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A GENERALIZATION OF THE DRESS CONSTRUCTION FOR A
TAMBARA FUNCTOR, AND POLYNOMIAL TAMBARA
FUNCTORS

HIROYUKI NAKAOKA

ABSTRACT. For a finite group G, (semi-)Mackey functors and (semi-) Tambara
functors are regarded as G-bivariant analogs of (semi-)groups and (semi-)rings
respectively. In fact if G is trivial, they agree with the ordinary (semi-)groups
and (semi-)rings, and many naive algebraic properties concerning rings and
groups have been extended to these G-bivariant analogous notions.

In this article, we investigate a G-bivariant analog of the semi-group rings
with coefficients. Just as a coefficient ring R and a monoid @ yield the semi-
group ring R[Q], our constrcution enables us to make a Tambara functor T'[M]
out of a semi-Mackey functor M, and a coefficient Tambara functor 7. This
construction is a composant of the Tambarization and the Dress construction.

As expected, this construction is the one uniquely determined by the right-
eous adjoint property. Besides in analogy with the trivial group case, if M is
a Mackey functor, then T'[M] is equipped with a natural Hopf structure.

Moreover, as an application of the above construction, we also obtain some
G-bivariant analogs of the polynomial rings.

1. INTRODUCTION AND PRELIMINARIES

For a finite group G, a (resp. semi-)Mackey functor is a pair of a contravariant
functor and a covariant functor to the category of abelian groups Ab (resp. of
commutative monoids Mon), satisfying some conditions (Definition 1.2). Since the
category of Mackey functors is a symmetric monoidal abelian category which agrees
with Ab when G is trivial, it is regarded as a G-bivariant analog of Ab. Similarly a
semi-Mackey functor is regarded as a G-bivariant analog of a commutative monoid.

In this view, a Tambara functor is regarded as a G-bivariant analog of a commu-
tative ring. It consists of an additive Mackey functor structure and a multiplicative
semi-Mackey functor structure, satisfying the ‘distributive law’ (Definition 1.6).

Some naive algebraic properties concerning rings and groups have been extended
to these G-bivariant analogous notions. For example, in our previous result ([4]),
as a G-bivariant analog of the functor taking semi-group rings

Z[—]: Mon — Ring,
we constructed a functor called the Tambarization functor

T: SMack(G) — Tam(Q),
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which is characterized by some natural adjoint property (Fact 2.2). Here SMack(G)
denotes the category of semi-Mackey functors, and Tam(G) denotes the category
of Tambara functors.

In this article, more generally, we investigate a G-bivariant analog of the semi-
group ring with a coefficient ring. In the trivial group case, from any commutative
ring R and any commutative monoid @) we can make the semi-group ring R[Q)], and
this gives a functor

Ring x Mon — Ring ; (R,Q) — R[Q].
In section 2, analogously we construct a functor
Tam(G) x SMack(G) — Tam(G),
which unifies the Tambarization ([4]) and the Dress construction ([5]) as follows:

Theorem 2.5 . For any finite group G, there is a functor
F: Tam(G) x SMack(G) — Tam(G)
which satisfies the following.

(i) If G is trivial, then F agrees with the functor taking semi-group rings with
coefficients

Ring x Mon — Ring ; (R,Q) — R[Q].

(ii) If T = Q, we have a natural isomorphism F(Q, M) = T (M) for each semi-
Mackey functor M.

(ili) If @ is a finite G-monoid, then we have a natural isomorphism F(T,Pg) =
T¢ for each Tambara functor T'. Here, T is the Tambara functor obtained
through the Dress construction ([5]).

As expected from the trivial group case, F is the unique functor characterized
by the following adjoint property:

Theorem 2.5 (iv) . For each Tambara functor T' and semi-Mackey functor M,
naturally F (7T, M) becomes a T-Tambara functor. Moreover if we fix T, then the
induced functor

F(T,—): SMack(G) — T-Tam(G)
is left adjoint to the composition of forgetful functors

T-Tam(G) — Tam(QG) e SMack(G) ; (S,0) — S*.

Besides in analogy with the trivial group case, if M is a Mackey functor, then T'[M]
is equipped with a natural Hopf structure (T'[M], A, e,n) (Corollary 2.9).

In the last section, as an application of the construction above, we consider
some G-bivariant analogs of the polynomial ring. In the trivial group case, the
polynomial ring R[X] over R with one variable X was characterized by the natural
bijection

R-Alg(R[X],8) 5 S
for each R-algebra S. To any Tambara functor 7', we associate two types of ‘poly-
nomial’ Tambara functors T[x] and T'[X]. Analogously, we obtain natural bijections
for each T-Tambara functor S

T-Tam(G)(T[x], S) = S(G/e)“,
T-Tam(G)(T[X],S) = S(G/G),
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and thus T'[x] and T[X] are characterized by these bijections (Theorem 3.2).

Throughout this article, we fix a finite group G, whose unit element is denoted
by e. H < G means H is a subgroup of GG. gset denotes the category of finite
G-sets and G-equivariant maps. A monoid is always assumed to be unitary and
commutative. Similarly a (semi-)ring is assumed to be commutative, and have an
additive unit 0 and a multiplicative unit 1. We denote the category of monoids by
Mon, the category of (resp. semi-)rings by Ring (resp. SRing), and the category of
abelian groups by Ab. A monoid homomorphism preserves units, and a (semi-)ring
homomorphism preserves 0 and 1.

For any category K and any pair of objects X and Y in IC, the set of morphisms
from X to Y in K is denoted by K(X,Y"). For each X € Ob(K), the slice category
of K over X is denoted by £/X.

Definition 1.1. An additive contravariant functor F' on G means a contravariant
functor

F: gset — Mon,

which sends coproducts in gset to products in Mon. A morphism from one addi-
tive contravariant functor to another merely means a natural transformation. The
category of additive contravariant functors is denoted by Madd(G).

Definition 1.2. A semi-Mackey functor M on G is a pair M = (M*,M,) of a
covariant functor

M, : gset — Mon
and an additive contravariant functor
M*: gset — Mon,

satisfying M*(X) = M.(X) for any X € Ob(gset), and the following Mackey
condition:

e (Mackey condition)
If we are given a pull-back diagram

X’ i> Y’
ml O J{y
X 5 Y
in gset, then
w(x) 2 (v
M., (z) O lM*(y)

is commutative.
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Here we put M (X) = M*(X) = M,(X) for each X € Ob(gset). Those M, (f) and
M*(f) for morphisms f in gset are called structure morphisms of M. For each
f € gset(X,Y), M*(f) is called the restriction, and M,(f) is called the transfer
along f.

For semi-Mackey functors M and N, a morphism from M to N is a family of
monoid homomorphisms

¢ ={px: M(X) = N(X)}xecob(gset):

natural with respect to both of the contravariant and the covariant parts. The
category of semi-Mackey functors is denoted by SMack(G).

If M(X) is an abelian group for each X € Ob(gset), namely if M* and M, are
functors to Ab, then a semi-Mackey functor M = (M*, M.,) is called a Mackey func-
tor. The full subcategory of Mackey functors in SMack(G) is denoted by Mack(G).

Example 1.3.

(1) The Burnside ring functor Q@ € Ob(Mack(G)) (see for example [1], [5] or
(2) %]22 is a (not necessarily finite) G-monoid, then the correspondence
Po(X) = {G-equivariant maps from X to Q}
forms a semi-Mackey functor Py € Ob(SMack(G)) with structure mor-
phisms defined by
Po(f): Pe(Y) = Po(X) 5 B> Bof

(PQ)+(£): Pa(X) = Po(Y) s a= (Y 3y~ [[a@) €Q)
zef~1(y)
for each f € gset(X,Y), where [] denotes the multiplication of elements
in Q. This Pg is called the fized point functor associated to @ (see for
example [6] or [4]). If we denote the category of G-monoids by G-Mon, this
construction gives a fully faithful functor
P: G-Mon — SMack(G) ; Q +— Pq.

Thus G-Mon can be regarded as a full subcategory of SMack(G) through
P.
Remark 1.4. For each pair of Mackey functors M and N, its tensor product M ® N
Q

is defined (also denoted by M®N in [1]), and Mack(G) becomes a symmetric
monoidal category with this tensor product and the unit €.

The category of monoids in Mack(G) is denoted by Green(G), and a monoid A
in Mack(G) is called a Green functor on G.

By definition of the tensor product ([1]), for each X € Ob(gset)

(M@ N)(X) = ( b M(A4) ® N(A))/ L,
ABX

where A % X runs over the objects in gset /X, and 7 is the submodule generated
by the elements

M*@)(s) @t — 8 @ Ny(a)(t), Mi(a)(s) @t —s® N*(a)(t))
(acgset/X((A D X), (A % X)), s € M(A),t € N(A),s' € M(A), ¢ € N(A')).
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In the component of A 5 X, the image of s ® t in (M ® N)(X) is denoted by
Q

[s @ t](a,p) for each s € M(A) and t € N(A).
A priori an element w in (M %}N )(X) is a finite sum of the elements of the above

form

W= Z [S’i ® tZ](AZ,p»L)5

1<i<n
however w can be written by one such an element. In fact, if we put

A= H A;, p= U pi, ti: Ai — A (inclusion)

1<i<n 1<i<n

s = Z (LZ)*(SZ)v t= Z (Li)*(ti)v

1<i<n 1<i<n

and put

then we have
[s ®@ta,p) = Z [si @ ti] (A, p)-

1<i<n

Definition 1.5. For each f € gset(X,Y) and p € gset(A, X), the canonical
exponential diagram generated by f and p is the commutative diagram

X<t A<tX X T1(4)

fl exp if’

Y Iy (A)

where

yey,

Hp(A) =1 (y,0) | o: f'(y) = A is amap of sets, ,
poo isidentity on f~1(y)
m(y,0) =y, e, (y,0)) =o(z),

and f’ is the pull-back of f by m. A diagram in gset isomorphic to one of the
canonical exponential diagrams is called an exponential diagram. For the properties
of exponential diagrams, see [6].

Definition 1.6. A semi-Tambara functor T on G is a triplet T = (T*,T4,T,) of
two covariant functors

T, : gset = Mon, T,: gset — Mon
and one additive contravariant functor
T*: gset — Mon
which satisfies the following.
(1) T* = (T*,Ty) and T* = (T*,T,) are objects in SMack(G). T* is called

the additive part of T, and T* is called the multiplicative part of T'.
(2) (Distributive law) If we are given an exponential diagram

X<t a<> 7

B |

Y<——8
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in gset, then

7(x) Z2 ) ZX 7

)
T.(f)l o lT. )
)

Y T(B
(¥) Ty (q) (
is commutative.

If T =(T*,T4,T,) is a semi-Tambara functor, then T(X) becomes a semi-ring
for each X € Ob(gset), whose additive (resp. multiplicative) monoid structure
is induced from that on T*(X) (resp. TH(X)). Those T*(f),T+(f), Te(f) for
morphisms f in gset are called structure morphisms of T. For each f € gset(X,Y),

e T*: T(Y) — T(X) is a semi-ring homomorphism, called the restriction
along f.
e T (f): T(X) — T(Y) is an additive homomorphism, called the additive
transfer along f.
o To(f): T(X) — T(Y) is a multiplicative homomorphism, called the multi-
plicative transfer along f.
T(f), T+ (f), Te(f) are often abbreviated to f*, f, fe-

A morphism of semi-Tambara functors ¢: T'— S is a family of semi-ring homo-

morphisms

¢ ={px: T(X) = S(X)}xcob(gset),
natural with respect to all of the contravariant and the covariant parts. We denote
the category of semi-Tambara functors by STam(G).

If T(X) is a ring for each X € Ob(gset), then a semi-Tambara functor T' is
called a Tambara functor. The full subcategory of Tambara functors in STam(G)
is denoted by Tam/(G).

Remark 1.7. A semi-Tambara functor T is a Tambara functor if and only if 7% is a
Mackey functor. Taking the additive parts and the multiplicative parts, we obtain
functors

(=)*: Tam(G) — Mack(G),
(—=)*: Tam(G) — SMack(G).

(In fact, (—)* factors through the category Green(G). For this, see [4] or [7].)
If G is trivial, these functors are nothing other than the forgetful functors

(—=)*: Ring — Ab,
(=)*: Ring — Mon,

where, for each ring R, its image R (resp. R*) is the underlying additive (resp.
multiplicative) monoid of R.

Example 1.8. The Burnside ring functor €2 is the initial object in Tam(G). € can
be regarded as the G-bivariant analog of Z.

The following is shown in [7].

Remark 1.9 (§12in [7]). If T and S are Tambara functors, then so is T%} S. Besides,
there exist morphisms tp € Tam(G)(T,T ® S) and vg € Tam(G)(S,T ® S), which
Q Q
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make T'® S the coproduct of T and S in Tam(G). § is the unit for this tensor
Q
product.

Proof. A simple proof using a functor category will be found in [7]. For the later
use, we briefly introduce an explicit construction of the structure morphisms of
T®S.

Q

Let f € gset(X,Y) be any morphism. For any [v ® u]p,q) € (T % S)Y), we
define f*([v ® u](p,q)) by

F v @ulpg) =[1"pp) () ® 5™ (ps) (W)X xB.px):
where

X xy BX2~ B
(1.1) pxl O lq
Y

X ——

f

is the canonical pull-back.
For any [t ® s](a,) € (T %@ S)(X), we define f1 ([t ® s](a,p)) and fe([t @ 8](a,p))

by
f+([t® s](ap) = [t ® s](a,fop)
fo([t @ sliap) = [Te(f)T(e)(t) @ Sa(f)S™(e)(8)] (11, (A),m)»
where
X <" A<S-X x TI;(A)
(1.2) fl O Yif/
Y 1T (A)

is the canonical exponential diagram. With these structure morphisms, T'® S
Q

becomes a Green functor as shown in [1]. Moreover for these (to-be-)structure
morphisms, the functoriality of (T Qé) S)e follows from (1.3) in [6], the Mackey

condition for (T'® S)* follows from (1.1) in [6], the distributive law for T'® S
Q Q
follows from (1.2) in [6], and thus T ® S becomes a Tambara functor. O
Q

Definition 1.10. Fix a Tambara functor T € Ob(Tam(G)). A T-Tambara functor
is a pair (S, 0) of a Tambara functor S and o € Tam(G)(T, S). We often represent
(S,0) merely by S.

If (S,0) and (S’,0’) are T-Tambara functors, then a morphism ¢ from (S, o) to
(S’,0") is a morphism ¢ € Tam(G)(S,S’) satisfying ¢/ = ¢ o 0. The category of
T-Tambara functors is denoted by T-Tam(G). Remark that Q-Tam(G) is nothing
other than Tam(G).

By Remark 1.9, for any T, S € Ob(Tam(G)), their tensor product T' %) S can be

naturally regarded as a T-Tambara functor (T'® S, tr), or a S-Tambara functor
Q

(T Qé) S, Ls).
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2. GENERALIZATION OF THE DRESS CONSTRUCTION

The Dress construction of a Tambara functor is a process making a Tambara
functor T out of a Tambara functor T" and a finite G-monoid (). This is realized
as a functor

Tam(G) x G-mon — Tam(QG)

where G-mon is the category of finite G-monoids. Remark here G-mon is a full
subcategory of G-Mon, and thus can be regarded as a full subcategory of SMack(G)
through P (Example 1.3).
In this section, we extend this functor to
Tam(G) x SMack(G) — Tam(G),

through a G-bivariant analogical construction of a semi-group ring with a coeffi-
cient, by means of the Tambarization functor. First, we recall the Dress construction
for a Tambara functor:

Definition 2.1 (Theorem 2.9 in [5]). Let @ be a finite G-monoid, and T be a
Tambara functor on G. In [5], Tg € Ob(Tam(QG)) is defined by To(X) = T(X x Q)
for each X € Ob(gset), whose structure morphisms are given by

(TQ)*(f) = T (fxQ)

(To)+(f) = TH(fxQ)

(TQ)e(f) = Ty(us)oTe(f) 0T (e)
for each morphism f € gset(X,Y). Here,

X< X x Q< X xy (X x Q)

fl exp lf’

Y — (X x Q)
is the canonical exponential diagram with px: X x @ — X the projection, and
pr:IIp(X x Q) = Y x @ is the morphism defined by

pr,0) =@, [ peco(),
z€f~1(y)

where pg: X x @ — @ is the projection.
Especially if T' = €, then Qg is called the crossed Burnside ring functor.

The crossed Burnside ring functors were generalized by the following Theorems.

Fact 2.2 (Theorem 2.15 in [4]). (—)*: Tam(G) — SMack(G) has a left adjoint
functor
T: SMack(G) — Tam(G),

which we call the Tambarization functor.

Proof. We briefly review the structure of 7 (M). For the entire proof, see [4].

For each X € Ob(gset), we define T (M) to be the Grothendieck ring of the
category of pairs (A 2 X,m4) of (A % X) € Ob(gset/X) and ma € M(A).

For each f € gset(X,Y), the structure morphisms induced from f are those
determined by

T(M)*(f)(B = Y.mp) = (X xy B= X, M*(pp)(msp))
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TM) (A5 X, ma) = (A L2 Y my)
T(M)o(A = X,ma) = (I (A) 5 Y, Mu(f')M*(e)(ma))
for each (A B X,my) and (B % Y,mp), where (1.1) is the canonical pull-back,

and (1.2) is the canonical exponential diagram. O

Fact 2.3 (Proposition 3.2 in [4]). If @ is a finite G-monoid, then we have an
isomorphism of Tambara functors Qg = 7 (Pg).

Thus 7 (M), where M can be taken as an arbitrary semi-Mackey functor on G,
is regarded as a generalization of the crossed Burnside ring functors.

Remark 2.4. By the adjoint property in Fact 2.2, T (M) can be also regarded as a
G-bivariant analog of the semi-ring. In fact if G is trivial, then 7 is nothing other
than the functor taking semi-group rings

Z[—]: Mon — Ring.
In this view, from here we denote 7 (M) by Q[M] instead, for each semi-Mackey
functor M on G.

Our aim is to show the following, which unifies the Tambarization and the Dress
construction.

Theorem 2.5. For any finite group G, there is a functor
F: Tam(G) x SMack(G) — Tam(G)
which satisfies the following.
(i) If G is trivial, then F agrees with the functor taking semi-group rings with
coefficients
Ring x Mon — Ring ; (R,Q) — R[Q].

(ii) If T = Q, we have a natural isomorphism F(Q, M) = Q[M] for each semi-
Mackey functor M.

(ili) If Q is a finite G-monoid, then we have a natural isomorphism F (T, Pgq) =
Tq for each Tambara functor T

(iv) For each T and M, naturally F(T,M) becomes a T-Tambara functor.
Moreover if we fiz a Tambara functor T', then the induced functor

F(T,—): SMack(G) — T-Tam(G)
is left adjoint to the composition of forgetful functors
T-Tam(G) — Tam(G) it SMack(Q) ; (S,0) — SH.
Proof. As a consequence of Remark 1.9, we obtain a functor
Tam(G) x Tam(G) — Tam(G) ; (T,S) — T%) S.
Combining this with the Tambarization functor, we define F by

F: Tam(G) x SMack(G) — Tam(G) ; (T, M) — T%)Q[M]

Then properties (i) and (iv) follows immediately from the adjoint property of
the Tambarization functor, and the universality of the coproduct. Also, (ii) follows
from the unit isomorphism Q ® Q[M] = Q[M]. Thus it remains to show (iii).

Q
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To show (iii), let T' be a Tambara functor, and let @ be a finite G-monoid. We

~

construct a natural isomorphism Tg = T ® Q[Pg] of Tambara functors. Remark
Q
that for each X € Ob(gset), any element w in (T'® Q[Pg])(X) can be written in
Q

the form of
(2.1) w=[s® (R A mg)](ap),

where s € T(A), (A5 X) € Ob(gset/X), r € gset(R, A) and mp € gset(R, Q).
For each X € Ob(gset), define

ox: To(X) — (T<§ Q[Po])(X)
Ux: (T ® Q[Po])(X) — To(X)
by
px(t) = [t® (X x Q% X x Q.p)l(xxapx) ("t € To(X)),
Yx(w) =Ty ((por,mg))T*(r)(s) (Vw as in (2.1)).
Then we have
Yx o px(t) = Ty ((px o idxxq,pe))T™(1d)(t) =t
for any ¢, and
px opx(W) = [Te((por,mp)T*(r)(s) ® (X x Q % X x Q:1Q)| (xxQ.px)
= [s® Q04N ((por,mr))(X x Q3 X x Q.po))(ay)
= [S ® (R 5 Ava)](A,p) = w

for any w, namely ¢ x and ¥x are mutually inverses. Thus it remains to show the
following:

Claim 2.6. ¢ = {¢x } xcOob(gset) gives a morphism of Tambara functors
p:Tg — T(é) Q[PQ]

Proof. Let f € gset(X,Y) be any morphism. It suffices to show ¢ is compatible
with f*, fy and f,. Denote the projections onto ¢ by pg: X x @ — @ and

Po Y xQ— Q.

(a) (compatibility with f*)
Let u be any element in Tg(Y). Then we have
* * id
frov(u) = ffue Y xQ =Y xQpo)lvxapy))

= [T*(fo)(u)@(XXQSXXQaPQ)](XXQ,px)
px (T7(f x Q)(u))
= oxTH(f)(u).

(b) (compatibility with f,)
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Let t be any element in T5(X). Then we have

frox(t) = f+(t® (X xQ 4 X x Q) (xx0.px))
= [t@X xQ <X x Q)(xxQ,fopx)
= [t QP (f x Q)Y x QY % Q,p5)](xxq.fopx)
= [T x Q)@ (Y x QY x Q,p5)](xx@.fopx)

oy (T4 (f x Q)(1))

= ovTo+(H).

(¢) (compatibility with f,)
We use the notation in Definition 2.1. For any element ¢ in Tg(X), we have

Py Toe(t) = oy (Te(up)To(f)T*(e)(2))
= [Te(up) T ()T ()() @ (Y x Q3 Y x Q1) (v x @)
= [T (e)(t) ® QAP () (Y X Q Y % Q. p)](11, (xxQ)vm)-
On the other hand, we have
foox (t) = fo([t® (X x Q% X % Q,90)] (xx@.0x))
= [T(f)T*(e)(t) ® QPls (f)QUPQ]* (€)(X x Q % X x Q1) (11, (xxQ).m)-

Thus it suffices to show
(2.2) QP (up)(Y x Q Y x Q1)
= Q[Pala(F)QUPQ]* (e)(X x Q %5 X x Q,pq)-
The left hand side of (2.2) is equal to

id
(2.3) (Ip (X x Q) = (X x Q),p © py)-
Remark that pg o pup: (X x Q) — @ is the morphism which satisfies

poous(y,0) =ppy, [[ reco@) = ][] reoc(@)
ef1(y) ef-1(y)

for any (y,0) € II;(X x Q).
On the other hand, since there is an exponential diagram

X xIp(X x@Q) 4 X xIIp(X xQ) i X xII;(X x Q)
Y Y Y

f/l cap lf/

(X xQ) (X xQ),
the right hand side of (2.2) is equal to
(s (X % Q) (X % Q). (Pa)(f') (b  €));
where (Pg)«(f")(pg oe): (X x Q) — Q is the morphism satisfying
(2.4) ((PQ)+(f)(pg © €)(y,0) = II  rece (v,0)

(z,(y,0))Ef = (y,0)

id

for each (y,0) € IIf (X x Q).
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Since f'1(y,0) = {(x. (y,0)) | « € £~ (y)}, we have

(2.5) [I  recew@o) =  [[ recow@
(z,(y,0))Ef ~(y,0) (z,(y,0))Ef ~1(y,0)
= ][ reoo(=)
zef~1(y)

By (2.3), (2.4) and (2.5), we obtain

po oy = (P@)«(f)(pg oe),
and the equality of (2.2) follows. O

d

Remark 2.7. By (i) and (iv) in Theorem 2.5, F can be regarded as a G-bivariant
analog of the functor taking semi-group rings with coefficients. In this view, from
here we denote F (T, M) by T[M] instead.

As in the trivial group case, T[M] is equipped with a natural Hopf structure if
M is a Mackey functor. To state this, first we remark the following.

Remark 2.8. For each pair M, N € Ob(Mack(G)), the coproduct of T[M] and T[N]

in Tam(G) is nothing other than T[M @ N], where M @& N is the coproduct of M

and N in Mack(G) defined in an obvious way. T[M @& N] is denoted by T[M]®T[N].
T

Proof. This immediately follows from the adjointness in Theorem 2.5. ]

Corollary 2.9. For any M € Ob(Mack(G)), there exist morphisms of T-Tambara
functors

A TM]—TM]eT[M]
T
TM) =T

n : T[M]— T[M)]

satisfying
(A®Rid)oT =(d@A)oT, (¢®id)oA=id=(1d®¢e)o A
T T T T

and

(mult) o (n®id) o A =cowp = (mult) o (id @ n) o A,
T T

where (mult) is the multiplication morphism (i.e. the morphism inducing idry on
each components of TIM|® T[M].)
T

T(M] = T[M] &7 T[M]
Al o \LA?id
T[M] @ T[M] T[M]®r T[M] ¢ T[M]
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n®id

. T[M] @r T[M] — T[M] @7 T[M]
TM] ———— > T @7 T[M)] A 5 \mult
| NO [ TIM] ——T ——T[M]
T[M]@r T ~———— T[M] @7 T[M] A\ © [t
T T[M] 7 T[M]@T[M] Q1 T[M]

Proof. We define A, e, 7 to be those morphisms corresponding to

-1
MA vrem, M -%0, M

which are the diagonal morphism for M, the zero morphism, and the inverse, re-
spectively (defined in an obvious way). Then the required compatibility conditions
immediately follows from the functoriality of F (T, —). O

3. POLYNOMIAL TAMBARA FUNCTORS

In this section, we consider G-bivariant analogs of the polynomial ring. Remark
that, in the trivial group case, the polynomial ring satisfies the following properties.

Remark 3.1. Let R be a ring, and let R[X] be the polynomial ring over R with one
variable. Then we have the following.

(1) (Existence of the indeterminate element) For any R-algebra S, we have a
natural bijection

R-Alg(R[X],8) = S ; ¢~ p(X),

where R-Alg denotes the category of R-algebras.
(2) (Structural isomorphism) We have a natural isomorphism of rings

(3.1) R[X] fZVRQZaZ[X] = RQZ@Z[N]

We propose two types of ‘polynomial’ Tambara functors, which satisfy analogous
properties to those in Remark 3.1.

Theorem 3.2. Let G be a finite group.
(1) There exists a functor
poly: Tam(G) — Tam(G) ; T — T[x],
which admits a natural bijection
T-Tam(G)(T[x],S) = S*(G/e)“
for each T € Ob(Tam(G)) and S € Ob(T-Tam(G)).

(2) There exists a functor
poly: Tam(G) — Tam(G) ; T — T[X],
which admits a natural bijection
T-Tam(G)(T[X],S) = S*(G/G)
for each T € Ob(Tam(G)) and S € Ob(T-Tam(G)).

Moreover if G is trivial, each of these agrees with the functor taking the polynomial
ring pol: Ring — Ring ; R+— R[X].
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Proof. If we follow the analogy of (3.1), we can expect that each of the desired
functors is of the form

F(=,M): Tam(G) = Tam(QG)

for some semi-Mackey functor M, which can be regarded as a ‘G-bivariant analog
of N'.

To show (1), first we remark the following.

Remark 3.3 (Claim 3.8 in [4]). If M is a semi-Mackey functor on G, then M(G/e)
carries a natural G-monoid structure. The functor taking its G-fixed part

ev: SMack(G) — Mon ; M — M(G/e)®
admits a left adjoint functor
L: Mon — SMack(G) ; Q — Lqg.
Combining this with Theorem 2.5, we obtain:

Corollary 3.4. Let T be a Tambara functor on G. For any monoid Q and any
T-Tambara functor S, we have an isomorphism

T-Tam(G)(T[Lg), S) = Mon(Q, S*(G/e)®)
which is natural in Q and S.

Especially when @ = N, then we obtain a natural bijection
T-Tam/(G)(T[Lx], S) = S*(G/e)C.

Thus if we denote T'[Ly] by T[x], then T'[x] satisfies the desired property in (1).
pol, is given by pol, = F(—, Ln).

If G is trivial, (and thus 7T is identified with the ring R = T(G/e),) then T[x]
is naturally isomorphic to the polynomial ring R[x] over R, with an indeterminate
element x.

To show (2), we remark the following.

Remark 3.5. For any X € Ob(gset), the set of isomorphism classes cl(gset/X) of
the category gset/X forms a semi-ring. If we define 2 by 2A(X) = cl(gset/X), then
2 becomes a semi-Tambara functor on G, called the Burnside semi-ring functor,
with appropriately defined structure morphisms.

If we denote the isomorphism class of (G/G 2, G/G) in A(G/G) by X, then
we have a natural isomorphism

SMack(G)(*, M) = M(G/G) : ¢ p/c(%)
for any M € SMack(G).
As a corollary of Theorem 2.5 and Remark 3.5, we obtain:

Corollary 3.6. Let T be a Tambara functor on G. For any T-Tambara functor S,
we have an isomorphism

T-Tam(G)(T[A%], ) = §"(G/G)

which is natural in S.
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Thus if we denote T[] abbreviately by T[X], then T[X] satisfies the desired
property in (2). poly is given by poly = F(—,2A%).

If G is trivial, (and thus T is identified with the ring R = T(G/G),) then T[X] is
naturally isomorphic to the polynomial ring R[X] over R, with the indeterminate
element X. ]

Remark 3.7. We remark also that T[Lg] is closely related to the Witt-Burnside
ring. In fact, we have a natural isomorphism of commutative rings

T[Lel(G/G) = Wa(Z[Q)),

where the right hand side is the Witt-Burnside ring of the semi-group ring Z[Q]
over G. (Theorem 3.9 in [4], Theorem 1.7 in [3]. See also [2].)
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