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Abstract. A class of causal variational principles on a compact manifold is intro-
duced and analyzed both numerically and analytically. It is proved under general
assumptions that the support of a minimizing measure is either completely timelike,
or it is singular in the sense that its interior is empty. In the examples of the circle,
the sphere and certain flag manifolds, the general results are supplemented by a
more detailed and explicit analysis of the minimizers. On the sphere, the minimal
action is estimated from above and below.
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1. Introduction

Causal variational principles were proposed in [4] as an approach for formulating
relativistic quantum field theory (for surveys see [7, 9]). More recently, they were intro-
duced in a broader mathematical context as a class of nonlinear variational principles
defined on measure spaces [8]. Except for the examples and general existence results
in [6, 3, 8] and the symmetry breaking effect in the discrete setting [5], almost nothing
is known on the structure of the minimizers. In the present paper, we turn atten-
tion to the analysis of minimizing measures in the continuous setting. For simplicity,
we restrict attention to variational principles on a compact manifold which generalize
the causal variational principles in spin dimension one with two prescribed eigenvalues
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(see [8, Chapter 1]). But our methods are developed with a view to possible extensions
to the non-compact setting and to a general spin dimension.

More precisely, in Section 2 we introduce a class of causal variational principles on a
compact manifold F and explain how this setting fits into the general context. As more
specific model examples, we introduce variational principles on the circle, on the sphere,
and on the flag manifold F1,2(Cf ). In Section 3, we present numerical results on the
sphere (see Figure 3) and discuss all the main effects which will be treated analytically
later on. In Section 4, we derive general results on the structure of the minimizers. We
first derive the corresponding Euler-Lagrange equations and conditions for minimality
(see Lemma 4.4 and Lemma 4.5). We then prove under general assumptions that the
minimizers are either generically timelike (see Definition 4.7) or the support of the
minimizing measure ρ defined by

suppρ = {x ∈ F | ρ(U) 6= 0 for every open neighborhood U of x}
is singular in the sense that its interior is empty (see Theorem 4.15 and Theorem 4.17).
In the following sections, we apply these general results to our model examples and
derive more detailed information on the minimizers. In Section 5, we consider the vari-
ational principle on the circle. After briefly discussing numerical results (see Figure 4),
we prove a “phase transition” between generically timelike minimizers and minimizers
with singular support and construct many minimizers in closed form (see Corollary 5.2
and Theorem 5.4). In Section 6, the variational principle on the sphere is considered.
We again prove the above phase transition (see Corollary 6.1) and estimate the action
from above and below (see Figure 6 and Proposition 6.3). Finally, in Section 7 we
apply our general results to flag manifolds (see Theorem 7.1). Moreover, we prove
that minimizers with singular support exist (see Theorem 7.2) and give an outlook on
generically timelike minimizers.

2. Preliminaries

Before introducing our mathematical framework, we briefly put it in the general con-
text. Causal variational principles can be formulated either in indefinite inner product
spaces on an underlying space-time (the “space-time representation”; see [4, 6] and [8,
Chapters 3 and 4]) or in terms of the so-called local correlation matrices acting on
the space of occupied particle states (the “particle representation”; see [8, Chapters 1
and 2]). Here we shall always work in the particle representation, whereas for the
connection to the space-time representation we refer to the constructions in [8, Sec-
tion 3.2] and [10]. Thus as in [8, Chapters 1 and 2], we begin with a positive measure
space (M,µ) normalized to µ(M) = 1. Moreover, for a given integer parameter f ,
we consider a closed subset F of the Hermitian (f × f)-matrices. For technical sim-
plicity, we here assume that F is a compact submanifold of Mat(Cf ); this covers the
variational principle with prescribed eigenvalues as considered in [8, Chapter 1 and
Section 2.1]. Generally speaking, in a causal variational principle one minimizes a
certain action S[F ] under variations of a measurable function F : M → F, imposing
suitable constraints. Introducing the measure ρ on F by ρ(Ω) = µ(F−1(Ω)) (in other
words, ρ = F∗µ is the push-forward measure), the action can be expressed by integrals
over F (see [8, Section 1.2]),

S[ρ] =
∫∫

F×F

L(x, y) dρ(x) dρ(y) , (2.1)
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where the Lagrangian L ∈ C0,1(F × F,R+
0 ) is a given function. Now the only signifi-

cance of the measure space (M,µ) is that it poses conditions on the possible form of
the measure ρ. For example, in the discrete setting one chooses µ as the normalized
counting measure on M = {1, . . . ,m}; then the support of ρ necessarily consists of at
mostm points. However, in the continuous setting under consideration here, we do not
want to impose any conditions on the measure ρ, but instead ρ should be allowed to be
any normalized positive regular Borel measure on F. Then the measure space (M,µ)
is no longer needed. For simplicity, we also leave out additional constraints (like the
trace or identity constraints; see [8, Section 2.3]). This leads us to the following setting:

Let F be a smooth compact manifold (of arbitrary dimension). For a given function

D ∈ C∞(F × F,R) being symmetric: D(x, y) = D(y, x) ∀ x, y ∈ F (2.2)

and strictly positive on the diagonal: D(x, x) > 0 , (2.3)

we define the Lagrangian L by

L = max(0,D) ∈ C0,1(F × F,R+
0 ) . (2.4)

Introducing the action S by (2.1), our action principle is to

minimize S under variations of ρ ∈ M , (2.5)

where M denotes the set of all normalized positive regular Borel measures on F. In
view of the symmetric form of (2.1), it is no loss of generality to assume that L(x, y) is
symmetric in x and y. Therefore, it is natural to assume that also D(x, y) is symmet-
ric (2.2). If (2.3) were violated, every measure supported in the set {x : D(x, x) ≤ 0}
would be a minimizer. Thus the condition (2.3) rules out trivial cases.

The existence of minimizers follows immediately from abstract compactness argu-
ments (see [8, Section 1.2]).

Theorem 2.1. The infimum of the variational principle (2.5) is attained in M.

Note that the minimizers will in general not be unique. Moreover, the abstract frame-
work gives no information on how the minimizers look like.

The notion of causality can now be introduced via the sign of D.

Definition 2.2 (causal structure).

Two points x, y ∈ F are called







timelike
lightlike
spacelike







separated if







D(x, y) > 0
D(x, y) = 0
D(x, y) < 0 .







We define the sets

I(x) = {y ∈ F with D(x, y) > 0} open lightcone

J (x) = {y ∈ F with D(x, y) ≥ 0} closed lightcone

K(x) = ∂I(x) ∩ ∂
(

F \ J (x)
)

boundary of the lightcone .

Thus y ∈ K(x) if and only if the function D(x, .) changes sign in every neighborhood
of y.

Our action is compatible with the causal structure in the sense that if x and y have
lightlike or spacelike separation, then the Lagrangian vanishes, so that the pair (x, y)
does not contribute to the action. Note that for a given minimizer ρ, we have similarly
a causal structure on its support.

In order to work in more specific examples, we shall consider the following three
model problems.
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Figure 1. The function D.

(a) Variational principles on the sphere:
We consider the setting of [8, Chapter 1] in the case f = 2 (see also [8, Exam-
ples 1.5, 1.6 and 2.8]). Thus for a given parameter τ ≥ 1, we let F be the space
of Hermitian (2× 2)-matrices whose eigenvalues are equal to 1 + τ and 1− τ .
Writing a matrix F ∈ F as a linear combination of Pauli matrices,

F = τ x·σ + 11 with x ∈ S2 ⊂ R
3 ,

we can describe F by the unit vector x (here · denotes the scalar product
in R

3). Thus F can be identified with the unit sphere S2. The function D is
computed in [8, Example 2.8] to be

D(x, y) = 2τ2 (1 + 〈x, y〉)
(

2− τ2 (1− 〈x, y〉)
)

. (2.6)

This function depends only on the angle ϑxy between the points x, y ∈ S2

defined by cos ϑxy = 〈x, y〉. Considered as function of ϑ ∈ [0, π], D has its
maximum at ϑ = 0 and is minimal if cos(ϑ) = −τ−2. Moreover, D(π) = 0.
Typical plots are shown in Figure 1. In the case τ > 1, the function D has two
zeros at π and

ϑmax := arccos

(

1− 2

τ2

)

. (2.7)

In view of (2.4), the Lagrangian is positive if and only if 0 ≤ ϑ < ϑmax.
Thus I(x) is an open spherical cap, and J (x) is its closure together with the
antipodal point of x,

I(x) = {y : 〈x, y〉 > 1− 2

τ2
} , J (x) = I(x) ∪ {−x}

If τ increases, the opening angle ϑmax of the lightcones gets smaller. In the
degenerate case τ = 1, the function D is decreasing, non-negative and has
exactly one zero at ϑ = π. Hence the Lagrangian L coincides with D. All
points on the sphere are timelike separated except for antipodal points. The
lightcones are I(x) = S2\{−x} and J (x) = S2.

If we regard ρ as a density on the sphere, the action (2.1) looks like the energy
functional corresponding to a pair potential L (see for example [13]). Using
physical notions, our pair potential is repelling (because L(ϑ) is a decreasing
function) and has short range (because L vanishes if ϑ ≥ ϑmax).
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(b) Variational principles on the circle:
In order to simplify the previous example, we set F = S1. For D we again
choose (2.6).

(c) Variational principles on the flag manifold F1,2(Cf ):
As in [8, Chapter 1], for a given parameter τ > 1 and integer parameters f > 2
we let F be the space of Hermitian (f×f)-matrices of rank two, whose nontrivial
eigenvalues are equal to 1+ τ and 1− τ . Every x ∈ F is uniquely described by
the corresponding eigenspaces U and V . By considering the chain U ⊂ (U∪V ),
x can be identified with an element of the flag manifold F1,2(Cf ), the space
of one-dimensional subspaces contained in a two-dimensional subspace of Cf

(see [11]). It is a (4f−6)-dimensional compact manifold. Every U ∈ U(f) gives
rise to the mapping x → UxU−1 on F. This resulting group action of U(f)
on F acts transitively, making F to a homogeneous space (see [11] for details).

For two points x, y ∈ F, we denote the two non-trivial eigenvalues of the
matrix product xy by λxy+ , λ

xy
− ∈ C and define the Lagrangian by

L(x, y) = 1

2

(

|λxy+ | − |λxy− |
)2
.

This Lagrangian is U(f)-invariant. In order to bring it into a more convenient
form, we first note that by restricting to the image of y, the characteristic
polynomial of xy changes only by irrelevant factors of λ,

det(xy − λ11) = λf−2 det ((πyxy − λ11)|Im y) ,

where πy denotes the orthogonal projection to Im y. It follows that λxy+ and λxy−
are the eigenvalues of the (2× 2)-matrix πyxy|Im y. In particular,

λxy+ λ
xy
− = det(πyxy|Im y) = det(πyxπy|Im y) det(y|Im y) ≥ 0 ,

because the operator πyxπy again has at most one positive and one negative
eigenvalue. Moreover, the relation λxy+ + λxy− = Tr(xy) ∈ R shows that the
two eigenvalues are either both real and have the same sign or else form a
complex conjugate pair, in which case the Lagrangian vanishes. Finally, us-

ing that
(

λxy+
)2

+
(

λxy−
)2

= Tr
(

(xy)2
)

, the Lagrangian can be written in the
form (2.4) with

D(x, y) =
1

2

(

λxy+ − λxy−
)2

= Tr
(

(xy)2
)

− 1

2

(

Tr(xy)
)2
. (2.8)

We finally comment on the limitations of our setting and mention possible general-
izations. First, we point out that our structural results do not immediately apply
in the cases when F is non-compact or when additional constraints are considered
(see [8, Chapter 2]). However, it seems that in the non-compact case, our methods
and results could be adapted to the so-called moment measures as introduced in [8,
Section 2.3]. A promising strategy to handle additional constraints would be to first
derive the corresponding Euler-Lagrange equations, treating the constraints with La-
grange multipliers. Then one could try to recover these Euler-Lagrange equations as
those corresponding to an unconstrained variational problem on a submanifold G ⊂ F,
where our methods could again be used. We finally point out that in the case of
higher spin dimension n > 1, it is in general impossible to write the Lagrangian in
the form (2.4) with a smooth function D, because the Lagrangian is in general only
Lipschitz continuous in the open light cone. A possible strategy would be to first
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show that the support of ρ lies on a submanifold G ⊂ F, and then to verify that by
restricting L to G× G, it becomes smooth in the open lightcones.

3. Motivation: Numerical Results on the Sphere

In order to motivate our general structural results, we now describe our findings in
a numerical analysis of the variational principle on the sphere (see Example (a) on
page 4). Clearly, in a numerical study one must work with discrete configurations.
Our first attempt is to choose a finite number of points x1, . . . , xm ∈ S2 and to let ρ
be the corresponding normalized counting measure, i.e.

∫

S2

f dρ :=
1

m

m
∑

i=1

f(xi) ∀f ∈ C0(S2) . (3.1)

Then the action (2.1) becomes

S =
1

m2

m
∑

i,j=1

L(xi, xj) . (3.2)

By varying the points xi for fixedm, we obtain a minimizer ρm. Since every normalized
positive regular Borel measure can be approximated by such counting measures, we
can expect that if we choose m sufficiently large, the measure ρm should be a good
approximation of a minimizing measure ρ ∈ M (more precisely, we even know that
ρm → ρ as m→ ∞ with convergence in the weak (C0)∗-topology).

If τ is sufficiently large, the opening angle of the lightcones is so small that the m
points can be distributed on the sphere such that any two different points are spacelike
separated. In this case, the action becomes

S =
1

m
L(ϑ = 0) ,

and in view of (3.2) this is indeed minimal. The question for which τ such a configu-
ration exists leads us to the Tammes problem, a packing problem where the points are
distributed on the sphere such that the minimal distance ϑm between distinct points is
maximized, see [14]. More precisely, we know that the Tammes distribution is a mini-
mizer of our action if τ is so large that ϑm > ϑmax. Until now, the Tammes problem
is only solved if m ≤ 12 and for m = 24 (for details see [2] and the references therein).
For special values of m, the solutions of the Tammes problem are symmetric solids
like the tetrahedron (m = 4), the octahedron (m = 6), the icosahedron (m = 12) and
the snub cube (m = 24). Moreover, much research has been done on the numerical
evaluation of spherical codes, mostly by N.J.A. Sloane, with the collaboration of R.H.
Hardin, W.D. Smith and others, [14], containing numerical solutions of the Tammes
problem for up to 130 points.

In the case ϑm < ϑmax, the measure ρm was constructed numerically using a sim-
ulated annealing algorithm1. In order to get optimal results, we used this algorithm
iteratively, using either a Tammes distribution or previous numerical distributions
as starting values. Using that D depends smoothly on τ , it is useful to increase or
decrease τ in small steps, and to use the numerical minimizer as the starting con-
figuration of the next step. In Figure 2, the numerically found S[ρm] is plotted for
different values of m as a function of the parameter τ . The resulting plots look rather

1We use the “general simulated annealing algorithm” by J. Vandekerckhove, c© 2006,
http://www.mathworks.de/matlabcentral/fileexchange/10548.
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Figure 2. Numerical minima for the counting measure on the sphere.

complicated. The considered values for m are too small for extrapolating the limiting
behavior as m → ∞. Nevertheless, one observation turned out to be very helpful:
Near τ ≈ 1.2, the plots for different values of m look the same. The reason is that
some of the xi coincide, forming “clusters” of several points. For example, in the
case m = 12, the support of ρ only consists of six distinct points, each occupied by
two xi. A similar “clustering effect” also occurs for higher τ if m is sufficiently large.

These findings give the hope that for large m, the minimizers might be well-
approximated by a measure supported at a few cluster points, with weights count-
ing the number of points at each cluster. This was our motivation for considering a
weighted counting measure. Thus for any fixed m, we choose points x1, . . . , xm ∈ S2

and corresponding weights ρ1, . . . , ρm with

ρi ≥ 0 and

m
∑

i=1

ρi = 1 .

We introduce the corresponding measure ρ in generalization of (3.1) by
∫

S2

f dρ :=

m
∑

i=1

ρi f(xi) ∀f ∈ C0(S2) . (3.3)

Seeking for numerical minimizers by varying both the points xi and the weights ρi, we
obtain the plots shown in Figure 3.

These plots suggest the following structure of the minimizers. Let us denote the the
minimizing weighted counting measure for a given m by ρ(m). Then for any fixed τ ,
the series S[ρ(m)] is monotone decreasing (this is obvious because every ρ(m) can be
realized by a weighted counting measure with m+ > m summands by choosing m+−m
weights equal to zero). The important observation is that there is an integer m0 from
where on the series stays constant, i.e.

S[ρ(m−)] > S[ρ(m0)] = S[ρ(m+)] ∀ m− < m0 < m+ .

This implies that the measure ρm0
is also a minimizer in the class of all Borel measures.

This leads us to the following
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Figure 3. Numerical minima for the weighted counting measure on the sphere.

Conjecture 3.1. For any τ ≥ 1, there is a minimizer ρ ∈ M of the variational
problem on the sphere which is a weighted counting measure supported at m0 points.

From Figure 3 we can read off the value of m0 as a function of τ . Generally speaking,
m0 increases as τ gets larger. This corresponds to the fact that for increasing τ , the
opening angle ϑmax of the light cones gets smaller, so that it becomes possible to
distribute more points on the sphere which are all spatially separated from all the
other points.

The more detailed numerical study of the minimizers showed another interesting
effect. For values τ < τc :=

√
2, we found many different minimizers of different form.

They all have the property that they are completely timelike in the sense that all points
in the support of the minimizing measure have timelike or lightlike separation from all
the other points. We found minimizers supported on an arbitrarily large number of
points. If on the other hand τ > τc, all minimizers were supported on at most m0(τ)
points, indicating that every minimizing measure ρ ∈ M should be discrete with finite
support. The intermediate value τ = τc correspond to the opening angle ϑmax = π

2 of
the light cones.

Conjecture 3.2. If τ < τc, every minimizer is completely timelike. If conversely
τ > τc, every minimizing measure is discrete with finite support.

More graphically, one can say that for τ > τc, our variational principle spontaneously
generates a discrete structure on the sphere. The two regions τ < τc and τ > τc can
also be understood as two different phases of the system, so that at τ = τc we have a
phase transition from the completely timelike phase to the discrete phase.

The above numerical results will be the guide line for our analysis. More precisely,
the completely timelike phase will be analyzed in Section 4.2 using the notion of
“generically timelike”, whereas in Section 4.3 we will develop under which assumptions
and in which sense the support of the minimizing measure is discrete or “singular”. The
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phase transition is made precise in Theorem 4.15 and 4.17 by stating that minimizing
measures are either generically timelike or singular.

4. General Structural Results

We now return to the general variational principle (2.5) with the Lagrangian of the
form (2.4) and (2.2) on a general smooth compact manifold F. Let us introduce some
notation. For a given measure ρ ∈ M we define the functions

ℓ(x) =

∫

F

L(x, y) dρ(y) ∈ C0,1(F) (4.1)

d(x) =

∫

F

D(x, y) dρ(y) ∈ C∞(F) . (4.2)

Moreover, we denote the Hilbert space L2(F, dρ) by (Hρ, 〈., .〉ρ) and introduce the
operators

Lρ : Hρ → Hρ : ψ 7→ (Lρψ)(x) =

∫

F

L(x, y) ψ(y) dρ(y) (4.3)

Dρ : Hρ → Hρ : ψ 7→ (Dρψ)(x) =

∫

F

D(x, y) ψ(y) dρ(y) . (4.4)

Lemma 4.1. The operators Lρ and Dρ are self-adjoint and Hilbert-Schmidt. The
eigenfunctions of Lρ (and Dρ) corresponding to the non-zero eigenvalues can be ex-
tended to Lipschitz-continuous (respectively smooth) functions on F.

Proof. We only consider Dρ, as the proof for Lρ is analogous. The self-adjointness
follows immediately from the fact that D(x, y) is symmetric. Moreover, as the kernel
is smooth and F is compact, we know that

∫∫

F×F

|D(x, y)|2dρ(x) dρ(y) <∞ .

This implies that Dρ is Hilbert-Schmidt (see [12, Theorem 2 in Section 16.1]).
Suppose that Dρψ = λψ with λ 6= 0. Then the representation

ψ(x) =
1

λ

∫

F

D(x, y) ψ(y) dρ(y)

shows that ψ ∈ C∞(F). �

The following notions characterize properties of F and the function D which will be
needed later on.

Definition 4.2. A measure µ ∈ M is a homogenenizer of D if suppµ = F and both
functions

ℓµ(x) :=

∫

F

L(x, y) dµ(y) and dµ(x) :=

∫

F

D(x, y) dµ(y)

are constant on F. The function D is called homogenizable if a homogenizer exists.

In the Examples (a), (b) in Section 2, we can always choose the standard normalized
volume measure as the homogenizer. More generally, in Example (c) we choose for µ
the normalized Haar measure, obtained by introducing a U(f)-invariant metric on F

and taking the corresponding volume form (see for example [1, Section I.5]).
The next proposition gives a sufficient condition for a homogenizer to be a minimizer.
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Proposition 4.3. If Lµ ≥ 0, the homogenizer µ is a minimizer of the variational
principle (2.5).

Proof. We denote the constant function on F by 1F ≡ 1. If µ is a homogenizer,
this function is an eigenfunction of Lµ, which can be completed to an orthonormal
eigenvector basis (ψi)i∈N0

of Hµ with ψ0 = 1F and corresponding eigenvalues λi ≥ 0.
Using an approximation argument in the C0(F)∗-topology, it suffices to show that

S[µ] ≤ S[ψµ]
for any ψ ∈ C0(F) with ψ ≥ 0 and 〈ψ, 1F〉µ = 1. We write ψ in the eigenvector
basis ψi,

ψ =

∞
∑

i=0

ci ψi .

The condition 〈ψ, 1F〉µ = 1 implies that c0 = 1. Thus

S[ψµ] = 〈ψ,Lµψ〉µ = λ0 +
∞
∑

i=1

|ci|2λi ≥ λ0 = S[µ] .
�

4.1. The Euler-Lagrange Equations. Let us assume that ρ is a minimizer of the
variational principle (2.5),

S[ρ] = inf
ρ̃∈M

S[ρ̃] =: Smin .

We now derive consequences of the minimality. In the first lemma, we consider first
variations of ρ to obtain the Euler-Lagrange equations corresponding to our variational
principle. The second lemma, on the other hand, accounts for a nonlinear effect.

Lemma 4.4. (The Euler-Lagrange equations)

ℓ|supp ρ ≡ inf
F
ℓ = Smin .

Proof. Comparing (2.1) with (4.1), one sees that

Smin =

∫

F

ℓ dρ . (4.5)

Since ℓ is continuous and F is compact, there clearly is y ∈ F with

ℓ(y) = inf
F
ℓ . (4.6)

We consider for t ∈ [0, 1] the family of measures

ρ̃t = (1− t) ρ+ t δy ∈ M ,

where δy denotes the Dirac measure at y. Substituting this formula in (2.1) and
differentiating, we obtain for the first variation the formula

δS := lim
tց0

S[ρ̃t]− S[ρ̃0]
t

= −2Smin + 2ℓ(y) .

Since ρ is a minimizer, δS is non-negative. Combining this result with (4.5) and (4.6),
we obtain the relations

inf
F
ℓ = ℓ(y) ≥ Smin =

∫

F

ℓ dρ .

It follows that ℓ is constant on the support of ρ, giving the result. �
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Lemma 4.5. The operator Lρ is non-negative.

Proof. Lemma (4.4) yields that for any x ∈ suppρ,

(Lρ1F)(x) =

∫

F

L(x, y) dρ(y) = ℓ(x) = Smin 1F(x) ,

showing that the constant function 1F is an eigenvector corresponding to the eigen-
value Smin ≥ 0.

Assume that the lemma is wrong. Then, as Lρ is a compact and self-adjoint operator
(see Lemma 4.1), there exists an eigenvector ψ corresponding to a negative eigenvalue,
Lρψ = λψ with λ < 0. We consider the family of measures

ρ̃t = (1F + tψ) ρ .

In view of Lemma 4.1, ψ is continuous and therefore bounded. Thus for sufficiently
small |t|, the measure ρ̃t is positive. Moreover, the orthogonality of the eigenfunc-
tions 1F and ψ implies that

ρ̃t(F) =

∫

F
1F (1F + tψ) dρ = 1 + t 〈1F, ψ〉ρ = 1 ,

showing that ρ̃t is again normalized. Finally, again using the orthogonality,

S[ρ̃t] = 〈(1F + tψ), Lρ(1F + tψ)〉ρ = Smin + λ t2 〈ψ,ψ〉ρ .
Thus ρ̃t is an admissible variation which decreases the action, a contradiction. �

An immediate consequence of this lemma is a useful positivity property of the La-
grangian when evaluated on a finite number of points in the support of ρ.

Corollary 4.6. For a finite family x0, . . . , xN ∈ supp ρ (with N ∈ N), the Gram

matrix L defined by

L =
(

L(xi, xj)
)

i,j=0,...,N

is symmetric and positive semi-definite.

Proof. Given ε > 0 and a vector u = (u0, . . . , uN ) ∈ C
N+1, we set

ψǫ(x) =

N
∑

i=0

ui
ρ(Bε(xi))

χBε(xi)(x) ∈ Hρ ,

where Bε is a ball of radius ε (in a given coordinate system). Lemma 4.5 implies
that 〈ψε,Lρψε〉 ≥ 0. Taking the limit εց 0, it follows that

〈u,Lu〉CN+1 = lim
εց0

〈ψε,Lρψε〉ρ ≥ 0 .
�

4.2. Generically Timelike Minimizers.

Definition 4.7. A minimizing measure ρ ∈ M is called generically timelike if the
following conditions hold:

(i) D(x, y) ≥ 0 for all x, y ∈ supp ρ.
(ii) The function d defined by (4.2) is constant on F.

This constant can easily be computed.

Lemma 4.8. Suppose that ρ is a generically timelike minimizer. Then

d(x) = Smin for all x ∈ F .



12 F. FINSTER AND D. SCHIEFENEDER

Proof. Since L and D coincide on the support of ρ, we know that

Smin =

∫∫

F×F

L(x, y) dρ(x) dρ(y) =
∫∫

F×F

D(x, y) dρ(x) dρ(y) .

Carrying out one integral using (4.2), we obtain

Smin =

∫

F

d(x) dρ(x) ,

giving the result. �

In the remainder of this subsection, we assume that D is homogenizable (see Defi-
nition 4.2) and denote the homogenizer by µ ∈ M.

Lemma 4.9. If Dµ has only a finite number of negative eigenvalues, the kernel D(x, y)
has the representation

D(x, y) = ν0 +
N
∑

n=1

νn φn(x) φn(y) (4.7)

with N ∈ N ∪ {∞}, νn ∈ R, νn 6= 0, and φn ∈ C∞(F), where in the case N = ∞ the
series converges uniformly.

Proof. By definition of the homogenizer, the function 1F ≡ 1 is an eigenfunction of
the operator Dµ. Denoting the corresponding eigenvalue by ν0, we obtain the spectral
representation (4.7).

If Dµ is positive semi-definite, the uniform convergence is an immediate general-
ization of Mercer’s theorem (see [12, Theorem 11 in Chapter 30], where we replace
the interval [0, 1] by the compact space F, and the Lebesgue measure by the mea-
sure µ). In the case when Dµ has a finite number of negative eigenvalues, we apply

Mercer’s theorem similarly to the operator with kernel D(x, y) −∑K
i=1 λi ψi(x)ψi(y),

where λ1, . . . λK are the negative eigenvalues with corresponding eigenfunctions ψi.
By construction, this operator is positive semi-definite, and in view of Lemma 4.1 its
kernel is continuous. �

Lemma 4.10. Suppose that ρ is a generically timelike minimizer and that the opera-
tor Dµ has only a finite number of negative eigenvalues. Then

S[ρ] = ν0 and

∫

F

φn(y) dρ(y) = 0 for all n ∈ {1, . . . , N} .

Proof. Using the decomposition of the kernel (4.7) and the uniform convergence, we
obtain

d(x) = ν0 +

N
∑

n=1

νn φn(x)

∫

F

φn(y) dρ(y) .

Applying Lemma 4.8 gives the claim. �

Proposition 4.11. Suppose that Dµ is a positive semi-definite operator on Hµ. Then

Smin ≥ ν0 .

In the case of equality, every minimizer is generically timelike.



ON THE SUPPORT OF MINIMIZERS OF CAUSAL VARIATIONAL PRINCIPLES 13

Proof. If Dµ is positive semi-definite, all the parameters νn in (4.7) are positive. It
follows that for every measure ρ̃ ∈ M,

S[ρ̃] =
∫∫

F×F

L(x, y) dρ̃(x) dρ̃(y) ≥
∫∫

F×F

D(x, y) dρ̃(x) dρ̃(y) ≥ ν0 ρ̃(F)
2 = ν0 . (4.8)

Let us assume that equality holds. It then follows from (4.8) that L and D coincide
on the support of ρ̃ and thus D(x, y) ≥ 0 for all x, y ∈ supp ρ̃. Moreover, we find
from (4.7) that

ν0 = ν0 +

N
∑

n=1

∣

∣

∣

∣

∫

F

φn(y) dρ̃

∣

∣

∣

∣

2

,

and thus
∫

F

φn(y) dρ̃ = 0 for all n ≥ 1 .

It follows that dρ̃ is a constant. We conclude that ρ̃ is generically timelike. �

This proposition can be used to construct generically timelike minimizers.

Corollary 4.12. Suppose that Dµ is a positive semi-definite operator on Hµ. Assume
that the function f ∈ Hµ has the following properties:

(a) D(x, y) = L(x, y) for all x, y ∈ supp f .

(b)

∫

F

f(x) dµ(x) = 1 and

∫

F

f(x)φn(x) dµ(x) = 0 for all n ∈ {1, . . . , N}.

Then the measure dρ = f dµ is a generically timelike minimizer.

Proof. The assumption (a) implies that

S[ρ] =
∫∫

F×F

D(x, y) dρ(x) dρ(y) .

Using the decomposition (4.7) and the relations (b), we find that S[ρ] = ν0. We now
apply Proposition 4.11. �

We conclude this section by stating obstructions for the existence of generically
timelike minimizers.

Proposition 4.13. Assume that one of the following conditions hold:

(I) The operator Dµ has only a finite number of negative eigenvalues, and the
eigenvalue ν0 in the decomposition (4.7) is not positive.

(II) For every x ∈ F there is a point y ∈ F with J (x) ∩ J (y) = ∅ (“condition of
disjoint lightcones”).

(III) For every x ∈ F there is a point −x /∈ I(x) with J (x) = I(x) ∪ {−x} and

I(x) ∩ I(−x) = ∅ (“condition of antipodal points”).

Then there are no generically timelike minimizers.

Proof. We first show that Smin > 0. Namely, choosing x in the support of a minimizing
measure ρ, we know from (2.3) and the continuity of D that there is a neighborhood U
of x and δ > 0 such that D(x, y) > δ for all y ∈ U . It follows that

Smin ≥
∫

U×U
L(x, y) dρ(x) dρ(y) ≥ δ ρ(U)2 > 0 .

Case (I) is obvious in view of Lemma 4.10 and the fact that Smin > 0. To prove
the remaining cases (II) and (III), we assume conversely that there exists a generically
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timelike minimizer ρ ∈ M. Choosing a point x ∈ supp ρ, we know from property (i) in
Definition 4.7 that suppρ ⊂ J (x). In case (II), we choose y ∈ F with J (x)∩J (y) = ∅

to obtain

d(y) =

∫

J (x)
D(y, z) dρ(z) ≤ 0 < Smin ,

in contradiction to Lemma 4.8.
In case (III), we know that supp ρ ⊂ J (x) = I(x) ∪ {−x}. If −x /∈ suppρ, the

estimate

d(−x) =
∫

J (x)
D(−x, z) dρ(z) =

∫

I(x)
D(−x, z) dρ(z)

(∗)
≤ 0 < Smin

again gives a contradiction, where in (*) we used that I(x) ∩ I(−x) = ∅. If con-
versely −x ∈ suppρ, then supp ρ ⊂ J (x)∩J (−x) = {x}∪{−x} (where we again used

that I(x)∩I(−x) = ∅). Hence the integral in (4.2) reduces to a sum over two points,

d(y) = ρ({x})D(y, x) + ρ({−x})D(y,−x) . (4.9)

In view of our assumption (2.3), we know that x ∈ I(x). On the other hand, the

relation I(x)∩I(−x) = ∅ shows that −x /∈ I(x). Hence there is a point y ∈ ∂I(x). It
follows that D(y, x) = 0 (because y ∈ ∂I(x)) and also D(y,−x) ≤ 0 (because y ∈ I(x)
and thus y /∈ I(−x)). Using these inequalities in (4.9), we again find that d(y) ≤ 0, a
contradiction. �

It is an interesting question how the support of a generically timelike minimizer ρ may
look like. The next proposition (which will not be used later on) quantifies that suppρ
must be sufficiently “spread out”.

Proposition 4.14. Assume that ρ is a generically timelike minimizer and that the
operator Dµ has only a finite number of negative eigenvalues. Then every real func-
tion ψ ∈ Dµ(Hµ) with

∫

F

ψ(x) dµ(x) = 0 (4.10)

changes its sign on the support of ρ (here µ is again the homogenizer of Definition 4.2).

Proof. We return to the spectral decomposition (4.7) of the operator Dµ. Since the
eigenfunctions φn are orthogonal in Hµ, we know that

∫

F

φn dµ = 0 for all n ≥ 1 .

Representing ψ in an eigenvector basis of Dµ and using (4.10), we find

ψ =

N
∑

n=1

κn φn

with complex coefficients κn. Integrating with respect to ρ, we can apply Lemma 4.10
to obtain

∫

F

ψ(x) dρ(x) =
N
∑

n=1

κn

∫

F

φn(x) dρ(x) = 0 .

Hence ψ changes its sign on the support of ρ. �
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4.3. Minimizers with Singular Support. We now state results on the support of
a minimizing measure.

Theorem 4.15. Let F be a smooth compact manifold. Assume that D(x, y) is sym-
metric (2.2) and equal to one on the diagonal, D(x, x) ≡ 1. Furthermore, we assume
that for every x ∈ F and y ∈ K(x), there is a smooth curve c joining the points x
and y, along which D(., y) has a non-zero derivative at x, i.e.

d

dt
D
(

c(t), y
)

∣

∣

∣

t=0
6= 0 , (4.11)

where we parametrized the curve such that c(0) = x. Then the following statements
are true:

(A) If F, D are real analytic, then a minimizing measure ρ is either generically

timelike or
◦

supp ρ = ∅.
(B) If D is smooth and if there is a differential operator ∆ on C∞(F) which vanishes

on the constant functions such that

∆xD(x, y) < 0 for all y ∈ I(x) , (4.12)

then
◦

supp ρ = ∅.

A typical example for ∆ is the Laplacian corresponding to a Riemannian metric on F.
Note that the condition (4.11) implies that for every y ∈ F, the set {x | y ∈ K(x)} is a
smooth hypersurface, which the curve c intersects transversely (in the applications of
Section 5 and 6, this set will coincide with K(y), but this does not need to be true in
general).

The condition (4.11) can be removed if instead we make the following symmetry
assumption.

Definition 4.16. The function D is called locally translation symmetric at x with
respect to a curve c(t) with c(0) = x if there is ε > 0 and a function f ∈ C∞((−2ε, 2ε))
such that the curve c is defined on the interval (−ε, ε) and

D(c(t), c(t′)) = f(t− t′) for all t, t′ ∈ (−ε, ε) .

Theorem 4.17. Let F be a smooth compact manifold. Assume that D(x, y) is sym-
metric (2.2) and strictly positive on the diagonal (2.3). Furthermore, we assume that
for every x ∈ F and y ∈ K(x), there is a smooth curve c joining the points x and y
such that D is locally translation symmetric at x with respect to c, and such that the
function D(c(t), y) changes sign at t = 0 (where we again parametrize the curve such
that c(0) = x). Then statement (A) of Theorem 4.15 holds, provided that the curve c
is analytic in a neighborhood of t = 0. Assume furthermore that there is p ∈ N with

dp

dtp
D
(

c(t), y
)

∣

∣

∣

t=0
6= 0 . (4.13)

Then statement (B) of Theorem 4.15 again holds.

In the smooth setting, the above theorems involve quite strong additional assump-
tions (see (4.11), (4.12) and (4.13)). The following counter example shows that some
conditions of this type are necessary for the statements of these theorems to be true2.

2We would like to thank Robert Seiringer for pointing out a similar example to us.
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Example 4.18. Let f, g ∈ C∞
0 ([−π, π]) be non-negative even functions with

supp f ⊂
[

−π
8 ,

π
8

]

, supp g ⊂
(

−π,−π
2

]

∪
[

π
2 , π

)

.

We introduce the function D ∈ C∞(S2 × S2) by

D(x, y) = −g
(

dist(x, y)
)

+

∫

S2

f
(

dist(x, z)
)

f
(

dist(z, y)
)

dµ(z) , (4.14)

where dµ is the standard volume measure, and dist denotes the geodesic distance
(taking values in [0, π]). Note that the two summands in (4.14) have disjoint supports
and thus the corresponding Lagrangian (2.4) simply is

L(x, y) =
∫

S2

f
(

dist(x, z)
)

f
(

dist(z, y)
)

dµ(z) , (4.15)

We again consider D(x, y) and L(x, y) as the integral kernels of corresponding opera-
tors Dµ and Lµ on the Hilbert space Hµ = L2(S2, dµ).

First, it is obvious that D(x, y) is symmetric and constant on the diagonal. Next,
it is clear by symmetry that the measure µ is a homogenizer (see Definition 4.2).
Moreover, writing Lµ as Lµ = f2µ, where fµ is the operator with integral kernel f , one
sees that the operator Lµ is non-negative. Thus by Proposition 4.3, the measure µ is
minimizing. If the function g is non-trivial, there are points x, y which are spacelike
separated, so that this minimizer is not generically timelike. Also, its support obviously
has a non-vanishing interior. We have thus found a minimizing measure which violates
statement (A) of Theorem 4.15. ♦

The remainder of this section is devoted to the proof of the above theorems. We
begin with a simple but very useful consideration. Suppose that for given x ∈ F, the
boundary of the light cone K(x) does not intersect the support of ρ. As the support
of ρ is compact, there is neighborhood U of x such that

K(z) ∩ suppρ = ∅ for all z ∈ U .

Thus introducing the measure ρ̂ = χI(x) ρ, the function ℓ can for all z ∈ U be repre-
sented by

ℓ(z) =

∫

F

L(z, ξ) dρ̂(ξ) =
∫

F

D(z, ξ) dρ̂(ξ) . (4.16)

This identity can be used both in the smooth and in the analytic case.

Lemma 4.19. If (4.12) holds, then for every x ∈ suppρ the set K(x) ∩ suppρ is
nonempty.

Proof. Applying the Laplacian to (4.16) gives

∆xℓ(x) =

∫

F

∆xD(x, z) dρ̂(z) < 0 ,

where in the last step we used (4.12) and the fact that x ∈ supp ρ̃. This is a contra-
diction to Lemma 4.4. �

Lemma 4.20. Suppose that F and D are real analytic. Assume that there exists

a point x ∈ ◦
supp ρ such that K(x) ∩ suppρ = ∅. Then ρ is generically timelike

and supp ρ ⊂ I(x).
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Proof. We introduce on F the function

d̂(y) =

∫

F
D(y, z) dρ̂(y) .

Then d̂ is real analytic and, according to (4.16), it coincides on U with the function ℓ.

Since x ∈ ◦
supp ρ, the Euler-Lagrange equations in Lemma (4.4) yield that ℓ ≡ Smin in

a neighborhood of x. Hence d̂ ≡ Smin in a neighborhood of x, and the real analyticity
implies that

d̂ ≡ Smin on F .

It follows that

Smin =

∫

F
d̂(x)dρ(x) =

∫∫

F×F

D(x, y) dρ̂(x) dρ(y)

≤
∫∫

F×F

L(x, y) dρ̂(x) dρ(y) =
∫

F

ℓ(x) dρ̂(x) = Smin ρ̂(F) ,

(4.17)

and thus ρ̂(F) = 1. Since ρ̂ ≤ ρ and ρ is normalized, we conclude that ρ = ρ̂.

Thus d ≡ d̂ ≡ Smin. Moreover, the inequality in (4.17) becomes an equality, showing
that L ≡ D on the support of ρ. Thus ρ is indeed generically timelike. �

To complete the proof of Theorems 4.15 and 4.17, it remains to show the following
statement:

K(x) ∩ suppρ = ∅ for all x ∈ ◦
suppρ . (4.18)

We proceed indirectly and assume that there is a point y ∈ K(x) ∩ supp ρ. Our
strategy is to choose points x0, . . . , xk in a neighborhood of x such that L restricted to
the set {x0, . . . , xk, y} is not positive semi-definite, in contradiction to Corollary 4.6.
The points x0, . . . , xk will all lie on a fixed smooth curve c which joins x and y chosen
as in the statement of the theorems. We parametrize c such that c(0) = x and c(1) = y,
and by extending the curve we can arrange (possibly by decreasing ε) that the curve
is defined on the interval (−kε, 1]. By the assumptions in Theorems 4.15 and 4.17, we
know that D(c(t), y) changes sign at t = 0. Depending on the sign of D(c(ε), 0), we
introduce the equidistant “chain” of points
{

x0 = c(ε), x1 = c(0), x2 = c(−ε), . . . , xk = c(−(k − 1)ε) if D(c(ε), 0) > 0

x0 = c(−ε), x1 = c(0), x2 = c(ε), . . . , xk = c((k − 1)ε) if D(c(ε), 0) < 0.
(4.19)

(thus y has timelike separation from x0, lightlike separation from x1 = x, and spacelike
separation from x2, . . . , xk). Then by construction, x0 ∈ I(y), whereas all the other
points of the chain are spacelike or lightlike separated from y.

For the proof of Theorem 4.15, it suffices to consider a chain of three points.

Lemma 4.21. Assume that D(x, y) is symmetric (2.2) and equal to one on the diag-
onal, D(x, x) ≡ 1. Then for x0, x1, x2 as given by (4.19) in the case k = 2, there is a
real constant a1 such that for all sufficiently small ε,

D(xi, xj) = 1 + a1 |i− j|2 ε2 +O(ε3) for all i, j ∈ {0, 1, 2} . (4.20)

Proof. We set f(t, t′) = D(c(t), c(t′)) for t, t′ ∈ (−2ε, 2ε). Using that D is symmetric
and that D(x, x) ≡ 1, we know hat

0 =
d

dt
f(t0, t0) = 2

d

dt
f(t0, t)

∣

∣

t=t0
.
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Thus the linear term in a Taylor expansion vanishes,

f(t0, t) = 1 +
1

2
g(t0) (t− t0)

2 +O
(

|t− t0|3
)

,

where we set

g(t0) =
d2

dt2
f(t0, t)

∣

∣

∣

t=t0
.

As the function g is smooth, we can again expand it in a Taylor series,

g(t0) = g(0) +O(t0) .

We thus obtain

f(t0, t) = 1 +
1

2
g(0) (t− t0)

2 +O
(

|t0| |t− t0|2
)

+O
(

|t− t0|3
)

.

Setting a1 = 2g(0) and using that |t|, |t0| ≤ 2ε, the result follows. �

Lemma 4.22. Under the assumptions of Theorem 4.15, the statement (4.18) holds.

Proof. Assume conversely that for x ∈ ◦
suppρ there is a point y ∈ suppρ ∩ K(x). We

choose the chain x0, x1 = x, x2 as in Lemma 4.21. We use the notation of Corollary 4.6
in case N = 3, setting x3 = y. Choosing the vector u ∈ C

4 as u = (1,−2, 1, 0), we can
apply Lemma 4.21 to obtain

〈u,Lu〉C4 = 6− 4D(x0, x1) + 2D(x0, x2)− 4D(x1, x2) = O(ε3) .

Furthermore, using (4.11), we know that

D(x0, y) = b ε+O(ε2)

with b 6= 0. Thus, choosing u = (α,−2α,α, β) with α, β ∈ R, it is

〈u,Lu〉C4 =

〈(

α
β

)

,

(

O(ε3) bε+O(ε2)
bε+O(ε2) 1

)(

α
β

)〉

C2

.

For sufficiently small ε, the matrix in this equation has a negative determinant, in
contradiction to Corollary 4.6. �

This completes the proof of Theorem 4.15.
In order to finish the proof of Theorem 4.17, we first remark that combining the

symmetry of D with the assumption that D is locally translation symmetric at x with
respect to c, we know that D(c(t), c(t′)) = f(|t− t′|). A Taylor expansion of f yields
the following simplification and generalization of Lemma 4.21,

D(c(t), c(t′)) = 1 +

K
∑

i=1

ai (t− t′)2i +O
(

(t− t′)2(K+1)
)

, (4.21)

where the real coefficients ai only depend on c.

Lemma 4.23. Under the assumptions of Theorem 4.17, the statement (4.18) holds.

Proof. Let us first verify that in the real analytic case, there is a p such that (4.13)
holds. Namely, assuming the contrary, all the t-derivatives of the function D(c(t), y)
vanish. As the function D(c(t), y) is real analytic in a neighborhood of t = 0 (as the
composition of analytic functions is analytic), it follows that this function is locally
constant. This contradicts the fact that D(c(t), y) changes sign at t = 0.
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Assume conversely that for x ∈ ◦
suppρ there is a point y ∈ suppρ∩K(x). We choose

the chain x0, x1 = x, x2, . . . , xk as in (4.19) with k = p + 1. We use the notation of
Corollary 4.6 in case N = k. Then the Gram matrix L becomes

L =
(

f(ε|i− j|)
)

i,j=0,...,k
=











1 f(ε) · · · f(kε)
f(ε) 1
...

. . .

f(kε) · · · 1











.

Using the expansion (4.21) for K = k − 1, we obtain

L = E + a1ε
2
(

|i− j|2
)

+ a2ε
4
(

|i− j|4
)

+ . . .+ ak−1ε
2(k−1)

(

|i− j|2(k−1)
)

+O
(

ε2k
)

,
(4.22)

where E denotes the matrix where all the matrix entries (also the off-diagonal entries)
are equal to one, and (|i− j|q) is the matrix whose element (i, j) has the value |i− j|q.

Let us construct a vector v ∈ C
k+1 such that the expectation value 〈v, Lv〉 is O(ε2k).

To this end, we take for v = (vi)
k
i=0 ∈ C

k+1 a non-trivial solution of the k linear
equations

k
∑

i=0

vi = 0,
k
∑

i=0

ivi = 0,
k
∑

i=0

i2vi = 0, . . . ,
k
∑

i=0

ik−1vi = 0 . (4.23)

Then 〈v,Ev〉 = 0 and for all l ∈ {1, . . . , k − 1}

〈v, (|i − j|2l)v〉 =
k
∑

i,j=0

vivj |i− j|2l =
k
∑

i,j=0

vivj

2l
∑

ν=0

(

2l

ν

)

iνj2l−ν =

=

k
∑

i,j=1

vivj

(

i2l + 2l i2l−1j + . . .+

(

2l

l

)

iljl + . . . + j2l
)

.

Each summand involves a power of i and a power of j, where always one of these
powers is smaller than k. Thus all summands vanish according to (4.23). The solution
v can always be normalized by v0 = 1, because setting v0 to zero, the system of
equations (4.23) can be rewritten with the square Vandermonde matrix which has a
trivial kernel. In view of the expansion (4.22), we conclude that 〈v, Lv〉 = O(ε2k).

We next consider the setting of Corollary 4.6 in case N = k + 1 and xk+1 = y.
Using (4.13) together with the fact that the points y and x0 are timelike separated,
we find that

L(x0, y) = b εp +O(εp+1) (4.24)

for b 6= 0. We choose the vector u ∈ C
k+2 as u = (αv0, . . . , αvk, β) with α, β ∈ R,

〈u,Lu〉C4 =

〈(

α
β

)

,

(

O(ε2k) bεp +O(εp+1)
bεp +O(εp+1) 1

)(

α
β

)〉

C2

,

where we combined (4.24) with our normalization v0 = 1, and used that y is not
timelike separated from x1, . . . , xk. For sufficiently small ε, the matrix in this equation
has a negative determinant, in contradiction to Corollary 4.6. �

This completes the proof of Theorem 4.17.
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Figure 4. Numerical minima for the weighted counting measure on the circle.

5. The Variational Principles on the Circle

As a simple starting point for a more detailed analysis, we now consider the varia-
tional principles on the circle (see Example (b) on page 5). We first discuss numerical
results, which again show the “critical behavior” discussed in Section 3 for the vari-
ational principle on S2. Applying the previous structural results, we will prove this
critical behavior and show under generic assumptions that the minimizing measure is
supported at a finite number of points. Moreover, we will give many minimizers in
closed form.

The numerical solution methods and results are similar as on S2, as we now describe.
We again consider the weighted counting measure (3.3). As the starting configuration
we choose in analogy of the Tammes distribution on S2 a uniform distribution of m
points on the circle,

Xm = {xk = ei(k−1)ϑm , k = 1, . . . ,m} , ϑm =
2π

m
, (5.1)

with uniform weights ρk = 1/m. Minimizing as in Section 3 with a simulated annealing
algorithm, we obtain the result shown in Figure 4. The numerical results indicate that
the minimizing measure is supported at a finite number of points m0. This number
can be stated explicitly by

m0 = min

{

n ∈ N : n ≥ 2π

ϑmax

}

, (5.2)

where ϑmax, as given by (2.7), denotes the opening angle of the lightcone. The number
m0 increases with τ , with discontinuous “jumps” at the values

τm :=

√

2

1− cos(ϑm)
. (5.3)

Besides the discrete nature of the minimizers, the numerical results reveal that at τ =
τc =

√
2 (corresponding to ϑmax = π

2 ), the structure of the minimizers changes com-
pletely. Just as in Section 3, this effect can be understood as a phase transition. More
precisely, if τ ≤ τc, every minimizer is generically timelike. If we further decrease τ
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(i.e.. for every fixed τ < τ3), we even found a large number of minimizing measures,
supported at different numbers of points with strikingly different positions. However,
if τ >

√
2, the minimizer is unique (up to rotations on S1), is supported at m0 points,

and is not generically timelike.
In the remainder of this section, we make this picture rigorous. First, the opera-

tor Dµ can be diagonalized explicitly by plane waves φn(x) = einϑx (where n ∈ Z,
and ϑx is the angle). This gives rise to the decomposition

D(x, y) = ν0 +

2
∑

n=1

νn

(

ein(ϑx−ϑy) + e−in(ϑx−ϑy)
)

,

where

ν0 =

∫∫

S1×S1

D(x, y) dµ(x) dµ(y) = 4τ2 − τ4 . (5.4)

and similarly ν1 = 2τ2 and ν2 = 1
2τ

4. In the case τ ≤ 2 all eigenvalues ν0, ν1 and ν2
are non-negative, and we can apply Proposition 4.11 to obtain

Smin ≥ ν0 .

For sufficiently small τ , the uniform distribution of points on the circle (5.1) gives a
family of generically timelike minimizers.

Lemma 5.1. If m ≥ 3 and τ is so small that L(x, y) = D(x, y) for all x, y ∈ Xm,
then ρ = 1

m

∑m
i=1 δxi

is a generically timelike minimizer. Every other minimizer is
also generically timelike.

Proof. A straightforward calculation using the identities

m−1
∑

k=0

eikϑm = 0 and

m−1
∑

k=0

(

eikϑm

)2
= 0

yields for any x ∈ S1,

d(x) =
1

m
2τ2

m−1
∑

k=0

(

2 + 2〈x, xk〉 − τ2 + τ2〈x, xk〉2
)

=
1

m
2τ2

(

2m−mτ2 +
m

2
τ2
)

= ν0 .

In particular, one sees that S[ρ] = ν0.
The assumption L(x, y) = D(x, y) for all x, y ∈ Xm can only be satisfied if τ < 2.

Thus in view of (5.4), the operator Dµ is positive semi-definite. We finally apply
Proposition 4.11. �

Applying this lemma in the case m = 4 gives the following result.

Corollary 5.2. If τ ≤ τc, every minimizer is generically timelike.

More general classes of generically timelike minimizers can be constructed explicitly
with the help of Corollary 4.12. In particular, one can find minimizing measures which
are not discrete. For the details we refer to the analogous measure on S2 given in
Example 6.2.
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Figure 5. A minimizer for τ = 4.

Having explored the case τ ≤ τc, we proceed with the case τ > τc. As already
stated, the closed lightcones are given by

J (x) =
{

y : 〈x, y〉 ≥ 1− 2

τ2
= cos(ϑmax)

}

∪ {−x} .

Therefore if τ >
√
2 = τc (or equivalently ϑmax <

π
2 ), the condition of antipodal points

(see Proposition 4.13) is satisfied. Thus there are no generically timelike minimizers.
As the condition (4.11) is obvious, we can apply Theorem 4.15 (A) and conclude that

if τ > τc, every minimizing measure is discrete . (5.5)

Using results and methods from Section 4.3, we we will be able to explicitly construct
all minimizers under the additional technical assumption that

τ > τd :=

√

3 +
√
10 .

We first introduce a descriptive notation:

Definition 5.3. A chain of length k is a sequence x1, . . . , xk ∈ S1 of pairwise distinct
points such that 〈xi, xi+1〉 = cos(ϑmax) for all i = 1, . . . , k − 1.

Theorem 5.4. If τ > τd, the support of every minimizer ρ is a chain {x1, . . . , xm0
}

(with m0 as given by (5.2)). The minimal action is

Smin =
L(0)(L(0) + L(γ))

(m0 − 2)(L(0) + L(γ)) + 2L(0) , (5.6)

where γ = arccos(〈x1, xm0
〉) ∈ (0, ϑmax]. The minimizing measure is unique up to

rotations on S1.

An example for the support of the minimizing measure is shown in Figure 5. Up to
rotations, the points of the chain can be written as

xk = ei(k−1)ϑmax , k = 1, . . . ,m0. (5.7)

In the special cases τ = τm, the minimizer is the measure with equal weights supported
on the uniform distribution Xm. In the general case, the weights will not all be the
same, as will be specified below.

For the proof of Theorem 5.4 we proceed in several steps.

Lemma 5.5. If τ >
√
6, the minimal action is attained for a measure supported on a

chain x1, . . . , xk. In the case k = m0, every minimizing measure is a chain.
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Proof. Let ρ be a minimizing measure. We first note that every chain K in the support
of ρ must have finite length, because otherwise ϑmax/π would have to be irrational.
As a consequence, K would be a dense set of S1, in contradiction to the discreteness
of ρ (see (5.5)). Let us assume that the support of ρ is not a chain.

We let K ⊂ suppρ be a chain, which is maximal in the sense that it cannot be
extended. Set L = suppρ \ K. We consider variations of ρ where we rotate K by a
small angle ϑ, leaving the weights on K as well as ρ|L unchanged. The fact that K
cannot be extended implies that that these variations are smooth in ϑ at ϑ = 0. The
minimality of ρ implies that

δS = 0 and δ2S =
∑

x∈K,y∈L
2 ρ(x) ρ(y) δ2L(x, y) ≥ 0 . (5.8)

On the other hand, differentiating (2.6), one finds that the function D restricted
to [0, ϑmax] is concave,

D′′(ϑ) = −4τ2(cos(ϑ) + τ2 cos(2ϑ)) < 0 (if τ >
√
6) . (5.9)

Comparing with (5.8), we conclude that L(x, y) vanishes for all x ∈ K and y ∈ L. In
the case that #K = m0, this implies that L = ∅, a contradiction. In the remaining
case #K < m0, we can subdivide the circle into two disjoint arcs AK and AL such
that K ⊂ AK and L ⊂ AL. The opening angle of AK can be chosen larger than ϑmax

times the length of K, giving an a-priori upper bound on the length of K.
By further rotating K, we can arrange that the chain K can be extended by a point

in L, without changing the action. If the extended chain equals the support of ρ, the
proof is finished. Otherwise, we repeat the above argument with K replaced by its
extension. In view of our a-priori bound on the length of K, this process ends after a
finite number of steps. �

Lemma 5.6. Suppose that ρ is a minimizing measure supported on a chain. If τ >
√

3 +
√
10, the length of this chain is at most m0.

Proof. For all γ ∈ (0, ϑmax) an elementary calculation shows that

L(γ)2 + L(ϑmax − γ)2 > L(0)2. (5.10)

In the case τ = τm0
there is nothing to prove. Thus we can assume that τ 6= τm0

.
For a chain x1, . . . , xk with k > m0, the Gram matrix corresponding to the points
x1, xm0+1, x2 has the form





L(0) L(ϑmax − γ) 0
L(ϑmax − γ) L(0) L(γ)

0 L(γ) L(0)



 . (5.11)

Using (5.10), its determinant is negative, in contradiction to Corollary 4.6. �

From the last two lemmas we conclude that every minimizer ρ is supported on one
chain of length at mostm0. Parametrizing the points as in (5.7), the only contributions
to the action come from L(xl, xl) and L(x1, xm0

). Using Lagrange multipliers, the
optimal weights ρi = ρ(xi) are calculated to be

ρ1 = ρm0
=

λ

L(0) + L(γ) and ρi =
λ

L(0) for i = 2, . . . ,m0 − 1 , (5.12)
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where we set

λ =
L(0) (L(0) + L(γ))

(m0 − 2)(L(0) + L(γ)) + 2L(0) .

The corresponding action is computed to be S[ρ] = λ, giving the formula in (5.6).
Using this explicit value of the action, we obtain the following

Lemma 5.7. Suppose that ρ is a minimizing measure supported on a chain. Then the
length of this chain is at least m0.

Proof. For a chain of length n < m0, the only contribution to the action come
from L(xl, xl), l = 1, . . . , n. The corresponding optimal weights are computed by ρi =
1/n. The resulting action is

S =

n
∑

i=1

1

n2
L(xi, xi) =

1

n
L(0) .

This is easily verified to be strictly larger than the value of the action in (5.6). �

This completes the proof of Theorem 5.4.

We finally remark that if τ lies in the interval (
√
2,
√

3 +
√
10) where Theorem 5.4

does not apply, the numerics show that the minimizing ρ is again the measure sup-
ported on the chain of lengthm0, with one exception: If τ is in the interval (1.61988, τ5)

with τ5 =
√

2 + 2√
5
, a chain of length m0 + 1 = 6 gives a lower action than the chain

of length 5. In this case, the Gram matrix (5.11) is indeed positive definite, so that
the argument in Lemma 5.7 fails.

6. The Variational Principles on the Sphere

We now come to the analysis of the variational principles on the sphere (see Exam-
ple (a) on page 4). Applying Theorem 4.15 (A) with the curve c chosen as the grand
circle joining x and y, we immediately obtain that every minimizing measure ρ on S2

is either generically timelike or
◦

supp ρ = ∅. The numerics in Section 3 indicated that
these two cases are separated by a “phase transition” at τ = τc =

√
2. We will now

prove that this phase transition really occurs. Moreover, we will develop methods for
estimating the minimal action from above and below. Many of these methods apply
just as well to the general setting introduced in Section 2 (see (2.1)–(2.5)).

6.1. Generically Timelike Minimizers. We first decompose D in spherical har-
monics. A short calculation yields in analogy to (4.7) the decomposition

D(x, y) = ν0 + 4π

2
∑

l=1

νl

l
∑

m=−l

Y m
l (x)Y m

l (y) ,

where the eigenvalues are given by

ν0 = 4 τ2 − 4

3
τ4 , ν1 =

4

3
τ2 , ν2 =

4

15
τ4 . (6.1)

In particular, the operator Dµ is positive semi-definite if τ ≤
√
3.

If τ ≤ τc, there is a large family of minimizers, as we now discuss. The simplest
example is the octahedron: Denoting the unit vectors in R

3 by e1, e2, e3, we consider
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the measure ρ supported at ±ei with equal weights 1
6 . Obviously, the condition (i) in

Definition 4.7 is satisfied. Moreover, for any x ∈ S2 one calculates

d(x) =
1

6

∑

y∈supp ρ

2τ2
(

2 + 2〈x, y〉 − τ2 + τ2〈x, y〉2
)

=

=
1

3
τ2
(

12− 6τ2 + 2τ2(x21 + x22 + x23)
)

= ν0 .

Thus Proposition 4.11 yields that ρ is a generically timelike minimizer. Moreover,
from Proposition 4.11 we conclude that every minimizer is generically timelike. If con-
versely τ > τc, the condition of antipodal points is fulfilled, and thus Proposition 4.13
shows that no generically timelike minimizers exist. We have thus proved the following
result.

Corollary 6.1. If τ ≤ τc, every minimizing measure ρ on S2 is generically timelike,
and the minimal action is equal to ν0 as given by (6.1). If conversely τ > τc, every

minimizing measure ρ is not generically timelike and
◦

supp ρ = ∅.

Using Corollary 4.12, one can also construct minimizers which are not discrete, as
is illustrated by the following example.

Example 6.2. We introduce the function f ∈ L2(S2) by

f(ϑ,ϕ) =



















5
3 if ϑ ∈ [0, arccos(0.8)],
35
9 if ϑ ∈ [arccos(0.4), arccos(0.2)]
40
9 if ϑ ∈ [arccos(−0.5), arccos(−0.7)],

0 otherwise.

Then if τ < 1.00157, a straightforward calculation shows that f has the properties (a)
and (b) of Corollary 4.12. Thus the measure dρ = fdµ is a minimizing generically

timelike measure with
◦

supp ρ 6= ∅. ♦

6.2. Estimates of the Action. As not even the solution of the Tammes problem is
explicitly known, we cannot expect to find explicit minimizers for general τ . Therefore,
we need good estimates of the action from above and below. We now explain different
methods for getting estimates, which are all compiled in Figure 6.

Estimates from above can be obtained simply by computing the action for suitable
test measures. For example, the action of the normalized volume measure is

S[µ] = 1

4π

∫ 2π

0
dϕ

∫ ϑmax

0
dϑ sinϑ D(ϑ) = 4− 4

3τ2
≥ Smin .

As one sees in Figure 6, this estimate is good if τ is close to one. Another example is
to take the measure supported at the Tammes distribution for K points, with equal
weights. We denote the corresponding action by SK

T . We then obtain the estimate

Smin ≤ ST := min
K

SK
T .

One method is to compute ST numerically using the tables in [14]. This gives quite
good results (see Figure 6), with the obvious disadvantage that the estimate is not
given in closed form. Moreover, the Tammes distribution is useful for analyzing the
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Figure 6. Estimates of the action on S2: Upper bounds obtained from
the volume measure S[µ] and from the Tammes distribution ST , lower
bounds by ν0 and by the heat kernel estimate SK .

asymptotics for large τ . To this end, for every Tammes-distribution XK we intro-
duce τK as the minimal value of τ for which all distinct points in XK are spacelike
separated. In analogy to (5.3), the value of τK is given by

τK =

√

2

1− cos(ϑK)
,

where ϑK now denotes the minimal angle between the points of the Tammes distribu-
tion,

ϑK = max
x1,...,xK∈S2

min
i 6=j

arccos(〈xi, xj〉) .

Using an estimate by W. Habicht and B.L. van der Waerden for the solution ϑK
(see [13, page 6]), we obtain

4

((

8π√
3K

)1/2

− C

K2/3

)−2

≥ τ2K ≥ 4

√
3K

8π
(6.2)

for some constant C > 0. For given τ > 1 we choose K ∈ N such that τK−1 ≤ τ < τK .
Then

Smin ≤ SK−1
T =

8τ2

K − 1
<

8τ2K
K − 1

≤ 32
K

K − 1

((

8π√
3

)1/2

− C

K1/6

)−2

.

In the limit τ → ∞, we know that K → ∞, and thus

lim sup
τ→∞

Smin ≥ 4
√
3

π
.

Constructing a lower bound is more difficult. From (6.1) it is obvious that the
operator Dµ is positive semi-definite if τ ≤

√
3. Thus we can apply Proposition 4.11
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to obtain

Smin ≥ ν0 if τ ≤
√
3 .

If τ ≤
√
2, this lower bound is even equal to Smin according to Corollary 6.1. As shown

in Figure 6, the estimate is no longer optimal if τ >
√
2.

Another method to obtain lower bounds is based on the following observation:

Proposition 6.3. Assume that Kµ is an integral operator on Hµ with integral ker-
nel K ∈ C0(S2 × S2,R) with the following properties:

(a) K(x, y) ≤ L(x, y) for all x, y ∈ S2.

(b) The operator Kµ is positive semi-definite.

Then the minimal action satisfies the estimate

Smin ≥
∫∫

S2×S2

K(x, y) dµ(x) dµ(y) . (6.3)

Proof. For any ρ ∈ M, assumption (a) gives rise to the estimate

S[ρ] =
∫∫

S2×S2

L(x, y)dρ(x)dρ(y) ≥
∫∫

S2×S2

K(x, y)dρ(x)dρ(y) .

Next, using property (b), we can apply Proposition 4.3 to conclude that the volume
measure µ is a minimizer of the variational principle corresponding to K, i.e.

∫∫

S2×S2

K(x, y) dρ(x) dρ(y) ≥
∫∫

S2×S2

K(x, y) dµ(x) dµ(y) .

Combining these inequalities gives the result. �

In order to construct a suitable kernel, we first consider the heat kernel ht on S
2,

ht(x, y) =
(

et∆S2
)

(x, y) = 4π
∞
∑

l=0

e−t l(l+1)
l
∑

m=−l

Y m
l (x)Y m

l (y) .

The heat kernel has the advantage that condition (b) is satisfied, but condition (a) is
violated. This leads us to choosing K as the difference of two heat kernels,

K(x, y) = λ
(

ht1(x, y)− δht2(x, y)
)

. (6.4)

For given t1 < t2, we choose δ and λ such that K(x, x) = 1 and K(ϑmax) = 0, i.e.

δ =
ht1(ϑmax)

ht2(ϑmax)
< 1 and λ =

L(0)
ht1(0)− δ ht2(0)

> 0 .

By direct inspection one verifies that condition (a) is satisfied (see Figure 7 for a typical
example). The eigenvalues of the operator Kµ are computed to be

λ (e−t1 l(l+1) − δ e−t2 l(l+1)) ,

showing that the operator Kµ is indeed positive semi-definite. Thus we can apply
Proposition 6.3. Using that

∫∫

S2×S2

ht(x, y) dµ(x) dµ(y) =

∫∫

S2×S2

4π Y 0
0 (x)Y

0
0 (y) dµ(x) dµ(y) = 1 ,

we obtain the heat kernel estimate

Smin ≥ SK = λ (1 − δ) .
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Figure 7. The Lagrangian L and the function K in the heat kernel
estimate for τ = 2.

In this estimate, we are still free to choose the parameters t1 and t2. By adjusting
these parameters, one gets the lower bound shown in Figure 6. Thus the heat kernel
estimate differs from the minimal action only by an error of about 20%, and describes
the qualitative dependence on τ quite well. But of course, it does not take into account
the discreteness of the minimizers.

7. The Variational Principles on the Flag Manifold F1,2(Cf )

We finally make a few comments on the variational principles on the flag mani-
fold F1,2(Cf ) (see Example (c) on page 5). We first apply our main Theorems 4.15
and 4.17 to obtain the following general result.

Theorem 7.1. Every minimizer ρ on F1,2 is either generically timelike or
◦

supp ρ = ∅.

Proof. As a homogeneous space, the flag manifold F1,2(Cf ) has a real analytic structure
(see [11, Chapter II, §4]). Then the function D is obviously real analytic. Moreover,
it is symmetric and constant on the diagonal. In order to apply Theorem 4.15, for
given y ∈ K(x) we must find a curve c joining x and y which satisfies (4.11). Al-
ternatively, in order to apply Theorem 4.17, our task is to construct a curve c(t)
with c(0) = x and c(1) = y which is analytic in a neighborhood of t = 0, such that the
function D(c(t), y) changes sign at t = 0. Since in the case τ = 1, the sets K(x) are all
empty, we may assume that τ > 1.

We denote the range of x by I ⊂ C
f and the orthogonal projection to I by πI .

Choosing an orthonormal basis (e1, e2) of I, the matrix x|I can be represented with
Pauli matrices by

x|I = 11 + τ ~u~σ with ~u ∈ S2 .

Similarly, the operator ỹ := πIyπI has the representation

ỹ|I = ρ11 + κ~v~σ with ~v ∈ S2 ,

where the real parameters ρ and κ satisfy the inequalities

1− τ ≤ ρ− κ ≤ 0 ≤ ρ+ κ ≤ 1 + τ .

Using (2.8), the function D is computed by

D(x, y) = 2
(

(ρτ + κ cos ϑ)2 − κ2 (τ2 − 1) sin2 ϑ
)

,
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where ϑ denotes the angle between ~u and ~v. The operator ỹ has rank two if and
only if κ > |ρ|. A short calculation shows that in this case, D only has transverse
zeros. Thus we can choose a direction ċ(0) where the condition (4.11) is satisfied.
Choosing a smooth curve starting in this direction which joins x and y, we can apply
Theorem 4.15 (A) to conclude the proof in this case.

It remains to consider the situation when ỹ has rank at most one. This leads us
to several cases. We begin with the case when y|I vanishes. In this case, we may
restrict attention to the four-dimensional subspace U = Imx⊕ Im y. In a suitable ba-
sis (e1, . . . , e4) of this subspace, the operators x and y have the matrix representations

x =

(

1 0
0 0

)

⊗ (11 + τ ~u~σ) , y =

(

0 0
0 1

)

⊗ (11 + τ ~v~σ) ,

where again ~u,~v ∈ S2. A unitary transformation of the basis vectors e1 and e2 describes
a rotation of the vector ~u in R

3. By a suitable transformation of this type, we can
arrange that the angle between ~u and ~v equals ϑmax (see (2.7)). We now define the
curve c : [0, π] → F1,2 by

c(t) =

(

cos(t)2 sin(t) cos(t)
sin(t) cos(t) sin(t)2

)

⊗ (11 + τ ~w(t)~σ), (7.1)

where ~w : [0, π] → S2 is the geodesic on S2 with ~w(0) = ~u and ~w(π) = ~v. The curve c
is a real analytic function with c(0) = x and c(π) = y, which is obviously translation
symmetric. Furthermore, one computes

D(c(t), y) = sin(t)4 DS2(~w(t), ~v),

where DS2 is the corresponding function on the unit sphere (2.6). As DS2(ϑ) changes
sign at ϑmax, the function D(c(t), y) changes sign at t = 0. Thus Theorem 4.17 (A)
applies, completing the proof in the case y|I = 0.

We next consider the case that ỹ has rank one. We choose the basis (e1, e2) of I
such that ỹ is diagonal,

ỹ =

(

a 0
0 0

)

with a 6= 0.

An elementary consideration shows that we can extend the basis of I to an orthonormal
system (e1, e2, e3) such that on the subspace J := 〈{e1, e2, e3}〉, the operator ŷ :=
πJyπJ has the form

ŷ|〈{e1,e2,e3}〉 =





a 0 b
0 0 0
b 0 c



 with a 6= 0 and ac 6= |b|2 . (7.2)

We let U be the unitary transformation

U(t)|J =





1 0 0
0 cos t sin t
0 − sin t cos t



 and U(t)|J⊥ = 11 . (7.3)

Setting y(t) = U(t) y U(t)−1, the matrix ỹ becomes

ỹ(t) =

(

1 0
0 sin t

)

(ρ 11 + κ~v~σ)

(

1 0
0 sin t

)

,

where ρ and κ are new parameters with

κ > |ρ| and ρ+ κ v3 = a 6= 0 (7.4)
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and ~v ∈ S2 is again a unit vector. The function D is now computed by

D(x, y(t)) =
1

2
Tr
(

x|I ỹ(t)
)2 − 2 det

(

x|I ỹ(t)
)

=
1

2

(

Tr
(

x|I ỹ(t)
)2 − 4 (τ2 − 1) (κ2 − ρ2) sin2 t

)

. (7.5)

In order to simplify the trace, we transform the phase of e3. This changes the phase
of b in (7.2), thus describing a rotation of the vector ~v in the (1, 2)-plane. This makes
it possible to arrange that the vectors (u1, u2) and (v1, v2) are orthogonal in R

2. We
thus obtain

Tr
(

x|I ỹ(t)
)

= (1 + τu3)(ρ+ κv3) + (1− τu3)(ρ− κv3) sin2 t .

We now have two subcases:

(1) v3 6= ±1: We vary the vectors ~u and ~v as functions of t such that the above
orthogonality relations remain valid and

u3 = cos(ϑ + αt) , v3 = cos(ϕ+ βt)

with free “velocities” α and β. Since L(x, y) = 0 at t = 0, we know that

cos ϑ = −1

τ
, sinϑ =

√
τ2 − 1

τ
6= 0 . (7.6)

A Taylor expansion yields

Tr
(

x|I ỹ(t)
)

= −t ατ (ρ+ κv3) sinϑ (7.7)

+
t2

2

(

(4 + α2) ρ+ (−4 + α2)κ cosϕ+ 2αβκτ sinϑ sinϕ
)

+O(t3) . (7.8)

As the factor (ρ+ κv3) is non-zero in view of (7.4), the linear term (7.7) does
not vanish whenever α 6= 0. By suitably adjusting α, we can arrange that the
square of this linear term compensates the last term in (7.5) (which is also
non-zero in view of our assumption κ > ρ). Next, we know from (7.6) and
our assumptions that the term ∼ αβ in (7.8) is non-zero. Thus by a suitable
choice of β, we can give the quadratic term (7.8) any value we want. Taking
the square, in (7.5) we get a contribution ∼ t3. Thus the function D changes
sign. Transforming to a suitable basis where y is a fixed matrix, we obtain a
curve x(t) which is locally translation symmetric. Extending this curve to a
smooth curve c which joins the point y, we can apply Theorem 4.17 (A).

(2) v3 = ±1: We know that the matrix ỹ is diagonal,

ỹ(t) =

(

ρ± κ 0
0 (ρ∓ κ) sin2 t

)

. (7.9)

Now we keep v fixed, while we choose the curve u(t) to be a great circle which
is inclined to the (1, 3)-plane by an angle γ 6= 0, i.e.

u3 = cos(ϑ + αt) cos γ .

Repeating the above calculation leading to (7.7) and (7.8), one sees that we
again get a non-zero contribution to D of the order ∼ t3. Thus D again changes
sign, making it possible to apply Theorem 4.17 (A).
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It remains to consider the case when ỹ vanishes but y|I 6= 0. A short consider-
ation shows that y|I cannot have rank two. Thus we can choose the orthonormal
basis (e1, e2) of I such that ye1 6= 0 and ye2 = 0. By suitably extending this or-
thonormal system by e3 and e4, we can arrange that the operator y is invariant on the
subspace 〈{e1, e2, e3, e4}〉 and has the matrix representation

y|〈{e1,e2,e3,e4}〉 =









0 0 a 0
0 0 0 0
a 0 c b
0 0 b 0









.

If b 6= 0, we can again work with the curve (7.1). If on the other hand b = 0, the
operator y is invariant on 〈{e1, e2, e3}〉 and has the canonical form

y|〈{e1,e2,e3}〉 =





0 0
√
τ2 − 1

0 0 0√
τ2 − 1 0 2



 .

Transforming y by the unitary matrix

V (τ)

(

e1
e3

)

=

(

cos τ sin τ
− sin τ cos τ

)(

e1
e3

)

,

we can arrange that y is again of the form (7.2), but now with coefficients depending
on τ . Setting t = τ2, we can again use the construction after (7.2). This completes
the proof. �

For sufficiently large τ , we can rule out one of the cases in Theorem 7.1, showing
that the minimizing measures do have a singular support.

Theorem 7.2. There are no generically timelike minimizers if

τ2 >
3f + 2

√

3 (f2 − 1)

(2 + f)
.

The method of proof is to apply Proposition 4.13 (I). In the next two lemmas we verify
the necessary assumptions and compute ν0.

Lemma 7.3. The operator Dµ has rank at most 3f4.

Proof. We extend the method used in the proof of [8, Lemma 1.10]. A point x ∈ F is
a Hermitian f × f -matrix of rank two, with non-trivial eigenvalues 1 + τ and 1 − τ .
Thus, we can represent x in in bra/ket notation as

x = |u(x)〉〈u(x)| − |v(x)〉〈v(x)| ,
where u(x) and v(x) are the eigenvectors of x, normalized such that

〈u(x)|u(x)〉 = τ + 1 and 〈v(x)|v(x)〉 = τ − 1 .

A short calculation shows that the non-trivial eigenvalues of the matrix product xy
coincide with the eigenvalues of the 2× 2-matrix product

Axy :=

(

〈u(x)|u(y)〉 −〈u(x)|v(y)〉
〈v(x)|u(y)〉 −〈v(x)|v(y)〉

)(

〈u(y)|u(x)〉 −〈u(y)|v(x)〉
〈v(y)|u(x)〉 −〈v(y)|v(x)〉

)

.

Using (2.8), we can thus write the function D as

D(x, y) = Tr

[

(

Axy −
1

2
Tr(Axy)

)2
]

.



32 F. FINSTER AND D. SCHIEFENEDER

This makes it possible to recover D(x, y) as the “expectation value”

D(x, y) =

〈





u⊗ u∗ ⊗ u⊗ u∗

u⊗ u∗ ⊗ v ⊗ v∗

v ⊗ v∗ ⊗ v ⊗ v∗





∣

∣

∣

∣

x

, B





u⊗ u∗ ⊗ u⊗ u∗

u⊗ u∗ ⊗ v ⊗ v∗

v ⊗ v∗ ⊗ v ⊗ v∗





∣

∣

∣

∣

y

〉

C3f4

of a suitable matrix B, whose 3× 3 block entries are of the form

Bij = bij + δi,2δj,2 (c1ρ1 + c2ρ2 + c3ρ3) with bij , ci ∈ C,

and the operators ρi permute the factors of the tensor product,

ρ1(u⊗ u∗ ⊗ v ⊗ v∗) = v ⊗ v∗ ⊗ u⊗ u∗

ρ2(u⊗ u∗ ⊗ v ⊗ v∗) = u⊗ v∗ ⊗ v ⊗ u∗

ρ3(u⊗ u∗ ⊗ v ⊗ v∗) = v ⊗ u∗ ⊗ u⊗ v∗ .

Hence introducing the operator

K : L2(F, dµL) → C
3f4

: ψ 7→
∫

F





u⊗ u∗ ⊗ u⊗ u∗

u⊗ u∗ ⊗ v ⊗ v∗

v ⊗ v∗ ⊗ v ⊗ v∗





∣

∣

∣

∣

x

ψ(x) dµL(x) ,

we find that Dµ = K∗BK. This gives the claim. �

In view of this lemma, we may decompose D in the form (4.7).

Lemma 7.4. The eigenvalue ν0 in the decomposition (4.7) is given by

ν0 =
2(3f + 6fτ2 − (2 + f)τ4 − 6)

f(f2 − 1)
. (7.10)

Proof. Now it is now most convenient to represent the elements in F as

(1 + τ) |u〉〈u| + (1− τ) |v〉〈v| , (7.11)

where the vectors u, v ∈ C
f are orthonormal. Then the normalized volume measure µ

on F can be written as

dµ =
1

vol(F)
δ
(

Re 〈u, v〉
)

δ
(

Im 〈u, v〉
)

δ
(

‖u‖2 − 1
)

δ
(

‖v‖2 − 1
)

du dv,

where du and dv denotes the Lebesgue measure on C
f . The total volume is computed

to be

vol(F) =

∫∫

Cf×Cf

δ(Re 〈u, v〉)δ(Im 〈u, v〉)δ(‖u‖2 − 1)δ(‖v‖2 − 1)du dv =

=
1

4
vol(S2f−1)vol(S2f−3) .

To simplify the calculations, we fix x and choose an eigenvector basis of x. Then x =
diag((1+ τ), (1− τ), 0, . . . , 0), whereas y is again represented in the form (7.11). Then
the eigenvalues of the product xy only depend on the components u1, u2, v1, v2. More
precisely, using (2.8), we obtain

D(x, y) =
1

2

[

(1 + τ)2|u1|2 + (1− τ2)(|v1|2 − |u2|2)− (1− τ)2|v2|2
]2

+ 2(1− τ2)
∣

∣(1 + τ)u1u2 + (1− τ)v1v2
∣

∣

2
=: f(u, v).



ON THE SUPPORT OF MINIMIZERS OF CAUSAL VARIATIONAL PRINCIPLES 33

Our task is to compute the integral ν0 =
∫

F
f(u, v) dµ. In the case f ≥ 4, one uses the

symmetries to reduce to a lower-dimensional integral,

ν0 = c

∫ ∞

0
du1

∫ ∞

0
du2

∫ ∞

0
du3

∫ ∞

0
dv1

∫

C

dv2

∫

C

dv3

∫ ∞

0
dv4

× δ
(

‖u‖2 − 1
)

δ
(

‖v‖2 − 1
)

δ (Re (〈u, v〉)) δ (Im (〈u, v〉)))f(u, v) u1u2u2f−5
3 v1v

2f−7
4 ,

where c is the constant

c =
1

vol(F)
vol(S2f−5) vol(S2f−7) (2π)3 .

Now carrying out all integrals gives the claim. The proof in the case f = 3 is similar.
�

The remaining question is whether generically timelike minimizers exist for small τ .
In the special case τ = 1, the operator Dµ = Lµ is positive semi-definite (see [8,
Lemma 1.10]), so that Proposition 4.3 or similarly Proposition 4.11 yields that the
standard volume measure is a generically timelike minimizer. However, if τ > 1,
these propositions can no longer be used, because the operator Dµ fails to be positive
semi-definite:

Lemma 7.5. If f ≥ 3 and τ > 1, the operator Dµ has negative eigenvalues.

Proof. Since suppµ = F, it suffices to find two points x1, x2 ∈ F such that the corre-
sponding Gram matrix D(xi, xj) is not positive semi-definite. For given ε ∈ (0, 1) we
choose the four vectors

u1 = e1 , v1 = e2 and u2 = e1 , v2 =
√
ε e2 +

√
1− ε e3

(where ei are the standard basis vectors of Cf ). Taking the representation (7.11), we
obtain two points x1, x2 ∈ F. The corresponding Gram matrix is computed to be

(

8τ2 1
2

(

−ε(τ − 1)2 + (τ + 1)2
)2

1
2

(

−ε(τ − 1)2 + (τ + 1)2
)2

8τ2

)

.

The determinant of this matrix is negative for small ε > 0. �

In this situation, Proposition 4.14 still gives some information on the possible support
of generically timelike minimizers. However, it remains an open problem whether and
under which conditions generically timelike minimizers exist.
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