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UNIQUE EQUILIBRIA AND SUBSTITUTION EFFECTS IN A

STOCHASTIC MODEL OF THE MARRIAGE MARKET

COLIN DECKER, ELLIOTT H. LIEB, ROBERT J. MCCANN, AND BENJAMIN K. STEPHENS

Abstract. Choo-Siow (2006) propose a very general model for the marriage market
which allows for randomly identically distributed noise in the preferences of each of the
participants. The randomness is McFadden-type, which permits an explicit resolution of
the equilibrium preference probabilities.

We prove existence and uniqueness of the resulting equilibrium marriage distribution,
and find a representation of it in closed form. This allows us to derive smooth dependence
of this distribution on exogenous preference and population parameters, and establish
sign, symmetry, and size of the various substitution effects, making comparative statics
possible. For example, we show that an increase in the population of men of any given
type in this model leads to an increase in single men of each type, and a decrease in single
women of each type. We show that an increase in the number of men of a given type
increases the equilibrium transfer paid by such men to their spouses, and also increases the
percentage of men of that type who choose to remain unmarried. While the above trends
may not seem surprising, the verification of such properties helps to substantiate the
validity of the model. Moreover, we make unexpected predictions which could be tested:
namely, the percentage change of type i unmarrieds with respect to fluctuations in the
total number of type j men or women turns out to form a symmetric positive-definite
matrix rij = rji in this model, and thus to satisfy bounds such as |rij | ≤ (riirjj)

1/2.
Our existence result follows from a variational principle and a simple estimate, rather

than a fixed point theorem. Fixed point approaches to the existence part of our result
have been explored by others [6] [8] [12], but are much more complicated and yield neither
uniqueness, nor comparative statics, nor an explicit representation of the solution.

1. Introduction

In ‘Who Marries Whom and Why?’ [7], Choo and Siow propose a model of the marriage
market in which agents have deterministic preferences with respect to observable character-
istics and stochastic preferences respect to unobservable characteristics. The randomness is
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McFadden type [18], and spreads the preferences of agents on one side of the marriage mar-
ket over the entire type-distribution of agents on the other, thus yielding non-assortative
matching. A priori, it is not evident whether all such preferences lead to existence of a
distribution of marriages which clears the market [6] [12] [8]. Our first result reconfirms
that it does. Moreover, we show this equilibrium is unique, and give an explicit formula for
the resulting marriage distribution, essentially solving the model completely. This allows
us to derive smooth dependence of the resulting equilibrium state on the specified popula-
tion and preference parameters, and establish sign, symmetry and bounds on the response
of the predicted distribution of marriages to changes in each parameter. Although exis-
tence of an equilibrium was also discussed by Choo, Seitz and Siow [6] and Fox [12] (and
by Dagsvik [8] for a related model), our proof relies on the reformulation of the problem
as a variational minimization, hence is much simpler than the fixed point argument they
suggest. Moreover, as mentioned above, it yields the solution in closed form. Our unique-
ness result is the first concerning this model [5], and is based on convexity (in appropriate
variables) of the new variational principle formulated in Section §4. Section §2 details the
model, while §3 specifies our results. Section §4 establishes the existence and uniqueness of
equilibria, while §5 is devoted to comparative statics. The remainder of this introduction
addresses related literature, provides motivation for the Choo-Siow model, and discusses
our results. Further comments concerning the derivation of the model may be found in
Appendix A.

The random component of agent preferences is a salient feature of the Choo-Siow model.
Due to this randomness, the equilibrium marriage distribution predicted by the model
will not be positive assortative, even when the observed attributes of the agents are one-
dimensional. This is consistent with empirical data. Even in experiments where the agents
are parameterized by ordered types, such as age, observed marital data will almost never
be genuinely assortative. For example, in any given population it is unlikely to be true
that the age of the youngest woman married to a 34 year old man always exceeds that of
the oldest woman married to a 33 year old. Similarly, one always finds matches in large
populations that pair high with low qualities as measured by any given ordered observable
characteristic (e.g. income, years of education, etc.). Thus a strictly assortative framework
fails to explain the presence of, for example, the existence of PhD graduates married to
high-school drop-outs.

The classic transferable utility model of the marriage market, introduced by Gary Becker
[1], in principle predicts how agents will marry given exogenous preference parameters.
However, it has seldom been estimated. There are two main obstacles in estimating a model
of the marriage market. First, equilibrium transfers in modern marriages (except in the case
of dowries) are not observed. Hence any behavioural model that requires their presence
in data is not identifiable. Second, real-world agents are described by discrete, multi-
dimensional, possibly unordered, types. But the classic Becker model predicts positive
assortative matching under the assumption that agent type is one dimensional, continuous,
ordered, and that preferences are super-modular. This positive assortative matching is
limiting, but does ensure that his model predicts a unique marital distribution.
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The Choo-Siow model eliminates the structural assumptions of the classic model. First,
it is not necessary to observe transfers in order to determine the equilibrium marriage
distribution generated by the model. In fact, we provide an explicit formula for the equi-
librium marriage distribution in terms of the derivative of the Legendre transform of a
known function. Second, the model places no a priori structure on the nature or number
of types that agents (men and women) can have. This allows consideration of a wide range
of attributes, like race, religion, level of income, and educational achievements.

In this more realistic framework, with its lack of structure for the agents’ deterministic
preferences and types, the issue of whether there exists an equilibrium marital distribu-
tion, and if so whether it is unique, becomes a question of fundamental theoretical and
econometric significance. The theoretical importance arises from the fact that uniqueness
of equilibria in two-sided matching problems is usually not better than a generic prop-
erty, except perhaps in certain convex programming settings like [10] [11], which include
continuous Monge-Kantorovich matching [15] [4]. Further, the randomness considered in
the model below is the commonly used extreme value logit type, thus any result that de-
scribes properties of the equilibrating matches has potentially wider applicability. The
econometric importance arises from the fact that models of the marriage market are useful
to econometricians only insofar as they make unique predictions of a martial distribution,
given exogenous preferences. From a practical point of view having closed form solutions
which permit comparative statics may be even more crucial.

2. The Choo-Siow Marriage Matching Model

Our presentation emphasizes the stochastic heterogeneity that differentiates the Choo-
Siow model from classical models. The competitive framework, which uses transfers of
utility from spouses to equilibrate the market, is explored in detail in Choo-Siow [7] but
treated here only at the end of §5.3. It should be noted at the outset that the methods
developed here also apply to other non-transferable utility models present in the literature.
For example, Dagsvik [8] develops a model of the marriage market which uses an assign-
ment algorithm (deferred acceptance) rather than utility transfers to sort matches, but his
equilibrium conditions are functionally similar to ours.

2.1. Setting. What is exogenous in this model are the observed types of men and of
women, the numbers of men and women of each type in the population, and the total
gains πij of marriage between a man of observed type i and a woman of observed type
j, relative to both partners remaining single. The quantity πij will not reappear until
(7). On the other hand, individual agents have a utility functions that depend on both an
endogenous deterministic component that captures systematic utility, and an exogenous
random one that models heterogeneity within the population of each given type. Thus the
utility accrued by a man of type i and specific identity g who marries a woman of type j
is assumed to be:

(1) V m
ijg = ηmij + σǫijg;



4 COLIN DECKER, ELLIOTT H. LIEB, ROBERT J. MCCANN, AND BENJAMIN K. STEPHENS

the case j = 0 represents the utility of remaining single. The deterministic component is
ηmij ; its endogeneity can be interpreted to reflect the possibility of interspousal transfer,

as in Choo-Siow [7] and §5.3 below. It is set in equilibrium, and depends explicitly on
the type of the man and the type of the woman, and implicitly on market conditions,
i.e. on the relative abundance or scarcity of men and women of each different type. The
random term ǫijg depends additionally on the specific identity of the man, but not on the
specific identity of the woman. Hence a specific thirty-five year old man may have stronger
than typical (with respect to his age group) attraction for fifty-year old women. But this
attraction does not depend on whether, for example, the older woman has an especially
strong attraction to younger men (assuming this latter characteristic is unobservable in
the data and hence not reflected in j).

The random term is assumed to have the Gumbel extreme value distribution described
in Appendix A. This distribution was introduced to the economics literature by McFadden
[18]. Finally, the real number σ is a scaling parameter which measures the degree of
randomness; its reciprocal can be interpreted as the signal to noise ratio. It is equal to
unity in the original Choo-Siow model. For illustrative purposes, we will have occasion to
allow σ to vary and in doing so embed the Choo-Siow model in a one parameter family of
models that differ by the degree of randomness present in them.

Unlike in deterministic matching models, agents of a particular type do not have a
uniform preferred match. This because their preferences depend on the random variable
ǫijg. Using the Gumbel structure, the probability that a man of type i prefers a woman of
type j among all other possible marital choices k ∈ {0, ..., J} is given by

(2) Pr(Man of type ig prefers a woman of type j) =
exp(

ηmij
σ
)

∑J
k=0 exp(

ηmik
σ
)
;

(see Appendix A for a derivation). This probability distribution is endogenous, because
it depends on the various ηmik . Note that it does not depend on the specific identity g of
the man of type i, since the noise is identically distributed for each different g. Yet it is
possible already to see how the equilibrium marriage output will differ markedly from a
deterministic one. Whereas in the deterministic case all members of a given type typically
have the same preferred match, here the preferred matches of type i men are smeared
across all female types according to the distribution defined by (2). The mean and spread
of the smearing are determined by the endogenous values ηmij and by σ, respectively.

Consider σ ∈ [0,∞]. The case σ = 1 corresponds to the Choo-Siow model where some
smearing is present. The case σ = 0 corresponds to a deterministic matching model, for
which there is no smearing. Indeed, as σ → 0, the largest exponentials dominate all others,
and the probability that a man of type i prefers a woman of type j converges to 0 or

1
#argmax{ηmij |0≤j≤J} depending on whether or not ηmij weakly dominates all other preference

parameters ηmik . Conversely, as σ → ∞, the stochastic term dominates the utility function,
and the resulting probability distribution converges to the uniform distribution. In this
case, there is maximal smearing, as preferences are completely random, constrained only
by availability of prospective partners to marry.
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Female preferences are also smeared, and the equilibrium marriage distribution is deter-

mined when ηmij and ηfij are such that the number of desired marriages of each type is the
same on both sides of the market.

We now elaborate on the Choo-Siow model. We henceforth fix σ = 1; since preferences
are relative, this normalization can always be attained by rescaling all of the preferences
in the model. Our presentation of the model is notationally different than in [7] and better
suited to our subsequent arguments.

2.2. The Choo-Siow model. Suppose we wish to predict the number of marriages be-
tween men and women of different types. The number of men of type i is denoted mi.
The number of marriages of type i men to type j women is denoted µij. The number of
men of type i and women of type j who choose to remain single is denoted by µi0 and µ0j

respectively. If each man marries his preferred woman, the equality

(3) Pr(Man of type ig prefers a woman of type j) =
µij

mi

will be valid, or at least as the population size becomes large, the right hand side of the
equality converges to the left hand side by the law of large numbers, or the maximum
likelihood theorem.

Using equations (2)–(3) to compute the ratio of the probability that a man of type i
prefers a woman of type j to the probability that he prefers to remain single, we arrive at
the following formula:

(4) µm
ij =

eη
m
ij

eη
m
i0
µm
i0 .

These I×J equations are in fact quasi-demand equations, because they indicate the number
of type µij marriages that men of type i would like to participate in. Viewing the female
market cohort as the supply side, there are analogous supply equations. Letting the utility
acquired by a woman of type j and specific identity h who marries a man of type i be

(5) V f
ijh = ηfij + ǫijh,

the above analysis produces I × J supply equations of the form:

(6) µf
ij =

eη
f
ij

eη
f
0j

µf
0j.

The equilibrium output in the Choo-Siow model is a specification of µij for all 0 ≤ i ≤ I,
and all 0 ≤ j ≤ J . This output is obtained by requiring that supply balance demand:

µf
ij = µm

ij . Under this market-clearing hypothesis, we have the following equation. The

endogenous parts of the ηmij , η
f
ij , η

m
i0 , η

f
0j are eliminated upon adding them to arrive at

the definition of an exogenous1 aggregated gains variable πij associated to each observable
type of marriage:

1See [7] or §5.3 for an explanation in terms of spousal transfers.
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(7) πij :=
ηmij + ηfij − ηmi0 − ηf0j

2
.

Using the market-clearing hypothesis, we may re-write the equilibrium condition µm
ij =

µf
ij =: µij in terms of the exogenous variable πij as follows:

(8)
µij√
µi0µ0j

= eπij .

Finally, letting Πij = eπij , the equilibrium output is given by

(9)
µij√
µi0µ0j

= Πij .

The equilibrium conditions expressed in equation (9) are implicit. They give necessary
conditions for real numbers µij to be an output of the Choo-Siow model. However, they
are not sufficient; a secondary set of necessary conditions, population constraints, must
also be satisfied. Let there be I types of men, and J types of women. The number of
men of type i is denoted mi, and the number of women of type j is denoted fj. The

vector whose ith component is mi, and whose (I + j)th component is fj, is denoted by
ν. Called the population vector, it has (I + J) components and may also be denoted by
[m | f ]. Let µij be the number of marriages of type i men to type j women. Let µi0 be
the number of unmarried men of type i and µ0j be the number of unmarried women of
type j. A specification of µij,µi0,µ0j for all i and j is called a marital distribution. The
following population constraints must be satisfied by all marital distributions, and are a
consequence of the definitions:

µi0 +

J
∑

j=1

µij = mi,(10)

µ0j +
I

∑

i=1

µij = fj,(11)

µij ≥ 0.(12)

Two questions naturally arise. First, given an exogenous matrix Π (with positive entries)
will there always be a specification of µij that satisfies (9)–(12)? Second, if there is a
satisfying marital distribution, is it unique? We call these questions the Choo-Siow inverse
problem. The problem is important for several reasons:

First, the implicit conditions present in equation (9) are the equilibrium outcome of a
competitive market. There are not so many realistic environments with finitely many agent
types and many commodities which are known to generate unique competitive equilibria
— except possibly generically. While there are generic uniqueness results for matching
problems that can be reduced to convex programing problems such as Monge-Kantorovich
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matching, e.g. [15] [4] [10] [11], the stochastic heterogeneity prevents the equilibrium in our
model from being formulated as such. Instead, stochasticity effectively removes the need
for a genericity assumption.

Second, an affirmative explicit solution to the Choo-Siow Inverse Problem makes the
Choo-Siow model useful in econometric analysis. The matrix Π is exogenous and unob-
served in data, but can be point-estimated from an observed marriage distribution. An
economic or social shock will affect the systematic utilities that agents of various types in-
cur by marrying agents of various others, and will therefore alter the value of Π. This effect
can be approximated to form an updated matrix of aggregated systematic parameters Π

′

.
Existence and uniqueness guarantee that there will be exactly one marriage distribution
that results from the shock, making the model predictive. In the same vein, demographers
are often interested in predicting how marriage distributions will change due to changing
demographics, i.e. changes in the population vector ν. Our closed form solution makes it
is possible to compute the sign and in some cases the magnitude of such changes explicitly.

Finally, if the Choo-Siow inverse problem has a unique solution, the estimated param-
eters πij are an alternative characterization of the observed marriage distribution. The
recharacterization is useful because the parameters of the Choo-Siow model have a behav-
ioral interpretation, and are not merely observed data.

2.3. Summary of progress. A related local uniqueness question was resolved by Choo
and Siow in [7]. However the issue of global uniqueness was left open, and posed as an open
problem in a subsequent working paper by Siow [22]. We resolve this question positively
by introducing a variational principal and a change of variables which allows us to exploit
convexity. The question of existence of (µij) for all Π = (eπij ) was addressed in a working
paper of Choo, Seitz and Siow [6] by appealing to the Tarski fixed point theorem; see
also the related results of Fox [12] and Dagsvik [8]. However the proofs there are long
and obscure — at least to us — whereas the variational proof in the present paper is
simple and direct and follows from continuity and compactness by way of an elementary
estimate. Moreover, it leads to an explicit representation of the solution. This allows us to
rigorously confirm various desirable and intuitive features of Choo-Siow matching, whose
presence or absence might in principle be used as a test to refute the validity of various
alternative matching models. Among other results, we show for example that an increase
in the number of men of a given type increases the equilibrium transfer paid by such men
to their spouses, while also increasing the percentage of such men who choose to remain
single. See Theorem 2 below for related statements and more surprising conclusions.

3. Precise Statement of Results

In the preceding remarks, the Choo-Siow inverse problem was phrased in terms of finding
existence and uniqueness of equilibrium µ given exogenous data Π and ν. As the name
suggests, it is also useful to think of this problem as one of inverting a function. From this
point of view, even though Π is exogenous, we may prefer instead to consider Π as the
image of a marriage distribution under a transformation that we seek to invert. We say
that a marriage distribution µ generates the gains matrix Π if (9) holds.
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Remark 1 (Incomplete participation). From the market equilibrium point of view, the
fact that the left hand-side of (9) becomes infinite when µi0 or µ0j is equal to zero is
unproblematic. It means that for no finite value of the exogenous Π is sufficient to induce
all the representatives of some type to marry. However from the inverse problem point of
view, it is necessary to stipulate that µi0 and µ0j be strictly positive.

We can now precisely formulate the Choo-Siow Inverse Problem:

Problem (Choo-Siow inverse problem) Given a gains matrix Π = (Πij) and a popu-
lation vector ν = [m | f ], does there exist a unique marital arrangement generating Π? In
other words, assuming the entries Πij to be non-negative and mi and fj to be strictly pos-
itive, does exactly one matrix (µij) with non-negative entries exist that satisfies (9)–(12)?

3.1. Preliminaries. Let us begin with a reformulation of the problem; Siow attributes
this reformulation to Angelo Melino. Let α2

ij = µij . In this new notation, the gains matrix

and population constraints (9)–(12) take the form:

αi0α0jΠij = α2
ij,(13)

α2
i0 +

J
∑

j=1

α2
ij = mi,(14)

α2
0j +

I
∑

i=1

α2
ij = fj.(15)

Borrowing terminology from quantum physics, we call any collection of αij ’s which solve
(13)–(15) amplitudes corresponding to Π. By substituting (13) into (14) and (15), we can
eliminate all variables but those that correspond to unmarried men and women. Renaming
the variables αi0 to βi, and α0j to βI+j , we obtain a system of (I+J) quadratic polynomials

in the (I + J) variables {βk}I+J
k=1 :

β2
i +

J
∑

j=1

βiβI+jΠij − νi = 0, 1 ≤ i ≤ I,

β2
I+j +

I
∑

i=1

βiβI+jΠij − νI+j = 0, 1 ≤ j ≤ J.(16)

A solution to this system of equations is a vector of amplitudes β that has (I + J) compo-
nents. Abstractly, its components might be real, complex, or both. The Choo-Siow Inverse
Problem is equivalent to showing that the polynomial system (16) has a unique solution
with real positive amplitudes for all gains matrices Π and population vectors ν = [m | f ]
with positive components. Our proof is variational. We construct a functional E(β) with
the property that β is a critical point of E — meaning point where E has zero derivative
— if and only if β satisfies equation (16). We then show that E has exactly one critical
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point in the positive orthant (R+)
I+J , and give a formula for this critical point using the

Legendre transform of a related function.
The main result of this paper is the following theorem, which solves the Choo-Siow

Inverse problem.

Theorem 1 (Existence and uniqueness of real positive solution). If all the entries of
Π = (Πij) are non-negative, and those of ν = [m | f ] are strictly positive, then precisely
one solution β of (16) lies in the positive orthant of RI+J .

Remark 2 (Explicit solution). As we shall see, the solution b := (log β1, . . . , log βI+J)
satisfies b = (DH)−1(ν) = DH∗(ν) where H(b) and H∗(ν) are the smooth strictly convex
dual functions defined by (25)–(26).

Remark 3 (Unpopulated types). In case mi = 0 or fj = 0, we simply reformulate the
problem in fewer than I + J variables, corresponding only to the populated types. This
reformulation shows the conclusions of Theorem 1 extend also to population vectors ν =
[m | f ] whose entries are merely non-negative, instead of strictly positive.

Since each matrix (µij) with non-negative entries solving (9)–(12) corresponds to a
solution β of (16) having positive amplitudes βi =

√
µi0 and βI+j =

√
µ0j, this theorem

gives the sought characterization of (µij) by Π. Moreover, this characterization facilitates
computing variations in the marital arrangements in response to changes in the data (Π, ν):

Theorem 2 (Comparative statics). Let the unique solution to the Choo-Siow inverse prob-
lem with exogenous data Π and ν be given by β(Π, ν). Then the percentage change of singles
β2
k with respect to the population parameter νℓ turns out to define a symmetric and positive

definite matrix

(17) rkℓ :=
1

β2
k

∂β2
k

∂νℓ
=: 2[Dν log(β)]k,ℓ

(sometimes denoted Dν log(β) > 0); here k, ℓ ∈ {1, . . . , I + J}. This positive definiteness
implies, among other things, the expected monotonicity rkk > 0, the unexpected symmetry
rkℓ = rℓk, and more subtle constraints relating these percentage rates of change and the
corresponding substitution effects such as |rkℓ| <

√
rkkrℓℓ.

Additionally we can account for the sign, and in some cases bound the magnitude, of
each entry of the matrix R = (rkℓ). To avoid trivialities, assume no column or row of Π
vanishes, so no observable type of individual is compelled to remain single. Then,

(18) rkℓ < 0,

if k ∈ {1 . . . I} and ℓ ∈ {I + 1 . . . I + J} (or vice versa). Second, if k, ℓ ∈ {1 . . . I}, then

(19)
1

2
(β2

k + νk)rkℓ > δkℓ :=

{

0 if k 6= ℓ
1 otherwise.

Similarly, (19) also holds if both k, ℓ ∈ {I + 1 . . . I + J}.



10 COLIN DECKER, ELLIOTT H. LIEB, ROBERT J. MCCANN, AND BENJAMIN K. STEPHENS

These qualitative comparative statics have a simple interpretation. Increased supply of
any type of man coaxes more women into marriage (due to increased competition among
men leading to an increased equilibrium transfer — see subsection §5.3) and decreases
the number of men who wish to marry. The last statement of the theorem says that this
decrease is not merely due to the fact that there are more men. Rather, men of type k 6= ℓ
who would have chosen marriage under the old regime choose to be single after the shock.

We conclude our results with a corollary asserting monotonicity of utility transferred by
men of type i, and of the percentage who choose to remain single, as a function of their
abundance in the population.

Corollary 3 (Utility transferred and non-participant fraction increase with abundance).
For all i ≤ I, j ≤ J , and k ≤ I + J , with the hypotheses and notation of Theorem 2,

∂

∂νi
(ηfij − ηmij ) > 0(20)

and
∂

∂νk

(β2
k

νk

)

> 0.(21)

4. A New Variational Principle (Proof of Theorem 1)

4.1. Variational method: existence of a solution. Consider the function E : RI+J →
R ∪ {+∞}, defined as follows:

(22) E(β) :=
1

2

I+J
∑

k=1

β2
k +

I
∑

i=1

J
∑

j=1

ΠijβiβI+j −
I

∑

k=1

νk log |βk|.

It diverges to +∞ on the coordinate hyperplanes where the βk vanish, but elsewhere is
smooth.

We differentiate and observe that β is a critical point of E if and only if (16) holds. Notice
strict positivity of the components of ν = [m | f ] implies the corresponding component of a
solution β to (16) is non-vanishing, hence no solutions occur on the coordinate hyperplanes
which separate the different orthants. In words, the critical points of E are precisely those
that satisfy the system of equations we wish to show has a unique real positive root. It
therefore suffices to show that E(β) has a unique real positive critical point; for then (16)
admits exactly one real positive solution. Let us show at least one such solution exists, by
showing E(β) has at least one critical point: namely, its minimum in the positive orthant.

Claim 4 (Existence of a minimum). If all the entries of Π = (Πij) are non-negative, and
those of ν = [m | f ] are strictly positive, the function E(β) on the positive orthant defined
by (22) attains its minimum value.

Proof. Since E(β) is continuous, the claim will be established if we show the sublevel set
Bλ := {β ∈ (R+)

I+J | E(β) ≤ λ} is compact for each λ ∈ R. Non-negativity of Πij
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combines with positivity of νk, βk, and the inequality log βk ≤ βk − 1 to yield

E(β) ≥
I+J
∑

k=1

1

2
β2
k − νk(βk − 1)(23)

=
1

2

I+J
∑

k=1

(βk − νk)
2 − (νk − 1)2 + 1.(24)

It follows that Bλ is bounded away from infinity. Since E(β) diverges to +∞ on the coordi-
nate hyperplanes, it follows that Bλ is also bounded away from the coordinate hyperplanes
— hence compactly contained in the positive orthant. �

4.2. Uniqueness, convexity, and Legendre transforms. With this critical point char-
acterization of the solution in mind, let us observe for β ∈ RI+J in the positive orthant,
defining bk := log βk implies E(β) = H(b)− 〈ν, b〉, where

(25) H(b) :=
1

2

I+J
∑

k=1

e2bk +

I
∑

i=1

J
∑

j=1

Πije
bi+bI+j

and 〈·, ·〉 denotes the inner product on RI+J . Since the change of variables βk ∈ R+ 7−→
bk = log βk ∈ R is a diffeomorphism, it follows that critical points of H(b) − 〈ν, b〉 in the
whole space RI+J are in one-to-one correspondence with critical points of E(β) in the
positive orthant.

On the other hand, H(b) is manifestly convex, being a non-negative sum of convex
exponential functions of the real variables bk; in fact Πij ≥ 0 shows the Hessian D2H(b)
dominates what it would be in case Π = 0, namely the diagonal matrix with positive entries
diag[2e2b1 , . . . , 2e2bI+J ] along its diagonal. Thus H(b) is strictly convex throughout RI+J ,
and E(β) = H(b)−〈ν, b〉 can admit only one critical point β in the positive orthant — the
minimizer whose existence we have already shown. The solution β to (16) which we seek
therefore coincides with the unique point at which the maximum is attained.

This last fact means that b maximizes the right-hand side of the following equation:

H∗(ν) := sup
b∈RI+J

〈ν, b〉 −H(b)(26)

= sup
β∈(R+)I+J

−E(β).

The function H∗ defined pointwise by the above equation is the Legendre transform or
convex dual function of H; see Appendix B for details. It follows that the solution b
satisfies ν = DH(b). Thus b = DH∗(ν) by the duality of H and H∗. This provides an
explicit formula for b in terms of the derivative of H∗.

5. Comparative Statics (Proof of Theorem 2)

5.1. Positive definiteness. Our representation of the solution in terms of the Legendre
transform of the convex function H can be used to obtain information about the derivatives
of the solutions with respect to the population parameters ν.
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Suppose we wish to know how the number of marriages µij = ΠijβiβI+j of each type
(i, j) varies in response to slight changes in the population vector ν, assuming the gains
matrix Π remains fixed. This is easily computed from the percentage rate of change rkℓ in
the number β2

k of unmarrieds of each type, which is given in terms of the Hessian of either
(25) or (26) by

(27) rkℓ :=
1

β2
k

∂β2
k

∂νℓ
= 2D2

kℓH
∗(ν) = 2(D2H|−1

(log β1,...,logβI+J)
)kℓ, 1 ≤ k, ℓ ≤ I + J.

To see that these equalities hold, observe that the solution β is the point where the
maximum (26) is attained. The Legendre transformH∗(ν) ofH defined by this maximum is
manifestly convex, and its smoothness is well-known to follow from the positive-definiteness
of D2H(b) > 0 as in Lemma 9. Moreover b = DH∗(DH(b)), whence the maximum (26) is
attained at b = DH∗(ν) and D2H(b)−1 = D2H∗(DH(b)) = D2H∗(ν) > 0. This positive
definiteness implies the first half of the Theorem 2.

5.2. Qualitative characterization of comparative statics. To complete our qualita-
tive description of the substitution effects in this section, we apply the following theorem
from functional analysis to matrices T : Rn −→ Rn.

Theorem 5 (Neumann series for the resolvent of a linear contraction). Let ‖ • ‖op be the
operator norm. Then if ‖T‖op <1, the operator (1− T )−1 exists and is equal to

∑∞
n=0 T

n.

Next, we consider the matrixD2H(b)|(log β1,...,log βI+J), and derive properties of its inverse,
whose entries give the various values of rkℓ/2. Differentiating the known functionH(b) twice
yields a positive-definite (I + J)× (I + J) matrix which can be factored into the form

(28) 2R−1 = D2H|b=(log β1,...,log βI+J) = ∆

(

∆I Π
ΠT ∆J

)

∆

where ∆ = diag[eb1 , . . . , ebI+J ] = diag[β], while ∆I and ∆J are I × I and J × J diagonal
submatrices whose diagonal entries are all larger than two:

(∆I)ii = 2 +
1

β2
i

J
∑

j=1

ΠijβiβI+j = 1 +
νi
β2
i

,

(∆J)jj = 2 +
1

β2
I+j

I
∑

i=1

ΠijβiβI+j = 1 +
νI+j

β2
I+j

.

Here we have used the fact that the values β are critical points and therefore satisfy the
first order conditions (16) to simplify these diagonal terms.

There are determinant and inverse formulae for block matrices which assert [16] that

(29) det

(

∆I Π
ΠT ∆J

)

= det(∆I) det(∆J) det(1−∆I
−1Π∆J

−1ΠT ),
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and

(30)

(

∆I Π
ΠT ∆J

)−1

=

(

(∆I −Π∆J
−1ΠT )−1 −(∆I −Π∆J

−1ΠT )−1Π∆J
−1

−ΠT∆I
−1(∆J −ΠT∆−1

I Π)−1 (∆J −ΠT∆−1
I Π)−1

)

.

The determinant (29) is positive by (28) and Theorem 1. We will now show that the
eigenvalues of the matrix A(s) = ∆I

−1sΠ∆J
−1sΠT , appearing in (29)–(30) are bounded

above by 1 and below by−1 for all values of s ∈ [0, 1]. This will have implications respecting
the signs of the entries of (30), whose (k, ℓ)th entry is in fact equal to βkβℓrkℓ/2 hence shares
the sign of the change (18)–(19) which we desire to estimate. Namely, it will allow us to
apply Theorem 5 to block entries such as (∆I −Π∆J

−1ΠT )−1 = (1−A(1))−1∆I
−1 in (30).

Let λmax(s) be the largest eigenvalue of A(s). Then, the smallest eigenvalue of (1−A(s))
is equal to (1−λmax(s)). We proceed by continuously deforming from s = 0 to s = 1: The
eigenvalues of (1−A(0)) are equal to 1, as A(0) is in fact equal to the zero matrix. Since
det(1−A(s)) > 0 for all s ∈ [0, 1], continuity of λmax(s) and the intermediate value theorem
imply that 1−λmax(s) > 0 for all s, so that λmax(1) < 1. Since no row of Π vanishes, A(s)
has positive entries whenever s > 0. The Perron-Frobenius theorem therefore implies that
any negative eigenvalue λ of A(1) is bounded by |λ| < λmax(1).

Since A has positive entries and ‖A‖op < 1, Theorem 5 indicates that the entries of
(1 − A)−1 are all positive — exceeding one on the diagonal. But βkβℓrkℓ/2 coincides
with the (k, ℓ)th entry of (1−A)−1diag[β2

1/(β
2
1 + ν1), . . . , β

2
I /(β

2
I + νI)], giving the desired

inequalities (19) whenever k, ℓ ∈ {1, . . . , I}. The signs of the remaining derivatives (18)–
(19) may be verified by applying the same technique to the three other submatrices present
in (30), thus completing the proof of Theorem 2.

5.3. Transfer utilities and percentage unmarried. Given a specification of Π and
ν = [mi | fj ], the Choo-Siow model predicts a unique vector β = [µi0 | µ0j ] of unmarrieds.
Given a fixed Π and a fixed β, the full marriage distribution can then be uniquely recovered.
It is therefore possible to view the β as a single valued (smooth) function of Π and ν.

5.3.1. Varying the population vectors ν. By Theorem 2, the signs of rkℓ are independent of
Π and ν and depend only on whether k ∈ {1, . . . , I}, or k ∈ {I+1, . . . , I+J}, and likewise
for ℓ. It is perhaps useful to visualize these comparative statics as the entries of the matrix
Dβ with Dℓβk := ∂βk

∂νℓ
. Then, Dβ is a block matrix that is positive in its upper-left and

lower-right blocks, and negative in its upper-right and lower-left blocks. Schematically,
(30) yields

(31) Dβ =

(

+ −
− +

)

.

Reverting back to the Choo-Siow notation for unmarrieds and population vectors, we
have for all k and ℓ:

(32)
∂µk0

∂mℓ

> 0,
∂µk0

∂fℓ
< 0,

∂µ0k

∂fℓ
> 0,

∂µ0k

∂mℓ

< 0.
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These basic comparative statics yield qualitative information about other more complex

quantities of interest. As indicated following equation (7), the quantity ηmij +ηfij −ηmi0 −ηf0j
is exogenous, whereas the first two individual summands are separately endogenous and
determined within the model. In the original formulation of this model, present in [7], our
endogenous payoff ηmij = η̃mij − τij is separated into a systematic return η̃mij presumed to be
exogenous, and a utility transfer τij from husband to wife, which is endogenous and set in

equilibrium. Similarly, ηfij = η̃fij + τij.

In equilibrium (6), both of the following equations hold:

log(µij)− log(µ0j) = ηfij − ηf0j = η̃fij + τij − η̃f0j ,(33)

log(µij)− log(µi0) = ηmij − ηmi0 = η̃mij − τij − η̃mi0 ;(34)

there is no utility transferred by remaining single. Subtracting one from the other, we see
that:

(35) log(
µi0

µ0j
) = 2τij + cij ,

where cij = (η̃fij − η̃f0j − η̃mij + η̃mi0 ) is exogenous.

We denote the differentiation operator ∂
∂νk

f by ḟ (suppressing the dependence on k).

Differentiating cij = (ηfij − 2τij − η̃f0j − ηmij + η̃mi0 ) and (35) yields:

∂

∂νk
(ηfij − ηmij ) = 2 ˙τij =

˙µi0

µi0
− ˙µ0j

µ0j
.

The inequalities (32) now determine the sign of ˙τij, which depends on the differentiation
variable νk. Since µ̇i0 and ˙µ0j have opposite signs, according to Theorem 2, we find

(36)
∂τij
∂mi

> 0,

which means the transfer of type i men to each type of spouse must increase in response
to an isolated increase in the population of men of type i. This is expected because an
increase in the number of type i men introduces additional competition for each type of
women, due to the smearing present in the model. To decrease the number of type i
men demanding marriage to a particular type of woman to a level that permits one-to-one
matching requires an increase in the transfer to crowd out some men.

While in principle the men might re-distribute so that the proportion of married men
remains the same, our next computation shows this is not the case. We consider the marital
participation rate of type k individuals, or rather the non-participation rate sk(ν) := β2

k/νk,
defined as the proportion of individuals who choose not to marry. Differentiation yields

∂sk
∂νk

=
β2
k

ν2k

(

νkrkk − 1
)

>
β2
k

ν2k

(νk − β2
k

νk + β2
k

)

,
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according to (19). But this is manifestly positive since the number β2
k of singles of type k

cannot exceed the total number νk of type k individuals. This means, for example, that an
increase in the total population of type k men increases the percentage of type k men who
choose to remain unmarried, given a fixed population of women and men of other types
(and assuming, as always, that the exogenous gains matrix Π remains fixed). It concludes
the proof of Corollary 3.

5.3.2. Varying the gains data Π. The population vector ν is one variable of interest. How-
ever the function β also depends on the gains parameters Πij. The complete derivative
D(ν,Π)β = [Dνβ | DΠβ] is an (I + J) × (IJ + I + J) matrix. As such there are linear
dependencies among its rows and columns. Since the matrix Dνβ is invertible, its columns
are linearly independent and form a basis of the column space. Hence, the remaining the
columns of the complete derivative can be expressed using linear combinations of them.
The implicit function theorem applied to this problem turns out to yield the following
simple linear relationship:

(37)
∂βk
∂Πij

= −βiβI+j(
∂βk
∂νi

+
∂βk
∂νI+j

)

for all i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, and k ∈ {1, . . . , I + J}.
Equilibrium (16) coincides with vanishing of the function F (β, ν,Π) : R(I+J)+(I+J)+(IJ) →

RI+J defined by

Fi(ν,Π) = β2
i +

J
∑

j=1

βiβI+jΠij − νi, 1 ≤ i ≤ I

Fj(ν,Π) = β2
I+j +

I
∑

i=1

βiβI+jΠij − νI+j, 1 ≤ j ≤ J.(38)

The implicit function theorem stipulates that if the derivative DβF |β0,ν0,Π0
is invertible,

there is a small neighbourhood around (β0, ν0,Π0) inside which for each (ν,Π) there is a
unique β satisfying equation (16), and further that β depends smoothly on (ν,Π). The
implicit function theorem also provides a formula for the derivative of the implicit function
β(ν,Π). It is obtained by applying the chain-rule to F (β(ν,Π), ν,Π):

(39) [Dνβ | DΠβ]ν0,Π0
= −[DβF ]−1[DνF | DΠF ]β0,ν0,Π0

.

Since ∂Fk
∂νℓ

= −δkℓ, and
∂Fℓ
∂Πij

= βiβI+j(δiℓ + δI+j,ℓ), the first part of the preceding formula

yields [DβF ]−1 = Dνβ, and the second part then implies (37). Theorem 2 shows Dνβ is
invertible, so the hypotheses of the implicit function theorem are globally satisfied and our
calculations are valid.

The equation (37) has an intuitive interpretation. An increase in the total systematic
gains to an (i, j) marriage (produced, for example, by an isolated increase in the value of
type j marriages to type i men, or an isolated decrease in the value of remaining single)
has the same effect as decreasing the supply of the men or women of the respective types
by a proportionate amount, weighted by the geometric mean of the unmarried men and
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women of type i and j. Since Theorem 2 shows the the summands in (37) to have opposite
signs, the sign of their sum will fluctuate according to market conditions.

Appendix A. Derivation of the preference probabilities

The random variable present in the definition of male and female utility is the Gumbel
extreme value distribution, introduced to the economics literature by McFadden [18]:

Definition 6 (Gumbel distribution). A random variable ǫ is Gumbel if it has cumulative
distribution function F (ǫ) = exp(− exp(−ǫ)).

Here Pr(ǫ < x) = F (x) gives the probability that the realization of this random variable
takes a value less x ∈ R. The corresponding density function is F ′(x) = f(x) = exp(−(x+
exp(−x)). The mean of ǫ is the Euler-Mascheroni constant, which is approximately equal

to γ = 0.57 . . .. Its variance is equal to π2

6 .
We now use this distribution to derive the discrete probability distribution (2).

Lemma 7. Suppose σ > 0 and ηij ∈ R are constants, while for each choice of j =
0, . . . , J, the ǫijg are independent identically distributed random variables with the Gumbel
distribution. Then

(40) Pr(ηij + ǫijg = max
0≤k≤J

ηik + ǫikg) =
exp(

ηij
σ
)

∑J
k=0 exp(

ηik
σ
)
.

Proof. It costs no generality to assume σ = 1. Then

(41) P := Pr(ηij + ǫijg ≥ ηik + ǫikg∀k) =
∫ ∞

−∞
dǫ F ′(ǫ)Πk 6=jF (ηij + ǫ− ηik).

This formula follows from Bayes’ rule for conditional probability, and independence of the
various random variables involved. Substituting in the explicit formula for the Gumbel
distribution from Definition 6 yields

(42) P =

∫ ∞

−∞
dǫ exp(−(ǫ+ exp (−ǫ))Πk 6=j exp(− exp(ηik − ηij − ǫ)).

We make a change of variables by setting t = exp(−ǫ), so dǫ=−dt/t. Evaluating the
integral in the new variables yields

P =

∫ ∞

0
dt exp(−t)Πk 6=j exp(−t exp(ηik − ηij))

=

∫ ∞

0
dt exp(−t

J
∑

k=0

exp(ηik − ηij))

=
1

∑J
k=0 exp(ηik − ηij)

=
exp(ηij)

∑J
k=0 exp(ηik)

as desired. �
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Corollary 8 (Expected marital preferences by observed types). Suppose a man with ob-
servable type i and (unobservable) specific identity g derives utility V m

ijg = ηmij + σǫijg from
being married to a woman of observable type j, independent of her specific identity. If
σ > 0, ηmij ∈ R and ǫijg are as in Lemma 7, then the probability he prefers a woman of

type j to all other alternatives in {0, 1, . . . , J} is given by (2).

Remark 4 (The Boltzmann / Gibbs distribution). The probabilities which appear in (2)
and (40) take the form of the Boltzmann or Gibbs distributions from statistical physics,
in which the deterministic component ηmij of the utility derived plays the role of the energy
associated with marital state j, while the strength σ of the random component plays the role
of the physical temperature. This connection is also discussed by Galichon and Salanié [14].

Appendix B. The Legendre Transform

Here some well-known results pertaining to convexity and the Legendre transform are
recalled. Let F : Rn → R be a twice continuously differentiable function; F is convex if
Hess(F) := D2F ≥ 0, and strictly convex if the line segment connecting any two points on
the graph of F lies above the graph. The Legendre transform or convex dual function to
F (p) is denoted F ∗(q) and defined pointwise by:

(43) F ∗(q) = sup
p∈Rn

{q · p− F (p)}.

Since the supremum of affine functions is convex, it is clear that F ∗(q) is a convex function.
Additionally, the following duality result is true:

Lemma 9 (Legendre duality). Let F ∈ C2 be strongly convex on Rn, meaning Hess(F ) >
0. Then F ∗ is also twice continuously differentiable. Further, if q = DF (p), then p=DF ∗(q).
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