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Multiplicative zero-one laws and

metric number theory

Victor Beresnevich∗ Alan Haynes† Sanju Velani‡

Abstract

We develop the classical theory of Diophantine approximation without
assuming monotonicity or convexity. A complete ‘multiplicative’ zero-one
law is established akin to the ‘simultaneous’ zero-one laws of Cassels and
Gallagher. As a consequence we are able to establish the analogue of the
Duffin-Schaeffer theorem within the multiplicative setup. The key ingredient
is the rather simple but nevertheless versatile ‘cross fibering principle’. In a
nutshell it enables us to ‘lift’ zero-one laws to higher dimensions.

Keywords : Zero-one laws, metric Diophantine approximation
Subject classification: 11J13, 11J83, 11K60

1 Introduction

The theory of multiplicative Diophantine approximation is concerned with the set

S×
n (ψ) := {(x1, . . . , xn) ∈ [0, 1]n :

n
∏

i=1

‖qxi‖ < ψ(q) for i.m. q ∈ N},

where ‖qx‖ = min{|qx−p| : p ∈ Z}, ‘i.m.’ means ‘infinitely many’ and ψ : N → R
≥0

is a a non-negative function. For obvious reasons the function ψ is often referred
to as an approximating function. For convenience, we work within the unit cube
[0, 1]n rather than R

n; it makes full measure results easier to state and avoids
ambiguity. In fact, this is not at all restrictive since the set under consideration is
invariant under translation by integer vectors.

Multiplicative Diophantine approximation is currently an active area of re-
search. In particular, the long standing conjecture of Littlewood that states that
S×
2 (q 7→ εq−1) = R for any ε > 0 has attracted much attention – see [1, 16, 18] and

references within. In this paper we will address the multiplicative analogue of yet
another long standing classical problem; namely, the Duffin-Schaeffer conjecture.
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Given q ∈ N and x ∈ R, let

‖qx‖′ := min{|qx− p| : p ∈ Z, (p, q) = 1} ,

and consider the standard simultaneous sets

Dn(ψ) := {(x1, . . . , xn) ∈ [0, 1]n :
(

max
1≤i≤n

‖qxi‖
′
)n
< ψ(q) for i.m. q ∈ N}

and

Sn(ψ) := {(x1, . . . , xn) ∈ [0, 1]n :
(

max
1≤i≤n

‖qxi‖
)n
< ψ(q) for i.m. q ∈ N} .

An elegant measure theoretic property of these sets is that they are always of zero
or full Lebesgue measure | . | irrespective of the dimension or the approximating
function. Formally, for n ≥ 1 and any non-negative function ψ : N → R

≥0

|Sn(ψ)| ∈ {0, 1} and |Dn(ψ)| ∈ {0, 1} . (1)

The former zero-one law is due to Cassels [7] while the latter is due to Gallagher
[10] when n = 1 and Vilchinski [19] for n arbitrary. By making use of a refined
version of Cassels’ zero-one law, Gallagher [12] proved that for n ≥ 2

|Sn(ψ)| = 1 if

∞
∑

q=1

ψ(q) = ∞ . (2)

Remark. Regarding the above statement and indeed the statements and conjec-
tures below, by making use of the Borel-Cantelli Lemma from probability theory,
it is straightforward to establish the complementary convergent results; i.e. if the
sum in question converges then the set in question is of zero measure.

The case that n = 1 is excluded from the statement given by (2) since it is false.
Indeed, Duffin & Schaeffer [8] gave a counterexample and formulated an alternative
appropriate statement. The Duffin-Schaeffer conjecture1 states that

|Dn(ψ)| = 1 if

∞
∑

q=1

(

ϕ(q)

q

)n

ψ(q) = ∞ , (3)

where ϕ is the Euler phi function. The consequence of the zero-one law for Dn(ψ)
is that it reduces the Duffin-Schaeffer conjecture to showing that |Dn(ψ)| > 0.
Using this fact the conjecture has been established in the case n ≥ 2 by Pollington
& Vaughan [15]. Although various partial results have been obtained in the case
n = 1, the full conjecture represents a key unsolved problem in number theory.
For background and recent developments regarding this fundamental problem see

1To be precise Duffin and Schaeffer stated their conjecture for n = 1. The higher dimensional
version is attributed to Sprindžuk – see [17, pg63].
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[2, 8, 13, 14]. However, it is worth highlighting the Duffin-Schaeffer theorem which
states that (3) holds whenever

lim sup
Q→∞

(

Q
∑

q=1

(

ϕ(q)

q

)

ψ(q)

)(

Q
∑

q=1

ψ(q)

)−1

> 0 .

Note that this condition implies that the convergence/divergence properties of the
sums in (2) and (3) are equivalent.

As already mentioned, the purpose of this paper is to consider the multiplica-
tive setup and in particular, the multiplicative analogue of the Duffin-Schaeffer
conjecture. With this in mind, it is natural to define the set

D×
n (ψ) := {(x1, . . . , xn) ∈ [0, 1]n :

n
∏

i=1

‖qxi‖
′ < ψ(q) for i.m. q ∈ N}.

The ultimate goal is to prove the following two statements.

Conjecture 1 Let n ≥ 2 and ψ : N → R
≥0 be a non-negative function. Then

|S×
n (ψ)| = 1 if

∞
∑

q=1

ψ(q) logn−1 q = ∞ . (4)

Conjecture 2 Let n ≥ 1 and ψ : N → R
≥0 be a non-negative function. Then

|D×
n (ψ)| = 1 if

∞
∑

q=1

(

ϕ(q)

q

)n

ψ(q) logn−1 q = ∞ . (5)

In view of the Duffin-Schaeffer counterexample it is necessary to exclude n = 1
from the statement of Conjecture 1. Clearly, the Duffin-Schaeffer conjecture and
Conjecture 2 coincide when n = 1.

Remark. For n ≥ 2, the results of Gallagher and Pollington & Vaughan establish
the analogues of the above conjectures for the standard simultaneous sets Sn(ψ)
and Dn(ψ).

1.1 The story so far: convexity versus monotonicity

Throughout this section, assume that n ≥ 2. Geometrically, the multiplicative sets
S×
n (ψ) and D×

n (ψ) consist of points in the unit cube that lie within infinitely many
‘hyperbolic’ domains

H = H(ψ,p, q) := {x ∈ R
n :
∏n

i=1 |xi − pi/q| < ψ(q)/qn}

centered around rational points p/q where p = (p1, . . . , pn) ∈ Z
n and q ∈ N. In

the case of D×
n (ψ) we impose the additional co-primeness condition (pi, q) = 1 on
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the rational points. The approximating function ψ governs the size of the domains
H. In the case of the standard simultaneous sets Sn(ψ) and Dn(ψ) the domains H
are replaced by the ‘cubical’ domains

C = C(ψ,p, q) :=

{

x ∈ R
n :
(

max
1≤i≤n

|xi − pi/q|
)n
< ψ(q)/qn

}

.

The significant difference between the standard and multiplicative situation
is that the domains C are convex while the domains H are non-convex. It is this
difference that lies behind the fact that Conjectures 1 & 2 are still open whilst their
standard simultaneous counterparts have been established – recall we assuming
that n ≥ 2. In short, without imposing additional assumptions, convexity is vital
in the methods employed by Gallagher and Pollington & Vaughan to establish (2)
and (3) respectively. Indeed, their methods can be refined and adapted to deal
with lim sup sets arising from more general convex domains but convexity itself
seems to be unremovable – see [13, Chp.3] and references within. However, the
landscape is completely different if we impose the additional assumption that the
approximating function ψ is monotonic. For instance we can then overcome the fact
that the domains H associated with the sets S×

n (ψ) and D×
n (ψ) are non-convex

and Conjectures 1 & 2 correspond to a well known theorem of Gallagher [11].
In fact, Gallagher considers lim sup sets arising from more general domains but
monotonicity plays a crucial role in his approach and seems to be unremovable.
Note that for monotonic ψ the convergence/divergence properties of the sums
appearing in (4) and (5) are equivalent and since S×

n (ψ) ⊃ D×
n (ψ) it follows that

Conjecture 2 implies Conjecture 1.
The upshot is that the current body of metrical results for lim sup sets re-

quires that either the approximating domains are convex or that the approximating
function is monotonic. We stress that this includes existing zero-one laws.

1.2 Statement of results

Our first theorem is the multiplicative analogue of the Cassels-Gallagher zero-one
law. It reduces Conjectures 1 & 2 to showing that the corresponding sets are of
positive measure. In principal, it is easier to prove positive measure statements
than full measure statements. More to the point, there is a well established mech-
anism in place to obtain lower bounds for the measure of lim sup sets – see §4
below or [3, §8] for a more comprehensive account.

Theorem 1 Let n ≥ 1 and ψ : N → R
≥0 be a non-negative function. Then

|S×
n (ψ)| ∈ {0, 1} and |D×

n (ψ)| ∈ {0, 1} .

The proof will rely on the general technique developed in §2 which we refer to as
the cross fibering principle. Given its simplicity, we suspect that it may well have
applications elsewhere in one form or another.
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The following theorem represents our ‘direct’ contributions to Conjectures 1
& 2 and is the complete multiplicative analogue of the Duffin-Schaeffer theorem.

Theorem 2 Let n ≥ 1 and ψ : N → R
≥0 be a non-negative function. Then

|S×
n (ψ)| = 1 = |D×

n (ψ)| if

∞
∑

q=1

ψ(q) logn−1 q = ∞

and

lim sup
Q→∞

(

Q
∑

q=1

(

ϕ(q)

q

)n

ψ(q) logn−1 q

)(

Q
∑

q=1

ψ(q) logn−1 q

)−1

> 0 . (6)

Note that the ‘additional’ assumption (6) implies that the convergence/divergence
properties of the sums within Conjectures 1 & 2 are equivalent.

Remark. Theorem 2 enables us to establish the complete analogue of Gallagher’s
multiplicative theorem [11] within the framework of the ‘p-adic Littlewood Con-
jecture’ – see §4.1.

2 Cross Fibering Principle

Let X and Y be two non-empty sets. Let S ⊂ X × Y . Given x ∈ X , the set

Sx := {y : (x, y) ∈ S} ⊂ Y

will be called a fiber of S through x. Similarly, given y ∈ Y , the set

Sy := {x : (x, y) ∈ S} ⊂ X

will be called a fiber of S through y. Given a measure µ over X , we will say that
A ⊂ X is µ-trivial if A is either null or full with respect to µ; that is

µ(A) = 0 or µ(X \A) = 0 .

It is an immediate consequence of Fubini’s theorem (see below) that

S is µ× ν-trivial =⇒ µ-almost every fiber Sx is ν-trivial, (7)

and likewise

S is µ× ν-trivial =⇒ ν-almost every fiber Sy is µ-trivial. (8)

Neither of these implications can be reversed in their own right. However, if the
right hand side statements are combined together then we actually have a criterion
which we will refer to as the cross fibering principle.
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Theorem 3 Let µ be a σ-finite measure over X, ν be a σ-finite measure over Y
and S ⊂ X × Y be a µ× ν-measurable set. Then

S is µ× ν-trivial ⇐⇒

µ-almost every fiber Sx is ν-trivial

&

ν-almost every fiber Sy is µ-trivial .

(9)

The proof of this theorem will make use of the following general form of
Fubini’s theorem which can be found in [5, pg.233] and [9, §2.6.2].

Fubini’s Theorem Let µ be a σ-finite measure over X and ν be a σ-finite mea-

sure over Y . Then µ× ν is a regular measure over X × Y such that

(i) If A is a µ-measurable set and B is a ν-measurable set then A × B is a

µ× ν-measurable set and

(µ× ν)(A×B) = µ(A) · ν(B) .

(ii) If S is a µ× ν-measurable set, then

Sy is µ-measurable for ν-almost all y,

Sx is ν-measurable for µ-almost all x,

the functions

X → R : x 7→ ν(Sx) and Y → R : y 7→ µ(Sy) (10)

are integrable and

(µ× ν)(S) =

∫

µ(Sy)dν =

∫

ν(Sx)dµ. (11)

2.1 Proof of Theorem 3

The measures µ and ν are σ-finite. Thus, without loss of generality we can assume
that the measures are finite and indeed that they are probability measures; that
is

µ(X) = 1 = ν(Y ) .

Necessity (=⇒). Without loss of generality, we can assume that (µ × ν)(S) = 0
since otherwise we can replace S by its complement X \ S. Therefore, both the
integrals appearing in (11) vanish. Note that the integrals themselves are obtained
by integrating the non-negative functions (10). The upshot is that these functions
vanish almost everywhere with respect to the appropriate measures which in turn
implies the right hand side of (9).

6



Sufficiency (⇐=). Let X̃ be the set of x ∈ X such that Sx is ν-measurable and
trivial. Similarly, let Ỹ be the set of y ∈ Y such that Sy is µ-measurable and trivial.
In view of part (ii) of Fubini’s theorem and the right hand side of (9) we have that
both X̃ and Ỹ are sets of full measure; that is µ(X \ X̃) = 0 and ν(Y \ Ỹ ) = 0.
In particular, X̃ is µ-measurable and Ỹ is ν-measurable. Now partition X̃ and Ỹ
into two disjoint subsets as follows:

X0 := {x ∈ X̃ : ν(Sx) = 0}, Y0 := {y ∈ Ỹ : µ(Sy) = 0},

X1 := X̃ \X0 = {x ∈ X̃ : ν(Sx) = 1}, Y1 := Ỹ \ Y0 = {y ∈ Ỹ : ν(Sy) = 1}.

Let XA denote the characteristic function of a set A. By definition and part (ii) of
Fubini’s theorem, the functions (10) almost everywhere coincide with the functions
XX1

and XY1
. Since the functions (10) are integrable, the functions XX1

and XY1

are also integrable and so it follows that the sets X1 and Y1 are respectively µ
and ν-measurable. This together with the fact that X̃ and Ỹ are respectively µ
and ν-measurable, implies that X0 = X̃ \X1 is µ-measurable and Y0 = Ỹ \ Y1 is
ν-measurable.

Obviously µ(X0)+µ(X1) = 1 and ν(Y0)+ ν(Y1) = 1. Let us assume that the
sets Xi and Yi are non-trivial. In other words,

0 < µ(Xi) < 1 and 0 < ν(Yi) < 1 for i = 0, 1 . (12)

By part (i) of Fubini’s theorem, the set M := X0 × Y1 is µ× ν-measurable. Now
consider the set S∩M and observe thatMy = X0 if y ∈ Y1 andM

y = ∅ otherwise.
Therefore, on using the first equality of (11) we obtain that

(µ× ν)(S ∩M) =

∫

µ(Sy ∩My)dν =

∫

µ(Sy ∩X0) XY1
(y)dν. (13)

By definition, for y ∈ Y1 the set Sy is full in X and thus is full in X0. As a
consequence, we have that µ(Sy ∩ X0) = µ(X0) for y ∈ Y1. Therefore, (12) and
(13) imply that

(µ× ν)(S ∩M) =

∫

µ(X0)XY1
(y)dν = µ(X0)ν(Y1) > 0. (14)

On the other hand, observe that Mx = Y1 if x ∈ X0 and Mx = ∅ otherwise. Then,
on using the second equality of (11) we obtain that

(µ× ν)(S ∩M) =

∫

ν(Sx ∩Mx)dµ =

∫

ν(Sx ∩ Y1)XX0
(x)dµ. (15)

By definition, for x ∈ X0 the set Sx is null and so ν(Sx ∩ Y1) = 0 for x ∈ X0.
Therefore, (15) implies that

(µ× ν)(S ∩M) =

∫

0 dµ = 0.

This contradicts (14). Therefore at least one of the sets Xi and Yi must be trivial.
This together with (11) implies that S is trivial and thereby completes the proof.
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3 Proof of Theorem 1

The proof is by induction. Consider the set S×
n (ψ). When n = 1, we have that

S×
1 (ψ) = S1(ψ) and Cassels’ zero-one law implies that S×

1 (ψ) is µ-trivial where µ
is one-dimensional Lebesgue measure on X := [0, 1] .

Now assume that n > 1 and that Theorem 1 is true for all dimensions k < n.
Given a k-tuple (x1, . . . , xk) ∈ [0, 1]k, consider the function

ψ(x1,...,xk)(q) :=
ψ(q)

‖qx1‖ . . . ‖qxk‖
.

Here we adopt the convention that α/0 := +∞ if α > 0 and that α/0 := 0 if
α = 0. With reference to §2, let Y := [0, 1]n−1 and let ν be (n − 1)-dimensional
Lebesgue measure on Y . Furthermore, let S := S×

n (ψ). Then it is readily verified
that for any x1 ∈ X the fiber Sx1

is equal to the set S×
1 (ψ(x1)) and similarly

for any (x2, . . . , xn) ∈ Y the fiber S(x2,...,xn) is equal to the set S×
n−1(ψ(x2,...,xn)).

In view of the induction hypothesis, we have that Sx1
is µ-trivial and S(x2,...,xn)

is ν-trivial. Therefore, by Theorem 3 it follows that S is µ × ν-trivial. In other
words, the n-dimensional Lebesgue measure of S×

n (ψ) is either zero or one. This
establishes Theorem 1 for the set S×

n (ψ).

Apart from obvious notational changes, the proof for the set D×
n (ψ) is exactly

the same as above except for that fact that when n = 1 we appeal to Gallagher’s
zero-one law rather than Cassels’ zero-one law.

3.1 A multiplicative zero-one law for linear forms

In what follows m ≥ 1 and n ≥ 1 are integers. Given a ‘multi-variable’ approxi-
mating function Ψ : Zn → R

≥0, let S×
n,m(Ψ) denote the set of X ∈ [0, 1]mn such

that
Π(qX + p) < Ψ(q) (16)

holds for infinitely many (p,q) ∈ Z
n × Z

m
r {0}. Here Π(y) :=

∏n

i=1 |yi| for a
vector y = (y1, . . . , yn) ∈ R

n, X is regarded as an m× n matrix and q is regarded
as a row vector. Thus, qX ∈ R

n represents a system of n real linear forms in m
variables. Naturally, let D×

m,n(Ψ) denote the subset of S×
m,n(Ψ) corresponding to

X ∈ [0, 1]mn for which (16) holds infinitely often with the additional co-primeness
condition (pi,q) = 1 for all 1 ≤ i ≤ n. Clearly, when m = 1 and Ψ(q) = ψ(|q|) the
sets S×

m,n(Ψ) and S×
n (ψ) coincide as do the sets D×

m,n(Ψ) and D×
n (ψ).

The following statement is the natural generalisation of Theorem 1 to the
linear forms framework. It also gives a positive answer to Question 4 raised in [4].

Theorem 4 Let m,n ≥ 1 and Ψ : Zn → R
≥0 be a non-negative function. Then

|S×
m,n(Ψ)| ∈ {0, 1} and |D×

m,n(Ψ)| ∈ {0, 1} .

8



In view of the linear forms version of the Cassels-Gallagher zero-one law estab-
lished in [4], the proof of Theorem 4 is pretty much the same as the proof of
Theorem 1 with obvious modification. More specifically, all that is required from
[4] is Theorem 1 with n = 1.

4 Proof of Theorem 2

To begin with, observe that S×
n (ψ) ⊃ D×

n (ψ) and therefore is suffices to prove the
theorem for D×

n (ψ). In view of Theorem 1, we are done if we can show that

|D×
n (ψ)| > 0 . (17)

With reference to §1.1, given q ∈ N let

H(ψ, q) := [0, 1]n ∩
⋃

p=(p1,...,pn)∈Z
n:

(pi,q)=1

H(ψ,p, q)

Then, by definition
D×

n (ψ) = lim sup
q→∞

H(ψ, q) .

The following lemma provides a mechanism for establishing lower bounds for the
measure of lim sup sets. The statement is a generalisation of the divergent part
of the standard Borel-Cantelli lemma in probability theory, see for example [17,
Lemma 5].

Lemma 1 Let (Ω, A, µ) be a probability space and {Ek} ⊆ A be a sequence of sets

such that
∑∞

k=1 µ(Ek) = ∞. Then

µ(lim sup
k→∞

Ek) ≥ lim sup
Q→∞

(

∑Q

s=1 µ(Es)
)2

∑Q
s,t=1 µ(Es ∩ Et)

.

In view of Lemma 1, the desired statement (17) will follow on showing that
the sets H(ψ, q) are pairwise quasi-independent on average and that the sum of
their measures diverges. It is easily verified that2

|H(ψ, q)| ≍

(

ϕ(q)

q

)n

ψ(q) logn−1 q (18)

and thus (6) together with the divergent sum hypothesis implies that

∞
∑

q=1

|H(ψ, q)| = ∞ .

2The Vinogradov symbols ≪ and ≫ indicate an inequality with an unspecified positive mul-
tiplicative constant. If a ≪ b and a ≫ b we write a ≍ b, and the quantities a and b are said to
be comparable.
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Regarding pairwise quasi-independence on average, Lemma 2 in [11] implies that

|H(ψ, q) ∩ H(ψ, r)| ≪ ψ(q) logn−1 q ψ(r) logn−1 r if q 6= r .

Hence, for Q sufficiently large it follows that

Q
∑

q,r=1

|H(ψ, q) ∩ H(ψ, r)| ≪
(

Q
∑

q=1

ψ(q) logn−1 q
)2 (6)&(18)

≪
(

Q
∑

q=1

|H(ψ, q)|
)2

.

This thereby completes the proof of Theorem 2.

4.1 An application to p-adic approximation

Theorems 1 & 2 settle the conjecture and problem stated in [6, §4.5] regarding the
multiplicative set S×

n (ψ). In particular, as a consequence of Theorem 2 we are able
to prove the following generalisation of the main result appearing in [6]. In short
the statement corresponds to the complete analogue of Gallagher’s multiplicative
theorem [11] within the framework of the ‘p-adic Littlewood Conjecture’ – for
further details see [1, 6] and references within.

Theorem 5 Let p1, . . . , pk be distinct prime numbers and f1, . . . , fk : R≥0 → R
≥0

be positive functions. Furthermore, let ψ : N → R
≥0 be a non-negative decreasing

function. Then, for almost every (α1, . . . , αn) ∈ R
n the inequality

f1(|q|p1
) · · · fk(|q|pk

)‖qα1‖ · · · ‖qαn‖ ≤ ψ(q) ,

has infinitely many solutions q ∈ N if

∞
∑

q=1

ψ(q)

f1(|q|p1
) · · · fk(|q|pk

)
logn−1 q = ∞ .

Armed with Theorem 2, the proof is a straightforward adaptation of the ideas
used to establish the n = 1 case [6, Theorem 2].
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