→ ϕ(X),

where R-Alg denotes the category of R-algebras.
(2) (Structural isomorphism) We have a natural isomorphism of rings

(3.1) R[X] ∼= R⊗
Z

Z[X] ∼= R⊗
Z

Z[N]

We propose two types of ‘polynomial’ Tambara functors, which satisfy analogous
properties to those in Remark 3.1.

Theorem 3.2. Let G be a finite group.

(1) There exists a functor

poℓ
x
: Tam(G) → Tam(G) ; T 7→ T [x],

which admits a natural bijection

T -Tam(G)(T [x], S) ∼= Sµ(G/e)G

for each T ∈ Ob(Tam(G)) and S ∈ Ob(T -Tam(G)).
(2) There exists a functor

poℓ
X
: Tam(G) → Tam(G) ; T 7→ T [X],

which admits a natural bijection

T -Tam(G)(T [X], S) ∼= Sµ(G/G)

for each T ∈ Ob(Tam(G)) and S ∈ Ob(T -Tam(G)).

Moreover if G is trivial, each of these agrees with the functor taking the polynomial

ring poℓ : Ring → Ring ; R 7→ R[X].
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Proof. If we follow the analogy of (3.1), we can expect that each of the desired
functors is of the form

F(−,M) : Tam(G) → Tam(G)

for some semi-Mackey functor M , which can be regarded as a ‘G-bivariant analog
of N’.

To show (1), first we remark the following.

Remark 3.3 (Claim 3.8 in [4]). If M is a semi-Mackey functor on G, then M(G/e)
carries a natural G-monoid structure. The functor taking its G-fixed part

evG : SMack (G) → Mon ; M 7→M(G/e)G

admits a left adjoint functor

L : Mon → SMack (G) ; Q 7→ LQ.

Combining this with Theorem 2.5, we obtain:

Corollary 3.4. Let T be a Tambara functor on G. For any monoid Q and any

T -Tambara functor S, we have an isomorphism

T -Tam(G)(T [LQ], S) ∼= Mon(Q,Sµ(G/e)G)

which is natural in Q and S.

Especially when Q = N, then we obtain a natural bijection

T -Tam(G)(T [LN], S) ∼= Sµ(G/e)G.

Thus if we denote T [LN] by T [x], then T [x] satisfies the desired property in (1).
poℓ

x
is given by poℓ

x
= F(−,LN).

If G is trivial, (and thus T is identified with the ring R = T (G/e),) then T [x]
is naturally isomorphic to the polynomial ring R[x] over R, with an indeterminate
element x.

To show (2), we remark the following.

Remark 3.5. For any X ∈ Ob(Gset), the set of isomorphism classes cℓ(Gset/X) of
the category Gset/X forms a semi-ring. If we define A by A(X) = cℓ(Gset/X), then
A becomes a semi-Tambara functor on G, called the Burnside semi-ring functor,
with appropriately defined structure morphisms.

If we denote the isomorphism class of (G/G
id
−→ G/G) in A(G/G) by X, then

we have a natural isomorphism

SMack (G)(Aα,M) ∼=M(G/G) ; ϕ 7→ ϕG/G(X)

for any M ∈ SMack(G).

As a corollary of Theorem 2.5 and Remark 3.5, we obtain:

Corollary 3.6. Let T be a Tambara functor on G. For any T -Tambara functor S,
we have an isomorphism

T -Tam(G)(T [Aα], S) ∼= Sµ(G/G)

which is natural in S.
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Thus if we denote T [Aα] abbreviately by T [X], then T [X] satisfies the desired
property in (2). poℓX is given by poℓX = F(−,Aα).

If G is trivial, (and thus T is identified with the ring R = T (G/G),) then T [X] is
naturally isomorphic to the polynomial ring R[X] over R, with the indeterminate
element X. �

Remark 3.7. We remark also that T [LQ] is closely related to the Witt-Burnside
ring. In fact, we have a natural isomorphism of commutative rings

T [LQ](G/G) ∼= WG(Z[Q]),

where the right hand side is the Witt-Burnside ring of the semi-group ring Z[Q]
over G. (Theorem 3.9 in [4], Theorem 1.7 in [3]. See also [2].)
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