# ON UNIT ROOT FORMULAS FOR TORIC EXPONENTIAL SUMS 

ALAN ADOLPHSON AND STEVEN SPERBER


#### Abstract

Starting from a classical generating series for Bessel functions due to Schlömilch 4], we use Dwork's relative dual theory to broadly generalize unit-root results of Dwork 3] on Kloosterman sums and Sperber 6] on hyperkloosterman sums. In particular, we express the (unique) $p$-adic unit root of an arbitrary exponential sum on the torus $\mathbf{T}^{n}$ in terms of special values of the $p$-adic analytic continuation of a ratio of $A$-hypergeometric functions. In contrast with the earlier works, we use noncohomological methods and obtain results that are valid for arbitrary exponential sums without any hypothesis of nondegeneracy.


## 1. Introduction

The starting point for this work is the classical generating series

$$
\exp \frac{1}{2}(\Lambda X-\Lambda / X)=\sum_{i \in \mathbf{Z}} J_{i}(\Lambda) X^{i}
$$

for the Bessel functions $\left\{J_{i}(\Lambda)\right\}_{i \in \mathbf{Z}}$ due to Schlömilch 4 that was the foundation for his treatment of Bessel functions (see [7, page 14]). Suitably normalized, it also played a fundamental role in Dwork's construction [3 of p-adic cohomology for $J_{0}(\Lambda)$. Our realization that the series itself (suitably normalized) could be viewed as a distinguished element in Dwork's relative dual complex led us to the present generalization.

Let $A \subseteq \mathbf{Z}^{n}$ be a finite subset that spans $\mathbf{R}^{n}$ as real vector space and set

$$
f_{\Lambda}(X)=\sum_{a \in A} \Lambda_{a} X^{a} \in \mathbf{Z}\left[\left\{\Lambda_{a}\right\}_{a \in A}\right]\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]
$$

where the $\Lambda_{a}$ and the $X_{i}$ are indeterminates and where $X^{a}=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}$ for $a=\left(a_{1}, \ldots, a_{n}\right)$. Let $\mathbf{F}_{q}$ be the finite field of $q=p^{\epsilon}$ elements, $p$ a prime, and let $\overline{\mathbf{F}}_{q}$ be its algebraic closure. For each $\bar{\lambda}=\left(\bar{\lambda}_{a}\right)_{a \in A} \in\left(\overline{\mathbf{F}}_{q}\right)^{|A|}$, let

$$
f_{\bar{\lambda}}(X)=\sum_{a \in A} \bar{\lambda}_{a} X^{a} \in \mathbf{F}_{q}(\bar{\lambda})\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]
$$

a regular function on the $n$-torus $\mathbf{T}^{n}$ over $\mathbf{F}_{q}(\bar{\lambda})$. Fix a nontrivial additive character $\Theta: \mathbf{F}_{q} \rightarrow \mathbf{Q}_{p}\left(\zeta_{p}\right)$ and let $\Theta_{\bar{\lambda}}$ be the additive character $\Theta_{\bar{\lambda}}=\Theta \circ \operatorname{Tr}_{\mathbf{F}_{q}(\bar{\lambda}) / \mathbf{F}_{q}}$ of the field $\mathbf{F}_{q}(\bar{\lambda})$. For each positive integer $l$, let $\mathbf{F}_{q}(\bar{\lambda}, l)$ denote the extension of degree $l$

[^0]of $\mathbf{F}_{q}(\bar{\lambda})$ and define an exponential sum
$$
S_{l}=S_{l}\left(f_{\bar{\lambda}}, \Theta_{\bar{\lambda}}, \mathbf{T}^{n}\right)=\sum_{x \in \mathbf{T}^{n}\left(\mathbf{F}_{q}(\bar{\lambda}, l)\right)} \Theta_{\bar{\lambda}} \circ \operatorname{Tr}_{\mathbf{F}_{q}(\bar{\lambda}, l) / \mathbf{F}_{q}(\bar{\lambda})}\left(f_{\bar{\lambda}}(x)\right)
$$

The associated $L$-function is

$$
L\left(f_{\bar{\lambda}} ; T\right)=L\left(f_{\bar{\lambda}}, \Theta_{\bar{\lambda}}, \mathbf{T}^{n} ; T\right)=\exp \left(\sum_{l=1}^{\infty} S_{l} \frac{T^{l}}{l}\right)
$$

It is well-known that $L\left(f_{\bar{\lambda}} ; T\right) \in \mathbf{Q}\left(\zeta_{p}\right)(T)$ and that its reciprocal zeros and poles are algebraic integers. We note that among these reciprocal zeros and poles there must be at least one $p$-adic unit: if $\mathbf{F}_{q}(\bar{\lambda})$ has cardinality $q^{\kappa}$, then $S_{l}$ is the sum of $\left(q^{\kappa l}-1\right)^{n} p$-th roots of unity, so $S_{l}$ itself is a $p$-adic unit for every $l$. On the other hand, a simple consequence of the Dwork trace formula will imply (see Section 3) that there is at most a single unit root, and it must occur amongst the reciprocal zeros (as opposed to the reciprocal poles) of $L\left(f_{\bar{\lambda}} ; T\right)^{(-1)^{n+1}}$. We denote this unit root by $u(\bar{\lambda})$. It is the goal of this work to exhibit an explicit $p$-adic analytic formula for $u(\bar{\lambda})$ in terms of certain $A$-hypergeometric functions.

Consider the series

$$
\begin{align*}
\exp f_{\Lambda}(X) & =\prod_{a \in A} \exp \left(\Lambda_{a} X^{a}\right)  \tag{1.1}\\
& =\sum_{i \in \mathbf{Z}^{n}} F_{i}(\Lambda) X^{i}
\end{align*}
$$

where the $F_{i}(\Lambda)$ lie in $\mathbf{Q}[[\Lambda]]$. Explicitly, one has

$$
\begin{equation*}
F_{i}(\Lambda)=\sum_{\substack{u=\left(u_{a}\right)_{a \in A} \\ \sum_{a \in A} u_{a} a=i}} \frac{\Lambda^{u}}{\prod_{a \in A}\left(u_{a}!\right)} \tag{1.2}
\end{equation*}
$$

The $A$-hypergeometric system with parameter $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{C}^{n}$ (where $\mathbf{C}$ denotes the complex numbers) is the system of partial differential equations consisting of the operators

$$
\square_{\ell}=\prod_{\ell_{a}>0}\left(\frac{\partial}{\partial \Lambda_{a}}\right)^{\ell_{a}}-\prod_{\ell_{a}<0}\left(\frac{\partial}{\partial \Lambda_{a}}\right)^{-\ell_{a}}
$$

for all $\ell=\left(\ell_{a}\right)_{a \in A} \in \mathbf{Z}^{|A|}$ satisfying $\sum_{a \in A} \ell_{a} a=0$ and the operators

$$
Z_{j}=\sum_{a \in A} a_{j} \Lambda_{a} \frac{\partial}{\partial \Lambda_{a}}-\alpha_{j}
$$

for $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ and $j=1, \ldots, n$. Using Equations (1.1) and (1.2), it is straightforward to check that for $i \in \mathbf{Z}^{n}, F_{i}(\Lambda)$ satisfies the $A$-hypergeometric system with parameter $i$.

Fix $\pi$ satisfying $\pi^{p-1}=-p$ and $\Theta(1) \equiv \pi\left(\bmod \pi^{2}\right)$. It follows from Equation (1.2) that the $F_{i}(\pi \Lambda)$ converge $p$-adically for all $\Lambda$ satisfying $\left|\Lambda_{a}\right|<1$ for all $a \in A$. Let $\mathcal{F}(\Lambda)=F_{0}(\pi \Lambda) / F_{0}\left(\pi \Lambda^{p}\right)$. The main result of this paper is the following statement. Note that we make no restriction (such as nondegeneracy) on the choice of $\bar{\lambda} \in\left(\overline{\mathbf{F}}_{q}\right)^{|A|}$.

Theorem 1.3. The series $\mathcal{F}(\Lambda)$ converges p-adically for $\left|\Lambda_{a}\right| \leq 1$ for all $a \in A$ and the unit root of $L\left(f_{\bar{\lambda}} ; T\right)$ is given by

$$
u(\bar{\lambda})=\mathcal{F}(\lambda) \mathcal{F}\left(\lambda^{p}\right) \mathcal{F}\left(\lambda^{p^{2}}\right) \cdots \mathcal{F}\left(\lambda^{p^{\epsilon d(\bar{\lambda})-1}}\right)
$$

where $\lambda$ denotes the Teichmüller lifting of $\bar{\lambda}$ and $d(\bar{\lambda})=\left[\mathbf{F}_{q}(\bar{\lambda}): \mathbf{F}_{q}\right]$.

## 2. Analytic continuation

We begin by proving the analytic continuation of the function $\mathcal{F}$ defined in the introduction.

Let $C \subseteq \mathbf{R}^{n}$ be the real cone generated by the elements of $A$ and let $\Delta \subseteq \mathbf{R}^{n}$ be the convex hull of the set $A \cup\{(0, \ldots, 0)\}$. Put $M=C \cap \mathbf{Z}^{n}$. For $\nu \in M$, define the weight of $\nu, w(\nu)$, to be the least nonnegative real (hence rational) number such that $\nu \in w(\nu) \Delta$. There exists $D \in \mathbf{Z}_{>0}$ such that $w(\nu) \in \mathbf{Q}_{\geq 0} \cap \mathbf{Z}[1 / D]$. The weight function $w$ is easily seen to have the following properties:
(i) $w(\nu) \geq 0$ and $w(\nu)=0$ if and only if $\nu=0$,
(ii) $w(c \nu)=c w(\nu)$ for $c \in \mathbf{Z}_{\geq 0}$,
(iii) $w(\nu+\mu) \leq w(\nu)+w(\mu)$ with equality holding if and only if $\nu$ and $\mu$ are cofacial, that is, $\nu$ and $\mu$ lie in a cone over the same closed face of $\Delta$.
(iv) If $\operatorname{dim} \Delta=n$, let $\left\{\ell_{i}\right\}_{i=1}^{N}$ be linear forms such that the codimension-one faces of $\Delta$ not containing the origin lie in the hyperplanes $\left\{\ell_{i}=1\right\}_{i=1}^{N}$. Then $w(\nu)=\max \left\{\ell_{i}(\nu\}_{i=1}^{N}\right.$.
Let $\Omega$ be a finite extension of $\mathbf{Q}_{p}$ containing $\pi$ and an element $\tilde{\pi}$ satisfying ord $\tilde{\pi}=(p-1) / p^{2}$ (we always normalize the valuation so that ord $p=1$ ). Put

$$
\begin{aligned}
& R=\left\{\xi(\Lambda)=\sum_{\nu \in\left(\mathbf{Z}_{\geq 0}\right)^{|A|}} c_{\nu} \Lambda^{\nu} \mid c_{\nu} \in \Omega \text { and }\left\{\left|c_{\nu}\right|\right\}_{\nu} \text { is bounded }\right\}, \\
& R^{\prime}=\left\{\xi(\Lambda)=\sum_{\nu \in\left(\mathbf{Z}_{\geq 0}\right)^{|A|}} c_{\nu} \Lambda^{\nu} \mid c_{\nu} \in \Omega \text { and } c_{\nu} \rightarrow 0 \text { as } \nu \rightarrow \infty\right\} .
\end{aligned}
$$

Equivalently, $R$ (resp. $R^{\prime}$ ) is the ring of formal power series in $\left\{\Lambda_{a}\right\}_{a \in A}$ that converge on the open unit polydisk in $\Omega^{|A|}$ (resp. the closed unit polydisk in $\Omega^{|A|}$ ). Define a norm on $R$ by setting $|\xi(\Lambda)|=\sup _{\nu}\left\{\left|c_{\nu}\right|\right\}$. Both $R$ and $R^{\prime}$ are complete in this norm. Note that (1.2) implies that the coefficients $F_{i}(\pi \Lambda)$ of $\exp \pi f_{\Lambda}(X)$ belong to $R$.

Let $S$ be the set

$$
\begin{aligned}
& S= \\
& \qquad\left\{\xi(\Lambda, X)=\sum_{\mu \in M} \xi_{\mu}(\Lambda) \tilde{\pi}^{-w(\mu)} X^{-\mu} \mid \xi_{\mu}(\Lambda) \in R \text { and }\left\{\left|\xi_{\mu}(\Lambda)\right|\right\}_{\mu} \text { is bounded }\right\} .
\end{aligned}
$$

Let $S^{\prime}$ be defined analogously with the conditions " $\xi_{\mu}(\Lambda) \in R$ " replaced by " $\xi_{\mu}(\Lambda) \in$ $R^{\prime \prime \prime}$. Define a norm on $S$ by setting

$$
|\xi(\Lambda, X)|=\sup _{\mu}\left\{\left|\xi_{\mu}(\Lambda)\right|\right\}
$$

Both $S$ and $S^{\prime}$ are complete under this norm.

Define $\theta(t)=\exp \left(\pi\left(t-t^{p}\right)\right)=\sum_{i=0}^{\infty} b_{i} t^{i}$. One has (Dwork [1, Section 4a)])

$$
\begin{equation*}
\operatorname{ord} b_{i} \geq \frac{i(p-1)}{p^{2}} \tag{2.1}
\end{equation*}
$$

Let

$$
F(\Lambda, X)=\prod_{a \in A} \theta\left(\Lambda_{a} X^{a}\right)=\sum_{\mu \in M} B_{\mu}(\Lambda) X^{\mu}
$$

Lemma 2.2. One has $B_{\mu}(\Lambda) \in R^{\prime}$ and $\left|B_{\mu}(\Lambda)\right| \leq|\tilde{\pi}|^{w(\mu)}$.
Proof. From the definition,

$$
B_{\mu}(\Lambda)=\sum_{\nu \in\left(\mathbf{Z}_{\geq 0}\right)^{|A|}} B_{\nu}^{(\mu)} \Lambda^{\nu}
$$

where

$$
B_{\nu}^{(\mu)}= \begin{cases}\prod_{a \in A} b_{\nu_{a}} & \text { if } \sum_{a \in A} \nu_{a} a=\mu \\ 0 & \text { if } \sum_{a \in A} \nu_{a} a \neq \mu\end{cases}
$$

It follows from (2.1) that $B_{\nu}^{(\mu)} \rightarrow 0$ as $\nu \rightarrow \infty$, which shows that $B_{\mu}(\Lambda) \in R^{\prime}$. We have

$$
\operatorname{ord} B_{\nu}^{(\mu)} \geq \sum_{a \in A} \operatorname{ord} b_{\nu_{a}} \geq \sum_{a \in A} \frac{\nu_{a}(p-1)}{p^{2}} \geq w(\mu) \frac{p-1}{p^{2}}
$$

which implies $\left|B_{\mu}(\Lambda)\right| \leq|\tilde{\pi}|^{w(\mu)}$.
By the proof of Lemma 2.2, we may write $B_{\nu}^{(\mu)}=\tilde{\pi}^{w(\mu)} \tilde{B}_{\nu}^{(\mu)}$ with $\left|\tilde{B}_{\nu}^{(\mu)}\right| \leq 1$. We may then write $B_{\mu}(\Lambda)=\tilde{\pi}^{w(\mu)} \tilde{B}_{\mu}(\Lambda)$ with $\tilde{B}_{\mu}(\Lambda)=\sum_{\nu} \tilde{B}_{\nu}^{(\mu)} \Lambda^{\nu}$ and $\left|\tilde{B}_{\mu}(\Lambda)\right| \leq 1$. Let

$$
\xi(\Lambda, X)=\sum_{\nu \in M} \xi_{\nu}(\Lambda) \tilde{\pi}^{-w(\nu)} X^{-\nu} \in S
$$

We claim that the product $F(\Lambda, X) \xi\left(\Lambda^{p}, X^{p}\right)$ is well-defined. Formally we have

$$
F(\Lambda, X) \xi\left(\Lambda^{p}, X^{p}\right)=\sum_{\rho \in \mathbf{Z}^{n}} \zeta_{\rho}(\Lambda) X^{-\rho}
$$

where

$$
\begin{equation*}
\zeta_{\rho}(\Lambda)=\sum_{\substack{\mu, \nu \in M \\ \mu-p \nu=-\rho}} \tilde{\pi}^{w(\mu)-w(\nu)} \tilde{B}_{\mu}(\Lambda) \xi_{\nu}\left(\Lambda^{p}\right) \tag{2.3}
\end{equation*}
$$

To prove convergence of this series, we need to show that $w(\mu)-w(\nu) \rightarrow \infty$ as $\nu \rightarrow \infty$. By property (iv) of the weight function, for a given $\nu \in M$ we may choose a linear form $\ell$ (depending on $\nu$ ) for which $w(\nu)=\ell(\nu)$ while $w(\mu) \geq \ell(\mu)$. Since $\mu=p \nu-\rho$, we get

$$
\begin{equation*}
w(\mu)-w(\nu) \geq \ell(\mu-\nu)=\ell((p-1) \nu)-\ell(\rho)=(p-1) w(\nu)-\ell(\rho) \tag{2.4}
\end{equation*}
$$

As $\nu \rightarrow \infty,(p-1) w(\nu) \rightarrow \infty$ while $\ell(\rho)$ takes values in a finite set of rational numbers (there are only finitely many possibilities for $\ell$ ). This gives the desired result.

For a formal series $\sum_{\rho \in \mathbf{Z}^{n}} \zeta_{\rho}(\Lambda) X^{-\rho}$ with $\zeta_{\rho}(\Lambda) \in \Omega[[\Lambda]]$, define

$$
\gamma^{\prime}\left(\sum_{\rho \in \mathbf{Z}^{n}} \zeta_{\rho}(\Lambda) X^{-\rho}\right)=\sum_{\rho \in M} \zeta_{\rho}(\Lambda) X^{-\rho}
$$

and define for $\xi(\Lambda, X) \in S$

$$
\begin{aligned}
\alpha^{*}(\xi(\Lambda, X)) & =\gamma^{\prime}\left(F(\Lambda, X) \xi\left(\Lambda^{p}, X^{p}\right)\right) \\
& =\sum_{\rho \in M} \zeta_{\rho}(\Lambda) X^{-\rho}
\end{aligned}
$$

For $\rho \in M$ put $\eta_{\rho}(\Lambda)=\tilde{\pi}^{w(\rho)} \zeta_{\rho}(\Lambda)$, so that

$$
\begin{equation*}
\alpha^{*}(\xi(\Lambda, X))=\sum_{\rho \in M} \eta_{\rho}(\Lambda) \tilde{\pi}^{-w(\rho)} X^{-\rho} \tag{2.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta_{\rho}(\Lambda)=\sum_{\substack{\mu, \nu \in M \\ \mu-p \nu=\rho}} \tilde{\pi}^{w(\rho)+w(\mu)-w(\nu)} \tilde{B}_{\mu}(\Lambda) \xi_{\nu}\left(\Lambda^{p}\right) \tag{2.6}
\end{equation*}
$$

Since $w(\rho) \geq \ell(\rho)$ for $\rho \in M$, Equation (2.4) implies that

$$
\begin{equation*}
w(\rho)+w(\mu)-w(\nu) \geq(p-1) w(\nu) \tag{2.7}
\end{equation*}
$$

so by Equation (2.6), $\left|\eta_{\rho}(\Lambda)\right| \leq|\xi(\Lambda, X)|$ for all $\rho \in M$. This shows $\alpha^{*}(\xi(\Lambda, X)) \in S$ and

$$
\left|\alpha^{*}(\xi(\Lambda, X))\right| \leq|\xi(\Lambda, X)|
$$

Furthermore, this argument also shows that $\alpha^{*}\left(S^{\prime}\right) \subseteq S^{\prime}$.
Lemma 2.8. If $\left|\xi_{0}(\Lambda)\right| \leq|\tilde{\pi}|^{(p-1) / D}$, then $\left|\alpha^{*}(\xi(\Lambda, X))\right| \leq|\tilde{\pi}|^{(p-1) / D}|\xi(\Lambda, X)|$.
Proof. This follows immediately from Equations (2.6) and (2.7) since $w(\nu) \geq 1 / D$ for $\nu \neq 0$.

From Equation (2.6), we have

$$
\begin{equation*}
\eta_{0}(\Lambda)=\sum_{\nu \in M} \tilde{B}_{p \nu}(\Lambda) \xi_{\nu}\left(\Lambda^{p}\right) \tilde{\pi}^{(p-1) w(\nu)} \tag{2.9}
\end{equation*}
$$

Note that $\tilde{B}_{0}(\Lambda)=B_{0}(\Lambda) \equiv 1(\bmod \tilde{\pi})$ since ord $b_{i}>0$ for all $i>0$ implies ord $B_{\nu}^{(0)}>0$ for all $\nu \neq 0$. Thus $B_{0}(\Lambda)$ is an invertible element of $R^{\prime}$. The following lemma is then immediate from Equation (2.9).

Lemma 2.10. If $\xi_{0}(\Lambda)$ is an invertible element of $R$ (resp. $R^{\prime}$ ), then so is $\eta_{0}(\Lambda)$.
Put

$$
T=\left\{\xi(\Lambda, X) \in S| | \xi(\Lambda, X) \mid \leq 1 \text { and } \xi_{0}(\Lambda)=1\right\}
$$

and put $T^{\prime}=T \cap S^{\prime}$. Using the notation of Equation (2.5), define $\beta: T \rightarrow T$ by

$$
\beta(\xi(\Lambda, X))=\frac{\alpha^{*}(\xi(\Lambda, X))}{\eta_{0}(\Lambda)}
$$

Note that $\beta\left(T^{\prime}\right) \subseteq T^{\prime}$.
Proposition 2.11. The operator $\beta$ is a contraction mapping on the complete metric space $T$. More precisely, if $\xi^{(1)}(\Lambda, X), \xi^{(2)}(\Lambda, X) \in T$, then

$$
\left|\beta\left(\xi^{(1)}(\Lambda, X)\right)-\beta\left(\xi^{(2)}(\Lambda, X)\right)\right| \leq|\tilde{\pi}|^{(p-1) / D}\left|\xi^{(1)}(\Lambda, X)-\xi^{(2)}(\Lambda, X)\right|
$$

Proof. We have (in the obvious notation)

$$
\begin{aligned}
\beta\left(\xi^{(1)}(\Lambda, X)\right)-\beta\left(\xi^{(2)}(\Lambda, X)\right)= & \frac{\alpha^{*}\left(\xi^{(1)}(\Lambda, X)\right)}{\eta_{0}^{(1)}(\Lambda)}-\frac{\alpha^{*}\left(\xi^{(2)}(\Lambda, X)\right)}{\eta_{0}^{(2)}(\Lambda)} \\
= & \frac{\alpha^{*}\left(\xi^{(1)}(\Lambda, X)-\xi^{(2)}(\Lambda, X)\right)}{\eta_{0}^{(1)}(\Lambda)} \\
& -\alpha^{*}\left(\xi^{(2)}(\Lambda, X)\right) \frac{\eta_{0}^{(1)}(\Lambda)-\eta_{0}^{(2)}(\Lambda)}{\eta_{0}^{(1)}(\Lambda) \eta_{0}^{(2)}(\Lambda)} .
\end{aligned}
$$

Since $\eta_{0}^{(1)}(\Lambda)-\eta_{0}^{(2)}(\Lambda)$ is the coefficient of $X^{0}$ in $\alpha^{*}\left(\xi^{(1)}(\Lambda, X)-\xi^{(2)}(\Lambda, X)\right)$, we have

$$
\left|\eta_{0}^{(1)}(\Lambda)-\eta_{0}^{(2)}(\Lambda)\right| \leq\left|\alpha^{*}\left(\xi^{(1)}(\Lambda, X)-\xi^{(2)}(\Lambda, X)\right)\right|
$$

And since the coefficient of $X^{0}$ in $\xi^{(1)}(\Lambda, X)-\xi^{(2)}(\Lambda, X)$ equals 0 , the proposition follows from Lemma 2.8.

Remark: Proposition 2.11 implies that $\beta$ has a unique fixed point in $T$. And since $\beta$ is stable on $T^{\prime}$, that fixed point must lie in $T^{\prime}$. Let $\xi(\Lambda, X) \in T^{\prime}$ be the unique fixed point of $\beta$. The equation $\beta(\xi(\Lambda, X))=\xi(\Lambda, X)$ is equivalent to the equation

$$
\alpha^{*}(\xi(\Lambda, X))=\eta_{0}(\Lambda) \xi(\Lambda, X)
$$

Since $\alpha^{*}$ is stable on $S^{\prime}$, it follows that

$$
\begin{equation*}
\eta_{0}(\Lambda) \xi_{\mu}(\Lambda) \in R^{\prime} \quad \text { for all } \mu \in M \tag{2.12}
\end{equation*}
$$

In particular, since $\xi_{0}(\Lambda)=1$, we have $\eta_{0}(\Lambda) \in R^{\prime}$.
Put $C_{0}=C \cap(-C)$, the largest subspace of $\mathbf{R}^{n}$ contained in $C$, and put $M_{0}=$ $\mathbf{Z}^{n} \cap C_{0}$, a subgroup of $M$. For a formal series $\sum_{\mu \in \mathbf{Z}^{n}} c_{\mu}(\Lambda) X^{\mu}$ with $c_{\mu}(\Lambda) \in \Omega[[\Lambda]]$ we define

$$
\gamma\left(\sum_{\mu \in \mathbf{Z}^{n}} c_{\mu}(\Lambda) X^{\mu}\right)=\sum_{\mu \in M_{0}} c_{\mu}(\Lambda) X^{\mu}
$$

and set

$$
\zeta(\Lambda, X)=\gamma\left(\exp \left(\pi f_{\Lambda}(X)\right)\right)
$$

Of course, when the origin is an interior point of $\Delta$, then $M_{0}=\mathbf{Z}^{n}$ and $\zeta(\Lambda, X)=$ $\exp \left(\pi f_{\Lambda}(X)\right)$. In any case, the coefficients of $\zeta(\Lambda, X)$ belong to $R$.

Since $\exp \left(\pi f_{\Lambda}(X)\right)=\prod_{a \in A} \exp \left(\pi \Lambda_{a} X^{a}\right)$, we can expand this product to get

$$
\begin{aligned}
\zeta(\Lambda, X) & =\gamma\left(\prod_{a \in A} \sum_{\nu_{a}=0}^{\infty} \frac{\left(\pi \Lambda_{a} X^{a}\right)^{\nu_{a}}}{\nu_{a}!}\right) \\
& =\sum_{\mu \in M_{0}} G_{\mu}(\Lambda) \tilde{\pi}^{-w(\mu)} X^{-\mu}
\end{aligned}
$$

where $G_{\mu}(\Lambda)=\sum_{\nu \in\left(\mathbf{z}_{\geq 0}\right)^{|A|}} G_{\nu}^{(\mu)} \Lambda^{\nu}$ with

$$
G_{\nu}^{(\mu)}= \begin{cases}\tilde{\pi}^{w(\mu)} \prod_{a \in A} \frac{\pi^{\nu_{a}} \nu_{a}!}{} & \text { if } \sum_{a \in A} \nu_{a} a=-\mu, \\ 0 & \text { if } \sum_{a \in A} \nu_{a} a \neq-\mu\end{cases}
$$

Since ord $\pi^{i} / i!>0$ for all $i>0$, it follows that $G_{\mu}(\Lambda) \in R,\left|G_{\mu}(\Lambda)\right| \leq|\tilde{\pi}|^{w(\mu)}$, and $G_{0}(\Lambda)$ is invertible in $R$. This implies that $\zeta(\Lambda, X) / G_{0}(\Lambda) \in T$. Note also that since $F(\Lambda, X)=\exp \left(\pi f_{\Lambda}(X)\right) / \exp \left(\pi f_{\Lambda^{p}}\left(X^{p}\right)\right)$, it is straightforward to check that

$$
\gamma^{\prime}(F(\Lambda, X))=\gamma(F(\Lambda, X))=\gamma\left(\frac{\exp \pi f_{\Lambda}(X)}{\exp \pi f_{\Lambda^{p}}\left(X^{p}\right)}\right)=\frac{\zeta(\Lambda, X)}{\zeta\left(\Lambda^{p}, X^{p}\right)}
$$

It follows that if $\xi(\Lambda, X)$ is a series satisfying $\gamma(\xi(\Lambda, X)) \in S$, then

$$
\begin{align*}
\alpha^{*}(\gamma(\xi(\Lambda, X))) & =\gamma^{\prime}\left(F(\Lambda, X) \gamma\left(\xi\left(\Lambda^{p}, X^{p}\right)\right)\right)=\gamma(F(\Lambda, X)) \gamma\left(\xi\left(\Lambda^{p}, X^{p}\right)\right)  \tag{2.13}\\
& =\frac{\zeta(\Lambda, X) \gamma\left(\xi\left(\Lambda^{p}, X^{p}\right)\right)}{\zeta\left(\Lambda^{p}, X^{p}\right)}
\end{align*}
$$

Remark: In terms of the $A$-hypergeometric functions $\left\{F_{i}(\Lambda)\right\}_{i \in M}$ defined in Equation (1.1), we have $\exp \left(\pi f_{\Lambda}(X)\right)=\sum_{i \in M} F_{i}(\pi \Lambda) X^{i}$, so for $i \in M_{0}$ we have the relation

$$
\begin{equation*}
F_{i}(\pi \Lambda)=\tilde{\pi}^{-w(-i)} G_{-i}(\Lambda) . \tag{2.14}
\end{equation*}
$$

Proposition 2.15. The unique fixed point of $\beta$ is $\zeta(\Lambda, X) / G_{0}(\Lambda)$.
Proof. By Equation (2.13), we have

$$
\begin{equation*}
\alpha^{*}\left(\frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}\right)=\frac{G_{0}(\Lambda)}{G_{0}\left(\Lambda^{p}\right)} \frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)} \tag{2.16}
\end{equation*}
$$

which is equivalent to the assertion of the proposition.
By the Remark following Proposition 2.11, $\zeta(\Lambda, X) / G_{0}(\Lambda) \in T^{\prime}$. This gives the following result.

Corollary 2.17. For all $\mu \in M_{0}, G_{\mu}(\Lambda) / G_{0}(\Lambda) \in R^{\prime}$.
In the notation of the Remark following Proposition 2.11, one has $\xi(\Lambda, X)=$ $\zeta(\Lambda, X) / G_{0}(\Lambda)$ and $\eta_{0}(\Lambda)=G_{0}(\Lambda) / G_{0}\left(\Lambda^{p}\right)$, so Equation (2.12) implies the following result.

Corollary 2.18. For all $\mu \in M_{0}, G_{\mu}(\Lambda) / G_{0}\left(\Lambda^{p}\right) \in R^{\prime}$.
In view of Equation (2.14), Corollary 2.18 implies that the function $\mathcal{F}(\Lambda)=$ $F_{0}(\pi \Lambda) / F_{0}\left(\pi \Lambda^{p}\right)$ converges on the closed unit polydisk, which was the first assertion of Theorem 1.3.

## 3. $p$-adic Theory

Fix $\bar{\lambda}=\left(\bar{\lambda}_{a}\right)_{a \in A} \in\left(\overline{\mathbf{F}}_{q}\right)^{|A|}$ and let $\lambda=\left(\lambda_{a}\right)_{a \in A} \in\left(\overline{\mathbf{Q}}_{p}\right)^{|A|}$, where $\lambda_{a}$ is the Teichmüller lifting of $\bar{\lambda}_{a}$. We recall Dwork's description of $L\left(f_{\bar{\lambda}} ; T\right)$. Let $\Omega_{0}=$ $\mathbf{Q}_{p}\left(\lambda, \zeta_{p}, \tilde{\pi}\right)\left(=\mathbf{Q}_{p}(\lambda, \pi, \tilde{\pi})\right)$ and let $\mathcal{O}_{0}$ be the ring of integers of $\Omega_{0}$.

We consider certain spaces of functions with support in $M$. We will assume that $\Omega_{0}$ has been extended by a finite totally ramified extension so that there is an element $\tilde{\pi}_{0}$ in $\Omega_{0}$ satisfying $\tilde{\pi}_{0}^{D}=\tilde{\pi}$. We shall write $\tilde{\pi}^{w(\nu)}$ and mean by it $\tilde{\pi}_{0}^{D w(\nu)}$ for $\nu \in M$. Using this convention to simplify notation, we define

$$
\begin{equation*}
B=\left\{\sum_{\nu \in M} A_{\nu} \tilde{\pi}^{w(\nu)} X^{\nu} \mid A_{\nu} \in \Omega_{0}, A_{\nu} \rightarrow 0 \text { as } \nu \rightarrow \infty\right\} \tag{3.1}
\end{equation*}
$$

Then $B$ is an $\Omega_{0}$-algebra which is complete under the norm

$$
\left|\sum_{\nu \in M} A_{\nu} \tilde{\pi}^{w(\nu)} X^{\nu}\right|=\sup _{\nu \in M}\left|A_{\nu}\right|
$$

We construct a Frobenius map with arithmetic import in the usual way. Let

$$
F(\lambda, X)=\prod_{a \in A} \theta\left(\lambda_{a} X^{a}\right)=\sum_{\mu \in M} B_{\mu}(\lambda) X^{\mu}
$$

i.e., $F(\lambda, X)$ is the specialization of $F(\Lambda, X)$ at $\Lambda=\lambda$, which is permissible by Lemma 2.2. Note also that Lemma 2.2 implies

$$
\operatorname{ord} B_{\mu}(\lambda) \geq \frac{w(\mu)(p-1)}{p^{2}}
$$

so we may write $B_{\mu}(\lambda)=\tilde{\pi}^{w(\mu)} \tilde{B}_{\mu}(\lambda)$ with $\tilde{B}_{\mu}(\lambda) p$-integral.
Let

$$
\Psi\left(X^{\mu}\right)= \begin{cases}X^{\mu / p} & \text { if } p \mid \mu_{i} \text { for all } i \\ 0 & \text { otherwise }\end{cases}
$$

We show that $\Psi \circ F(\lambda, X)$ acts on $B$. If $\xi=\sum_{\nu \in M} A_{\nu} \tilde{\pi}^{w(\nu)} X^{\nu} \in B$, then

$$
\Psi\left(\left(\sum_{\nu \in M} \tilde{\pi}^{w(\mu)} \tilde{B}_{\mu}(\lambda) X^{\mu}\right)\left(\sum_{\nu \in M} A_{\nu} \tilde{\pi}^{w(\nu)} X^{\nu}\right)\right)=\sum_{\omega \in M} C_{\omega}(\lambda) \tilde{\pi}^{w(\omega)} X^{\omega}
$$

where

$$
C_{\omega}(\lambda)=\sum_{\nu} \tilde{\pi}^{w(p \omega-\nu)+w(\nu)-w(\omega)} \tilde{B}_{p \omega-\nu}(\lambda) A_{\nu}
$$

(a finite sum). We have

$$
p w(\omega)=w(p \omega) \leq w(p \omega-\nu)+w(\nu)
$$

so that

$$
\begin{equation*}
\operatorname{ord} C_{\omega}(\lambda) \geq \inf _{\nu}\left\{\operatorname{ord} \tilde{\pi}^{(p-1) w(\omega)} A_{\nu}\right\}=\frac{(p-1)^{2} w(\omega)}{p^{2}}+\inf _{\nu}\left\{\operatorname{ord} A_{\nu}\right\} \tag{3.2}
\end{equation*}
$$

This implies that $\Psi(F(\lambda, X) \xi) \in B$.
Let $d(\bar{\lambda})=\left[\mathbf{F}_{q}(\bar{\lambda}): \mathbf{F}_{q}\right]$, so that $\lambda^{p^{\epsilon d(\bar{\lambda})}}=\lambda$. Put

$$
\alpha_{\lambda}=\Psi^{\epsilon d(\bar{\lambda})} \circ\left(\prod_{i=0}^{\epsilon d(\bar{\lambda})-1} F\left(\lambda^{p^{i}}, X^{p^{i}}\right)\right) .
$$

For any power series $P(T)$ in the variable $T$ with constant term 1, define $P(T)^{\delta_{\bar{\lambda}}}=$ $P(T) / P\left(p^{\epsilon d(\bar{\lambda})} T\right)$. Then $\alpha_{\lambda}$ is a completely continuous operator on $B$ and the Dwork Trace Formula (see Dwork [1], Serre [5]) gives

$$
\begin{equation*}
L\left(f_{\bar{\lambda}}, \Theta_{\bar{\lambda}}, \mathbf{T}^{n} ; T\right)^{(-1)^{n+1}}=\operatorname{det}\left(I-T \alpha_{\lambda} \mid B\right)^{\delta_{\bar{\lambda}}^{n}} \tag{3.3}
\end{equation*}
$$

By Equation (3.2), the $(\omega, \nu)$-entry of the matrix of $\alpha_{\lambda}$ (5, Section 2]) has ord $>0$ unless $\omega=\nu=0$. The formula for $\operatorname{det}\left(I-T \alpha_{\lambda}\right)$ (5, Proposition 7a)]) then shows that this Fredholm determinant can have at most a single unit root. Since $L\left(f_{\bar{\lambda}} ; T\right)$ has at least one unit root (Section 1), Equation (3.3) proves that $L\left(f_{\bar{\lambda}} ; T\right)$ has exactly one unit root.

## 4. Dual theory

It will be important to consider the trace formula in the dual theory as well. The basis for this construction goes back to [2] and [5]. We define

$$
B^{*}=\left\{\xi^{*}=\sum_{\mu \in M} A_{\mu}^{*} \tilde{\pi}^{-w(\mu)} X^{-\mu} \mid\left\{A_{\mu}^{*}\right\}_{\mu \in M} \text { is a bounded subset of } \Omega_{0}\right\}
$$

a $p$-adic Banach space with the norm $\left|\xi^{*}\right|=\sup _{\mu \in M}\left\{\left|A_{\mu}^{*}\right|\right\}$. We define a pairing $\langle\rangle:, B^{*} \times B \rightarrow \Omega_{0}:$ if $\xi=\sum_{\mu \in M} A_{\mu} \tilde{\pi}^{w(\mu)} X^{\mu}, \xi^{*}=\sum_{\mu \in M} A_{\mu}^{*} \tilde{\pi}^{-w(\mu)} X^{-\mu}$, set

$$
\left\langle\xi^{*}, \xi\right\rangle=\sum_{\mu \in M} A_{\mu} A_{\mu}^{*} \in \Omega_{0}
$$

The series on the right converges since $A_{\mu} \rightarrow 0$ as $\mu \rightarrow \infty$ and $\left\{A_{\mu}^{*}\right\}_{\mu \in M}$ is bounded. This pairing identifies $B^{*}$ with the dual space of $B$, i.e., the space of continuous linear mappings from $B$ to $\Omega_{0}$ (see [5, Proposition 3]).

Let $\Phi$ be the endomorphism of the space of formal series defined by

$$
\Phi\left(\sum_{\mu \in \mathbf{Z}^{n}} c_{\mu} X^{-\mu}\right)=\sum_{\mu \in \mathbf{Z}^{n}} c_{\mu} X^{-p \mu}
$$

and let $\gamma^{\prime}$ be the endomorphism

$$
\gamma^{\prime}\left(\sum_{\mu \in \mathbf{Z}^{n}} c_{\mu} X^{-\mu}\right)=\sum_{\mu \in M} c_{\mu} X^{-\mu}
$$

Consider the formal composition $\alpha_{\lambda}^{*}=\gamma^{\prime} \circ\left(\prod_{i=0}^{\epsilon d(\bar{\lambda})-1} F\left(\lambda^{p^{i}}, X^{p^{i}}\right)\right) \circ \Phi^{\epsilon d(\bar{\lambda})}$.
Proposition 4.1. The operator $\alpha_{\lambda}^{*}$ is an endomorphism of $B^{*}$ which is adjoint to $\alpha_{\lambda}: B \rightarrow B$.

Proof. As $\alpha_{\lambda}^{*}$ is the composition of the operators $\gamma^{\prime} \circ F\left(\lambda^{p^{i}}, X\right) \circ \Phi$ and $\alpha_{\lambda}$ is the composition of the operators $\Psi \circ F\left(\lambda^{p^{i}}, X\right), i=0, \ldots, \epsilon d(\bar{\lambda})-1$, it suffices to check that $\gamma^{\prime} \circ F(\lambda, X) \circ \Phi$ is an endomorphism of $B^{*}$ adjoint to $\Psi \circ F(\lambda, X): B \rightarrow B$. Let $\xi^{*}(X)=\sum_{\mu \in M} A_{\mu}^{*} \tilde{\pi}^{-w(\mu)} X^{-\mu} \in B^{*}$. The proof that the product $F(\lambda, X) \xi^{*}\left(X^{p}\right)$ is well-defined is analogous to the proof of convergence of the series (2.3). We have

$$
\gamma^{\prime}\left(F(\lambda, X) \xi^{*}\left(X^{p}\right)\right)=\sum_{\omega \in M} C_{\omega}(\lambda) \tilde{\pi}^{-w(\omega)} X^{-\omega}
$$

where

$$
\begin{equation*}
C_{\omega}(\lambda)=\sum_{\mu-p \nu=-\omega} \tilde{B}_{\mu}(\lambda) A_{\nu}^{*} \tilde{\pi}^{w(\omega)+w(\mu)-w(\nu)} \tag{4.2}
\end{equation*}
$$

Note that

$$
p w(\nu)=w(p \nu) \leq w(\omega)+w(\mu)
$$

since $p \nu=\omega+\mu$. Thus

$$
(p-1) w(\nu) \leq w(\omega)+w(\mu)-w(\nu)
$$

which implies that the series on the right-hand side of (4.2) converges and that $\left|C_{\omega}(\lambda)\right| \leq\left|\xi^{*}\right|$ for all $\omega \in M$. It follows that $\gamma^{\prime}\left(F(\lambda, X) \xi^{*}\left(X^{p}\right)\right) \in B^{*}$. It is straightforward to check that $\left\langle\Phi\left(X^{-\mu}\right), X^{\nu}\right\rangle=\left\langle X^{-\mu}, \Psi\left(X^{\nu}\right)\right\rangle$ and that

$$
\left\langle\gamma^{\prime}\left(F(\lambda, X) X^{-\mu}\right), X^{\nu}\right\rangle=\left\langle X^{-\mu}, F(\lambda, X) X^{\nu}\right\rangle
$$

for all $\mu, \nu \in M$, which implies the maps are adjoint.
By [5, Proposition 15] we have $\operatorname{det}\left(I-T \alpha_{\lambda}^{*} \mid B^{*}\right)=\operatorname{det}\left(I-T \alpha_{\lambda} \mid B\right)$, so Equation (3.3) implies

$$
\begin{equation*}
L\left(f_{\bar{\lambda}}, \Theta_{\bar{\lambda}}, \mathbf{T}^{n} ; T\right)^{(-1)^{n+1}}=\operatorname{det}\left(I-T \alpha_{\lambda}^{*} \mid B^{*}\right)^{\delta_{\bar{\lambda}}^{n}} \tag{4.3}
\end{equation*}
$$

From Equations (2.14) and (2.16), we have

$$
\alpha^{*}\left(\frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}\right)=\mathcal{F}(\Lambda) \frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)} .
$$

It follows by iteration that for $m \geq 0$,

$$
\begin{equation*}
\left(\alpha^{*}\right)^{m}\left(\frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}\right)=\left(\prod_{i=0}^{m-1} \mathcal{F}\left(\Lambda^{p^{i}}\right)\right) \frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)} \tag{4.4}
\end{equation*}
$$

We have

$$
\frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}=\sum_{\mu \in M_{0}} \frac{G_{\mu}(\Lambda)}{G_{0}(\Lambda)} \tilde{\pi}^{-w(\mu)} X^{-\mu}
$$

so by Corollary 2.17 we may evaluate at $\Lambda=\lambda$ to get an element of $B^{*}$ :

$$
\left.\frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}\right|_{\Lambda=\lambda}=\left.\sum_{\mu \in M_{0}} \frac{G_{\mu}(\Lambda)}{G_{0}(\Lambda)}\right|_{\Lambda=\lambda} \tilde{\pi}^{-w(\mu)} X^{-\mu} \in B^{*}
$$

It is straightforward to check that the specialization of the left-hand side of Equation (4.4) with $m=\epsilon d(\bar{\lambda})$ at $\Lambda=\lambda$ is exactly $\alpha_{\lambda}^{*}\left(\left.\left(\zeta(\Lambda, X) / G_{0}(\Lambda)\right)\right|_{\Lambda=\lambda}\right)$, so specializing Equation (4.4) with $m=\epsilon d(\bar{\lambda})$ at $\Lambda=\lambda$ gives

$$
\begin{equation*}
\alpha_{\lambda}^{*}\left(\left.\frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}\right|_{\Lambda=\lambda}\right)=\left.\left(\prod_{i=0}^{\epsilon d(\bar{\lambda})-1} \mathcal{F}\left(\lambda^{p^{i}}\right)\right) \frac{\zeta(\Lambda, X)}{G_{0}(\Lambda)}\right|_{\Lambda=\lambda} \tag{4.5}
\end{equation*}
$$

Equation (4.5) shows that $\prod_{i=0}^{\epsilon d(\bar{\lambda})-1} \mathcal{F}\left(\lambda^{p^{i}}\right)$ is a (unit) eigenvalue of $\alpha_{\lambda}^{*}$, hence by Equation (4.3) it is the unique unit eigenvalue of $L\left(f_{\bar{\lambda}} ; T\right)$.

## References

[1] B. Dwork, On the zeta function of a hypersurface, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 5-68.
[2] B. Dwork, On the zeta function of a hypersurface: II. Ann. of Math. 80 (1964), 227-299.
[3] B. Dwork, Bessel functions as p-adic functions of the argument. Duke Math. J. 41 (1974), 711-738.
[4] O. Schlömilch, Ueber die Bessel'sche Funktion. Zeitschrift für Math. und Phys. 2 (1857), 137-165.
[5] J.-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69-85.
[6] S. Sperber, p-adic hypergeometric functions and their cohomology. Thesis, University of Pennsylvania, 1975.
[7] G. Watson, A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078
E-mail address: adolphs@math.okstate.edu
School of Mathematics, University of Minnesota, Minneapolis, MN 5545
E-mail address: sperber@math.umn.edu


[^0]:    Date: December 9, 2010.
    1991 Mathematics Subject Classification. Primary: 11T23.
    Key words and phrases. Exponential sum, $A$-hypergeometric function.

