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Abstract. We consider numerical approximations of the Monge-Ampère equation
det D2u = f, f > 0 with Dirichlet boundary conditions on a convex bounded
domain Ω in Rn, n = 2, 3. We make a comparative study of three existing methods
suitable for finite element computations. We construct conforming approximations
in the framework of the spline element method where constraints and interelement
continuities are enforced using Lagrange multipliers.

1. Introduction

This paper addresses the numerical solution of the Dirichlet problem for the Monge-
Ampère equation

(1.1) detD2u = f in Ω, u = g on ∂Ω,

where D2u =

(
∂2u

∂xi∂xj

)
i,j=1,...,n

is the Hessian of u and f, g are given functions with

f > 0. The domain Ω ⊂ Rn is a convex domain with polygonal boundary ∂Ω.

The above equation is a fully nonlinear equation in the sense that it is nonlinear
in the highest order derivatives. Fully nonlinear equations have in general multi-
ple solutions, and even if the domain is smooth, the solution may not be smooth.
For the Monge-Ampère equation, the notion of generalized solution in the sense of
Alexandrov-Bakelman and that of viscosity solution [39] are the best known to give
a meaning to the second derivatives even when the solution is not smooth. To a
continuous convex function, one associates the so-called Monge-Ampère measure and
(1.1) is said to have a solution in the sense of Alexandrov if the density of that mea-
sure with respect to the Lebesgue measure is equal to f . Continuous convex viscosity
solutions are defined “ in terms of certain inequalities holding wherever the graph
of the solution is touched on one side or the other by a smooth test function ” [44].
In the case of (1.1) the two notions are equivalent for f continuous, [39]. We will
assume throughout this paper that f is continuous on Ω and g continuous on ∂Ω.
Equation (1.1) then has at most two solutions when n = 2, [24] p. 324. and a unique
generalized solution in the class of convex functions, [1, 23]. In general, the theory of
viscosity solutions [25, 19, 39] provides a framework for existence and uniqueness of
solutions of fully nonlinear equations.

The more general Monge-Ampère equation has form

(1.2) detD2u = H(x, u,Du) in Ω, u = g on ∂Ω,
1
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2 GERARD AWANOU

where Du denotes the gradient of u and H is is a given Hamiltonian, at least con-
tinuous and nondecreasing in u. They appear in various geometric and variational
problems, e.g. the Monge-Kantorovich problem, and in kinetic theory. They also
appear in applied fields such as meteorology, fluid mechanics, nonlinear elasticity,
antenna design, material sciences and mathematical finance. A huge amount of liter-
ature on theoretical questions about these equations is available. A selection in the
areas cited above include [2, 58, 12, 3, 19, 49, 38, 26, 21].

Researchers working on the Monge-Kantorovich Problem, MKP, c.f. [37] for back-
ground, have noted the problematic lack of good numerical solvers for the Monge-
Ampère type equations. Following [29], we quote from [15], ”It follows from this
theoretical result that a natural computational solution of the L2 MKP is the nu-
merical resolution of the Monge-Ampère equation” . . . ”Unfortunately, this fully non-
linear second-order elliptic equation has not received much attention from numerical
analysts and, to the best of our knowledge, there is no efficient finite-difference or
finite-element methods, comparable to those developed for linear second-order elliptic
equations (such as fast Poisson solvers, multigrid methods, preconditioned conjugate
gradient methods,. . . ).”

Existing numerical work on the Monge-Ampère type equations included [50, 42, 20]
where the generalized solution in the sense of Alexandrov-Bakelman is approximated
directly. Other works with proven convergence results is [48, 35] where finite difference
schemes satisfying conditions for convergence of [14] were constructed. There have
been an explosion of recent numerical results for the Monge-Ampère equations. We
have the recent papers [45, 46, 59, 18, 52] which do not address adequately the
situations where the Monge-Ampère equation does not have a smooth solution, c.f.
Test 2 and Test 3 in Section 4. For progress in this direction we refer to the series of
papers [28, 29, 27] and the vanishing moment method in [32, 33, 34]. Finite difference
methods which computes viscosity solutions of the Monge-Ampère equation and an
iterative method amenable to finite element computations were reported in [16, 36].
See also [17] for an optimization approach.

In this paper, we use the spline element method to compute numerical solution of
the Monge-Ampère equation. It is a conforming finite element implementation with
Lagrange multipliers. We will obtain conforming approximations for the three di-
mensional Monge-Ampère equation. We extend the convergence analysis of Newton’s
method due to [45] to bounded smooth domains using Schauder estimates proved
in [56]. However [45] did not address the convergence of the discrete approxima-
tions. We give error estimates for conforming approximations of a smooth solution.
The Monge-Ampère equation leads to a non-coercive variational problem, a difficulty
which is partially handled by the vanishing moment method (the parameter ε cannot
be taken equal to 0). We show that for smooth solutions, the spline element method
is robust for the associated singular perturbation problem. The numerical results
mainly examine the performance of three numerical methods, Newton’s method, the
vanishing moment method and the Benamou-Froese-Oberman iterative method, on
three test functions suggested in [27]: a smooth radial solution, a non-smooth solu-
tion for which no exact formula is known and a solution not in H2(Ω). In this paper,
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we will refer to the Benamou-Froese-Oberman iterative method as the BFO iterative
method, which we extend to three dimensions.

The paper is organized as follows: In the first section, we review the spline ele-
ment discretization. The following section is devoted to the variational formulations
associated to Newton’s method, for which we give convergence results for smooth
solutions, and the vanishing moment method. Here we introduce the three dimen-
sional version of the BFO iterative method. The last section is devoted to numerical
experiments. We will use C for a generic constant but will index specific constants.

2. Spline element discretization

The spline element method has been described in [4, 7, 8, 13, 41] under different
names and more recently in [6]. It can be described as a conforming finite element
implementation with Lagrange multipliers. We first outline the main steps of the
method, discuss its advantages and possible disadvantage. We then give more details
of this approach but refer to the above references for explicit formulas.

First, start with a representation of a piecewise discontinuous polynomial as a vector
in RN , for some integer N > 0. Then express boundary conditions and constraints
including global continuity or smoothness conditions as linear relations. In our work,
we use the Bernstein basis representation, [4, 6] which is very convenient to express
smoothness conditions and very popular in computer aided geometric design. Hence
the term “spline” in the name of the method. Splines are piecewise polynomials with
smoothness properties. One then write a discrete version of the equation along with
a discrete version of the spaces of trial and test functions. The boundary conditions
and constraints are enforced using Lagrange multipliers. We are lead to saddle point
problems which are solved by an augmented Lagrangian algorithm (sequences of linear
equations with size N × N). The approach here should be contrasted with other
approaches where Lagrange multipliers are introduced before discretization, i.e. in
[9] or the discontinuous Galerkin methods.

The spline element method, stands out as a robust, flexible, efficient and accurate
method. It can be applied to a wide range of PDEs in science and engineering in
both two and three dimensions; constraints and smoothness are enforced exactly
and there is no need to implement basis functions with the required properties; it is
particularly suitable for fourth order PDEs; no inf-sup condition are needed to ap-
proximate Lagrange multipliers which arise due to the constraints, e.g. the pressure
term in the Navier-Stokes equations; one gets in a single implementation approxima-
tions of variable order. Other advantages of the method include the flexibility of using
polynomials of different degrees on different elements [41], the facility of implement-
ing boundary conditions and the simplicity of a posteriori error estimates since the
method is conforming for many problems. A possible disadvantage of this approach
is the high number of degrees of freedom and the need to solve saddle point problems.

Let T be a conforming partition of Ω into triangles or tetrahedra. We consider a
general variational problem: Find u ∈ W such that

(2.1) a(u, v) = 〈l, v〉 for all v ∈ V,
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where W and V are respectively the space of trial and test functions. We will assume
that the form l is bounded and linear and a is a continuous mapping in some sense
on W × V which is linear in the argument v.

Let Wh and Vh be conforming subspaces of W and V respectively. We can write

Wh = {c ∈ RN , Rc = G}, Vh = {c ∈ RN , Rc = 0},
for a suitable vector G and R a suitable matrix which encodes the constraints on
the solution, e.g. smoothness and boundary conditions. Here h is a discretization
parameter which controls the size of the elements in the partition.

The condition a(u, v) = 〈l, v〉 for all v ∈ V translates to

K(c)d = LTd ∀d ∈ Vh, that is for all d with Rd = 0,

for a suitable matrix K(c) which depends on c and L is a vector of coefficients asso-
ciated to the linear form l. If for example 〈l, v〉 =

∫
Ω
fv, then LTd = dTMF where

M is a mass matrix and F a vector of coefficients associated to the spline interpolant
of f . In the linear case K(c) can be written cTK.

Introducing a Lagrange multiplier λ, the functional

K(c)d− LTd+ λTRd,

vanishes identically on Vh. The stronger condition

K(c) + λTR = LT ,

along with the side condition Rc = G are the discrete equations to be solved.

By a slight abuse of notation, after linearization by Newton’s method, the above
nonlinear equation leads to solving systems of type

cTK + λTR = LT .

The approximation c of u ∈ W thus is a limit of a sequence of solutions of systems
of type [

KT RT

R 0

] [
c
λ

]
=

[
L
G

]
.

It is therefore enough to consider the linear case. If we assume for simplicity that V =
W and that the form a is bilinear, symmetric, continuous and V -elliptic, existence of a
discrete solution follows from Lax-Milgram lemma. On the other hand, the ellipticity
assures uniqueness of the component c which can be retrieved by a least squares
solution of the above system [4]. The Lagrange multiplier λ may not be unique. To
avoid systems of large size, a variant of the augmented Lagrangian algorithm is used.
For this, we consider the sequence of problems(

KT RT

R −µM

)[
c(l+1)

λ(l+1)

]
=

[
L

G− µMλ(l)

]
,(2.2)

where λ(0) is a suitable initial guess for example λ(0) = 0, M is a suitable matrix and
µ > 0 is a small parameter taken in practice in the order of 10−5. It is possible to
solve for c(l+1) in terms of c(l). A uniform convergence rate in µ for this algorithm
was shown in [5].
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3. Variational formulations

The BFO iterative method for solving (1.1) has a clear variational formulation as it
consists in solving a sequence of Poisson problems:

(3.1) ∆uk+1 =
√

(∆uk)2 + 2(f − detD2uk),

for the two dimensional case [16] and extended here to three dimensions

(3.2) ∆uk+1 = ((∆uk)
3 + 9(f − detD2uk))

1
3 ,

with uk+1 = g on ∂Ω. Since

(3.3) detD2u ≤ 1

nn
(∆u)n,

the above formula enforces partial convexity since ∆u ≥ 0 is a necessary condition
for the Hessian of u to be semi positive definite. We note that the constant 2 in (3.1)
may be changed to 4. We next discuss Newton’s method and the vanishing moment
method. The use of Newton’s method for proving existence of a solution of (1.1)
appeared in [10] combined with a method of continuity argument and more recently
for approximation with a direct approach by finite differences in [45] for a Monge-
Ampère equation on the torus. We will extend the proof of convergence of Newton’s
method of [45] in Hölder spaces on bounded smooth domains. We then characterize
the Newton’s iterates as solutions of variational problems and a solution of (1.1) is
also shown to be characterized by a variational formulation for which we derive error
estimates for finite element approximations.

3.1. Newton’s method. We denote by Ck(Ω) the set of all functions having all
derivatives of order ≤ k continuous on Ω where k is a nonnegative integer or infinity
and by Ck(Ω), the set of all functions in Ck(Ω) whose derivatives of order ≤ k have
continuous extensions to Ω. The norm in Ck(Ω) is given by

||u||Ck(Ω) =
k∑
j=0

sup|β|=jsupΩ|Dβu(x)|.

A function u is said to be uniformly Hölder continuous with exponent α, 0 < α ≤ 1
in Ω if the quantity

supx 6=y
|u(x)− u(y)|
|x− y|α

is finite. The space Ck,α(Ω) consists of functions whose k-th order derivatives are
uniformly Hölder continuous with exponent α in Ω. It is a Banach space with norm

||u||Ck,α(Ω) = ||u||Ck(Ω) + sup|β|=ksupx 6=y
|Dβu(x)−Dβu(y)|

|x− y|α
.

Next note that for any n × n matrix A, detA = 1/n(cofA) : A, where cofA is the
matrix of cofactors of A and for two n × n matrices M,N , M : N =

∑n
i,j=1 MijNij

is the Kronecker product of M and N . For any sufficiently smooth matrix field
A and vector field v, divATv = (divA) · v + A : Dv. Here the divergence of a
matrix field is the divergence operator applied row-wise. If we put v = Du, then
detD2u = 1/n(cofD2u) : D2u = 1/n (cofDv) : Dv and div(cofDv)Tv = div(cofDv)·
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v + (cof Dv) : Dv. But div cof Dv = 0, c.f. for example [31] p. 440. Hence since D2u
and cof D2u are symmetric matrices

(3.4) detD2u =
1

n
(cof D2u) : D2u =

1

n
div
(
(cof D2u)Du

)
.

Put F (u) = detD2u − f . The operator F maps Cm,α into Cm−2,α,m ≥ 2. This can
be seen from the properties of the Hölder norm of a product [22], p. 18. We have
F ′(u)w = (cof D2u) : D2w = div

(
(cof D2u)Dw

)
for u,w sufficiently smooth. The

Newton’s iterates can then equivalently be written

F ′(uk)(uk+1 − uk) = −F (uk),

div
(
(cof D2uk)(Duk+1 −Duk) = − 1

n
div
(
(cof D2uk)Duk

)
+ f,

(cof D2uk) : (D2uk+1 −D2uk) = − detD2uk + f.

We will use the last expression as it requires less regularity on uk. More precisely,
we will consider the following damped version of Newton’s method: Given an initial
guess u0, we consider the sequence uk defined by

(cof D2uk) : D2θk =
1

τ
(f − fk), fk = detD2uk, θk = uk+1 − uk,(3.5)

for a parameter τ ≥ 1. Our numerical results however use only τ = 1.

We recall that the domain Ω is uniformly convex [40], if there exists a number m0 > 0
such that through every point x0 ∈ ∂Ω, there passes a supporting hyperplane π of
Ω satisfying dist (x, π) ≥ m0|x − x0|2 for x ∈ ∂Ω. We will need the following global
regularity result, [56].

Theorem 3.1. Let Ω be a uniformly convex domain in Rn, with boundary in C3.
Suppose φ ∈ C3(Ω), inf f > 0, and f ∈ Cα for some α ∈ (0, 1). Then (1.1) has a
convex solution u which satisfies the a priori estimate

||u||C2,α(Ω) ≤ C,

where C depends only on n, α, inf f,Ω, ||f ||Cα(Ω) and ||φ||C3.

According to [56], all assumptions in the above theorem are sharp. We have the
following analogue of Theorem 2.1 in [45].

Theorem 3.2. Let Ω be a uniformly convex domain in R2, with boundary in C3. Let
0 < m ≤ f ≤ M, f ∈ Cα for some m,M > 0 and α ∈ (0, 1). There exists τ ≥ 1
depending on m, f , such that if uk is the sequence defined by (3.5), it converges in
C2,β to a solution u of (1.1), for every β < α.

Proof. The proof essentially depends on global Hölder regularity of the solution of the
Monge-Ampère equation. Theorem (3.1) essentially gives the conditions under which
such a regularity result holds on a bounded domain. Part of the proof has been more
or less repeated in [35]. We note that the iterates may converge to either a concave
or a convex solution if both exists. �
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3.2. Variational formulation. Using the divergence form of (3.5), the iterates can
be characterized as solutions of the problems: Find uk+1 ∈ H1(Ω), uk+1 = g on ∂Ω
and ∫

Ω

(cof D2uk)Duk+1 ·Dw dx =
n− 1

n

∫
Ω

(cof D2uk)Duk ·Dw dx

+

∫
Ω

fw dx, ∀w ∈ H1
0 (Ω).

(3.6)

With an initial guess u0 which solves ∆u = nf 1/n, for f in Cα, 0 < α < 1, we have
a sequence of uniformly elliptic problems, (see proof of Theorem 2.1 in [45]) and the
problems (3.5) and (3.6) are equivalent. We then know that the iterates converge to
a solution of (1.1) which solves the formal variational limit of (3.6): Find u ∈ Hn(Ω),
u = g on ∂Ω such that

(3.7)

∫
Ω

(cof D2u)Du ·Dw dx = −n
∫

Ω

fw dx, ∀w ∈ Hn(Ω) ∩H1
0 (Ω).

The problem (3.7) is not well posed in general. For example if g = 0, then both u
and −u are solutions.

To see that the left hand side is bounded for u ∈ Hn(Ω), notice that for n = 2∣∣∣∣ ∫
Ω

(cof D2u)Du ·Dw
∣∣∣∣ ≤ C||D2u||L2(Ω)||Du||L4(Ω)||Dw||L4(Ω).

Next for u ∈ H2(Ω), ∂u/∂xi ∈ H1(Ω), i = 1, . . . , n and by the compactness of the
embedding of H1(Ω) in Lq(Ω) for q ≥ 1 when n = 2, the right hand side above is
bounded by C||D2u||L2(Ω)||u||H2(Ω)||w||H2(Ω). However in three dimensions, the term
cof D2u involves the product of two second order derivatives. For it to be bounded,
we will need u ∈ H3(Ω) so that ∂2u/∂xi∂xj, i, j,= 1, . . . , n ∈ H1(Ω) and we can use
the embedding of H1(Ω) in Lq(Ω) for 1 ≤ q ≤ 6 when n = 3. We give below error
estimates only for the two dimensional case using techniques borrowed from [32]. We
note that in the spline element method, it is possible to impose the C2 continuity re-
quirements for a conforming finite element subspace of H3(Ω). However for a smooth
solution, C1 continuity was enough for numerical evidence of convergence.

3.3. Error estimate for 2D conforming approximation of a smooth solution.
In this section, we will assume that Ω is a two dimensional domain. Put V = H2(Ω)
and V0 = H2(Ω)∩H1

0 (Ω). Let V h be a conforming finite element subspace of H2(Ω),
V h

0 be a conforming finite element subspace of H2(Ω) ∩ H1
0 (Ω) with approximation

properties

(3.8) infvh∈V h||v − vh||j ≤ C1h
p−j||v||4, j = 0, 1, 2

for all v ∈ H4(Ω) for some p ≥ 4.

For example, in this paper, we take Vh as the spline space of degree d and smoothness
r ≥ 1

Srd(T ) = {p ∈ Cr(Ω), p|t ∈ Pd, ∀t ∈ T },
where Pd denotes the space of polynomials of degree d in two variables and T denotes
the triangulation of the domain Ω. It is known that [43], for d ≥ 3r+2 and 0 ≤ m ≤ d,
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there exists a linear quasi-interpolation operator Q mapping L1(Ω) into the spline
space Srd(T ) and a constant C such that if f is in the Sobolev space Hm+1(Ω),

(3.9) |f −Qf |k ≤ Chm+1−k|f |m+1,

for 0 ≤ k ≤ m. For our purposes, m = 3 and p = 4. If Ω is convex, the constant C
depends only on d,m and on the smallest angle θ4 in T . In the non convex case, C
depends only on the Lipschitz constant associated with the boundary of Ω. It is also
known c.f. [30] that the full approximation property for spline spaces holds for certain
combinations of d and r on special triangulations. We have the following theorem

Theorem 3.3. Assume that problem (1.1) has a solution u ∈ H4(Ω) hence in C2(Ω)
by Sobolev embedding, then the discrete problem, find uh ∈ Vh, uh = g on ∂Ω such
that

(3.10) −1

2

∫
Ω

(cof D2uh)Duh ·Dwh dx =

∫
Ω

fwh dx, ∀wh ∈ V h
0 ,

has a unique solution in a neighborhood of Ihu where Ih is an interpolation operator
associated with Vh. Moreover ||uh − Ih(u)||2 is at least O(h).

The proof of the above theorem follows the combined fixed point and linearization
method used in [32]. The difference here is the assumption that the solution is smooth
and the use of an inverse inequality. We start with some preliminaries.

We consider the linear problem: Find v ∈ H1
0 (Ω) such that∫

Ω

(cof D2u)Dv ·Dw =

∫
Ω

φw,∀w ∈ H1
0 (Ω),(3.11)

for φ ∈ L2(Ω).

Since u ∈ C2(Ω),∃m,M > 0 such that

m ≤ ∂u

∂xi∂xj
(x) ≤M, i, j = 1, . . . , 2, ∀x ∈ Ω.

The existence and uniqueness of a solution to (3.11) follows immediately from Lax-
Milgram lemma. Similarly, there exists a unique solution to the problem: Find
vh ∈ V h

0 such that ∫
Ω

(cof D2u)Dvh ·Dwh =

∫
Ω

φwh, ∀wh ∈ V h
0 .

v = 0 on ∂Ω.
(3.12)

We note that the constant C above depends on u and that since Ω is assumed convex,
v ∈ H2(Ω) by elliptic regularity.

We define a bilinear form on H1
0 (Ω)×H1

0 (Ω) by

(3.13) B[v, w] =

∫
Ω

(cof D2u)Dv ·Dw,

and for any vh ∈ V h, vh = g on ∂Ω, we define T (vh) by

(3.14) B[vh − T (vh), wh] =
1

2

∫
Ω

(cof D2vh)Dvh ·Dψh dx+

∫
Ω

fψh dx, ∀ψh ∈ V h
0 .
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Since the solution of the above problems exists and is in V h
0 , T (vh) ∈ V h, T (vh) = g

on ∂Ω. A fixed point of the nonlinear operator T corresponds to a solution of (3.10)
and conversely if vh is a solution of (3.10), then vh is a fixed point of T . We will show
that T has a unique fixed point in a neighborhood of Ih(u). Put

Bh(ρ) = {vh ∈ Vh, vh = g on ∂Ω, ||vh − Ihu||2 ≤ ρ}.

First, we note that

(3.15) B[vh − T (vh), wh] = −
∫

Ω

detD2vhψh dx+

∫
Ω

fψh dx, ∀ψh ∈ V h
0 .

Lemma 3.4. There exists C2 > 0 such that

||Ihu− T (Ihu)||2 ≤ C2h
p−3||u||4.

Proof. Put wh = Ihu− T (Ihu). We have using detD2u = f ,

B[wh, wh] =

∫
Ω

(
detD2u− detD2Ihu

)
wh dx.

Now, let Iεh(u) be a mollifier of Ihu. We have

B[wh, wh] =

∫
Ω

(
detD2u− detD2Iεh(u)

)
wh dx+

∫
Ω

(
detD2Iεh(u)− detD2Ihu

)
wh dx

=

∫
Ω

(
(cof tD2u+ (1− t)D2Iεh(u)) : D2(u− Iεh(u))

)
wh dx

+

∫
Ω

(
detD2Iεh(u)− detD2Ihu

)
wh dx for some t ∈ [0, 1]

≤ ||cof tD2u+ (1− t)D2Iεh(u))||∞||u− Iεh(u)||2||wh||0
+ || detD2Iεh(u)− detD2Ihu||0||wh||0

≤ C||D2u||∞||u− Ih(u)||2||wh||0 ≤ CMhp−2||u||4||wh||0,

since || detD2Iεh(u)− detD2Ihu||0 → 0 as ε→ 0. We conclude that

||wh||21 ≤ Chp−2||u||4||wh||0, and ||wh||2 ≤
C

h
||wh||1 ≤ Chp−3||u||4,

using the coercivity of the bilinear form B with a constant C which depends on m
and M and an inverse estimate. �

Lemma 3.5. There exists h0 > 0 and 0 < ρ0(h0) such that T is a contraction mapping
in the ball Bh(ρ0) with a contraction factor 1/2.
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Proof. For vh, wh ∈ Bh(ρ0), and ψh ∈ V h
0 , let vεh and wεh denotes mollifiers for vh and

wh respectively.

B[T (vh)− T (wh), ψh] = B[T (vh)− vh, ψh] +B[vh − wh, ψh] +B[wh − T (wh), ψh]

=

∫
Ω

(detD2vh − detD2wh)ψh dx

+

∫
Ω

(cof D2u)(Dvh −Dwh) ·Dψh dx

= Aε +

∫
Ω

(cof D2u)(Dvh −Dwh) ·Dψh dx

+

∫
Ω

(detD2vεh − detD2wεh)ψh dx,

where Aε =
∫

Ω
(detD2vh − detD2vεh)ψh dx +

∫
Ω

(detD2wh − detD2wεh)ψh dx → 0 as
ε→ 0. We have for some t ∈ [0, 1]),

B[T (vh)− T (wh), ψh] = Aε +

∫
Ω

(cof D2u)(Dvh −Dwh) ·Dψh dx

−
∫

Ω

(cof tD2vεh + (1− τ)D2wεh)(Dv
ε
h −Dwεh)ψh dx

=

∫
Ω

(cof D2u− (cof tD2vεh + (1− τ)D2wεh))(Dvh −Dwh) ·Dψh dx

+ Aε +Bε,

where Bε =
∫

Ω
(cof tD2vεh + (1 − τ)D2wεh)(Dvh − Dwh − Dvεh + Dwεh)ψh dx → 0 as

ε→ 0. Put Ψε = cof D2u− (cof tD2vεh + (1− τ)D2wεh). We have

||Ψε||0 = ||D2u−D2vεh + τ(D2wεh −D2vεh)||0 ≤ ||D2u−D2vεh||0 + ||D2wεh −D2vεh||0
≤ ||D2u−D2Ihu||0 + ||D2Ihu−D2vh||0 + ||D2vh −D2vεh||0 + ||D2wεh −D2wh||0

+ ||D2wh −D2vh||0 + ||D2vh −D2vεh||0
≤ Chp−2||u||4 + 3ρ0 + 2||vh − vεh||2 + ||wh − wεh||2.

As ε→ 0, we obtain

B[T (vh)− T (wh), ψh] ≤ C(hp−2||u||4 + ρ0)||vh − wh||2||ψh||)2.

By coercivity and an inverse estimate,

||T (vh)− T (wh)||2 ≤ C(hp−3||u||4 +
ρ0

h
)||vh − wh||2.

First choose h such that hp−3||u||4 ≤ 1/4 then ρ0 ≤ h/4. The result follows �

Proof. (of Theorem 3.3) Let ρ1 = 2C2h
p−3||u||4. We first show that T maps Bh(ρ1)

into itself. For vh ∈ Bh(ρ1),

||Ihu− T (vh)||2 ≤ ||Ihu− T (Ihu)||2 + ||T (Ihu)− T (vh)||2 ≤
ρ1

2
+

1

2
||Ihu− vh||2

≤ ρ1

2
+
ρ1

2
= ρ1.
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By the Brouwer’s fixed point theorem, T has a unique fixed point in Bh(ρ1) which is
uh, i.e. T (uh) = uh. Next,

||u− uh||2 ≤ ||u− Ihu||2 + ||Ihu− uh||2 ≤ C1h
p−2||u||4 + ||Ihu− T (uh)||2

≤ C1h
p−2||u||4 + 2C2h

p−3||u||4 ≤ Chp−3||u||4,
for h sufficiently small. We have the result. �

3.4. Vanishing moment methodology. The vanishing moment methodology ap-
proach to (1.1), consists in computing a solution of the singular perturbation problem

−ε∆2u+ det D2u = f, in Ω, u = g, ∆u = ε2 on ∂Ω.(3.16)

It is an analogue of a singular perturbation problem

ε∆2u−∆u = f in Ω, u = 0,
∂u

∂n
= 0, on ∂Ω

which was addressed numerically in [47] and also in the spline element method [6].
The analogy holds as many properties of the Laplace operator have a counterpart for
the Monge-Ampère operator.

The Newton’s iterates in the vanishing moment formulation consisting in solving the
sequence of problems: Find uk+1 ∈ Hn(Ω) with uk+1 = g on ∂Ω

ε

∫
Ω

∆uk+1∆v dx+

∫
Ω

(cof D2uk)Duk+1 ·Dv dx =
n− 1

n

∫
Ω

(cof D2uk)Duk ·Dv dx

+ε3
∫
∂Ω

∂v

∂n
ds−

∫
Ω

fv dx, ∀v ∈ H2(Ω) ∩H1
0 (Ω).

(3.17)

Formally as ε approaches 0, the solution of the above problem degenerates to the
solution of (3.6), a result which will be illustrated numerically in the next section.

4. Numerical results

The first two subsections are devoted to two dimensional and three dimensional nu-
merical results respectively. The three methods are compared on three test functions
for 2D experiments.

Test 1: A smooth solution u(x, y) = e(x2+y2)/2 so that f(x, y) = (1 + x2 + y2)e(x2+y2)

and g(x, y) = e(x2+y2)/2 on ∂Ω.

Test 2: A solution not in H2(Ω), u(x, y) = −
√

2− x2 − y2 so that f(x, y) = 2/(2 −
x2 − y2)2 and g(x, y) = −

√
2− x2 − y2 on ∂Ω.

Test 3: No exact solution is known. Solutions are either convex or concave. Here
f(x, y) = 1 and g(x, y) = 0.

We give numerical evidence of the robustness of the spline element method for the
singular perturbation problem associated to the vanishing moment methodology. For-
mally as ε approaches 0, the problem (3.16) degenerates to the problem (1.1), which
can be solved by Newton’s method when a smooth solution exists. We show here
numerically that the solution of (3.17) converges to that of (3.6) as ε approaches 0.
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Unlike [34], there is no boundary layers issue with the spline element method. These
results are illustrated in Tables 4.1 and 4.2.

In general, vanishing moment (with Newton) gives Newton’s method result for ε =
10−9. In particular, Newton’s method diverges for the non smooth solutions of Test
2 and 3. However with ε large, which implies that the equation solved is much
further from the actual problem, divergence can be avoided in the vanishing moment
methodology. We refer to the problem (1.1) as reduced in the tables.

In the two dimensional case of Test 3, both concave and convex solutions can be
computed by either changing the initial guess or the structure of the approximations.

(1) Newton’s method: initial guess ±u0,
(2) Vanishing moment: ±ε and initial guess ±u0,

(3) BFO iterative method: uk+1 = ±
√

(∆uk)2 + 2(f − detD2uk).

Since Newton’s method diverges for Test 3, we illustrate this feature of the method on
a fourth test on a non-square domain. This also helps contrast with finite difference
methods.

Test 4: The domain is the unit circle which is discretized with a Delanauy triangu-
lation with 824 triangles and the test functions are u(x, y) = e(x2+y2)/2 (convex) and

u(x, y) = −e(x2+y2)/2 (concave) with the corresponding right hand side and boundary
conditions.

Since none of the methods perform convincingly on Test 2 in the spline element
framework, the methods are tested for the three dimensional case on two other test
functions analogues of Test 1 and Test 3. We only consider the performance of the
BFO and vanishing moment method.

Test 5: u(x, y, z) = e(x2+y2+z2)/3 so that f(x, y, z) = 8/81(3+2(x2+y2+z2))e(x2+y2+z2)

and g(x, y, z) = e(x2+y2+z2)/3 on ∂Ω.

Test 6: f(x, y, z) = 1 and g(x, y, z) = 0.

The initial guess of the Newton’s iterations is the solution of the Poisson equation
∆u = nf 1/n n = 2, 3 in Ω, u = g on ∂Ω.

We also illustrate the performance of the 3D BFO method on a degenerate Monge-
Ampère equation,

Test 7: f(x, y, z) = 0 and g(x, y, z) = |x− 1/2| .

In the two dimensional case, to approximate a concave solution, one should solve
∆u = −2

√
f . But unless u = 0 on ∂Ω, as in Test 3, it is not clear which boundary

condition to use. Note that if u is a smooth convex function, ∆u ≥ 0. To compute
the concave solution of Test 4, we first solved the Monge-Ampère equation with
the negative of the boundary condition, then use the negative of that solution as an
initial guess. However, a good initial guess could not be found if we uniformly refine a
Delanauy triangulation of the circle with 143 triangles, but convergence was obtained
with the choice in Test 4, perhaps because the domain is closer to being smooth.
For the vanishing moment calculations, the initial guess was taken as the biharmonic
regularization of a suitable Poisson equation, for example, −ε∆2u+ ∆u = nf 1/n n =
2, 3 in Ω, u = g,∆u = ε2 on ∂Ω. We simply took the zero function as initial guess



13

d L2 norm H1 norm H2 norm
3 1.0610 10−3 1.1101 10−2 1.6383 10−1

4 3.5127 10−5 4.8553 10−4 9.0596 10−3

5 4.1572 10−6 6.5142 10−5 1.9364 10−3

6 1.9685 10−7 3.6401 10−6 1.4774 10−4

7 2.2699 10−8 4.1498 10−7 2.2424 10−5

8 1.2430 10−9 2.2586 10−8 1.5479 10−6

Table 1. 2D Newton’s method for Test 1, h = 1/2

d L2 norm H1 norm H2 norm
3 1.2809 10−4 2.6554 10−3 8.9587 10−2

4 1.6278 10−6 4.5619 10−5 1.7395 10−3

5 1.1531 10−7 2.3916 10−6 1.3444 10−4

6 1.7705 10−9 6.8506 10−8 5.5403 10−6

7 1.4548 10−10 3.7545 10−9 3.9490 10−7

8 8.1014 10−12 5.3353 10−10 7.2159 10−8

Table 2. 2D Newton’s method for Test 1, h = 1/4

in the BFO method. Unless otherwise stated, we use C1 splines for all the numerical
experiments. Even for the BFO iterative method which requires only solving Poisson
equations as in that case we obtained better numerical results (smooth graphs) for
Test 3. We listed nit, the number of iterations of the BFO method. We do not claim
that our numerical solutions are convex but that they approximate convex functions.
Convexity (or concavity) is not explicitly enforced in the numerical iterations.

4.1. Two-dimensional Monge-Ampère equation. The computational domain is
the unit square [0, 1]2 which is first divided into squares of side length h. Then each
square is divided into two triangles by the diagonal with negative slope. As evidenced
in the last line of Table 4.1, we noted a degradation of the performance of the BFO
iterative method even for a smooth solution when the number of degrees of freedom
is large, either for smaller h or higher degree. This may be an indication that the
method is not suitable for a general finite element implementation but is more likely
a consequence of the conditioning properties of the iterative method (2.2). For Test
2, we display the results for C1 cubic splines, but much higher order accuracy, of the
order of 10−5 was obtained with C0 splines. We caution that in our implementation,
this may lead to non smooth numerical solutions.

For Test 3, we displayed both the graph and the contour of both convex and concave
solutions. To get good results with the vanishing moment method, we experimented
with a combination of the parameters ε and h.

4.2. Three-dimensional Monge-Ampère equation. We used two computational
domains both on the unit cube [0, 1]3 which is first divided into six tetrahedra (Domain
1 for Test 4) or twelve tetrahedra (Domain 2 for Test 5) forming a tetrahedral partition
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ε L2 norm H1 norm H2 norm
10−3 1.727110−3 2.091010−2 8.633810−1

10−4 1.856310−4 3.558110−3 2.005010−1

10−5 1.891710−5 4.070010−4 2.411910−2

10−6 1.818210−6 4.077510−5 2.438810−3

10−7 1.244110−7 4.095110−6 2.494910−4

10−8 1.011910−7 2.296210−6 1.302910−4

10−9 1.138410−7 2.379010−6 1.338210−4

10−10 1.151610−7 2.390310−6 1.343810−4

10−11 1.153010−7 2.391410−6 1.344310−4

10−14 1.153110−7 2.391610−6 1.344410−4

Reduced 1.1531 10−7 2.3916 10−6 1.3444 10−4

Table 3. 2D numerical robustness Test 1, h = 1/4, d = 5.

h nit L2 norm H1 norm H2 norm
1/21 41 2.8275 10−6 6.1372 10−5 1.8845 10−3

1/22 37 5.4642 10−8 2.1971 10−6 1.2972 10−4

1/23 38 8.3164 10−10 7.2252 10−8 8.4790 10−6

1/24 37 2.7871 10−9 1.4089 10−8 1.0809 10−6

Table 4. BFO iterative method for Test 1, d = 5

h L2 norm H1 norm
1/21 2.195410−2 1.640910−1

1/22 3.609710−3 6.140510−2

1/23 1.068510−3 4.097810−2

1/24 5.083810−3 2.804810−1

1/25 2.579710+3 2.268810+5

1/26 1.845210+4 3.592210+6

h nit L2 norm H1 norm
1/21 50 2.3921 10−1 1.1900
1/22 159 1.2585 10−1 7.1292 10−1

1/23 151 1.0341 10−1 6.4299 10−1

1/24 160 9.6031 10−2 6.2088 10−1

1/25 199 9.4551 10−2 6.2453 10−1

1/26 8 1.6977 10−2 2.2925 10−1

Table 5. Newton’s method and BFO iterative method for Test 2, d = 3

h L2 norm H1 norm
1/21 7.668010−3 7.449110−2

1/22 1.453610−3 3.924410−2

1/23 9.872710−3 2.511210−1

1/24 5.681910−3 2.492710−1

1/25 1.9830 10+4 1.1812 10+6

h L2 norm H1 norm
1/21 7.825410−3 9.318410−2

1/22 1.064610−2 9.520110−2

1/23 1.130610−2 9.615410−2

1/24 1.150010−2 9.133610−2

1/25 1.162510−2 8.778510−2

1/26 1.168110−2 8.563210−2

Table 6. Vanishing moment Test 2 ε = 10−3 and ε = 10−2, d = 5
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Figure 1. Vanishing moment on Test 3, h = 1/24, d = 3, ε = 10−3.

Figure 2. Vanishing moment on Test 3, h = 1/24, d = 5, ε = −10−2.

Figure 3. BFO iterative method on Test 3, h = 1/24, d = 3.

T1. This partition is uniformly refined following a strategy introduced in [4] similar
to the one of [51] resulting in successive level of refinements Tk, k = 2, 3, . . .. For Test
6, we plot the graph of the function as well as its contour in the plane x = 1/2 as
well as slices in the x− direction.
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Figure 4. BFO iterative method on Test 3, h = 1/24, d = 3.

Figure 5. Approximations of smooth concave and convex solutions
on a non rectangular domain, Test 4, d = 5, r = 1

d L2 norm H1 norm H2 norm
3 1.2338 10−2 7.6984 10−2 4.4411 10−1

4 1.6289 10−3 1.4719 10−2 1.3983 10−1

5 1.5333 10−3 8.7312 10−3 6.0412 10−2

6 1.2324 10−4 9.7171 10−4 1.0584 10−2

Table 7. Newton’s method Test 5, Domain 1 on I1

d L2 norm H1 norm H2 norm
3 3.1739 10−3 2.3005 10−2 2.4496 10−1

4 3.2786 10−4 3.5626 10−3 5.2079 10−2

5 2.4027 10−5 3.9210 10−4 8.8868 10−3

6 1.3821 10−6 2.2369 10−5 6.0918 10−4

Table 8. Newton’s method Test 5, Domain 1 on T2
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Figure 6. Vanishing moment Test 6, on I3, r = 2, d = 3

Figure 7. BFO iterative method Test 6, on I3, d = 5, r = 1

Figure 8. Slices in the x−direction Test 6 on Domain 2 and I3, d = 3
, Vanishing moment r = 2, ε = 10−5 and BFO d = 5, r = 1
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ε L2 norm H1 norm H2 norm
10−1 6.6870 10−2 3.9292 10−1 2.8852
10−2 1.8832 10−2 1.3137 10−1 1.5882
10−3 2.4237 10−3 2.5273 10−2 5.3206 10−1

10−4 2.5661 10−4 3.2633 10−3 7.9936 10−2

10−5 3.1058 10−5 5.0367 10−4 1.2543 10−2

10−6 2.3519 10−5 3.9165 10−4 8.9744 10−3

10−7 2.3964 10−5 3.9193 10−4 8.8921 10−3

10−10 2.4027 10−5 3.9210 10−4 8.8868 10−3

Reduced 2.4027 10−5 3.9210 10−4 8.8868 10−3

Table 9. 3D numerical robustness Test 5, Domain 1 on T2, d = 5

2 3.1739 10−3 2.3005 10−2 2.4496 10−1

3 1.6859 10−2 1.0519 10−1 9.1615 10−1

59 1.1283 10−3 7.1385 10−3 7.3671 10−2

38 2.1423 10−4 1.4452 10−3 1.8083 10−2

35 4.5582 10−5 3.0440 10−4 4.0506 10−3

Table 10. BFO iterative method for Test 5, on T2, d = 5

Figure 9. BFO Test 7 on Domain 2 and I3, d = 5, r = 1

5. Concluding Remarks

Remark 5.1. For the finite element approximation of (1.1), we note the remark in
[27], “Newton’s and conjugate gradients methods may be well-suited for the solution
of . . . combines the difficulty of both harmonic and bi-harmonic problems, making the
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approximation a delicate matter, albeit solvable . . . If . . . has no solution, we can ex-
pect the divergence of the Newton . . . ” We have established that Newton’s method
performed well for smooth solutions. Another problem which also combines the diffi-
culty of both the harmonic and biharmonic problem is a singular perturbation problem
we addressed in [6] by the spline element method. Here it is seen that for the singular
perturbation problem arising from the vanishing moment methodology, the spline ele-
ment method is robust. Moreover we note that numerical results for smooth solutions
using Newton’s method in the spline element method are more accurate than what can
be achieved using Argyris elements and the vanishing moment methodology [34].

Remark 5.2. It is still not known whether the BFO iterative method always con-
verges even in the case of smooth solution. Nor is known whether Newton’s method
always converges on a non-smooth domain. We have not addressed the convergence
of the vanishing moment methodology to viscosity solutions as these results have been
announced in [34].

Remark 5.3. We used C1 cubic splines on most of the approximations even though
they do not have full approximation power on general meshes. This reduced the com-
putational cost. One may use for full approximation power, special meshes as in [30]
or [53].

Remark 5.4. The BFO iterative method introduced in [16] was tested on some very
singular right hand sides. It was noted that it is slower than another iterative method
based on a different algebraic manipulation of the Monge-Ampère equation. The latter
does not seem directly amenable to finite element computations. We note that for
singular sources, specialized finite elements may have to be used and even in the finite
difference context, specialized finite difference methods [55] or fast Poisson solvers [54]
or preconditioners could have been used.

Remark 5.5. The problem: Find u such that

(5.1)

∫
Ω

(cof D2u)Du ·Dv dx = −n
∫

Ω

fv dx,

is the Euler-Lagrange equation of the functional

(5.2) J (v) =

∫
Ω

(cof D2v)Dv ·Dvdx+ 2n

∫
Ω

fvdx.

If v = 0 on ∂Ω, we have

J (v) = −n
∫

Ω

(detD2v)v + 2n

∫
Ω

fvdx,

and a generalized solution of (1.1) has been shown in [11, 57] to be a minimizer of a
related functional on the set of convex functions.
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