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1 Introduction

There are some famous results about subgroups of free groups, free products

and finitely presented groups with complicated group theoretical proofs. For

example, a famous corollary of the Reidemeister-Schreier rewriting process[3]

tells us that every subgroup of a finitely presented group with finite index

is also finitely presented. In this paper, using some well-known relationship

between covering spaces of connected polyhedra (simplicial complexes) and

their fundamental groups, we intend to prove some results for finitely pre-

sented groups with a topological approach.

2 Notation and Preliminaries

We suppose that the reader is familiar with some well-known notion such as

free groups, free products and presentation in group theory and simplicial

complexes (polyhedra), covering spaces, and fundamental groups in alge-

braic topology.

Definition 2.1 Let T be a connected simplicial complex, then T is called

a tree if dimT ≤ 1 and which contains no circuits. Let K be a connected

simplicial complex with a maximal tree T in K. Define a group GK,T with

the following presentation:

GK,T = 〈 (p, q) ∈ K | (p, q) ∈ T, (p, q)(q, r) = (p, r) if {p, q, r} is a simplex in K 〉.

The following are some facts in algebraic topology which we need in the

proof of main results.

Theorem 2.2 ([5]). Let K be a connected polyhedron with a base point

p. Then its fundamental group π1(K, p) is isomorphic to GK,T , where T is

a maximal tree in K (note that we identify the simplicial complex K with

its underlying set the polyhedron |K|).
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Corollary 2.3. If K is a graph i.e. a connected 1-complex, then π1(K, p)

is a free group of rank |{(p, q) ∈ K\T | T is a maximal tree in K}|.

Theorem 2.4 ([5]). A group G is finitely presented if and only if there

exists a finite connected polyhedron X with G ∼= π1(X, p).

Theorem 2.5 ([5]). For any group G, there exists a CW-complex K(G)

with

π1(K(G)) ∼= G and πn(K(G)) = 1 for all n ≥ 2.

The space K(G) is called Eilenberg-MacLane space of G.

Remark 2.6 ([5]). With respect to the way of constructing the Eilenberg-

MacLane space, generators and relators of the group G are in one to one

corresponding to 1-cells and 2-cells in K(G).

Corollary 2.7. A group G is finitely presented if and only if the number

of 1-cells and 2-cells in it’s Eilenberg-MacLane space K(G) is finite.

Theorem 2.8 ([1]). For any group G and its Eilenberg-MacLane space, K

say, we have

H2(K) ∼= M(G),

where M(G) is the Schur multiplier of G.

Lemma 2.9 ([5]). Let (X̃, p) be a covering space of X, x0 ∈ X, and

Y = p−1(x0) be the fiber over x0. Then |Y | = [π1(X,x0) : p∗(π1(X̃, x0))].

Definition 2.10. A space X is called semilocally 1-connected if for every

x ∈ X there exists an open neighborhood U of x so that every closed path

at x in U is nullhomotopic in X.

Note that any CW-complex, particularly any Eilenberg-MacLane space,

is semilocally 1-connected space.

Theorem 2.11 ([5]). IfX is connected, locally path connected, and semilo-

cally 1-connected and G ≤ π1(X,x0), then there exists a constructed cover-

ing space of X, (X̃G, p) such that

p∗(π1(X̃G, x̃0)) = G.
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Theorem 2.12 ([5]). If X is a connected CW-complex and X̃ is a covering

space of X, then X̃ is also a CW-complex with dimX̃ = dimX. Moreover,

if X has m k-cells, and X̃ is n-sheeted, then the number of k-cells in X̃ is

exactly equal to mn.

Theorem 2.13 ([4]). For any two groups G1 and G2 with their Eilenberg-

MacLane spaces K1 and K2, respectively, the topological wedge space K1 ∨

K2 is an Eilenberg-MacLane space corresponding to the free productG1∗G2.

Theorem 2.14 ([4]). For any two groups G1 and G2 with their Eilenberg-

MacLane spaces K1 and K2, respectively, the topological product space

K1×K2 is an Eilenberg-MacLane space corresponding to the direct product

G1 ×G2.

3 Main Results

The following theorem is a consequence of the Reidemeister-Schreier rewrit-

ing process [3, Prop. 4.2].

Theorem 3.1. Every subgroup of a finitely presented group with finite index

is also finitely presented.

Proof. Let G be a finitely presented group andH ≤ G with finite index. By

Theorem 2.4, there exists a finite connected polyhedron X with G ∼= π1(X).

Since X is connected, locally path connected and semilocally 1-connected,

there exists a covering space X̃H so that π1(X̃H) ∼= H, by Theorem 2.11.

Since [G : H] ≤ ∞, X̃H is a finite sheeted covering space of X and so by The-

orem 2.12, X̃H is a finite polyhedron. Now, by Theorem 2.4, π1(X̃H) ∼= H

is finitely presented. 2

Theorem 3.2. If G is a finitely presented group, then its Schur multiplier

M(G) is finitely presented.

Proof. First, note that the Schur multiplier of any group G is isomorphic to

the second homology group of its corresponding Eilenberg-MacLane space

[1], K say. Now using the fact that the number of i-cells, for any i ∈ N, in
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the Eilenberg-MacLane space of any finitely presented group G is finite, any

homology group of K and in particular, the Schur multiplier of G is finitely

presented. 2

Corollary 3.3. Any covering group of a finite group is also a finitely pre-

sented group.

Proof. Using the definition of covering group G̃ considered as an extension

of the Schur multiplier of G by the group G itself, this note is straightfor-

ward result of two recent theorems. 2

Theorem 3.4. The number of finitely presented groups is countable.

Proof. First, recall that there exists a bijection between all finitely gen-

erated groups and special 2-simplicial complexes [6]. Hence to prove the

result, it is sufficient to show the number of such spaces is countable. Note

that each polyhedron corresponding to a finitely presented group G, with

a presentation G =< x1, · · · , xn | r1, · · · , rn >, is obtained by attaching r

2-cells to an n-rose via some particular maps.

SupposeK is an n-rose lying on the planeR2 and {Kn
λ }λ∈Λ be the family

of all polyhedra obtained by attaching finitely many 2-cells to K, in several

ways.

Now by Whitney Theorem [7] which states that any n-simplicial complex

can be embedded in R2n+1, we can consider all the constructed complexes

as above in the Euclidean space R5 and then using the axiom of choice and

the denseness of Q5 in R5, we can consider the rational points xλ ∈ Q5

belonging to one and only one Kn
λ .

Finally, we conclude that all finitely presented groups with n generators

in their presentations are in one to one corresponding to a subset of rational

points in R5 and so we are done. 2

Theorem 3.5. The free product of two finitely presented groups is finitely

presented.

Proof. Suppose thatG1 andG2 are finitely presented groups with Eilenberg-

MacLane spaces K1 andK2, respectively. Using Theorem 2.13, K1∨K2 is an
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Eilenberg-MacLane space corresponding to G1 ∗G2. Also, by the definition,

clearly the number of i-cells in wedge space of two spaces having finitely

many i-cells, is also finite and so by Theorem 2.7, the result satisfied. 2

Theorem 3.6. The product of two finitely presented groups is finitely pre-

sented.

Proof. By the hypothesis of the previous proof, we only note Theorem

2.14, and the fact that the number of i-cells in product of two spaces having

finitely many i-cells, is also finite. Hence similar to the above proof, we

complete the proof. 2

Theorem 3.7. The free amalgamated product of two finitely presented

groups G1 and G2 over a finitely presented subgroup H is also finitely pre-

sented.

Proof. First, we consider an Eilenberg-Maclane space corresponding to

the presentation of H, X say, and note that we can extend the algebraic

presentation of H to the presentations for G1 and G2.

Also, by joining some 1-cells and attaching 2-cells via the relations, simi-

lar to the method of [5, Theorem 7.45] and [6, Note 6.44], we extend the space

X to Eilenberg-Maclane spaces X1 and X2 corresponding to the presenta-

tions of G1 and G2, respectively. Note that the construction is considered

so that X is a deformation retract of the space X1 ∩X2.

Now using van-Kampen theorem, the fundamental group π1(X1 ∪X2) is

the free amalgamated product of two groups π1(X1) ∼= G1 and π1(X2) ∼= G2

over the subgroup π1(Y ) ∼= π1(X1 ∩X2) ∼= H [5].

Hence by uniqueness of the free amalgamated product up to isomor-

phism, we conclude that

G ∼= π1(X1 ∪X2).

On the other hand, by the assumption of being finitely presented for the

groups H, G1 and G2 we conclude the spaces X, X1, X2 and so the space

X1 ∪ X2 have finitely many cells, which implies the group π1(X1 ∪ X2) to
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be finitely presented. 2

Finally, by the definition of two new concepts, the Schur multiplier of a

pair and the Schur multiplier of a triple of groups [2], we conclude the follow-

ing results. Note that for a pair of groups (G,N), the natural epimorphism

G → G/N induces functorially the continuous map f : K(G) → K(G/N).

Suppose that M(f) is the mapping cylinder of f containing K(G) as a sub-

space and is also homotopically equivalent to the space K(G/N). We take

K(G,N) to be the mapping cone of the cofibration K(G) →֒ M(f). The

Schur multiplier of the pair (G,N) is considered as the third homology group

of the cofiber space K(G,N).

In addition, we can extend the above notes to a topological argument

for the Schur multiplier of a triple of groups. If we consider the space X

as the cofibration of the natural sequence K(G,N) → K(G/M,MN/M),

which is noted by K(G,M,N) [2, Sec. 6], then the Schur multiplier of the

triple (G,M,N) is defined to be the fourth homology group of the cofiber

space K(G,M,N).

Theorem 3.8. The Schur multiplier of a pair of finitely presented groups

is finitely presented.

Proof. We remark that a mapping cone space obtained from two spaces

having finitely many cells, have also finitely many cells, which holds the

result. 2

Using a similar argument, we establish the following theorem:

Theorem 3.9. The Schur multiplier of a triple of finitely presented groups

is finitely presented.
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