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Abstract

The insurgence of compression induces wrinkling in actuation devices based
on EAPs thin films leading to a sudden decrease of performances up to fail-
ure. Based on the classical tension field theory for thin elastic membranes
(e.g. [11]), we provide a general framework for the analysis of the insurgence
of in-plane compression in membranes of electroactive polymers (EAPs).
Our main result is the deduction of a (voltage-dependent) domain in the
stretch space which represents tensile configurations. Under the assumption
of Mooney-Rivlin materials, we obtain that for growing values of the applied
voltage the domain contracts, vanishing at a critical voltage above which the
polymer is wrinkled for any stretch configuration. Our approach can be easily
implemented in numerical simulations for more complex material behaviors
and provides a tool for the analysis of compression instability as a function
of the elastic moduli.

Keywords: actuators, electroactive polymers (EAP), compression
instability, non-linear elasticity.

The growing interest in electroactive polymers as actuator devices, ranging
from medical, biological, robotic, and energy harvesters, results from their
qualities such as lightweight, small size, low-cost, flexibility, fast response
[8, 7, 3]. A typical device consists of a thin sheet of electroactive polymer
sandwiched between two compliant electrodes. The simple mechanism of
actuation releases on an electromechanical coupling of the Coulomb forces
acting between the electrodes and the elastic forces inside the layer. The
electrostatic forces acting on the sheet faces induce a transversal extension
that is used as a mean of actuation.

In this paper we are mainly concerned with compression induced insta-
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bility phenomena of thin polymeric electroactive films. The technological
interest on these phenomena is due to the observation that, aside of purely
electric breakage, typical failure mechanisms of EAPs technological applica-
tions are induced by sudden loss of equilibrium. This instability is due to the
thinness of the layer and the consequent inability of sustaining compressive
stress. As a result, the importance of prestraining in improving the actua-
tion properties has been evidenced in several papers, (e.g. [6, 8, 12, 10, 14]),
where the authors describe, as predicted by our theory, the existence of opti-
mal prestretch values. A theoretical analysis of the insurgence of deformation
localization in a variational framework was recently proposed in [4] and [18],
and in [13] where the role of damage and dissipation were also analyzed.

Here, we obtain explicit analytical results for Mooney-Rivlin incompress-
ible materials, evaluating the insurgence of compressive instability for a
generic membrane . While analytical and numerical results about this phe-
nomenon were already obtained in other articles (see [4], [12] and references
therein) under restrictive assumptions on the homogeneity of deformation
and on the device geometry, a general analytical approach to this topic is
still not available up to the knowledge of the authors.

Our results take inspiration on the tension field theory for elastic mem-
branes ([11], [15], [16]). The main ingredient of the theory is the existence
of a natural width, assigning a threshold of one of the in-plane stretches as a
function of the other one. This threshold separates compressed and tensile
states. Accordingly, in the quoted papers it is shown the possibility of de-
composing the stretch space into a domain characterized by positive principal
stresses (tensile configurations), a region where one stress is positive and the
other is negative (wrinkled configurations), and the remaining region where
both stresses are negative.

Here we extend these results to the analysis of electroactivated mem-
branes. As we show, for sufficiently high values of the assigned voltage, the
tensile region reduces to an “island”, that we can analytically describe and
that shrinks as the voltage is increased. We then deduce the existence of a
loading threshold (critical voltage), such that for larger value of the electric
load no tensile configuration is possible. The amplitude of the safe stretch re-
gion and the critical threshold strongly depend on the constitutive properties
of the material: “stiffer” materials are safer.

We point out that our approach can be extended to general constitutive
hypotheses. Moreover, our paper does not assume homogeneous deforma-
tions and delivers a framework to describe general boundary value problems
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for thin films of electroactivated materials. We believe that the proposed
approach will be useful not only to clearly understand the insurgence of
wrinkled configurations and the possible disappearance of stable equilibrium
states, but also because it delivers an instrument to study the behavior re-
garding the compression instability as a function of material moduli. This
aspect is fundamental in the field of the design of new electroactive materials,
a very active area of scientific and technological research.

To show the ability of the model of putting the subject in the right per-
spective and clearly describe the physical ingredients of the phenomenon, at
the end of the paper we deliver two specific applications to simple boundary
value problems amenable of fully analytical results.

1. Preliminary notions

We here collect the main equations for a continuum body under electrome-
chanical loading. We refer the reader to [2] and to the references therein for
details.

Let f be the deformation carrying the continuum body B (reference con-
figuration) to the current configuration B′ = f (B). We denote by F = ∇f

the deformation gradient, by B = FFT the left Cauchy-Green tensor, and by
e i and λ2

i the eigenvectors and eigenvalues of B, where the λi are the prin-
cipal stretches. D and E are the electric displacement and the electric field
in the current configuration B′, respectively. For a linear, homogeneous and
isotropic dielectric materialsD = εE where ε = εoεd with ε0 the permittivity
of free space and εd the dielectric constant of the material.

The (current) Cauchy stress tensor T in the case of electromechanical
body can be decomposed as the sum of the elastic stress tensor Tel and of
the electric Maxwell stress tensor TM:

T = Tel +TM.

We consider an incompressible, isotropic, elastic materials, for which
detF = λ1λ2λ3 = 1 and the elastic stress can be represented as a function of
B (e.g. [17] Eq.(49.5)) as follows:

Tel = −πI + β1(λ1, λ2)B+ β2(λ1, λ2)B
−1

T el
ij = −πδij + β1(λ1, λ2)Bij + β2(λ1, λ2)B

−1

ij ,
(1)

where β1 and β2 are the response functions and π is an undetermined La-
grange multiplier which represents the reactive stress arising by the incom-
pressibility constraint.
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The electric part of the stress (Maxwell stress) can be expressed by (see
again [2])

TM = ε(E ⊗E − 1

2
(E ·E )I),

TM

ij = ε(EiEj −
E2

2
δij),

(2)

where E = |E |. With these positions and without loss of generality, the
total current stress in an incompressible, isotropic elastic and dielectrically
homogeneous body can be expressed as

T = −p I+ β1(λ1, λ2)B+ β2(λ1, λ2)B
−1 + εE ⊗E

Tij = −p δij + β1(λ1, λ2)Bij + β2(λ1, λ2)B
−1

ij + εEiEj ,
(3)

having set p = π +
ε

2
E2. Thus, the principal stresses have the values

ti = Tii = −p + β1(λ1, λ2)λ
2

i + β2(λ1, λ2)λ
−2

i + εE2

i . (4)

2. Tensile stretches region

Consider a thin elastic sheet which is made of isotropic, incompressible
material, whose upper and lower faces are bonded to compliant electrodes.
The reference configuration is a stress free state with zero applied voltage; we
here assume that this configuration coincides with a right cylindrical region
with flat mid-surface Ω and constant thickness h. Under the assumption
that h is small as compared with Ω ‘diameter’, we embrace the membrane

approximation which asserts that the bending stiffness is zero and that any
in-plane compressive stress immediately leads to the membrane buckling,
with the appearance of wrinkled regions.

According with most common application schemes of EAPs we assume
that Ω remains flat after deformation. We also assume that orthogonal fibers
to the plane of Ω remain orthogonal to this plane also after deformation. We
consider thickness variations that, by the incompressibility hypothesis, are
accomplished by compatible variations of the in-plane stretches, so that

λ3 =
1

λ1λ2

(5)

where e3 is the unit vector orthogonal to Ω.
The application of a voltage on the electrodes determines the insurgence

of an electric field E which should be rigorously calculated by solving the
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corresponding electromechanical equilibrium problem (see e.g. [2]). On the
other hand, since each electrode is an equipotential surface, coherently with
the assumption of preservation of the direction of normal fibers and of mem-
brane thinness, we assume that the electric field remains perpendicular to Ω.
Of course this hypothesis fails at the boundary of the membrane and in cor-
respondence with possible deformation localization, but typically, with the
hypothesis of small thickness, this approximation can be energetically justi-
fied (e.g. [9]). Under the described assumptions, if a voltage V is applied to
the electrodes, then the electric field at any point of the current configuration
amounts to

E =
V

hλ3

e3. (6)

While the approach that we consider in the following is general, to fix the
ideas, we here consider a diffuse constitutive assumption for polymeric ma-
terials, i.e. the Mooney-Rivlin constitutive model, characterized by constant
response functions:

β1 = 2c1, β2 = −2c2, (7)

with c1 ≥ 0 and c2 ≥ 0. It is easy to check that for this material class the
shear modulus is given by µ = 2(c1 + c2), which means that stiffer materials
are endowed of higher values of the constants c1 and c2.

Under these hypotheses (4) gives

t1 = −p + 2c1λ
2

1
− 2c2λ

−2

1

t2 = −p + 2c1λ
2

2
− 2c2λ

−2

2

t3 = −p + 2c1λ
−2

1
λ−2

2
+ 2(kV − c2)λ

2

1
λ2

2
.

(8)

Here, as proposed in [4], we introduce

kV =
εV 2

2h2
(9)

measuring the electric energy density and representing our activation param-
eter.

The undetermined multiplier p can be deduced by imposing the boundary
condition t3 = 0 on the upper and lower faces:

p = 2c1λ
−2

1
λ−2

2
+ 2(kV − c2)λ

2

1
λ2

2
. (10)
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After substitution in Eq.s (8), the in-plane principal stresses are given by

t1 = 2[c1(λ
2

1
− λ−2

1
λ−2

2
)− c2(λ

−2

1
− λ2

1
λ2

2
)− kVλ

2

1
λ2

2
]

t2 = 2[c1(λ
2

2
− λ−2

1
λ−2

2
)− c2(λ

−2

2
− λ2

1
λ2

2
)− kVλ

2

1
λ2

2
].

(11)

Figure 1: Scheme of the natural strain and membrane wrinkling.

We are now in position to introduce the central idea of natural width
in simple tension, first formulated by Pipkin in his seminal work [11] and
later developed within the context of Tension Field Theory of thin elastic
membranes (e.g., among many others, [15], [16]).

Consider a state of local uniaxial stress in direction (say) e1; under the
assumption t2 = t3 = 0, the transverse stretch in direction e2 ⊥ e1 as-
sumes a specific value called natural width in tension, which is constitutively
dependent on the stretch λ1 in direction e1

λ2 = ν(λ1, kv). (12)

Since for λ2 = ν(λ1, kv) it is t2 = 0, any attempt to reduce the transverse
stretch under this value requires a the application of a compressive stress,
leading to the formation of wrinkles (see Fig.1). This hypothesis of the
tension field theory (see [16]) on the material behavior can be easily shown
to hold in the case here considered of Mooney-Rivlin materials.

While in the classical tension field theory, without electric field, it results
λ2 = ν(λ1) = λ

−1/2
1

, in the present case the natural width depends on the
applied voltage and in view of Eq. (11)2 takes the form

λ2 = ν(λ1, kv) = λ
−1/2
1

[

c1 + c2λ
2

1

c1 + c2λ
2

1
− kVλ

2

1

]1/4

. (13)
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Analogous considerations hold for uniaxial tension in direction e2, so that
the condition t1 = 0 gives the natural width in the transverse direction e1

λ1 = ν(λ2, kv) = λ
−1/2
2

[

c1 + c2λ
2

2

c1 + c2λ
2

2
− kVλ

2

2

]1/4

. (14)

As a consequence we have that: for any given voltage V , the membrane

is in traction when λ1 > ν(λ2, kv) and λ2 > ν(λ1, kv). In all other cases, the

membrane undergoes a compression-induced instability.

In other words we deduce the existence of a voltage-dependent region in
the principal stretches space (see Fig.2)

D(kv) = {(λ1, λ2) : λ1 > ν(λ2, kv), λ2 > ν(λ1, kv)} (15)

that collects the possible values of (λ1, λ2) corresponding to tensile states.
Wrinkling arises for combinations of the principal stretches which do not
belong to D . The two boundaries of D represent the states with t1 = 0
or t2 = 0, whereas the two vertexes represent the equibiaxial configurations
with t1 = t2 = 0.

D

Figure 2: Region D of tensile states.

Observe that the two curves of the boundary are symmetric with respect
to the line λ1 = λ2. Thus in the following we restrict our attention to the
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curve t2 = 0 for λ1 > λ2. When the applied voltage is zero, then ν(λ1, 0) =

λ
−1/2
1

. In this case, the domain D is unbounded. The application of a voltage
modifies the domain D as follows (see Fig.3). Since c1 ≥ 0 and c2 ≥ 0,
a straightforward analysis shows that for kV < c2 the domain D remains
unbounded, whereas the boundary edges are shifted away from the origin.
As soon as the voltage overcomes the threshold kV = c2, the function ν has

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

λ1

kv = 0

kv = 1

kv = 1.1

λcrit

λ2

kv = 1.2

kvcrit = 1.32

Figure 3: Dependence of the tensile region D on the activation parameter kv. Here for
c1 = 1 and c2 = 1. The critical values kcrit

v
and λ

crit are the activtion thresholds leading
to the disappearance of tensile states.

a vertical asymptote in correspondence to the stretch

λ1 = λ∗ =

√

c1
kV − c2

. (16)

A simple analysis now reveals that for lower values of the voltage parameter
kV the two symmetric boundary curves of the domain D intersect at the upper

8



and lower vertexes corresponding to stretches λ1 = λ2 > 1 and λ1 = λ2 < λ∗,
respectively.

As we show in Fig.3, by increasing the activation parameter kV the two
vertexes approach each other until they coalesce and no configuration is ten-
sile. We thus deduce the existence of a critical threshold kV = kcrit

V
, such

that for kV > kcrit
V

there is no stable equilibrium configuration. We call λcrit

the corresponding stretch threshold (see again Fig.3).
We point out that a similar approach can be extended to the more general

case of non constant response functions β1 = β1(λ1, λ2) and β2 = β2(λ1, λ2)
with the boundaries of D obtained by numerically solving t1 = 0 and t2 = 0
in (11). Moreover, we remark that in this analysis we consider only compres-
sion induced instabilities, but other types of purely mechanical or electrome-
chanical instabilities can be important (see [13], [18] and [19] and references
therein).

Finally, in Fig.4 we show the dependence of the tensile region, for a fixed
value of kv, on the constitutive parameter c1 and c2. Observe that in both
cases the stiffer is the material, the wider is the region of tensile stretches con-
figurations. It is important to observe that the proposed approach provides
an immediate tool for the study of the EAPs behavior regarding compres-
sion instability and thus it may reveal its importance in the field of material
design.

3. Two simple applications

In this section, as illustrative example, we apply our analysis to homoge-
neously deformed EAP sheets under different boundary conditions. Despite
our approach is not limited by specific constitutive assumptions or bound-
ary conditions, we here take into consideration some simple cases which are
amenable of fully analytic solutions and allow an easy interpretation of the
results.

Consider firstly the case of Neo-Hookean materials, i.e. c2 = 0, c1 = µ/2,
where µ is the shear modulus. Hence (13) gives

λ2 = ν(λ1, kV) = λ
−1/2
1

[

µ

µ− 2kVλ
2

1

]1/4

. (17)

In this case the two vertexes of the region D , with λ1 = λ2 = λ, are the
solutions of

2kvλ
8 − µλ6 + µ = 0. (18)
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Figure 4: Dependence of the tensile region D on the constitutive parameters c1 and c2.

These vertexes coalesce for

kV = kcrit
V

=
3µ

2
11

3

(19)
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which corresponds to an equibiaxial strain

λ1 = λ2 = λcrit = 2
1

3 . (20)

It should be remarked that the simplicity of (19) and (20) is due to the Neo-
Hookean constitutive assumption, which is satisfactory only at low stretches.
For large stretches the entropic hardening effect, which is not accounted by
the Neo-Hookean law, can play an important role in modifying the D region
(see e.g. Fig.4).

We consider now the two following cases, respectively without and with
assigned prestretch.

The case without prestretch

Consider first the case of an EAP membrane under an assigned voltage V
(see the scheme in Fig.5) and no prestretch at the boundaries. By imposing
that t1 = t2 = t3 = 0 we obtain that the equilibrium solutions correspond
to the intersection of D with the line λ1 = λ2 = λ. Thus we are in the
case of equibiaxial strain with the in-plane stretch λ satisfying Eq. (18).
As a consequence we may interpret the vertexes of D as the stretches cor-
responding to the present situation. Observe that for given activation kV

there are two equilibrium solutions. Moreover, the stretch of the equilibrium
solution corresponding to the upper vertex decreases as kV grows. Thus the
thickness of the membrane grows with kV so that we may argue that this
equilibrium solution is unstable. This is in accordance with the results in
[4] where two equilibrium solutions have been obtained for each value of the
activation parameter and the larger equilibrium stretch corresponds to an
unstable state.

Based on previous analysis, we may deduce that when we increase kV there
exists a critical value of kV = kcrit

V
for which the tensile region disappears.

This maximum activation value grows with the stiffness of the material. The
corresponding limit activation in-plane stretch is given in (20). After this
threshold no equilibrium solution is possible. This effect represents what is
called in the literature as pull-in instability (see [4]).

The prestretched case

Consider now the hypothesis that a prestretch λ2 = λ̂2 is assigned in
direction (say) e2 of a rectangular EAP membrane (see Fig.6). The homoge-
neous equilibrium solution is obtained by requiring t1 = t3 = 0. For given kV
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Figure 5: Equilibrium solutions under the hypothesis of homogeneous deformation, in the
non prestretched case. Circles represent the equilibrium states for the different values of
the activation parameter kv.

and λ̂2, the stretch λ1 is given by (13) as λ1 = ν(λ̂2, kV ). Then we may inter-
pret the boundary of D , i.e. the curves of the natural widths, as representing
the equilibrium solutions in the prestretched case.

Observe that the system looses its equilibrium for an activation kV (see
Fig.6) such that the straight line λ1 = λ̂1 corresponds to one of the two
vertexes of the tensile region. Thus, the largest activation kV = kcrit

V
if

one chooses a prestretch λ̂2 = λcrit. We recall that the existence of an
optimal prestretch is also experimentally deduced in [10, 14] and theoretically
described in [4] .
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Figure 6: Equilibrium solutions under the hypothesis of homogeneous deformation, in the
prestretched case. Circles represent the equilibrium states for the different values of the
activation parameter kv.
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