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There exist a relation between the Klein-Gordon and the Dirac equations

with scalar and vector potentials of equal magnitude (SVPEM) and the

Schrödinger equation. We obtain the relativistic energy spectrum for the

four relativistic quantum Smorodinsky-Winternitz systems from their quasi-

Hamiltonian and the quadratic algebras studied by Daskaloyannis in the

non-relativistic context. We also apply the quadratic algebra approach di-

rectly to the initial Dirac equation for these four systems and show that

the quadratic algebras obtained are the same than those obtained from the

quasi-Hamiltonians. We point out how results obtained in context of quan-

tum superintegrable systems and their polynomial algebras can be applied

to the quantum relativistic case.

1 Introduction

In recent years, many articles were devoted to the Klein-Gordon or the Dirac

equation with scalar and vector potentials of equal magnitude (SVPEM) [1-

20] (also referred in the literature as systems with spin and pseudo-spin sym-

metries). They are highly interesting systems with applications in nuclear

physics [5]. Moreover, the Klein-Gordon or the Dirac equation with SVPEM

is mathematically similar to the Schrödinger equation (i.e. the relativistic

systems can be transformed into a Schrödinger-like equation called a quasi-

Hamiltonian[1]). Many systems well known in context of non-relativistic

quantum mechanics such the isotropic harmonic oscillator [1,4,5], the hy-
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drogen atom [6] and one of the Smorodinsky-Winternitz systems [7] were

studied. Many ring-shaped systems [8-13] were also studied. Recently, it was

pointed out how the dynamical symmetries of the quasi-Hamiltonian can be

used to obtain the relativistic energy spectrum [1].

The study of quantum systems allowing polynomial integrals of motion us-

ing algebraic methods began in the early days of quantum mechanics [21-23].

A systematic search for classical and quantum superintegrable systems in

two-dimensional Euclidean space with two second-order integrals of motion

was presented in [24] and four classes of Hamiltonians were obtained. This

search was pursued on spaces of constant and nonconstant curvature [25] and

also for systems with third-order integrals of motion [26-30]. Over the years

many articles were devoted to superintegrability and for a detailed review we

refer the reader to [31]. The study of quantum superintegrable systems by the

mean of quadratic algebras and their representations was discussed by many

authors [32-44]. A general quadratic [37] and cubic [28,29] algebras respec-

tively for superintegrable systems with two second order integrals of motion

and systems with a second and a third order integrals were studied. Their re-

alizations in terms of deformed oscillator algebras and the finite dimensional

unitary representations were obtained. These results were used to obtain

the energy spectrum of quantum superintegrable. Systems with higher order

polynomial algebras and even infinite families of Hamiltonians with polyno-

mial algebras of arbitrary order were also studied [30,42,43]. Moreover, we

presented an algebraic derivation of the energy spectrum of the generalized

MICZ-Kepler system in three-dimensional Euclidean space E3, its dual the

four dimensional singular oscillator in four-dimensional Euclidean space E4

[44] and the MICZ-Kepler system on the three sphere S3 using the quadratic

algebra approach. We thus pointed out how the quadratic algebra obtained

in context of two-dimensional systems can be applied to higher dimensional

systems. The quadratic algebra approach was also applied to an exactly solv-

able position-dependent mass Schrödinger equation in two dimenions [41].

The purpose of this paper is to study Smorodinsky-Winternitz systems

in the quantum relativistic context, present an algebraic calculation of the

energy spectra and also point out how results obtained in context of non
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relativistic quantum superintegrable systems and their polynomial algebras

can also be applied to study relativistic quantum systems and used to obtain

the relativistic energy spectrum.

In Section 2, we recall a relation between the Schrödinger equation and the

Dirac and Klein-Gordon equations with scalar and vector potentials of equal

magnitude. In Section 3, we also recall results obtained by Daskaloyannis

[37] concerning non relativistic quantum superintegrable systems with two

second-order integrals of motion and their quadratic algebras. In Section

4, we consider Klein-Gordon and Dirac equations with SVPEM involving

the four Smorodinsky-Winternitz systems and obtain the four corresponding

quasi-Hamiltonians [1]. We present the four quadratic algebras generated

by the integrals of motion of the quasi-Hamiltonians, their realizations in

terms of deformed oscillator algebras, together with their finite-dimensional

unitary representations and the corresponding relativistic energy spectrum.

In Section 5, we use a direct approach [7] and obtain the integrals of motion

of the initial Dirac equation for the four Smorodinsky-Winternitz potentials.

We also obtain the four quadratic algebras generated by these integrals and

show that they are equivalent to those obtained from the quasi-Hamiltonians.

2 Klein-Gordon and Dirac equations with SPVEM

2.1 Klein-Gordon equation

The two-dimensional Klein-Gordon equation with equal scalar and vector po-

tentials (SPVEM) can be transformed into a Schrödinger-like equation which

is called a quasi-Hamiltonian [1] i.e. a Schrödinger equation without any spin

dependence with mass and energy depending of the relativistic energy spec-

trum. Let us consider the time-independent Klein-Gordon equation

(c2P 2 + (mc2 + Vs(~r))
2 − (E − Vv(~r))

2)ψ(~r) = 0. (2.1)
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We called Vs(~r) the scalar potential and Vv(~r) the vector potentials. When

these two potentials have an equal magnitude

Vs(~r) = Vv(~r) =
V (~r)

2
, (2.2)

the equation (2.1) with (2.2) becomes

((c2P 2 + (mc2 + E)V (~r)− (E2 −m2c4))ψ(~r) = 0. (2.3)

The equation (2.3) can be written as

(
P 2

2m̃
+ V (~r))ψ = H̃ψ = Ẽψ(~r), (2.4)

where m̃ and Ẽ are given by

E

c2
+m = 2m̃, E −mc2 = Ẽ, E 6= −mc2. (2.5)

2.2 Dirac equation

The two-dimensional time-independent Dirac equation with a scalar and a

vector potentials has the following form [2-14]

[cα · P + β(mc2 + Vs(~r)) + Vv(~r)]ψ(~r) = Eψ(~r), (2.6)

with

P = −i~∇, α =

(

0 σ

σ 0

)

, β =

(

I 0
0 −I

)

.

In the Pauli-Dirac representation ψ(~r) =

(

φ(~r)
ξ(~r)

)

, we obtain the following

set of coupled equations for the spinor components

cσ · P ξ(~r) = [E −mc2 − Vs(~r)− Vv(~r)]φ(~r), (2.7)

cσ · Pφ(~r) = [E +mc2 + Vs(~r)− Vv(~r)]ξ(~r). (2.8)
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When the scalar and the vector potentials are of equal magnitude the equa-

tion (2.7) and (2.8) reduce to the following system of two equations

cσ · P ξ(~r) = [E −mc2 − V (~r)]φ(~r), ξ(~r) =
cσ ·P
E +mc2

φ(~r). (2.9)

From these two equations given by (2.9), we obtain that the component

φ(~r) satisfy the Schrödinger-like equation (2.4) using the parameters given

by equation (2.5). The same results are also valid for systems with scalar

and vector potentials with opposite sign (pseudo-spin symmetry). It was also

shown that the condition which originate the spin and pseudospin symmetries

(i.e. SPVEM) in the Dirac equations are the same that produce equivalent

energy spectra of relativistic spin-1
2

and spin-0 particles in the presence of

vector and scalar potentials [20].

3 Quadratic algebras

Quadratic and more generally polynomial algebras were introduced in context

of non-relativistic quantum mechanics [28-44]. Let us recall results obtained

in context of quantum superintegrable systems.

Considering the case of a HamiltonianH allowing two second order integrals

A and B (i.e. [H,A] = [H,B] = 0), the most general quadratic algebra

generated by these integrals is given by the following commutation relations

[37] :

[A,B] = C, (3.1)

[A,C] = αA2 + γ{A,B}+ δA+ ǫB + ζ,

[B,C] = aA2 − αB2 − β{A,B}+ dA− δB + z.

The structure constants γ, δ, β, ǫ, ζ and z of the quadratic algebra given

by (3.1) are polynomials of the Hamiltonian H . The Casimir operator (i.e.

[K,A] = [K,B] = [K,C] = 0) of this quadratic algebra is thus given in terms

of the generators by

K = C2 − α{A2, B} − γ{A,B2}+ (αγ − δ){A,B}+ (γ2 − ǫ)B2
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+(γδ − 2ζ)B +
2a

3
A3 + (d+

aγ

3
+ α2)A2 + (

aǫ

3
+ αδ + 2z)A.

A deformed oscillator algebras is given by the following equations :

[N, b†] = b†, [N, b] = −b, bb† = Φ(N + 1), b†b = Φ(N), (3.2)

There are realizations of the quadratic algebras (3.1) in a deformed oscillator

algebra (3.2) of the form A = A(N), B = b(N) + b†ρ(N) + ρ(N)b. They are

two cases.

Case γ 6= 0

ρ(N) =
1

2123γ8(N + u)(1 +N + u)(1 + 2(N + u))2
, A(N) =

γ

2
((N+u)−1

4
− ǫ

γ2
,

b(N) = −α((N + u)2 − 1
4
)

4
+
αǫ− δγ

2γ2
− αǫ2 − 2δγǫ+ 4γ2ζ

4γ4
1

((N + u)2 − 1
4
)
,

Φ(N) = −3072γ6K(−1 + 2(N + u))2 (3.3)

−48γ6(α2ǫ−αδγ+aǫγ−dγ2)(−3+2(N +u))(−1+2(N+u))2(1+2(N +u))

+γ8(3α2 + 4aγ(−3 + 2(N + u))2(−1 + 2(N + u))4(1 + 2(N + u))2

+768(αǫ2 − 2δǫγ + 4γ2ζ)2 + 32γ4(−1 + 2(N + u))2(−1− 12(N + u)

+12(N + u)2)(3α2ǫ2 − 6αδǫγ + 2aǫ2γ + 2δ2γ2 − 4dǫγ2 + 8γ3z + 4αγ2ζ)

−256γ2(−1 + 2(N + u))2(3α2ǫ3 − 9αδǫ2γ + aǫ3γ + 6δ2ǫγ2 − 3dǫ2γ2

+2δ2γ4 + 2dǫγ4 + 12ǫγ3z − 4γ5z + 12αǫγ2ζ − 12δγ3ζ + 4αγ4ζ).

Case γ = 0, ǫ 6= 0

A(N) =
√
ǫ(N + u), b(N) = −α(N + u)2 − δ√

ǫ
(N + u)− ζ

ǫ
, ρ(N) = 1,

Φ(N) =
1

4
(−K

ǫ
− z√

ǫ
− δ√

ǫ

ζ

ǫ
+
ζ2

ǫ2
) (3.4)

− 1

12
(3d− a

√
ǫ− 3α

δ√
ǫ
+ 3(

δ√
ǫ
)2 − 6

z√
ǫ
+ 6α

ζ

ǫ
− 6

δ√
ǫ

ζ

ǫ
)(N + u)
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+
1

4
(α2 + d− a

√
ǫ− 3α

δ√
ǫ
+ (

δ√
ǫ
)2 + 2α

ζ

ǫ
)(N + u)2

−1

6
(3α2 − a

√
ǫ− 3α

δ√
ǫ
)(N + u)3 +

1

4
α2(N + u)4.

The Casimir operator K can be written in terms of the Hamiltonian only.

We have a energy dependent Fock space of dimension p+1 if

Φ(p+ 1, u, E) = 0, Φ(0, u, E) = 0, φ(x) > 0, ∀ x > 0 . (3.5)

The Fock space is defined by

H|Ẽ, n >= E|E, n >, N |E, n >= n|E, n > b|E, 0 >= 0.

bt|n >=
√

Φ(n + 1, E)|E, n+ 1 >, b|n >=
√

Φ(n,E)|E, n− 1 > .

3.1 Quadratic algebras and quasi-Hamiltonians

The relation between Klein-Gordon and Dirac equations and the Schrödinger

equation discussed in Section 2 allows to study relativistic systems from the

quadratic algebra approach using the corresponding quasi-Hamiltonian.

In the case of a quasi-Hamiltonian H̃ allowing two second order integrals

A and B (i.e. [H̃, A] = [H̃, B] = 0) the most general quadratic algebra is

also given by (3.1) and the structure constant are now polynomials of the

quasi-Hamiltonian.

We have a energy dependent Fock space (depending now of Ẽ) of dimension

p+1 if

Φ(p+ 1, u, Ẽ) = 0, Φ(0, u, Ẽ) = 0, φ(x) > 0, ∀ x > 0 . (3.6)

The Fock space is now defined by

H|Ẽ, n >= Ẽ|Ẽ, n >, N |Ẽ, n >= n|Ẽ, n > b|Ẽ, 0 >= 0.

bt|n >=
√

Φ(n + 1, Ẽ)|Ẽ, n+ 1 >, b|n >=
√

Φ(n, Ẽ)|Ẽ, n− 1 > .
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The energy spectrum Ẽ of the quasi-Hamiltonian can be calculated from the

constraints given by the equation (3.6). The equation (2.5) relate the energy

spectrum of the quasi-Hamiltonian and the relativistic energy spectrum (E).

Thus, the problem of obtaining the relativistic energy spectrum of the initial

Dirac or Klein-Gordon equation can done algebraically from the quadratic

algebra approach.

4 Smorodinsky-Winternitz systems

The four Smorodinsky-Winternitz systems [24] have the following form :

V1(x, y) =
mω2

2
(x2 + y2) +

µ1

2mx2
+

µ2

2my2

V2(x, y) =
mω2

2
(4x2 + y2) +

µ

2my2

V3(x, y) =
k

2m
1

2 r
+

1

2mr
(
µ1

r + x
+

µ2

r − x
)

V4(x, y) =
k

2m
1

2 r
+

µ1

2m
1

4

√
r + x

r
+

µ2

2m
1

4

√
r − x

r

These systems for the two-dimensional Euclidean space allows two sec-

ond order integrals of motion [24]. They possess many properties quantum

mechanics such the multiseparability and exact solvability [45]. Over the

years many articles were devoted to these systems [45-49]. These systems

were studied using the path integral approach [46] and their coherent states

obtained recently [47]. Moreover, it was shown by Daskaloyannis that the

integrals of motion for these four systems generate a quadratic algebra [37].

Let us consider the Klein-Gordon equation given by equation (2.1) and

Dirac equation given by equation (2.6) ( with V (~r) as defined in (2.2) ) with

these four potentials ( i.e. V1(x, y), V2(x, y), V3(x, y) and V4(x, y) ). We

obtain after a change of parameters (i.e. by replacing µ, µ1, µ2, ω and k

by µ̃, µ̃1, µ̃2, ω̃ and k̃ as given below) the following four quasi-Hamiltonians
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which have the same form than the non-relativistic systems with parameters

depending of the relativistic energy spectrum :

Case 1:

H̃r =
P 2
x

2m̃
+
P 2
y

2m̃
+
m̃ω̃2

2
(x2+ y2)+

µ̃1

2m̃x2
+

µ̃2

2m̃y2
, ω̃ =

√

m

m̃
ω, µ̃i =

m̃

m
µi,

Ar = P 2
x + m̃2ω̃2x2 +

µ̃1

x2
, Br = L2 + r2(

µ̃1

x2
+
µ̃2

y2
), L = xPy − yPx.

Case 2:

H̃r =
P 2
x

2m̃
+
P 2
y

2m̃
+
m̃ω̃2

2
(4x2 + y2) +

µ̃

2m̃y2
, ω̃ =

√

m

m̃
ω, µ̃ =

m̃

m
µ,

Ar = P 2
x + 4m̃2ω̃2x2, Br =

1

2
{L, Py}+

µ̃x

y2
− ω̃2m̃2xy2.

Case 3:

H̃r =
P 2
x

2m̃
+
P 2
y

2m̃
+

k̃

2m̃
1

2 r
+

1

2m̃r
(
µ̃1

r + x
+

µ̃2

r − x
), k̃ =

√

m̃

m
k, µ̃i =

m̃

m
µi,

Ar = L2 + r(
µ̃1

r + x
+

µ̃2

r − x
) =

1

2
(
1

2
(ηPξ − ξPη)

2 + (ξ2 + η2)(
µ1

ξ2
+
µ2

η2
)),

Br =
1

2
({L, Py} −

µ̃1

r

r − x

r + x
+
µ̃2

r

r + x

r − x
+
k̃m

1

2x

r
)

=
1

ξ2 + η2
(
1

2
(ξ2P 2

η − η2P 2
ξ ) +

µ2ξ
2

η2
− µ1η

2

ξ2
+
k

2
(ξ2 − η2)).

with x = 1
2
(ξ2 − η2) and y = ξη.

Case 4:

9



H̃r =
P 2
x

2m̃
+
P 2
y

2m̃
+

k̃

2m̃
1

2 r
+

µ̃1

2m̃
1

4

√
r + x

r
+

µ̃2

2m̃
1

4

√
r − x

r
, k̃ =

√

m̃

m
k, µ̃i =

m̃
1

4

m
1

4

µi,

Ar =
1

2
(−{L, Py}+

µ̃1(r − x)
√
r + x

r
m̃

3

4 − µ̃2(r + x)
√
r − x

r
m̃

3

4 − k̃m̃
1

2x

r
),

=
1

2(ξ2 + η2)
(η2P 2

ξ − ξ2P 2
η + k(η2 − ξ2) + 2ξη(µ1η − µ2ξ)),

Br =
1

2
({L, Px} −

µ̃1x
√
r − x

r
m̃

3

4 +
µ̃2x

√
r + x

r
m̃

3

4 − k̃m̃
1

2 y

r
),

= − 1

2(ξ2 + η2)
(ξη(P 2

ξ + P 2
η )− (ξ2 + η2)PξPη + 2kξη + (µ2ξ − µ1η)(η

2 − ξ2)).

4.1 Quadratic algebras and relativistic energy spectum

As discussed in the Section 3, we can use the quadratic algebra approach

[37] and the realizations of quadratic algebras as deformed oscillator algebras

introduced in context of non relativistic quantum mechanics to obtain the

relativistic energy spectrum of the Dirac or Klein-Gordon equations with

SVPEM.

Let us present these quadratic algebras generated by the integrals of motion

of the four quasi-Hamiltonians.

Case 1 :

[Ar, Br] = Cr, (4.1)

[Ar, Cr] = 8~2A2
r−16~2m̃H̃rAr+16~2m̃2ω̃2Br−16~2(µ̃1+µ̃2)m̃

2ω̃2+8~4m̃2ω̃2,

[Br, Cr] = −8~2{Ar, Br}+16~4Ar+16~2m̃H̃rBr−16~2(µ̃2−µ̃1)m̃H̃r−16~4m̃H̃r.

Kr = 16~2((µ̃2−µ̃1)
2m̃2ω̃2+4µ̃1m̃

2H̃r

2
)−16~4(3m̃2H̃r

2
+2~2m̃2ω̃2−2(µ̃1+µ̃2)).

10



We introduce µ̃1 = (k̃21 − 1
4
)~2 and µ̃2 = (k̃22 − 1

4
)~2. With the constraints

given by the equation (3.6) (with u = 1
2
+ ǫ1k̃1

2
) we obtain the energy spectrum

Ẽr of the quasi-Hamiltonian H̃r

Ẽr = 2~ω̃(p+ 1 +
ǫ1k̃1 + ǫ2k̃2

2
), Φ = 16~4x(p+ 1− x)(x+ ǫ1k̃1)(x+ ǫ1k̃2).

(4.2)

Thereby, from the equation (2.5) and (4.2) we can thus obtain the corre-

sponding quantum relativistic energy spectrum Er for the Klein-Gordon and

Dirac equal with scalar and vector potential of equal magnitude

(Er−mc2)2(
Er

2c2
+
m

2
) = 4~2m2ω2(p+1+ǫ1

√

( Er

2c2
+ m

2
)µ1

m~2
+

1

4
+ǫ2

√

( Er

2c2
+ m

2
)µ2

m~2
+

1

4
)2.

(4.3)

As previously observed before for such systems [1-20] the relativistic energy

spectrum is not given explicitly. These results coincide with the relativis-

tic energy spectrum obtained in Ref 7 for this system (but not in its full

generality i.e. with m = c = ~ = 1 and µ2 = 0 ).

Case 2:

[Ar, Br] = Cr, [Ar, Cr] = 16~2m̃2ω̃2Br, (4.4)

[Br, Cr] = 6~2A2
r − 16~2m̃H̃rAr − 8~2(µ̃ω̃2 − H̃r

2
)m̃2 + 6~4m̃2ω̃2,

Kr = 64~4m̃3ω̃2H̃r.

We introduce µ̃ = (k̃2 − 1
4
)~2. The structure function and the energy and

structure function are given by (with u = 1
2
)

Ẽr = 2~ω̃(p+ 1 +
ǫk̃

2
~), Φ = 4~3x(p + 1− x)(p + 1− x+ ǫk̃) (4.5)

From the (2.5) and (4.5) we obtain the relativistic energy spectrum Er

(Er −mc2)2(
Er

2c2
+
m

2
) = 4~2m2ω2(p+ 1 +

ǫ

2

√

( Er

2c2
+ m

2
)µ

m~2
+

1

4
)2. (4.6)
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Case 3:

[Ar, Br] = Cr, (4.7)

[Ar, Cr] = 2~2{Ar, Br} − ~
4Br − ~

2k̃m̃
1

2 (µ̃1 − µ̃2),

[Br, Cr] = −2~2B2
r + 8~2m̃H̃rAr + ~

4m̃Hr − ~
2(4(µ̃1 + µ̃2)H̃rm̃− k̃2m̃

2
),

Kr = −~
2(2(µ̃1−µ̃2)

2m̃H̃r−k̃2m̃(µ̃1+µ̃2))−2~4((µ̃1+µ̃2)m̃H̃r−
k̃2m̃

2
)+~

6m̃H̃r.

We introduce µ̃1 = ~2

2
(k̃21 − 1

4
) and µ̃2 = ~2

2
(k̃22 − 1

4
). The structure function

is given by (with u = 1
2
(2 + ǫ1k̃1 + ǫ2k̃2))

Ẽr =
−k̃2

2~2(2(p+ 1) + ǫ1k̃1 + ǫ2k̃2)2
, Φ = 2203k̃2m̃2

~
16x(p+1−x)(x+ǫ1k̃1)(x+ǫ2k̃2)

(4.8)

(x+ ǫ1k̃1 + ǫ2k̃2)
(x+ p+ 1 + ǫ1k̃1 + ǫ2k̃2)

(2(p+ 1) + ǫ1k̃1 + ǫ2k̃2)2
.

From the equation (2.5) and (4.8) we obtain the relativistic energy spectrum

Er

(Er−mc2)2m~
2(2(p+1)+ǫ1

√

( Er

2c2
+ m

2
)µ1

m~2
+

1

4
+ǫ2

√

( Er

2c2
+ m

2
)µ2

m~2
+

1

4
)2 = −(

Er

2c2
+
m

2
)k.

(4.9)

Case 4:

[Ar, Br] = Cr, [Ar, Cr] = −2~2m̃H̃rBr − ~
2 µ̃1µ̃2

2
m̃, (4.10)

[Br, Cr] = 2~2m̃H̃rAr −
~
2(µ̃2

1 − µ̃2
2)

4
m̃

Kr = ~
2 m̃

2

2
k̃2H̃r + ~

2m̃2k̃
(µ̃2

1 + µ̃2
2)

4
+ ~

4m̃2H̃r

2
.
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The structure function is given by (with u = ǫ
µ̃2

i

2~(
√

−2Ẽr)3
− k̃

2~(
√

−2Ẽr)
+ ǫ

2
)

2~(p+1)(−2Ẽr)
3

2+4ǫm̃k̃Ẽr

2
+ǫ(m̃)

3

2 (µ̃1
2+µ̃2

2) = 0, Φ = −Ẽrm̃

2
x(p+1−x).

(4.11)

From the equation (2.5) and (4.11) we obtain the relativistic energy spectrum

Er

2
5

2m
1

2 (p+1)~(−(Er−mc2)(
Er

2c2
+
m

2
))

3

2+4ǫk(
Er

2c2
+
m

2
)2(Er−mc2)+ǫ(

Er

2c2
+
m

2
)2(µ2

1+µ
2
2) = 0.

(4.12)

5 Symmetry algebras of Dirac equations

In Section 4, we obtained the relativistic energy spectrum of the Klein-

Gordon and Dirac equations with SVPEM for the four Smorodinsky-Winternitz

systems using the corresponding quasi-Hamiltonians and the quadratic alge-

bras approach. In this Section, we will obtain the symmetry algebra directly

of the Dirac equation given by equation (2.6) for these four systems and

show that these quadratic algebras are the same than those obtained for the

quasi-Hamiltonians.

Let us consider as in Ref.7 integrals of the following form

Qd =

(

Q11 Q12M

M †Q21 M †Q22M

)

, (5.1)

M = Px − iPy. (5.2)

The condition [Qd, H ] = 0 give the following constraints

Q12 = Q21, Q11 =
1

c
Q12(2 + V ) +Q11M

2, (5.3)

[Q11, V ] + c[Q12,M
2] = 0, [Q12, V ] + c[Q22,M

2] = 0. (5.4)
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By a direct calculation, we obtain that the initial Dirac equation for the

four Smorodinsky-winternitz systems allow two integrals of motion Ad and

Bd of the form given by the equation (5.1) i.e.

Ad =

(

A11 A12M

M †A21 M †A22M

)

, (5.5)

Bd =

(

B11 B12M

M †B21 M †B22M

)

, (5.6)

where the components of Ad and Bd are closely related to the integrals of

motion of the quasi-Hamiltonians and thus of the quantum non relativistic

systems.

Case 1

The components of the two integrals Ad and Bd given by equation (5.5)

and (5.6) are given by the following equations

A12 = m2ω2x2 +
µ1

x2
, A22 =

2mc

M2
P 2
x , (5.7)

B12(x
2 + y2)(

µ1

x2
+
µ2

y2
), B22 =

2cm

M2
(xPy − yPx)

2. (5.8)

We obtain the following quadratic algebra:

[Ad, Bd] = Cd, (5.9)

[Ad, Cd] = 16c~2mA2
d−32~2m2H2Ad+32c4~2m4Ad−

32~2ω2m3(µ1 + µ2)

c
H2+32~2m3ω2HBd

(5.10)

+32c2~2m4ω2Bd+32c~2m4(~2−2µ1−2µ2)ω
2H−32c3~2m5(−~

2+µ1+µ2)ω
2,

[Bd, Cd] = −16c~2m{Ad, Bd}+32~2m2H2Bd+64c2m2
~
4Ad−32c4~2m4Bd+

32~2m2(µ1 − µ2)

c
H3

(5.11)

−32c~2m3(2~2−µ1+µ2)H
2−32c3~2m4(µ1−µ2)H+32c5~2m5(2~2+µ2−µ1).
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Case 2

The components of the two integrals are given by

A12 = m2ω24x2, A22 =
2mc

M2
P 2
x , (5.12)

B12 =
µx

y2
− ω2m2xy2, B22 =

mc

M2
{Py, L}. (5.13)

We obtain the quadratic algebra:

[Ad, Bd] = Cd, [Ad, Cd] = 32~2m3ω2HBd + 32c2~2m4ω2Bd, (5.14)

[Bd, Cd] = 12c~2mA2
d − 32~2m2H2Ad + 16

~
2m3

c
H4 + 32c4~2m4Ad (5.15)

−16(2c4~2m5 + ~
2m3µω2)

c
H2+8c~2m4ω2(3~2−4µ)H+8c3~2m3(2c4m4+3~2m2ω2−2m2µω2).

Case 3

The components of the integrals of motion are given by the following equa-

tions :

A12 =
ξ2 + η2

2
(
µ1

ξ2
+
µ2

η2
), A22 = −c~

2m

2M2
(η∂ξ − ξ2∂η)

2, (5.16)

B12 =
1

ξ2 + η2
(m

1

2

k

2
(ξ2−η2)−µ1η

2

ξ2
+
µ2ξ

2

η2
), B22 = −2cm~

2

M2

1

2(ξ2 + η2)
(ξ2∂2η−η2∂2ξ ).
(5.17)

We obtain the quadratic algebra:

[Ad, Bd] = Cd, [Ad, Cd] = 4c~2m{Ad, Bd}−4c2m2
~
4Bd−

2~2km
3

2 (µ1 − µ2)

c
H2

(5.18)

+4c~2km
5

2 (µ2 − µ1)H − 2c3~2km
7

2 (µ1 − µ2),
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[Bd, Cd] = −4cm~
2B2

d+16~2m2H2Ad−
8~2m2(µ1 + µ2)

c
H3+

~
2m2(k2 + 4c2m(~2 − 2(µ1 + µ2)))

c
H2

(5.19)

+2c~2m3(k2+4c2m(µ1+µ2))H−16c4~2m4Ad+c
3
~
2m4(k2+mc2(−4~2+8(µ1+µ2))).

Case 4

We have for this system the following components for the integrals of mo-

tion:

A12 =
1

2(ξ2 + η2)
(km

1

2 (η2 − ξ2) + 2m
1

4 ξη(µ1η − µ2ξ)), (5.20)

A22 =
−cm~

2

M2

1

ξ2 + η2
(η2∂2ξ − ξ2∂2η), (5.21)

B12 =
1

2(ξ2 + η2)
(2km

1

2 ξη +m
1

4 (µ2ξ − µ1η)(η
2 − ξ2)), (5.22)

B22 =
−cm~

2

M2
(

1

ξ2 + η2
)(ξη(∂2ξ + ∂2η)− (ξ2 + η2)∂ξ∂η). (5.23)

We obtain the quadratic algebra:

[Ad, Bd] = Cd, [Ad, Cd] = −4~2m2H2Bd+4c4~2m4Bd−
~
2m

5

2µ1µ2

c
H2−2c~2m

7

2µ1µ2H−c3~2m
9

2µ1µ2

(5.24)

[Bd, Cd] = 4~2m2H2Ad−4c4~2m4Ad−
~
2m

5

2 (µ2
1 − µ2

2

2c
H2+c~2m

7

2 (µ2
2−µ2

1)H−1

2
c3~2m

9

2 (µ2
1−µ2

2).

(5.25)

Considering the equation (2.5) and the following relations Ad = 2mcAr,

Bd = 2mcBr and Cd = 4m2c2Cr we obtain that these four quadratic algebras

are in fact equivalent to the one obtained for the quasi-Hamiltonians.
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6 Conclusion

The main result is the application of the quadratic algebra approach in the

quantum relativistic context. We studied Klein-Gordon and Dirac with scalar

and vector potentials of equal magnitude involving the four Smorodinsky-

Winternitz systems using the quadratic algebras of the corresponding quasi-

Hamiltonians. We thus obtained the relativistic energy spectrum for these

systems. We also applied directly the quadratic algebra approach to the ini-

tial Dirac equation for these four potentials. We also showed that quadratic

algebras generated by the integrals of the quasi-Hamiltonians and the inte-

grals of initial Dirac equations coincide.

We pointed out also how the study of quantum superintegrable systems and

their polynomial algebras is also interesting in regard of relativistic quantum

mechanics.

Supersymmetric quantum mechanics for the Dirac and Klein-Gordon equa-

tion was discussed in many articles [14-20,50]. For quantum superintegrable

systems a relation between integrals of motion, ladder operators and super-

symmetric quantum mechanics was pointed out [28-31]. It would be inter-

esting to obtain a such relation in the quantum relativistic context.
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