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Abstract

Single fault sequential change point problems have become important in modeling for various
phenomena in large distributed systems, such as sensor networks. But such systems in many situations
present multiple interacting faults. For example, individual sensors in a network may fail and detection is
performed by comparing measurements between sensors, resulting in statistical dependency among faults.
We present a new formulation for multiple interacting faults in a distributed system. The formulation
includes specifications of how individual subsystems composing the large system may fail, the information
that can be shared among these subsystems and the interaction pattern between faults. We then specify
a new sequential algorithm for detecting these faults. The main feature of the algorithm is that it uses
composite stopping rules for a subsystem that depend on the decision of other subsystems. We provide
asymptotic false alarm and detection delay analysis for this algorithm in the Bayesian setting and show
that under certain conditions the algorithm is optimal. The analysis methodology relies on novel detailed
comparison techniques between stopping times. We validate the approach with some simulations.

I. INTRODUCTION

Sequential change point detection problems have been widely studied [12] when involving a single fault
or multiple hypothesis based on a single change. New large distributed systems exhibit fault behaviors that
required modeling of multiple correlated faults [4]. For example, in a sensor network each sensor can fail
independently of each other, and the correlation between pairs of sensors can be used for diagnosis (e.g.
see [21]). The faults are interacting since a fault in any pair of sensors causes a change in the correlation
between them. In this paper we are concerned with the problem of detecting multiple interacting faults.
This requires a new formulation that differs from the single fault problem.

Single faults. Classic sequential change point detection [12] is concerned with variations on the following
basic problem: given a sequence of random observations {Xk, k ≥ 1}, such that Xk is distributed with
density f0 (i.e. Xk ∼ f0) if k < λ and Xk ∼ f1 if k ≥ λ for a random change time λ ∼ π, find a procedure
ν̄ that detects and stops at time n if λ ≤ n on the basis of the observations Fn(X) = {Xk, 1 ≤ k ≤ n}.
The change behavior can be compactly denoted by f0

λ−→ f1. Various solutions have been proposed for
this problem, such as the CUSUM [18] and the Shiryaev-Roberts-Pollak (SRP) [22], [23] procedures.
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2

The gist of these approaches is a threshold test for the likelihood ratio at time n

Λn(X) =
P(λ ≤ n |Fn(X))

P(λ > n |Fn(X))
≥ Bα, (1)

when using the complete Bayesian model. The threshold Bα is chosen to satisfy a false alarm constraint
P(ν̄ < λ) ≤ α. The procedure can be defined as the stopping time ν̄ such that

ν̄ = inf{n : Λn(X) ≥ Bα}, (2)

and its performance is measured by the m-moment of detection delay

Dλ
m(ν̄) = Eλ [(ν̄ − λ)m |ν̄ ≥ λ ] ,

where Eλ denotes expectation with respect to the prior of λ and typically m = 1 or m = 2. Asymptotic
performance of single change point procedures in this and other performance criteria have been extensively
analyzed (e.g. [2], [11], [13], [20], [25]). In particular, Tartakovsky et al. [25] show the asymptotic delay
optimality of the SRP rule under diminishing false alarm probability and threshold

Bα =
1− α
α

(3)

is

Dλ
m(ν̄)=̇

[
| logα|

q1(X) + d

]m
, (4)

where =̇ denotes asymptotic upper and lower bounds with respect to α→ 0. The delay is only a function
of the false alarm P(λ < ν̄) ≤ α, the amount of information q(X) in the densities f0 and f1 and the tail
exponent d of the prior for λ:

q1(X) =

∫
f1(x) log

f1(x)

f0(x)
µ(dx).

Dλ
m(ν̄) is also the minimum asymptotic delay achievable by any procedure with false alarm α. The single

change point model captures problems of fault diagnosis, where the measured data is fully observed and
the change in the measurements is attribute to a single fault happening at a random time.

Multiple simultaneous interacting faults can happen in a complex system with multiple interacting
components. Consider the system in Figure 1(a). Each node in Figure 1(a) is a subsystem and each
edge represents information shared between subsystems. There are multiple subsystems, u1 to u5, each
of which can fail at random times λ1 to λ5. A sequence of observations Xn(ui) is collected at each
subsystem i. When subsystem ui fails, the sequence Xn(ui) experiences a change. Since this sequence is
only collected by an individual subsystem its denominated private information of subsystem ui. Moreover
subsystems ui and uj also collect a shared sequences of observations Xn(ui, uj) that is influenced by
failures in either subsystem. These sequences are denominated shared information between subsystems
ui and uj . Since the graph in Figure 1(a) specifies the pattern of information sharing among subsystems
we denominate it communication graph. Information could be shared by more than two subsystems, and
would be represented by a hyper-edge connecting multiple nodes in the graph.

Solving the multiple interacting fault detection problem requires creating a test for each subsystem
to detect its own failure using only the local information it collects, namely the private and shared
information available to it. Each subsystem could use its private information sequence Xn(ui) and the
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(a) (b)

Fig. 1. (a) Communication graph: information sharing graph of a system with multiple subsystems (nodes) with edges between
nodes indicating shared information and (b) Fault graph: statistical dependency between information and failure times.

SRP rule in Eq. (2) to obtain a stopping time to detect its own fault. But clearly this procedure does not
use and benefit from the shared information at all.

The shared information can only be used if some structure on how faults interact with shared infor-
mation is specified. The fault graph (Figure 1(b)) displays graphically the statistical dependency between
shared information variables Xn(ui, uj) and faults λi and λj . It is natural for many practical situations to
assume that when either subsystem ui or uj fails, the shared observation sequence experiences a change
in distribution. Furthermore, after one of the subsystems has failed, the shared information relating to that
subsystem becomes useless to detect a fault on the other subsystems using the same shared information.
Therefore, the earliest of the fault times λi and λj drives a change in the distribution of Xn(ui, uj). In
general situations, alternative functional behaviors could be specified.

The interaction of faults in shared information makes it very challenging to use this information in a test
for a subsystem. For example, a very naive test that only used a single sequence Xn(ui, uj) to diagnose
subsystem ui would be driven to an incorrect decision if subsystem uj fails long before subsystem ui
fails. Thus the integration of weak evidence to build an effective detection procedure is required.

One useful practical application of the stochastic model we discuss is in detecting faulty sensors in
a sensor network measuring a slowly varying spatial and temporal process. Each individual sensor in a
network can fail at some random unknown time. The nature of failure is such that plausible measurements
are still reported. Sensors deployed geographically near each other compare their information to determine
whether they are failed or not. Before failure, measurements maintain some degree of similarity due to
the slow varying nature of the phenomena being measured, and after failure this similarity is signifi-
cantly reduced. In our current setup, each sensor is a subsystem. The private information are similarity
comparisons to a sensor’s own past measurements or to some reference working sensor. The shared
information are similarity comparisons of a sensor to nearby sensors. Various studies [9] have proposed
ad-hoc and empirical approaches to this problem, but to the best of our knowledge, no systematic theory
has been presented. Empirical validation and the implementation details of a solution for this problem
in the context of applications can be found in [3], [21], [29].
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(a) (b)

Fig. 2. Interacting subsystems setup: (a) communication graph and (b) fault graph. Information set at time n are denoted Xn,
Yn and Zn.

A. Our contributions

Consider the setup in Figure 2. Two subsystems, u1 = 1 and u2 = 2 fail at times λ1 and λ2 respectively.
The subsystems observe variables reflective of their state according to the communication graph in in
Figure 2(a). Subsystem 1 observes a private sequence X that changes its distribution according to λ1 and
subsystem 2 observes a private sequence Y that changes according to λ2. Both subsystems observe the
shared information sequence Z, whose behavior changes according to the earliest between both failure
times. All the observations are independent conditional on the change times. In this paper we will explore
the construction of fault detection rules for each subsystem that can effectively use private and shared
information. The single fault detection problem in this scenario corresponds to subsystem 1 using only its
private information to detect failure λ1. The interacting fault problem involving two subsystems presents
substantial analytic challenge due to the information constraints and the nature of shared information.

The first natural solution to the problem consists of each subsystem using only its private information
to make a decision about its state. In this case, the single fault SRP procedure (Eq. 2) can be used to
obtain a stopping rule ν̃1 for subsystem 1 with asymptotic delay Dλ1,λ2

m (ν̃1) given by Eq. (4). The false
alarm of the procedure is bounded by α and the delay is independent of the shared information Z. If
it was known a priori that Z only changed because of subsystem 1, we could include it in the SRP
procedure to obtain a stopping time ν1 using Eq. (2) with the test ratio

Λn(X,Z) =
P(λ1 ≤ n, λ2 =∞|Fn(X,Z))

P(λ1 > n, λ2 =∞|Fn(X,Z))
. (5)

The resulting delay satisfies Dλ1,λ2
m (ν1) ≤ Dλ1,λ2

m (ν̃1), since more information can only help. In fact,
this is the smallest delay possible for this problem. But clearly the distribution of the shared information
depends on both change times and we need to propose a different strategy.

The optimal single fault procedure uses the posterior probability of a change occurring conditional on
the available observations. A natural extension of this procedure to the simultaneous fault problem is to
use the posterior probability of change for subsystem 1 conditional on both X and Z. This probability can
be used in the definition of the single fault procedure (Eq. (2)). The false alarm is guaranteed to be less
than α. But Theorem 1 surprisingly shows this procedure has an asymptotic delay of at least Dλ1,λ2

(ν̃1),
the delay obtained in a optimal procedure that does not use the shared information Z. Therefore, it is
not trivial to include shared information in a manner that reduces delay.

Instead we propose a procedure based on the following observation: while neither subsystems have
failed, the shared information Z is helpful in diagnosing both, and after failure it is only useful in
diagnosing the first subsystem to fail. For subsystem 1, we initially test for its failure assuming subsystem
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2 is not failed (i.e. λ2 > n) using both private information X and shared information Z. Similarly we
test subsystem 2. If subsystem 2 fails, we switch the test in subsystem 1 to a posterior probability test
based only on its private information X . The proposed procedure is called stopping time with information
exchange (STIE) and requires exchanging a single bit of information between subsystems so they can
communicate their decisions. We denote it ν̄1 for subsystem 1 and ν̄2 for subsystem 2.

The first question is regarding the false alarm of STIE. Theorem 2 shows the false alarm for subsystem
1 is bounded by the sum of α and the error coupling probability ξαλ1,λ2

(ν̄1). The error coupling probability
captures the probability of subsystem 1 being misled to believe its failed due to a truly failed subsystem 2

taking excessively long to declare a failure. If the stopping times for both subsystems are asymptotically
decoupled (i.e. the error coupling probability is smaller than α), then we can guarantee a false alarm of
less than α for STIE. Theorem 3 shows this happens when certain natural relationships hold between
the amount of private and shared information. The analysis uses large deviation comparisons of stopping
times and is of independent interest.

The remaining question is regarding the delay performance of STIE. Theorem 5 shows STIE achieves
an improved asymptotic delay performance as α→ 0

Dλ1,λ2
m (ν̄1) = [Dλ1,λ2

m (ν1)(1− δα) +Dλ1,λ2
m (ν̃1)δα](1 + o(1)),

where

Dλ1,λ2
m (ν1) =

[
| logα|

q(X) + q(Z) + d1

]m
,

Dλ1,λ2
m (ν̃1) =

[
| logα|

q(X) + d1

]m
,

and δα is a quantity strictly greater than 0 and less than 1. This quantity reflects how much the shared
information benefits subsystem 1 as opposed to subsystem 2. Notice Dλ1,λ2

m (ν̄1) < Dλ1,λ2
m (ν̃1). Theorem 4

then shows that under mild conditions this delay matches the best possible performance for any procedure
in an appropriately defined set of procedures with joint false alarm α. These conditions are the same
required for the error coupling probability to be asymptotically small. This surprising result shows that
under mild conditions we can decouple the change behavior of the shared information, and obtain an
asymptotic optimal procedure for multiple simultaneous interacting fault problem with private and shared
information. The proposed solution sheds light into how to construct solutions for other interaction
structures.

We conclude the paper with various simulation studies that show the validity of the proposed analytic
insights. To the best of our knowledge this is the first paper that studies a multiple simultaneous interacting
fault problem with information sharing constraints that impose partial observability at each subsystem.

B. Related work

Various procedures have been proposed for single fault diagnosis with full observation [1]. The
asymptotic performance of these procedures have been analyzed in various papers, under different
performance criteria and settings [2], [11], [13], [20], [25].

Information constraints arise naturally in the context of sensor networks. In such systems it is desirable
for procedures to only use information from geographically close sensors to limit communication costs
and improve network lifetimes. Such constraint leads to a distributed processing requirement for single
fault problems. Various authors [15], [16], [27], [28] analyze distributed versions of single change point
problems, and derive an optimal rule for some cases. To the best of our knowledge, this is the first paper
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that introduces a model with multiple interacting change points and diagnosis restricted by a partial
observability condition, both constraints that are important in practice.

In contrast, multiple simultaneous fault problems have been less studied. Bayesian sequential change
diagnosis [5] studies a problem formulation where a single fault occurs but there are M causes for
failure. The goal is to detect when the fault happens and what caused it. Complete observability of the
information is assumed. Our proposed formulation in contrast imposes observation and fault interaction
structures for multiple simultaneous faults creating a completely new class of problems that cannot be
mapped into this framework.

There is a sizable literature on sensor failure detection in the context of sensor networks [4], including
detection of failures in multiple sensors [9], [10]. Many heuristics based on practical requirements have
been proposed [14], [17], [6], [26], but none have optimality guarantees nor the change point structure
is properly explored. In contrast we propose an algorithm with performance guarantees using a novel
change point formulation. In fact, our analysis in this paper applies to commonly used correlation tracking
heuristics (e.g. [19]) and shows that without properly structured stopping times that exchange information,
these sensor fault detection heuristics can perform very poorly.

C. Paper organization

The paper is organized as follows. Section II states the problem in more detail and establishes some
basic notation. Section III investigates the delay of the natural extension procedure based on posterior
probabilities. Section IV introduces STIE (Localized Stopping Time with Information Exchange) and
analyzes its performance. It also calculates the best possible delay achievable by any procedure. Sec-
tion V presents simulation examples. Section VII presents technical assumptions and proofs. Section VI
concludes the paper with a discussion of the results and avenues of future work.

Parts of this work have been presented in IPSN 2008 (Information Processing for Sensor Networks)
and the 2nd International Workshop on Sequential Analysis.

II. PROBLEM STATEMENT AND NOTATION

Consider the setup given by the communication graph in Figure 2(a) and fault graph in Figure 2(b).
Two subsystems 1 and 2 fail at random times λ1 and λ2 respectively. Subsystem 1 observes the private in-
formation sequence of random variables X = {Xn, n ≥ 1}. The distribution of this sequence experiences
a change due to the change time λ1 of subsystem 1. Using our earlier notation, f0(X)

λ1−→ f1(X), where
f0(X) and f1(X) are known densities specific to random variable X . Similarly subsystem 2 observes
the private information sequence Y = {Yn, n ≥ 1} and its distribution follows f0(Y )

λ2−→ f1(Y ). Both
subsystems observe the shared information as the random variable sequence Z = {Zn, n ≥ 1}. Its

distribution changes according to f0(Z)
min(λ1,λ2)−→ f1(Z), i.e.

Zn
i.i.d∼ f0(Z), n < min(λ1, λ2),

i.i.d.∼ f1(Z), n ≥ min(λ1, λ2).

The sequence of random variables for X between time k and n is denoted as Xk
n, and similarly for other

random variables. The goal of multiple subsystem simultaneous fault detection is to construct stopping
times ν̄1 for subsystem 1, only using {X1

n,Z
1
n} at time n, and ν̄2 for subsystem 2, only using {Y1

n,Z
1
n}

at time n, that detect whether λ1 ≤ n and λ2 ≤ n efficiently. Efficiency is measured according to the
performance metrics in Section II-A, i.e., each stopping time achieves a small detection delay for a given
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false alarm. The multiple interacting fault detection problem is difficult due to the interacting nature of
the faults and the information sharing pattern imposed by the communication graph. Furthermore, these
constraints make it hard, if not impossible, to find an optimal stopping time in the spirit of Shiryaev
[23], i.e. that is non-asymptotic optimal. Therefore, it is natural to seek stopping times that can achieve
asymptotic optimality.

To conclude, we detail further the Bayesian formulation of the multiple interacting fault problem.
The fault graph in Figure 2(b) details the probability dependency structure. Conditional on the change
times λ1 and λ2, the random variables X , Y and Z are all independent. We also assume the joint prior
distribution of the change times is denoted P(λ1 = k1, λ2 = k2) = π1(k1)π2(k2). For convenience, define
the cumulative quantities Π1

n = P(λ1 > n) and Π2
n = P(λ2 > n).

The σ-field generated by a sequence such as X1
n is denoted by FnX . For the fields of joint variables, we

use notation such as FnX,Y . Based on these definitions we can formalize the restriction that subsystem 1

can only use use random variables X and Z for its decision, whereas subsystem 2 can only use random
variables Y and Z for its decision, by requiring that the respective stopping rules be localized:

Definition 1 (Localized stopping time). A localized stopping time for subsystem 1 is a stopping time
ν1 ∈ FnX,Z . Similarly, a localized stopping time for subsystem 2 is a stopping time ν2 ∈ FnY,Z .

The probability measure in the joint space of random variables when the change happens at λ1 = k1

and λ2 = k2 is defined as:

Pk1,k2(X1
n,Y

1
n,Z

1
n) = Pk1(X1

n)Pk1∧k2(Z1
n)Pk2(Y1

n)

∼
k1−1∏
i=1

f0(Xi)

n∏
i=k1

f1(Xi)

k1∧k2−1∏
i=1

f0(Zi)

n∏
i=k1∧k2

f1(Zi)

k2−1∏
i=1

f0(Yi)

n∏
i=k2

f1(Yi)

= Lk1(X
1
n)Lk1∧k2(Z

1
n)Lk2(Y

1
n).

We define Lk1(X
1
n) denotes the product of densities for X and similarly for other variables. From the

definitions, when λ2 = ∞ we have Pk1,∞(X1
n,Y

1
n,Z

1
n) = Pk1(X1

n)Pk1(Z1
n)P∞(Y1

n). The appropriate
marginalized measures are also defined, such as:

Pλ1,λ2
(X1

n,Y
1
n,Z

1
n) =

n∑
k1=1

n∑
k2=1

π(k1)π(k2)Pk1,k2(X1
n,Y

1
n,Z

1
n).

In our notation Ek1,k2 refers to expectations with respect to the measure Pk1,k2(X1
n,Y

1
n,Z

1
n). It will

be useful to define the log-likelihood ratio of sample i for random variable Xi and the accumulated
log-likelihood:

ri(X) = log

(
f1(Xi)

f0(Xi)

)
; Rkn(X) =

n∑
i=k

ri(X). (6)

Similar definitions hold for all random variables. We make assumptions about the expectations of the
log-likelihoods under pre-change and post-change distributions. In particular, assume they are all finite
(∗ denotes don’t care):

E1,∗[ri(X)] =

∫
f1(x) log

f1(x)

f0(x)
µ(dx) = D(f1(X)||f0(X)) = q1(X),

where µ is the Lebesgue measure. Similarly,

E∞,∗[ri(X)] =

∫
f0(x) log

f0(x)

f1(x)
µ(dx) = −D(f0(X)||f1(X)) = −q0(X).
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For Y a similar assumption holds, only noting that expectations will be with respect to E∗,0 and E∗,∞. For
Z, again the definitions hold, but expectations should be with respect to E0,0 and E∞,∞. The assumption
is that q0(X), q1(X), q0(Z), q1(Z), q0(Y ) and q1(Y ) are all positive and finite.

Further detailed technical assumptions are stated in Section VII-A.

A. Performance metrics

Denote the fault detection rule for subsystem u by stopping time νu for u = 1 and u = 2. In the
change point literature, such a stopping time is evaluated according to two metrics: probability of false
alarm and detection delay, see e.g., [25].

Definition 2 (Probability of false alarm). Given a stopping time νu and the change time λu the false
alarm probability at λu = ku is defined as

P
(k1,k2)
fa (νu) = Pk1,k2(νu < ku).

The false alarm probability for procedure νu is given by

P π1,π2

fa (νu) = Pλ(νu < λu) =

∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Pk1,k2(νu < ku).

The marginal false alarm probabilities for procedures ν1 and ν2 are

MP
(λ1,k2)
fa (ν1) = Pλ1,k2(ν1 < λ1) and MP

(k1,λ2)
fa (ν2) = Pk1,λ2

(ν2 < λ2).

The conditional marginal false alarm probabilities for procedures ν1 and ν2 are

MP π1,π2

fa (ν1|λ2 < λ1) =

∞∑
k1=1

π1(k1)

k1−1∑
k2=1

π2(k2)P∞,k2(ν1 < k1) and

MP π1,π2

fa (ν2|λ1 < λ2) =

∞∑
k2=1

π2(k2)

k2−1∑
k1=1

π1(k1)Pk1,∞(ν2 < k2).

Definition 3 (Detection delay). The m-th moment of the delay of a sequential procedure νu for change
time λu = ku is defined as

D(k1,k2)
m (νu) = Ek1,k2 [(νu − ku)m |νu ≥ ku ] .

The m-th moment of the detection delay is

Dπ1,π2
m (νu) = Eλ1,λ2

[(νu − λu)m |νu ≥ λu ] =

∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)D(k1,k2)
m (νu).

A good procedure achieves small (even minimum) delay Dπ1,π2
m (νu), while maintaining P π1,π2

fa (νu) ≤
α, for a pre-specified α. An optimal detection procedure for subsystem u is a procedure νu for which
the delay Dπ1,π2

1 (νu) is minimized while keeping the false alarm below a chosen probability α so that
P π1,π2

fa (νu) ≤ α. Such a rule is called an optimal sequential procedure. Notice that a procedure that
satisfies P π1,π2

fa (νu) ≤ α does not necessarily satisfy MPfa(νu) ≤ α, and in particular this is true for the
optimal sequential procedure.
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III. LOCALIZED FAULT DETECTION WITHOUT INFORMATION EXCHANGE

One approach to solving the multiple interacting fault detection problem is to use a methodology
inspired by solving a single change point problem. We first review the relevant solution for a single
change point problem and then we describe the natural extension which is shown to be unable to exploit
the common information available for detection of both change points.

A. Test statistic for a single change point

Suppose a single subsystem fails at a random time λ, with distribution P(λ = n) = π1(n). The
observations X are an identical independently distributed random variable, with distribution f0 before
change and f1 after change. The fault detection formulation for this single subsystem is the standard
single change point detection problem.

Shiryaev [24] showed that an optimal sequential procedure is the procedure that tests the hypothesis
H1 : λ ≤ n against H0 : λ > n at each n, using the observations X1, ..., Xn. The Shiryaev-Robert-Polak
(SRP) sequential procedure is a threshold test on the posterior probability as shown in Eq. (1). The SRP
test quantity can be further developed as

Λn(X) =
P(λ ≤ n |FnX )

1− P(λ ≤ n
∣∣FnX )

=

n∑
k=0

π1(k)

k∏
r=1

f0(Xr)

n∏
r=k+1

f1(Xr)

∞∑
k=n+1

π(k)

n∏
r=1

f0(Xr)

= Λ0 + Π−1
n

n∑
k=1

π1(k)eR
k
n(X),

where Rkn(X) is defined in Eq. (6), Λ0 = π1(0)/(1−π1(0)) and Πn = P(λ > n). This test quantity in the
stopping time in Eq. (2) with threshold rule given by Eq. (3) to obtain the SRP procedure. Tartakovsky et al
[25] showed the SRP procedure achieves the optimal asymptotic delay for the problem of minimizing the
expected delay constrained to a false alarm probability α (i.e. P πfa (νS) ≤ α). Furthermore, the asymptotic
delay as α → 0 is given by Eq. (4), which matches the lower bound for delays for any procedure with
false alarm α.

The single change point problem is considerably simpler than the multiple change problem, since once
a change is detected, it is attributed to a unique fault, and there is no chance of confusion with other
potentially failed subsystems. We summarize the important facts in the following definition:

Definition 4 (Sequential test statistic). The generalization of the test for a SRP procedure using random
variables X and Z is

Λn(X,Z) = Λ0 + Π−1
n

n∑
k=1

π1(k)eR
k
n(X)+Rkn(Z). (7)

This corresponds to the ratio in Eq. (5). The corresponding stopping time is ν1 = νs(X,Z) and uses the
threshold in Eq. (3). Similarly we can define Λn(X), Λn(Y, Z) and Λn(Y ), using π1, π2, Y and Z. The
corresponding stopping times are ν̃1 = νs(X), ν2 = νs(Y,Z) and ν̃2 = νs(Y ).

Remark 1. For the rest of the paper, we assume without loss of generality that Λ0 = 0 for the SRP
procedure.
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B. Test statistic for multiple interacting change points

In this section we study the first natural approach to solving the multiple interacting fault detection
problem. We focus on subsystem 1. Heuristically, a threshold test in the posterior probability seems a
reasonable choice for stopping time. For the single change point case this is an optimal choice. In the
modified framework, such a choice may not be optimal, but it is certainly an attractive and simple test.
Intuitively, this is the first test one would consider. The posterior probability test can be written as:

ν1(X,Z) = inf {n : pn(X,Z) ≥ 1− α} ,

pn(X,Z) = Pλ1,λ2
(λ1 ≤ n | FnX,Z). (8)

To put into standard form, notice that

pn(X,Z)

1− pn(X,Z)
≥ 1− α

α
,

is an equivalent test to the original. Then the test statistic is

Λnoex
n (X,Z) =

Pλ1,λ2
(λ1 ≤ n | FnX,Z)

Pλ1,λ2
(λ1 > n | FnX,Z)

.

From the problem definition, we can compute the probabilities involved in the statistic Λnoex
n (X,Z) =

an/bn :

an =

n∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Lk1(X
1
n)Lk1∧k2(Z

1
n),

bn = Π1,n Ln+1(X1
n)

{
Π2,n Ln+1(Z1

n) +

n∑
k2=1

π2(k2)Lk2(Z
1
n)

}
.

Similarly, we can define a stopping time based on Λnoex
n (Y,Z) for subsystem 2. The first important

observation is that computing the test quantity is non-trivial. More importantly and somewhat surprisingly,
no delay reduction benefit is obtained from using the shared information:

Theorem 1. Assume q0(Z) ≥ q1(Z) or π2(k2) > 0 for k2 ≥ K2. For the posterior threshold test
ν1(X,Z) without information exchange given by Eq. (8), the delay satisfies (as α→ 0)

Dk1,k2
1 (ν1(X,Z)) ≥ Dk1,k2

1 (ν1(X)),

Dπ1,π2

1 (ν1(X,Z)) ≥ Dπ1,π2

1 (ν1(X)).

For the threshold test ν2(Y, Z), similar bounds apply.

The result shows that the performance of the rule does not depend on the statistics of the shared
information Z. This is a surprising result, since we expect an improvement in performance of the order
of the KL divergence (q1(Z)) for the pre and post-change distributions of Z.

Thus, in this procedure the shared information is not useful in determining which subsystem failed.
The information in either pair (X,Z) or (Y,Z) by itself is not helpful in determining whether the change
in Z is induced by a failure in subsystem 1 or in subsystem 2. In the hypothesis test, the null hypothesis
as well as the alternative hypothesis incorporate the information that a change in the shared information
could have happened because the other subsystem failed.
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IV. STIE: A LOCALIZED STOPPING TIME WITH INFORMATION EXCHANGE

In this Section we propose localized STIE (Stopping Time with Information Exchange), an interacting
stopping time method that attempts to overcome the limitations discussed in the previous section and
benefit from shared information.

The structure of the interaction between faults leads to an observation: before either subsystem has
failed, the shared information helps both decide whether they are failed or not; after one of them fails,
the shared information is not useful for the non-failed one. STIE relies on this observation by initially
computing a test statistic for subsystem 1 that assumes subsystem 2 is not failed. This is just the standard
SRP procedure, that uses both X and Z and can be computed as shown in Definition 4. A similar test
statistic is computed for subsystem 2.

Based on these statistics, we can define the stopping rule ν1 for subsystem 1:

ν1 = min {n : Λn(X,Z) ≥ Bα} = νS(X,Z), (9)

and similarly ν2 for subsystem 2. Each subsystem computes this test, until one of them believes it is
failed. Say subsystem 2 believes it is failed at time n (so ν2 = n) and before subsystem 1 (i.e. ν1 > n).
In STIE, subsystem 2 communicates its decision to subsystem 1. Then subsystem 1 should not use the
shared information anymore, else it may be misled to think it has failed due to the change in Z. From
this point onwards, subsystem 1 computes the SRP posterior rule only based on its private information
X and computes the stopping rule ν̃1 until failure:

ν̃1 = min {n : Λn(X) ≥ Bα} = νS(X). (10)

If instead subsystem 1 had declared failure first using ν1, subsystem 2 would use an analogous stopping
rule ν̃2. We can summarize formally STIE in terms of composite stopping rules ν̄1 for subsystem 1

ν̄1 = ν1I(ν1 ≤ ν2) + max (ν̃1, ν2) I(ν1 > ν2) (11)

and ν̄2 for subsystem 2
ν̄2 = ν2I(ν2 ≤ ν1) + max (ν̃2, ν1) I(ν2 > ν1). (12)

In the composite rule ν̄1, the exchanged bit is represented by the indicator I(ν1 > ν2). The max operator
reflects the situation the private information from a subsystem dictates that it has already failed (e.g.,
ν̃1 < ν2 = n), in which case one should stop immediately at the present time (ν2 = n).

The proposed stopping rules can be implemented in the system in Figure 2(b) in a distributed way.
In STIE there is an information exchange between subsystems, but it is constrained to a single bit that
informs when a subsystem’s statistic has crossed its threshold. Then the other subsystem stops using the
shared information (that is, it recomputes its own statistics without using shared information). This is a
new feature of the model investigated in this paper. Previous literature in distributed hypothesis testing
focused in the case where all subsystems observed the same hypothesis. Here we have a problem where
subsystems observe hypothesis that interact with each other.

Another important benefit of STIE is that it can be computed efficiently, as each subsystem only
computes two recursions following Definition 4, without requiring the storage of all observed values of
the random variables X,Y, Z. In [21] we describe a detailed efficient implementation in an application
setting.

STIE is summarized as follows. Each subsystem computes posteriors as if the other subsystem is
always working, until the time one of them declares itself as failed. Both subsystems at this point are
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using shared information. When one subsystem is thought to have failed the other stops using the shared
information, and recomputes the change point test using only its private information.

In the remainder of the section we compute the false alarm probability and the detection delay for
STIE. The detection with information exchange algorithm is interesting if we are able to show that for
a given false alarm rate O(α), it achieves expected delays smaller than if the shared information is not
used.

A. Performance analysis: false alarm

From Definition 2, the false alarm for subsystem 1 is given by

P π1,π2

fa (ν̄1) = Pλ1,λ2
(ν̄1 < λ1). (13)

Moreover, by design choice of the threshold for tests ν1 and ν̃1 that form STIE, the false alarm when
there is no change observed in subsystem 2 (i.e. λ2 =∞) is bounded:

P π1,∞
fa (ν1) = Pλ1,∞(ν1 < λ1) ≤ α,

P π1,∞
fa (ν̃1) = Pλ1,∞(ν̃1 < λ1) ≤ α.

Unfortunately these guarantees do not translate into a guarantee for the false alarm in Eq. (13) of the
procedure composed of both tests. Analyzing Eqns. (11) and (12) we notice that subsystem 1 can raise
two kinds of false alarm at some time n: one caused without any change (λ1 > n and λ2 > n), and
another caused when the shared information experiences a change due to a fault in subsystem 2 (λ2 ≤ n).
Based on this observation we define the error coupling probability:

Definition 5 (Error decoupling probability). The error decoupling probabilities of stopping times in a
set of procedures (ν̄1, ν̄2) are defined as

ξαλ1,λ2
(ν̄1) = Pλ1,λ2

(ν̄1 ≤ ν̄2, λ2 ≤ ν̄1 < λ1),

ξαλ1,λ2
(ν̄2) = Pλ1,λ2

(ν̄2 ≤ ν̄1, λ1 ≤ ν̄2 < λ2).

A regular fault detection procedure is a set of procedures for which the following conditions hold:

lim
α→0

ξαλ1,λ2
(ν̄1) = 0,

lim
α→0

ξαλ1,λ2
(ν̄2) = 0.

A strong fault detection procedure is a set of procedures that has

ξαλ1,λ2
(ν̄1) = O(α),

ξαλ1,λ2
(ν̄2) = O(α).

The importance of this definition is shown in Theorem 2: the false alarm for the composite procedure
STIE can be shown to be bounded by the sum of the desired false alarm rate (α) and the error coupling
probability. This probability measures the degree of coupling caused by the competing change time. If
it is of order O(α), we say the procedure is regular. As a comparison, if the event E = {ν̄1 < λ1} was
contained in the union of the events E1 = {ν1 < λ1, λ2 = ∞} and E2 = {ν̃1 < λ1, λ2 = ∞}, then a
direct union bound shows the false alarm to be bounded by 2α.

Theorem 2 (False alarm of STIE).
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(a) The probability of false alarm of subsystem 1 for the joint procedure with information exchange
(STIE) is bounded by:

P π1,π2

fa (ν̄1) ≤ α+ ξαλ1,λ2
(ν̄1).

(b) The marginal probability of false alarm of subsystem 1 for STIE is bounded by:

MP π1,k2
fa (ν̄1) ≤ α+ ξαλ1,k2(ν̄1).

The intuition behind Theorem 2 is that if the decision of not using Z was immediate, as soon as
min(λ1, λ2) happens, there would be no error coupling event and the composite procedure would have
false alarm α. But due to delayed detection, there is a period of time when subsystem 1 can declare
a fault due to change only in Z but not in X . This is exactly Ec = {λ2 < ν̄1 < λ1, ν̄1 ≤ ν̄2}, the
error event coupling the tests between subsystems. If the asymptotic rate of ξ with α is faster than O(α)

(procedure is strong), the additional false alarm incurred is not significant, since delay is proportional
to the logarithm of false alarm. Otherwise, the error incurred is significant, and reduces any potential
delay benefits. Theorem 3 completes the understanding about the false alarm for procedure STIE by
analyzing the error coupling probability and identifying under what conditions the procedure is strong,
and therefore has false alarm rate of order α.

Theorem 3 (Error coupling probability regularity). The theorem is stated for subsystem 1. For subsystem
2 it suffices to exchange the role of X and Y .
(a) The procedure STIE is a regular fault detection procedure.
(b) Let assumptions VII.2 and VII.5 hold. Define b1 = q0(X)− q1(Z) + d1 and the rate

r∗a =
1

w∗
[min{q0(X), q1(Z)}+ q1(Y ) + d1 − d2]2

max{σ2
0(X), σ2

1(Z)}+ σ2
1(Y )

,

where

w∗ =

√
σ2

1(X) + σ2
1(Z)

max{σ2
0(X), σ2

1(Z)}+ σ2
1(Y )

[min{q0(X), q1(Z)}+ q1(Y ) + d1 − d2]− b1,

constants σ2
0(X), σ2

1(Z) and σ2
1(Y ) are defined in assumption VII.2 and constants d1 and d2 are

defined in assumption VII.1 . Then

lim
α→0

log ξαλ1,λ2
(ν̄1)

logα
≥ r∗,

where
(a) If b1 ≤ 0 then r∗ = r∗a;
(b) If b1 > 0 then r∗ = max(r∗a, r

∗
b ), where

r∗b = 4
b1

σ2
1(X) + σ2

1(Z)
.

Therefore, if r∗ > 1, STIE is a strong fault detection procedure.

The main element to proving this theorem is an identification of which types events cause strong
error coupling. An important key result (Lemma 1) shows that for STIE, conditions on the amount
of information provided by the different information sets suffice for the various types of errors to be
decoupled.
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Example. Let us consider a simple scenario where σ2
0(X) = σ2

1(Z) = σ2
1(Y ) = 1/2 and d1 = d2 = ε,

where ε is small. When the shared information is stronger than the private information (i.e., q0(X) <

q1(Z)), and if q0(X) is small, then b1 < 0 and r∗ ≈ q1(Y )2/(q1(Y )+q1(Z)). So the private information
of subsystem 2 needs to be large as well (i.e., q1(Y ) = O(

√
q1(Z)) for the procedure to be strong.

Intuitively, this will prevent subsystem 1 being misled by a fault in subsystem 2, since subsystem 2
quickly detects its own fault. Otherwise, if (i.e., q0(X) >> q1(Z)), then r∗ ≥ r∗b and r∗b ≈ 4q0(X),
so the procedure is strong if sufficient private information is available to subsystem 1, independent of
subsystem 2. If q0(X) is small in this case, then the procedure still benefits from the strength of private
information of subsystem 2.

In more general scenarios, the error coupling events can be inferred from the fault graph structure.
Then, if the probability of error coupling is small, the inference problem for each subsystem can be
decoupled, and thus behaves as multiple single fault problems. A procedure like STIE is then strong if
both private and shared information (X , Y or Z) are relatively too strong.

B. Performance analysis: detection delay

The performance of individual procedures that compose STIE are known under the condition no change
occurs in the competing subsystem. For example, for subsystem 1 if λ2 =∞, it is clear that the standard
delay computation in Eq. (4) applies to stopping rules ν1 and ν̃1 with appropriately chosen constants.
We can define the detection delay constants for each individual change point that composes STIE:

Definition 6 (Detection delays). Define the following detection delay constants:

Lα1 =
|logα|

q1(X) + q1(Z) + d1
, Lα2 =

|logα|
q1(Y ) + q1(Z) + d2

,

L̃α1 =
|logα|

q1(X) + d1
, L̃α2 =

|logα|
q1(Y ) + d2

,

where d1 is the rate for prior π1 and d2 is the rate for prior π2 according to Assumption VII.1.

Based on this definition and under the condition λ2 =∞, notice that Dλ1,λ2

1 (ν1)=̇Lα1 and Dλ1,λ2

1 (ν̃1)=̇L̃α1 .
Furthermore, Dλ1,λ2

1 (ν1) < Dλ1,λ2

1 (ν̃1). Lα1 is the smallest delay achievable in this problem as it assumes
the shared information only changes due to λ1. L̃α1 is the delay achieved by ν̃1 in the general scenario
since it does not use the shared information. Thus, we expect Dλ1,λ2

1 (ν1) ≤ Dλ1,λ2

1 (ν̄1) ≤ Dλ1,λ2

1 (ν̃1) as
when λ2 happens much earlier than λ1, STIE will use ν̃1 for subsystem 1. This might even be the case
for any procedure respecting the false alarm bound.

It is natural to start the analysis by determining an asymptotic lower bound for the detection delay
of any procedure for multiple interacting fault detection. The minimization is constrained by the desire
for the procedure to incur false alarm at most α. For this to hold we consider only procedures in an
appropriate false alarm class:

Definition 7 (False alarm classes). For stopping times ν1(X,Z) dependent only on X and Z define the
classes:
(i) ∆1(α) such that P π1,∞

fa (ν1) ≤ α,
(ii) ∆̃1(α, k2) such that MP π1,k2

fa (ν1) ≤ α,
(iii) ∆̃1(α) such that MP π1,π2

fa (ν1|λ2 < λ1) ≤ α.
Also, define similar classes for stopping times ν2(Y,Z) dependent on Y and Z.
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Using the definition we can prove a performance lower bound for our problem among certain classes
of procedures as shown in Theorem 4. The lower bound guarantees that no procedure that belongs in
the given class can have delay smaller than stated. It gives us a certificate against which to check the
optimality of a given procedure.

Theorem 4 (Delay lower bound). Let Assumptions VII.1 and VII.3. Denote cd = (1+o(1)) and consider
the classes in Definition 7. Then for subsystem 1 as α→ 0:

inf
ν1∈∆̃1(α,k2)

Ek1,k2 [(ν1 − k1)m|ν1 ≥ k1] ≥
[
(Lα1 )mI(k1 ≤ k2) + (L̃α1 )mI(k1 > k2)

]
cd,

inf
ν1∈∆1(α)∩∆̃1(α)

Eλ1,λ2
[(ν1 − λ1)m|ν1 ≥ λ1] ≥

[
(Lα1 )mP(λ1 ≤ λ2) + (L̃α1 )mP(λ1 > λ2)

]
cd.

A similar result holds for subsystem 2.

The lower bound can be intuitively understood since when λ2 < λ1, the shared information does not
help in identifying the change in subsystem 1 for arbitrarily small false alarm α. Notice the procedure ν̄1

in STIE may not belong to ∆1(α), since the bound for the false alarm rate is greater than α and more
importantly they depend on all three X,Z and Y by definition. But ν1 and ν̃1 do belong to ∆1(α) and
ν2 and ν̃2 belong to ∆2(α).

We conclude the section computing the asymptotic delay of the procedure STIE. The main challenge
in this analysis is to account for the various possible combinations of change times λ1 and λ2 generating
different choices in the composite procedure STIE. Theorem 5 computes the detection delay of STIE
under this general setup.

Theorem 5 (Performance of STIE). Let Assumptions VII.1 and VII.4. Consider the procedure STIE
represented as the set of stopping times (ν̄1, ν̄2). The delay of STIE as α→ 0 is given by:

Dπ1,π2
m (ν̄1) = [Dπ1,∞

m (ν1)(1− δα) +Dπ1,∞
m (ν̃1)δα] (1 + o(1)),

where δα = Pλ1,λ2
(ν1 > ν2), Dπ1,∞

m (ν1)=̇(Lα1 )m, Dπ1,∞
1 (ν̃1)=̇(L̃α1 )m, and d1 is given in assump-

tion VII.1. The results are also valid for λ1 and λ2 replaced by k1 and k2. For subsystem 2, analogous
results apply.

The proof of the theorem relies on careful use of concentration arguments and the fact STIE is a
regular procedure. Notice that the asymptotic performance differs from the lower bound only on the
factor δα.

Remark 2. It is easy to see that in a symmetric problem (i.e. qi(X) = qi(Y ) and π1 = π2), δα =

P(λ1 ≤ λ2) = 1/2, and therefore the proposed procedure achieves the delay lower bound, albeit with a
potentially larger false alarm. In fact, under the conditions the procedure STIE is strong, it is actually
an optimal asymptotic procedure for the symmetric problem, since the false alarm is bounded by α. We
conjecture this is not the case for more general scenarios, and δα perhaps will depend on the difference
between the delays of ν1 and ν2.

V. EXAMPLES

We evaluate the performance of our algorithm in simulations, which allows us to precisely specify the
moment of failure. For the system in Figure 2 assume that f0(X) ∼ N (µ(X), σ2(X)) and f1(X) ∼
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Simulation example: (a)Sample path for correlation with change point at n = 50, (b) Error coupling probability
estimates for different variance ratios and (c) Error coupling probability exponent estimates. Average delay comparison for
false alarm α = 10−7 between (d) theory and simulation; (e) simulation including and excluding shared information Z and
(f) theory including and excluding shared information. Uncertainty ratio in these figures refers to the quantity σ2

Z/σ
2
S , where

σ2
X = σ2

Y = σ2
S .

N (0, σ2(X)). Similarly, we make definitions for Y and Z. In this case, the information strength for the
private information X is given by

q1(X) = q0(X) =
µ(X)2

σ2(X)
,

and similarly for the other information sets. Using the results obtained in Section IV-A, we can conclude
that STIE is a strong fault detection procedure if

4
q0(X)− q1(Z)

2σ2(X,Z)
> 1 and 4

q0(Y )− q1(Z)

2σ2(Y, Z)
> 1,

whenever q1(X) > q1(Z) and q1(Y ) > q1(Z). Let us assume µ(X) = µ(Y ) = µ(Z) = 1 to normalize
the simulation variables. σ2(X,Z) is the variance of the log-likelihood under the after change measure
for Z and pre-change measure for X , which can be computed as

σ2(X,Z) =
1

σ2(X)
+

1

σ2(Z)
,

obtaining the conditions

σ2(X) <
1

3
σ2(Z) and σ2(Y ) <

1

3
σ2(Z).

The result can be interpreted intuitively if we consider that private information X focuses in capturing
the behavior of λ1 change time for subsystem 1 and similarly for Y and subsystem 2. This information

December 7, 2010 DRAFT



17

sets are not coupling λ1 and λ2. Thus, the condition implies that the information strength of these sources
has to be at least three times the information strength of the shared information to avoid the coupling
probability becoming too large.

For the numerical simulation, we further assume that random sequences X and Y are i.i.d. with
variance σ2

S . The shared information Z has a fixed variance σ2
Z = 1. The priors for λ1 and λ2 are

exponential distributions with rate d1 = d2 = − log(0.01). Figure 3(a) shows a typical sample path of
private information when σ2

S = 0.2. Notice that without time averaging it is very hard to say exactly
when the change (failure) occurred.

In Section IV-A we argued that the error coupling probability should go to zero as the false alarm
rate α → 0 for the procedure to be consistent, and we see this in Figure 3(b). Notice though that the
rate depends on the uncertainty in private information variance σ2

S . From Figure 3(c), if σ2
Z/σ

2
S < 1.8,

the error coupling probability is O(αp) with p < 1, so the total false alarm rate of the procedure grows
slower than α. But for higher ratios, our procedure has false alarm rate α since the false alarm is the
sum of α and the error coupling probability. To achieve higher ratios it is valuable to increase the private
information strength, i.e., the strength of information that responds to a single fault. The theoretical
prediction guarantees that the procedure is strong for ratio σ2

Z/σ
2
S > 3.

Figure 3(d) shows the theoretical and experimental average delays obtained when the threshold is
α = 10−7. There is disagreement between the curves, although the qualitative behavior is as expected.
The disagreement is because our results are for α → 0. This discrepancy is well known in sequential
analysis [25]. Figure 3(e) compares the behavior of our procedure using the shared information Z and one
that does not use it at all. There is a substantial reduction in delay using shared information. Figure 3(f) is
the corresponding theoretical prediction. There is a qualitative agreement between theory and simulation
experiment.

VI. DISCUSSION

In this paper we developed a procedure for the multiple interacting fault detection problem. We proposed
a set of basic assumptions and a framework based on the notion of a fault graph together with fundamental
metrics to evaluate the performance of any sequential fault detection procedure. Then we proceeded to
analyze the efficient algorithm STIE that achieves a good performance under the proposed metrics, and
even an optimal performance under certain scenarios. As far as we know, this is the first derivation of
bounds on detection delay subject to false alarm constraints in a multiple fault or multiple change point
setting.

One of the main contributions of the paper is to develop a model that includes simultaneous change
points that interact to generate changes in the observations. Such interactive aspect is novel and leads
to a rich set of models that extend single change point modeling. Furthermore, the constraint in the
information exchanged between the various tests leads to sequential tests for simultaneous hypothesis
that use inconsistent views of the probability distributions.

The proposed statistical model and algorithms introduce many new ingredients into the detection
literature. Due to the simultaneous and interacting change points, we develop careful asymptotic stopping
time comparison calculations. Moreover, the proposed stopping times are allowed to exchange information
via a network, and influence each other’s behavior. This information sharing introduces coupling of the
false alarm error between the procedures, and we contend that networked procedures will work well when
the coupling event has a small probability. The main advantage of following such approach is that the
analysis of the decoupled problem can benefit from the many tools developed for single change points,
and care must be taken for the analysis in the coupled regime.
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In the context of detection of faults in sensor networks, our algorithm performs an implicit averaging of
the history of observations reducing the detection delay for a fixed false alarm. Many proposed practical
methods in the literature do not perform this averaging, and therefore are subject to longer delays. Our
algorithm and framework are general enough that even model based methods for computing scores, such
as the one proposed in [26] or the primitive in [8], can benefit from the proposed procedure. Compared
to procedures such as in [6], [17], our method benefits from implicit averaging, whereas those methods
make sequential decisions based on only the current observation.

Important questions for future work are proposing and analyzing an algorithm for a general fault
graphs and general communication graphs. The current framework seems to naturally lead to problems
of detecting functionals of various change points observing variables whose distributions depend on these
functionals. Moreover, it will also be interesting to analyze the behavior of STIE in more general graph
settings. We have successfully applied the algorithm in practice [21] to more general instances of the
multiple interacting fault detection problem.

VII. PROOFS

A. Technical Assumptions

Some technical assumptions are required in order to obtain performance estimates for the procedures
proposed. The first assumption is that priors have tail bounds.

Assumption VII.1. The priors π1 and π2 of subsystems 1 and 2 satisfy the tail limit:

lim
k1→∞

Π1
k1+1

k1
= −d1,

lim
k2→∞

Π2
k2+1

k2
= −d2.

The next assumption is on the tails of the log-likelihood random variables.

Assumption VII.2. Assume log likelihood ratios are independent and have finite first and second moment.
Denote the variance of the likelihood ratio of X under f0 by σ2

0(X) and under f1 by σ2
1(X), of Y by

σ2
0(Y ) and σ2

1(Y ) and of Z by σ2
0(Z) and σ2

1(Z). For concreteness, consider the likelihood ratio for X ,
Rrn(X). Then we assume the following tail bounds exist for x > µrn(X),

Pk1,k2 (Rrn(X) > x) ≤ K(X) exp−(x− µrn(X))2

σrn(X)2

where

µrn(X) = (n− k1 ∨ r)q1(X)− (k1 − k1 ∧ r)q0(X),

σrn(X)2 = γ(X){(n− k1 ∨ r)σ2
1(X) + (k1 − k1 ∧ r)σ2

0(X)}.

Similar bounds hold for Y and Z, with µ and σ appropriately defined. Also, we assume the bounds
for sums, such as Rrn(X) + Rrn(Z), by again using the appropriate definitions, such as µrn(X,Z) =

µrn(X)+µrn(Z) and σrn(X,Z)2 = σrn(X)+σrn(Z). The constants for the bounds are defined as K(X,Y )

and γ(X,Z).

Remark 3. The tail bound assumption is not overly restrictive. In fact, it only imposes a light tail
constraint on the individual likelihood random variables, and then uses independence. For example, if f0
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and f1 are Gaussian densities, the tail bounds can be obtained from large deviations. If all log likelihood
ratios are bounded within interval [−M,M ], then using Hoeffding’s bound [7], we can obtain a similar
bound for each random variable, except that in this case γ(X) = 2 and

σrn(X)2 = 2{(n− k1 ∨ r)σ2
1(X) + (k1 − k1 ∧ r)σ2

0(X) +M/3}.

The rationale behind these assumptions is that it allows precise computation of the probability of
deviations of the likelihood ratio sequence, including when the maximum crosses a threshold.

We then assume different forms of expectation concentration of the log-likelihood[12], [25].

Assumption VII.3. For all ε > 0 and k1, k2 ≥ 1, as N →∞:

Pk1,k2
(

1

N
max

1≤n≤N
Rk1k1+n(X) > (1 + ε)q1(X)

)
→ 0,

Pk1,k2
(

1

N
max

1≤n≤N
Rk1∧k2k1∧k2+n(Z) > (1 + ε)q1(Z)

)
→ 0,

Pk1,k2
(

1

N
max

1≤n≤N
Rk2k2+n(Y ) > (1 + ε)q1(Y )

)
→ 0.

Assumption VII.4 (r-quick convergence of LLR). The log-likelihood ratios Rk1k1+n−1(X), Rk1∧k2k1∧k2+n−1(Z)

and Rk2k2+n−1(Y ) define the stopping times:

T (k1,k2)
ε (X) = sup

{
n ≥ 1 :

∣∣∣∣ 1nRk1k1+n−1(X)− q1(X)

∣∣∣∣ > ε

}
,

T (k1,k2)
ε (Y ) = sup

{
n ≥ 1 :

∣∣∣∣ 1nRk1k1+n−1(Y )− q1(Y )

∣∣∣∣ > ε

}
,

T (k1,k2)
ε (Z) = sup

{
n ≥ 1 :

∣∣∣∣ 1nRk1∧k2k1∧k2+n−1(Z)− q1(Z)

∣∣∣∣ > ε

}
.

For all ε > 0 and k1 ≥ 1 and k2 ≥ 1, for some r ≥ 1:

Ek1,k2
[
T (k1,k2)
ε (X)

]r
<∞, Ek1,k2

[
T (k1,k2)
ε (Y )

]r
<∞, Ek1,k2

[
T (k1,k2)
ε (Z)

]r
<∞,

Eλ1,λ2

[
T (k1,k2)
ε (X)

]r
<∞, Eλ1,λ2

[
T (k1,k2)
ε (Y )

]r
<∞, Eλ1,λ2

[
T (k1,k2)
ε (Z)

]r
<∞.

Assumption VII.5. Let

Sk1n (X) : = log
π1(k1)

Π1(n)
+Rk1n (X) +Rk1n (Z),

Sk2n (Y ) : = log
π2(k2)

Π2(n)
+Rk2n (Y ) +Rk2n (Z).

Let η1 = min{n : Sk1n (X) ≥ logBα} (where Bα is given by Eq. (3)), and define for arbitrary ε > 0,

T k1ε = sup{n : |(n− k1 + 1)−1Sk1n (X)− (q1(X) + q1(Z) + d1)| ≥ ε}.

Assume that E∞,k1 expT k1ε < ∞ for any ε > 0 and for any k1. Similarly, let η2 = min{n : Sk2n (Y ) ≥
logBα}, and define for arbitrary ε > 0,

T k2ε = sup{n : |(n− k2 + 1)−1Sk2n (Y )− (q1(Y ) + q1(Z) + d2)| ≥ ε}.

Assume that E∞,k2 expT k2ε <∞ for any ε > 0 and for any k2.
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B. Proof of Theorem 1

We start the proof by defining an upper bound to the test statistic Λnoex
n (X,Z) that defines the stopping

time ν1(X,Z). Selecting k̄2 = k1 ∧ k2, using the assumption π2(k̄2) > 0, we can lower bound:

bn ≥ Π1,nπ2(k̄2) Ln+1(X1
n)Lk̄2(Z

1
n),

so that simple algebra shows

Λnoex
n (X,Z) =

an
bn
≤ Π−1

1,nπ2(k̄2)−1
n∑

k1=1

∞∑
k2=1

π1(k1)π2(k2)
Lk1(X

1
n)

Ln+1(X1
n)
.

Now we can proceed as

log Λnoex
n (X,Z) = log

an
bn
≤ − log Π1,n − log π2(k̄2) + log

n∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)
Lk1(X

1
n)

Ln+1(X1
n)

= − log π2(k̄2)︸ ︷︷ ︸− log Π1,n + log

n∑
k1=1

π1(k1)
Lk1(X

1
n)

Ln+1(X1
n)︸ ︷︷ ︸

= r + log Λn(X),

where the original test statistic can be upper bounded by the sum of the standard Shyryaev test for X
with change point at λ1 and a positive constant r. Define the stopping time η

η = inf

{
n : log Λn(X) + r ≥ log

1− α
α

}
≤ ν1(X) = inf

{
n : log Λn(X) ≥ log

1− α
α

}
.

It is simple to see that η − ν1(X) → 0 as α → 0. Since ν1(X,Z) ≥ η w.p.1, we have shown
Dk1,k2

1 (ν1(X,Z)) ≥ Dk1,k2
1 (ν1(X)). For Dπ1,π2

1 (ν1(X,Z)) ≥ Dπ1,π2

1 (ν1(X)), we have the following
chain of inequalities using the definition of the delays:

Ek1,k2 [(ν1(X,Z)− k1)m|ν1(X,Z) ≥ k1] =
Ek1,k2 [[(ν1(X,Z)− k1)+]m]

Pk1,k2 (ν1(X,Z) ≥ k1)

≥ Ek1,k2
[
[(ν1(X,Z)− k1)+]m

]
≥ Ek1,k2

[
[(η − k1)+]m

]
≥ (Lα,ε)

m Pk1,k2(η ≥ k1 + Lα,ε)

≥ (Lα,ε)
m Pk1,k2(ν1(X) ≥ k1 + Lα,ε).

where Lα,ε = (1− ε)− log erα
q1(X)+d and in the last line we used the Markov inequality. Lemma 4(i) also states

Pλ1,λ2
(ν1(X) ≥ λ1 +Lα,ε)→ 1. Noticing this is just the expectation of the last inequality, we conclude

the proof.
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C. Proof of Theorem 2

(a) First we show item (a) for subsystem 1. The analysis is analogous for subsystem 2.

Pλ1,λ2
(ν̄1 < λ1) = Pλ1,λ2

(ν̄1 < λ1, ν̄1 > ν̄2) + Pλ1,λ2
(ν̄1 < λ1, ν̄1 ≤ ν̄2) (14)

= Pλ1,λ2
(max(ν̃1, ν2) < λ1, ν1 > ν2) + Pλ1,λ2

(ν̄1 < λ1, ν̄1 ≤ ν̄2) (15)

≤ Pλ1,λ2
(ν̃1 < λ1, ν1 > ν2) + Pλ1,λ2

(ν̄1 < λ1, ν̄1 ≤ ν̄2) (16)

≤ αPλ1,λ2
(ν1 > ν2) + Pλ1,λ2

(ν̄1 < λ1, ν̄1 ≤ ν̄2) (17)

= αPλ1,λ2
(ν1 > ν2) + Pλ1,λ2

(ν̄1 < λ1, ν̄1 < λ2, ν̄1 ≤ ν̄2) + Pλ1,λ2
(ν̄1 < λ1, ν̄1 ≥ λ2, ν̄1 ≤ ν̄2)

(18)

= αPλ1,λ2
(ν1 > ν2) + Pλ1,λ2

(ν1 < λ1, ν1 < λ2, ν1 ≤ ν2) + Pλ1,λ2
(λ2 ≤ ν̄1 < λ1, ν̄1 ≤ ν̄2)

(19)

≤ α+ ξαλ1,λ2
(ν̄1). (20)

In lines (15) and (18) we use the following observations from the definitions of ν̄1 and ν̄2:

{ν̄1 > ν̄2} ∩ {ν̄1 < x} = {ν1 > ν2} ∩ {max(ν̃1, ν2) < x} ,

{ν̄1 ≤ ν̄2} ∩ {ν̄1 < x} = {ν1 ≤ ν2} ∩ {ν1 < x} .

In line (16) we used the fact that ν̃1 = νS(X) so (a) due to this definition Pλ1,∗(λ1 ≤ n|X1
t ) ≥ 1−α for

t ≥ ν̃1 (see Eq. (1)) and (b) by conditioning on data X1
τ , where τ = max(ν̃1, ν1) the following bound

holds:

Pλ1,λ2
(ν̃1 < λ1, ν1 > ν2) = E[Pλ1,λ2

(ν̃1 < λ1, ν1 > ν2|X1
τ )]

= E[Pλ1,λ2
(ν̃1 < λ1|X1

τ )I(ν1 > ν2)]

≤ αPλ1,λ2
(ν1 > ν2).

For line (20) a similar argument applies since (a) Pλ1,∞(λ1 ≤ n|X1
t ,Z

1
t ) ≥ 1 − α for t ≥ ν1 and (b)

Pλ1,λ2
(ν1 < λ1, ν1 < λ2, ν1 ≤ ν2) = E[Pλ1,∞(ν1 < λ1, ν1 < λ2|X1

ν2 ,Z
1
ν2)I(ν1 ≤ ν2)].

Proceeding in a similar fashion we can obtain the result for the false alarm of subsystem 2.
(b) Now we can show (b) for subsystem 1. From the definition of marginal probability of false alarm

in Definition 2 and following the proof steps in Eqns (15,16,18):

Pλ1,k2(ν̄1 < λ1) ≤ Pλ1,k2(ν̃1 < λ1, ν1 > ν2) + Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2)

≤ αPλ1,k2(ν1 > ν2) + Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2).

The second quantity can be bound:

Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2) = Pλ1,k2(ν1 < ν2, ν1 < k1)

= Pλ1,k2(ν1 < λ1, ν1 < k2, ν1 ≤ ν2) + Pλ1,k2(k2 < ν̄1 < k1, ν̄1 ≤ ν̄2)

≤ αPλ1,k2(ν1 ≤ ν2) + ξλ1,k2(ν̄1).
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D. Proof of Theorem 3

ξαλ1,λ2
(ν̄1) =

∑
k1,k2

π(k1)π(k2)Pk1,k2(ν̄1 ≤ ν̄2, k2 ≤ ν̄1 < k1)

=
∑
k1,k2

π(k1)π(k2)Pk1,k2(ν1 ≤ ν2, k2 ≤ ν1 < k1)

=
∑
k1,k2

π(k1)π(k2)P∞,k2(ν1 ≤ ν2, k2 ≤ ν1 ≤ k1)

≤
∑
k1,k2

π(k1)π(k2)P∞,k2(k2 ≤ ν1 ≤ ν2)

=
∑
k2

π(k2)P∞,k2(k2 ≤ ν1 ≤ ν2).

We continue the proof using Lemma 1. Given this lemma, it is immediate by the dominated convergence
theorem that as α→ 0:

ξαλ1,λ2
(ν̄1)→ 0.

showing that the procedure is regular proving (a) without Assumption VII.5 . Including Assumption VII.5,
(b) follows since P∞,λ2

(k2 ≤ ν1 ≤ ν2) =
∑

k2
π(k2)P∞,k2(k2 ≤ ν1 ≤ ν2). A similar proof can be shown

for subsystem 2.

E. Lemma 1 (Event Decoupling Lemma)

Lemma 1. Let Assumption VII.2. For any k2 > 0, the following bound holds:

lim
α→0

logP∞,k2(k2 ≤ ν1 ≤ ν2)

logα
≥ r∗.

Let Assumption VII.2 and VII.5. Then:

lim
α→0

logP∞,λ2
(k2 ≤ ν1 ≤ ν2)

logα
≥ r∗.

Proof: The proof has five parts. In the first part we decompose the probability into three tail events
that determine the α-order of the error coupling probability. The point at which we switch between the
first two events is a parameter (C̃α) that needs to be optimized. For each event we compute upper bounds
to the probabilities and the rate function for the speed with which the error coupling probability converges
to zero as α → 0. Using rate matching, we optimize the free parameter C̃α. Finally, we determine the
parameter (Cα), that is when one switches from the second to the third event, based on the choice of
optimized parameter.

Decomposing the event decoupling lemma into 3 events. First notice that (we consider Cα = ∞ a
valid possibility):

P∞,k2(k2 ≤ ν1 ≤ ν2) ≤ P∞,k2(k2 ≤ ν1 ≤ ν2, ν2 ≤ k2 + Cα) + P∞,k2(ν2 > k2 + Cα).

We decompose further the quantity:

P∞,k2(k2 ≤ ν1 ≤ ν2, ν2 ≤ k2 + Cα) ≤ P∞,k2

(
k2+Cα⋃
l=k2

{Λl(X,Z) ≥ Bα} ∩ {Λl(Y, Z) < Bα}

)
,
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where the bound follows from the definition of ν1 and ν2. The advantage of this particular bound is that
for small l, the first event - subsystem 1 mistakenly crossing the threshold -of the intersection has small
probability, and for large l the second does - subsystem 2 not crossing the threshold before subsystem
1. From definition of the test quantities (Definition 4), we obtain the bounds:

log Λn(X,Z) ≤ − log Π1(n) + max
r∈[1,n]

{Rrn(X) +Rrn(Z)} .

Now we can continue to bound:

P∞,k2(k2 ≤ ν1 ≤ ν2, ν2 ≤ k2 + Cα) ≤
k2+Cα∑
l=k2

P∞,k2 ({Λl(X,Z) ≥ Bα} ∩ {Λl(Y, Z) < Bα})

≤
k2+Cα∑
l=k2

P∞,k2({− log Π1(l) + max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα}∩

{− log Π2(l) + log π2(r) +Rrl (Y ) +Rrl (Z) < logBα,∀r ≤ l})

≤
k2+Cα∑
l=k2

P∞,k2({− log Π1(l) + max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα}∩

{− log Π1(l) + log Π2(l)− log π2(k2) + max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > ε})

≤
k2+C̃α∑
l=k2

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)

)
+

+

k2+Cα∑
l=k2+C̃α

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)
,

where Vl = ε+ log Π1(l)− log Π2(l) + log π2(k2).

Analyzing the probability of early crossing for subsystem 1 (event E1). Lemma 2 will be used to
bound the first probability in the inequality. Define b0 = q0(Z) + q0(X) and b1 = q0(X)− q1(Z) + d1.
Apply Assumption VII.2 and Lemma 2, with a = a1 = logBα + log Π1(l) − (l + 1) d1, b = b1,
c = c1 = (k2 − 1)σ2

0(X,Z) and d = d1 = σ2
1(X,Z):

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)

)
≤ l max

r∈[1,l]
P∞,k2 (Rrl (X) +Rrl (Z) ≥ logBα + log Π1(l))

≤ l max
s∈[0,k2−1]

max
r∈[k2,l]

K(X,Z) exp

{
−(logBα + log Π1(l)− (l + 1) d1 + (l − r + 1) b1 + s b0)2

(l − r + 1)σ2
1(X,Z) + s σ2

0(X,Z)

}

≤ l K(X,Z) max
r∈[k2,l]

exp

{
−(logBα + log Π1(l)− (l + 1) d1 + (l − r + 1) b1)2

(l − r + 1)σ2
1(X,Z) + (k2 − 1)σ2

0(X,Z)

}
. (21)

Let us assume that C̃α = logBα/w for some constant w > 0. We can then control the bound using
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Eq. (21) and a simple observation:
k2+C̃α∑
l=k2

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)

)
≤ (C̃α)2 exp−min

l
Φα(l),

and Φα is given by

Φα =
(logBα +Ac(Kα) +Kα b1)2

Kα σ2
1(X,Z) + (k2 − 1)σ2

0(X,Z)
,

Ac(Kα) = log Π1(Kα + k2)− (Kα + k2) d1.

The constant Kα is chosen as to minimize Φα under the constraint that 0 < Kα < C̃α. By assumption on
tail of prior, there exists T , such that for all Kα > T , |Ac(Kα)| < ε. We are in this regime. Consider the
case b1 > 0. Our previous calculation shows minima is achieved when Kα = (logBα − ε)/b1 − 2 (k2 −
1)σ2

0(X,Z)/σ2
1(X,Z). For vanishing α, Kα < C̃α if b1 > w, else we should set Kα = logBα/w to

minimize Φα. Lemma 2 can be used to compute the rate at the minimum when either b1 > w or b1 ≤ w:

Φα,min = 4
b21

σ2
1(X,Z)

(
logBα − ε

b1
− (k2 − 1)σ2

0(X,Z)

σ2
1(X,Z)

)
for b1 > w,

=

(
logBα

[
1 + b1

w

]
− ε
)2

logBα
σ2
1(X,Z)
w + (k2 − 1)σ2

0(X,Z)
for b1 ≤ w.

The rate that the probability goes to zero is then calculated as:

r1(w) = lim
α→0

− log[(C̃α)2 exp−Φα]

logBα
=

{
4 b1
σ2
1(X,Z) for b1 > w,
w

σ2
1(X,Z)

[
1 + b1

w

]2
for b1 ≤ w.

(22)

We can proceed similarly for the case b1 ≤ 0. Notice that to obtain a vanishing probability now, we need
Kα < logBα/− b1, so the only interesting case is when w > −b1 (else Φα = 0 is the minimum). Since
for b1 < 0, the function first decreases to the minimum, we can conclude that in this case:

r1(w) = lim
α→0

− log[(C̃α)2 exp−Φα]

logBα
=

w

σ2
1(X,Z)

[
1 +

b1
w

]2

. (23)

Analyzing the probability of subsystem 2 crossing after subsystem 1 (event E2). Let Ṽl = ε +

log Π1(l)− d1l− log Π2(l) + d2l+ log π2(k2), qy(l) = (l− k2 + 1)q1(Y ) and σ2
y(l) = (l− k2 + 1)σ2

1(Y ).
Similarly, for the second probability, we bound:

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)
≤ l max

r∈[1,l]
P∞,k2

(
Rrl (X) +Rrl (Z)−Rk2l (Y )−Rk2l (Z) ≥ Vl

)
≤ l max

r∈[1,l]
exp

{
−(Vl + (l − r + 1)q0(X) + qy(l) + [k2 − r]+q0(Z) + [r − k2]+q1(Z))2

(l − r + 1)σ2
0(X) + σ2

y(l) + [k2 − r]+σ2
0(Z) + [r − k2]+σ2

1(Z)

}

≤ l max
r∈[1,l]

exp

{
−(Vl + (l − r)q0(X) + (r − k2)q1(Z) + qy(l) + q0(X))2

(l − r)σ2
0(X) + rσ2

1(Z) + σ2
y(l) + k2σ2

0(Z) + σ2
0(X)

}

≤ l exp

{
−(Ae(l) + l[qi∗ + q1(Y ) + d1 − d2])2

Ce + l[σ2
i∗ + σ2

1(Y )]

}
,
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where qi∗ = min(q0(X), q1(Z)), σ2
i∗ = max(σ2

0(X), σ2
1(Z)), Ae(l) = Ṽl− k2[q1(Y ) + q1(Z)] + q0(X) +

q1(Y ) and Ce = k2[σ2
0(Z)− σ2

1(Y )] + σ2
0(X) + σ2

1(Y ).
To continue the analysis, we compute the rates for the second major event:
k2+Cα∑
l=k2+C̃α

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)
≤ (Cα − C̃α)2 exp−min Φ̃α,where

Φ̃α =

(
Ae(K̃α) + K̃α[qi∗ + q1(Y ) + d1 − d2]

)2

Ce + K̃α[σ2
i∗ + σ2

1(Y )]
.

Lemma 2 implies the minimum in this case is at K̃α = Ae(l))/(qi∗ + q1(Y ) + d1− d2). But since this is
a small quantity compared to C̃α+k2, assuming (qi∗ + q1(Y ) +d1−d2) > 0, we have that the minimum
happens at K̃α = k2 + C̃α, as the function is increasing after the minima. Using similar arguments as
for the first major event, it is straightforward to show that the rate function satisfies:

r2(w) = lim
α→0

− log[(Cα − C̃α)2 exp−Φ̃α]

logBα
=

1

w

[qi∗ + q1(Y ) + d1 − d2]2

σ2
i∗ + σ2

1(Y )
. (24)

Selecting the optimizing rate. Given the bounds we have computed, the problem reduces to selecting
the constant C̃α so that the best rate is obtained for P∞,k2(k2 ≤ ν1 ≤ ν2). In rate matching, we have two
rates r1(w) and r2(w), and would like to maximize the minimum of both, i.e., max min(r1(w), r2(w)),
which is obtained by setting w such that r1(w) = r2(w),where the rate functions are given by Eq. (22),
Eq. (23) (here we denote it r1(w)) and Eq. (24). There are three cases, since the first event has three
behaviors for the rate r∗:

(1) Consider b1 > 0. Then, for w < b1, in order to have

r2(w) > 4
b1

σ2
1(X,Z)

,

we set:

w∗1 < min

(
b1,

σ2
1(X,Z)

σ2
i∗ + σ2

1(Y )

[qi∗ + q1(Y ) + d1 − d2]2

4b1

)
and get rate r∗ = 4 b1

σ2
1(X,Z) .

(2) Again let b1 > 0. Then for w ≥ b1, in order to have

r2(w) =
w

σ2
1(X,Z)

[
1 +

b1
w

]2

,

we set:

w∗2 =

√
σ2

1(X,Z)

σ2
i∗ + σ2

1(Y )
[qi∗ + q1(Y ) + d1 − d2]− b1,

as long as it satisfies w∗2 ≥ b1. The obtained rate is r∗ = r2(w∗2). Else, set w∗2 = b1, and obtain rate
r2(b1).
(3) Let b1 ≤ 0. Then for w ≥ −b1, in order to have

r2(w) =
w

σ2
1(X,Z)

[
1 +

b1
w

]2

,
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we set:

w∗3 =

√
σ2

1(X,Z)

σ2
i∗ + σ2

1(Y )
[qi∗ + q1(Y ) + d1 − d2]− b1,

which satisfies w∗3 ≥ −b1. The obtained rate is r∗ = r2(w∗3).

Upper bounding detection of subsystem 2 and selecting Cα (probability of event E3). We bound
P∞,k2(ν2 > k2 + Cα). Let Assumption VII.5 and Cα = β logBα. From definition of the test quantity
(Definition 4):

log Λn(Y,Z) ≥ − log Π2(n) + log π2(r) +Rrn(Y ) +Rrn(Z).

Let η = min{n : Rk2k2+n−1(Y ) +Rk2k2+n−1(Z) ≥ logBα}, so ν2 ≤ η. For arbitrary ε > 0, let

T k2ε = sup{n : |(n)−1[Rk2k2+n−1(Y ) +Rk2k2+n−1(Z)]− (q1(Y ) + q1(Z) + d2)| ≥ ε}.

It is simple to see that:

logBα > Rk2η−1(Y ) +Rk2η−1(Z) ≥ (η − k2)(q1(Y ) + q1(Z) + d2 − ε) on {η − 1 ≥ T k2ε }.

So,

ν2 ≤ η ≤
(
k2 +

logBα
q1(Y ) + q1(Z) + d− ε

)
I(η < 1 + T k2ε ) + (1 + T k2ε )I(η ≥ 1 + T k2ε )

≤ k2 +
logBα

q1(Y ) + q1(Z) + d− ε
+ 1 + T k2ε .

Using this result:

P∞,k2(ν2 > k2 + Cα) ≤ P∞,k2(Cα ≤
logBα

q1(Y ) + q1(Z) + d− ε
+ 1 + T k2ε )

≤ P∞,k2
[
T k2ε + 1 ≥ logBα

(
β − 1

q1(Y ) + q1(Z) + d− ε

)]
≤ E∞,k2 exp(T k2ε + 1)

(
α

1− α

)β− 1

q1(Y )+q1(Z)+d2−ε

≤ O
(
α
β− 1

q1(Y )+q1(Z)+d2−ε

)
.

where we used Markov’s inequality in the last line. Assumption VII.5 guarantees that E∞,k2 exp(T k2ε +

1) < ∞. The constants in big-O are independent of k2, ε. To obtain the best possible rate for the total
error coupling probability, we choose

β = (1 + ε) r∗ +
1

q1(Y ) + q1(Z) + d2 − ε

Concluding the proof. To put the elements of the proof together, we use the bound:

P∞,k2(k2 ≤ ν1 ≤ ν2) ≤ P∞,k2(E1) + P∞,k2(E2) + P∞,k2(E3),
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so the rate function has

lim
α→0

− logP∞,k2(k2 ≤ ν1 ≤ ν2)

logBα
≤ lim

α→0

− log 3 maxi P∞,k2(Ei)
logBα

= min
i

lim
α→0

− logP∞,k2(Ei)
logBα

= r∗.

Taking the expectation with respect to λ2, we can conclude that the results hold for the measure P∞,λ2
,

since k2 only appears in either the denominator of the bound rates, or as l − k2, but for l > k2.

F. Proof of Theorem 4

We prove the first assertion. First notice that from Definition 7, ∆̃1(α, k2) ⊆ ∆1(α). Also notice that
∆̃1(α, k2) ⊆ ∆̃1(α), so that ∆̃1(α, k2) ⊆ ∆1(α) ∩ ∆̃1(α). Let ν1 ∈ ∆̃1(α, k2), if k1 ≤ k2:

Ek1,k2 [(ν1 − k1)m|ν1 ≥ k1] =
Ek1,k2 [(ν1 − k1)m+ ]

Pk1,k2(ν1 ≥ k1)

≥ ((1− ε)L1
α)m

Pk1,k2(ν1 ≥ k1)
(Pk1,k2(ν1 ≥ k1)− γk1,k2(ν1)).

But Pk1,k2(ν1 ≥ k1) = 1−P∞,∞(ν1 < k1) ≥ 1−α/Π1
k1

for k1 ≤ k2 using Lemma 3(i), and Lemma 4(ii)
shows that γk1,k2(ν1)→ 0 uniformly over ν1, so

inf
ν1∈∆̃1(α,k2)

Ek1,k2 [(ν1 − k1)m|ν1 ≥ k1] ≥ ((1− ε)L1
α)m(1 + o(1)) as α→ 0.

A similar bound works for k2 < k1, except Pk1,k2(ν1 ≥ k1) = P∞,k2(ν1 ≥ k1) ≥ 1 − α/Π1
n for

ν1 ∈ ∆̃1(α, k2) (Lemma 3(ii)).
For the second statement, we note that:

inf
ν1∈∆̃1(α)

Eλ1,λ2
[(ν1 − λ1)m+ ] ≥ inf

ν1∈∆̃1(α)
Eλ1,λ2

[(ν1 − λ1)m+ I(λ1 ≤ λ2)]

+ inf
ν1∈∆̃1(α)

Eλ1,λ2
[(ν1 − λ1)m+ I(λ1 > λ2)]

We can use Lemma 4 (i) and (iii) to bound such quantities in the same manner as in the first case.
Lemma 3 (i) and (iii) can be used to bound the appropriate probabilities as before.

G. Proof of Theorem 5

We divide the proof into computing an upper bound (item (a)) and the lower bound (item (b)). First, we
compute the upper bound in Lemma 5. Denote by ν1 = νS(X,Z) the stopping time given by Eqn (9). We
would like to bound the expectation Eλ1,λ2

[(ν1 − λ1)+]. In order to do this we need Assumption VII.4.
Assumption VII.4 is stronger than Assumption VII.3, and in fact the later follows from the former [25].
We can proceed to prove the theorem.
(a) Define:

qd1 = q1(X) + q1(Z) + d1, q̃
d
1 = q1(X) + d1,

δα(k1, k2) = Pk1,k2(ν1 > ν2), µα(k1, k2) = Pk1,k2(ν1 > ν̃1),

δα = Pλ1,λ2
(ν1 > ν2), µα = Pλ1,λ2

(ν1 > ν̃1).
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We start by analyzing the expectation of the stopping time, using the definition of ν̄1 and ν̄2:

Ek1,k2
[
(ν̄1 − λ1)+

]
= Ek1,k2

[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
+

+ Ek1,k2
[
(ν̃1 − λ1)+I(ν1 > ν2, ν̃1 ≥ ν2)

]
+

+ Ek1,k2
[
(ν2 − λ1)+I(ν1 > ν2 > ν̃1)

]
Each expectation can be bounded individually. The first expectation is bounded by using Lemma 5,

setting A = {ω ∈ Ω : ν1(ω) ≤ ν2(ω)}:

Ek1,k2 [(ν1 − λ1)+I(ν1 ∈ A)]m ≤
[
| log(α)|
qd1

]m
Pk1,k2(ν1 ≤ ν2)(1 + o(1))

=

[
| log(α)|
qd1

]m
(1− δα(k1, k2))(1 + o(1)).

For the remainder of the proof, let E denote Ek1,k2 and P denote Pk1,k2 . We return to the usual notation
wherever necessary. Also, we show the results for the case m = 1 and the modifications for the case
m ≤ r are straightforward. The second expectation is bounded as:

E [(ν̃1 − λ1)+ I(ν1 > ν2, ν̃1 ≥ ν2)] ≤ E
[
(ν̃1 − λ1)+ I(ν1 > ν2

)
]

= E[(ν̃1 − λ1)+]− E[(ν̃1 − λ1)+ I(ν1 ≤ ν2)]

≤ E[(ν̃1 − λ1)+]− logBα

q̃d1
P(ν̃1 > λ1 +

logBα

q̃d1
, ν1 ≤ ν2)

≤ E[(ν̃1 − λ1)+]− logBα

q̃d1

[
P(ν̃1 > λ1 +

logBα

q̃d1
)− P(ν1 > ν2)

]
= E[(ν̃1 − λ1)+]− logBα

q̃d1

[
Pk1,∞(ν̃1 > λ1 +

logBα

q̃d1
)− P(ν1 > ν2)

]
≤ E[(ν̃1 − λ1)+]− logBα

q̃d1
(1− ε̃α − δα(k1, k2))

= Ek1,∞[(ν̃1 − λ1)+]− logBα

q̃d1
(1− ε̃α − δα(k1, k2))

≤ logBα

q̃d1
(ε̃α + δα(k1, k2)).

Since (1) In third line we used P (A ∩B) ≥ P (A)− P (Bc); (2) In fifth line, ν̃1 does not depend on
k2; (3) Pk1,∞(ν̃1 > λ1 + logBα

q̃d1
) ≥ 1 − ε̃α, by Lemma 4 (iv) and (4) Ek1,∞[(ν̃1 − λ1)+] is bounded by

Lemma 5 (fifth statement).
Finally,

E
[
(ν2 − λ1)+ I(ν1 > ν2 > ν̃1

)
] ≤ E[(ν1 − λ1)+ I(ν1 > ν̃1)]

≤ logBα

qd1
P(ν1 > ν̃1)(1 + o(1))

=
logBα

qd1
µα(k1, k2)(1 + o(1)).

Where we used (1) ν1 > ν2 in the first line and (2)in the second line, Lemma 5 (third assertion), setting
A = {ω ∈ Ω : ν1(ω) ≤ ν̃1(ω)}.
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In sum, we have:

E[(ν̄1 − λ1)+] ≤ logBα

qd1
(1− δα(k1, k2) + µα(k1, k2))(1 + o(1)) +

logBα

q̃d1
(ε̃α + δα(k1, k2))

=
logBα

qd1
(1− δα(k1, k2) + µα(k1, k2) + o(1)) +

logBα

q̃d1
(ε̃α + δα(k1, k2)).

To obtain the delay, divide

Eλ1,λ2
[(ν̄1 − λ1)+] ≤ logBα

qd1
(1− δα + µα + o(1)) +

logBα

q̃d1
(ε̃α + δα),

by (using Theorem 2),

Pλ1,λ2
(ν̄1 ≥ λ1) ≥ 1− α− ξαλ1,λ2

(ν̄1)

→ 1− o(1)

and we obtain the result in the Theorem since (1) ε̃α and µα are o(1) (Lemmas 4(iv) and 6) and (2)
ξαλ1,λ2

(ν̄1) is o(1) as the procedure is regular.

We can now prove the matching lower bound for the delay.
(b) For the remainder of the proof, let E denote Ek1,k2 and P denote Pk1,k2 . First notice that:

E
[
(ν̄1 − λ1)+

]
= E

[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
+ E

[
(max(ν̃1, ν2)− λ1)+I(ν1 > ν2)

]
≥ E

[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
+ E

[
(ν̃1 − λ1)+I(ν1 > ν2)

]
.

We can now bound the first term.

E
[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
≥ Lα1 P(ν1 − k1 > (1− ε)Lα1 , ν1 ≤ ν2)

= Lα1 [P(ν1 ≥ k1 ∧ k2, ν1 ≤ ν2)− P(k2 < ν1 ≤ k1, ν1 ≤ ν2)

− P(k1 < ν1 ≤ k1 + (1− ε)Lα1 , ν1 ≤ ν2)]

≥ Lα1 [P(ν1 ≥ k1 ∧ k2, ν1 ≤ ν2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)]

≥ Lα1 [P(ν1 ≥ k1 ∧ k2)− P(ν1 > ν2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)]

= Lα1 [1− P∞,∞(ν1 ≤ k1 ∧ k2)− δα(k1, k2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)]

≥ Lα1

[
1− α

Π1
k1∧k2

− δα(k1, k2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)

]
.

Where in the (1) fourth line we get a lower bound since the subtracted probabilities, and we identify
them with previous definitions; (2) fifth line we use P (A∩B) ≥ P (A)−P (Bc); (3)sixth line we use a
change of measure and (4) seventh line we use Lemma 3(i).

So if the procedure is (k1, k2) regular, E [(ν1 − λ1)+I(ν1 ≤ ν2)] ≥ Lα1 (1 − δα(k1, k2) + o(1)). For
the averaged case over the priors, the last line above should be replaced using the false alarm bound for
ν1. Notice that P(ν1 ≤ k1 ∧ k2) ≤ Pk1,∞(ν1 ≤ k1), and average the last statement over k1 to obtain
Pλ1,∞(ν1 ≤ λ1) ≤ α, so the last line is replaced by

≥ Lα1 [1− α− δα − ξαλ1,λ2
(ν1)− γε,α(ν1)]
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The second expectation can be bound similarly:

E
[
(ν̃1 − λ1)+I(ν1 > ν2)

]
≥ L̃α1 P(ν̃1 − k1 ≥ L̃α1 , ν1 > ν2)

≥ L̃α1 [P(ν̃1 − k1 ≥ L̃α1 )− P(ν1 ≤ ν2)]

= L̃α1 [1− P(ν̃1 < k1)− γ(k1,k2)
ε,α (ν̃1)− 1 + δα(k1, k2)].

Finally, we use the trivial upper bound Pk1,k2(ν̃1 ≥ k1) ≤ 1− o(1) and take expectation with respect
to λ1 and λ2 to obtain the result in the theorem.
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APPENDIX

A. Lemma 2

Lemma 2. Consider the function f(x) = (a+ b x)2/(c+ d x), with a, c, d ≥ 0. The following properties
hold:
(a) If b > 0 and a/b > 2 c/d, the function is decreasing in the interval x ∈ [0, xmin] and increasing in

x ∈ (xmin,∞],where xmin = a/b−2 c/d is the point of minimum and f(xmin) = 4 b2/d (a/b−c/d).
(a’) If b > 0 and a/b ≤ 2 c/d, the function is increasing in the interval x ∈ [0,∞), the point of minimum

is x = 0, and f(xmin) = a2/c.
(b) If b ≤ 0, the function is decreasing in the interval x ∈ [0, xmin] and increasing in x ∈ (xmin,∞],

where xmin = −a/b is the point of minimum and f(xmin) = 0.

Proof: Follows from noticing that the derivative is f ′(x) = (a+ b x)(2 bc− ad+ bd x)/(c+ d x)2.

B. Lemma 3

Lemma 3. Let ν1 be a valid stopping time such that ν1 ∈ Fn(X,Z). Consider the stopping rule classes
in Definition 7. Then:
(i) If ν1 ∈ ∆1(α), then for all n ≤ k1 ≤ k2 Pk1,k2(ν1 < n) ≤ α

Π1
n
.

(ii) If ν1 ∈ ∆̃1(α, k2), then for all n ≤ k1: Pk1,k2(ν1 < n) ≤ α
Π1
n
.

(iii) If ν1 ∈ ∆̃1(α), then for all n ≤ k1: Pk1,λ2
(ν1 < n, λ2 < k1) ≤ α

Π1
n
.

Proof: All assertions follow the same proof guideline. First notice that:

P π1,∞
fa (ν1) ≥ Pλ1,∞({ν1 < n} ∩ {λ1 > n})

= Pλ1,∞(ν1 < n|λ1 > n)Pλ1,∞(λ1 > n)

= P∞,∞(ν1 < n)Π1
n.

Next, as ν1(X,Z) ∈ ∆1(α), we have P π1,∞
fa (ν1) ≤ α. To conclude, for the choices of k1,k2 and n in

the lemma Pk1,k2(ν1 < n) = P∞,∞(ν1 < n).

C. Lemma 4

We state a basic Lemma that is used to bound probabilities of false alarm in a given class. Compare
this to Lemma 1 in [25].
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Lemma 4. Define for all 0 < ε < 1:

γ(k1,k2)
ε,α (ν1) = Pk1,k2(k1 ≤ ν1 ≤ k1 + (1− ε)Lα1 ),

γε,α(ν1) = Pλ1,λ2
(λ1 ≤ ν1 ≤ λ1 + (1− ε)Lα1 ),

γε,α(ν1, λ2 < λ1) = Pλ1,λ2
(λ1 ≤ ν1 ≤ λ1 + (1− ε)Lα1 , λ2 < λ1),

γ̃(k1,k2)
ε,α (ν1) = Pk1,k2(k1 ≤ ν1 ≤ k1 + (1− ε)L̃α1 ),

γ̃ε,α(ν1) = Pλ1,λ2
(λ1 ≤ ν1 ≤ λ1 + (1− ε)L̃α1 , λ2 < λ1),

γ(k1,k2)
ε,α (ν̃1) = Pk1,k2(k1 ≤ ν̃1 ≤ k1 + (1− ε)L̃α1 ),

γε,α(ν̃1) = Pλ1,λ2
(λ1 ≤ ν̃1 ≤ λ1 + (1− ε)L̃α1 ).

where d1 is given in Assumption VII.1, Lα1 and L̃α1 are given by Definition 6. Then for all k1, k2 ≥ 1

and 0 < ε < 1:

(i) limα→0 supν1∈∆1(α) γ
(k1,k2)
ε,α (ν1) = 0,

limα→0 supν1∈∆1(α) γε,α(ν1) = 0,

limα→0 supν1∈∆1(α) γε,α(ν1, λ1 < λ2) = 0,

(ii) limα→0 supν1∈∆̃1(α,k2) γ̃
(k1,k2)
ε,α (ν1) = 0 for k1 > k2,

limα→0 supν1∈∆̃1(α,k2) γ
(k1,k2)
ε,α (ν1) = 0 for k1 ≤ k2,

(iii) limα→0 supν1∈∆̃1(α) γ̃ε,α(ν1) = 0,

(iv) limα→0 supν̃1∈∆1(α) γ
(k1,k2)
ε,α (ν̃1) = 0,

limα→0 supν̃1∈∆1(α) γε,α(ν̃1) = 0.

An analogous result holds for ν2 belonging to classes ∆2(α), ∆̃2(α, k2) and ∆̃2(α).

Proof: (i) We can first build our bound by a change of measure argument:

P∞,∞ (k1 ≤ ν1 < k1 + (1− ε)Lα1 ) =

= Ek1,k2
{
I (k1 ≤ ν < k1 + (1− ε)Lα1 ) e−(Rk1ν1 (X)+R

k1∧k2
ν1 (Z))

}
≥ Ek1,k2

{
I(k1≤ν<k1+(1−ε)Lα1 ,R

k1
ν1 (X)+R

k1∧k2
ν1 (Z)<C)e

−(Rk1ν1 (X)+R
k1∧k2
ν1 (Z))

}
≥ e−CPk1,k2

(
k1 ≤ ν < k1 + (1− ε)Lα1 , max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1∧k2n (Z) < C

)
≥ e−C [Pk1,k2 (k1 ≤ ν < k1 + (1− ε)Lα1 )−

Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1∧k2n (Z) ≥ C
)]

.

Choosing C = (1− ε2)(q1(X) + q1(Z))Lα1 , and rearranging we obtain:

γ(k1,k2)
ε,α ≤ e(1−ε2)(q1(X)+q1(Z))Lα1 P∞,∞ (k1 ≤ ν1 < k1 + (1− ε)Lα1 ) + (25)

+ Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1∧k2n (Z) ≥ C
)

We now analyze each of the two parts in the above. We start with the second term:

βk1,k2(ε, α) = Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1∧k2n (Z) ≥ C
)
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≤ Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1n (Z) ≥ C
)

+

+ Pk1,k2
(
C −RZ ≤ max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1n (Z) < C,RZ ≥ 0

)
≤ Pk1,k2

(
max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1n (Z) ≥ C

)
+

+ Pk1,k2
(
C −RZ ≤ max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1n (Z) < C

)
= Pk1,k2

(
max

0≤n<(1−ε)Lα1
Rk1k1+n(X) +Rk1k1+n(Z) ≥ C

)
+

+ Pk1,k2
(
C −RZ ≤ max

0≤n<(1−ε)Lα1
Rk1k1+n(X) +Rk1n (Z) < C

)
= Pk1,k2

(
1

Nα
max

0≤n<Nα
Rk1k1+n(X) +Rk1k1+n(Z) ≥ qε

)
+

+ Pk1,k2
(
qε −

RZ
Nα
≤ max

0≤n<Nα
Rk1k1+n(X) +Rk1n (Z) < qε

)
.

Where RZ = Rk2k1−1(Z), qε = (1 + ε)(q1(X) + q1(Z)) and Nα = b(1 − ε)Lα1 c. Now noticing that as
α→ 0 we have Nα →∞, we have using assumption VII.3 and properties of measure:

Pk1,k2
(

1

Nα
max

0≤n<Nα
Rk1k1+n(X) +Rk1k1+n(Z) ≥ qε

)
= Pk1,∞

(
1

Nα
max

0≤n<Nα
Rk1k1+n(X) +Rk1k1+n(Z) ≥ qε

)
→ 0.

Because RZ
Nα
→ 0 almost surely, we have the second probability going to zero. Thus βk1,k2(ε, α)→ 0

as α→ 0. We now proceed to bound the first probability in Eq. (25), using the result from Lemma 3(i)
and using the definition of Nα and q = q1(X) + q1(Z):

pk1,k2(ε, α) = e(1−ε2)(q1(X)+q1(Z))Lα1 P∞,∞ (k1 ≤ ν1 < k1 + (1− ε)Lα1 )

≤ e(1−ε2)(q1(X)+q1(Z))Lα1 P∞,∞ (ν1 < k1 + (1− ε)Lα1 )

≤ α

Π1
k1+Nα

e(1−ε2)qLα1 .

Notice that α = e−(q+d1)Lα1 from the definitions. Thus:

log(pk1,k2(ε, α))

Nα
≤ (1− ε2)qLα1

Nα
− (q + d1)Lα1

Nα
−

log Π1
k1+Nα

Nα

=
(1− ε2)qLα1

Nα
− (q + d1)Lα1

Nα
−

log Π1
k1+Nα

k1 +Nα

k1 +Nα

Nα

≤ (1 + ε)q(Nα + 1)

Nα
−

(q+d1)
1−ε Nα

Nα
−

log Π1
k1+Nα

k1 +Nα

k1 +Nα

Nα

= −ε
2q + d1

1− ε
−

log Π1
k1+Nα

k1 +Nα

(
1 +

k1

Nα

)
+

(1 + ε)q

Nα
.
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Taking limits, and using the tail assumption:

lim
α→0

log(pk1,k2(ε, α))

Nα
≤ −ε

2q + d1

1− ε
+ d1 = −ε

2q + εd1

1− ε
.

It is now clear that pk1,k2(ε, α)→ 0. We have shown that for all ν1 ∈ ∆1(α):

γ(k1,k2)
ε,α (ν1) ≤ βk1,k2(ε, α) + pk1,k2(ε, α).→ 0

We can complete the result by studying the behavior of γε,α. Let Ñα = bεLα1 c. From the definition:

γε,α(ν1) =

∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)γ(k1,k2)
ε,α (ν1)

≤ Π1
Ñα

+

Ñα∑
k1=1

Ñα∑
k2=1

π1(k1)π2(k2)(βk1,k2(ε, α) + pk1,k2(ε, α))

≤ Π1
Ñα

+ sup
k1≤Ñα

pk1,k2(ε, α) +

Ñα∑
k1=1

Ñα∑
k2=1

π1(k1)π2(k2)βk1,k2(ε, α).

Now as α → 0, Π1
Ñα
→ 0 by definition, and the third term in the above sum goes to zero by

Dominated Convergence Theorem and the fact that βk1,k2(ε, α) → 0. For the second term, we make a
minor modification in the first proof of convergence of pk1,k2(ε, α), by noticing that Π1

n is a non-increasing
function of n:

sup
k1≤Ñα

pk1,k2(ε, α) ≤ α

Π1
Ñα+Nα

e(1−ε2)qLα1 .

Then continuing as before, replacing k1 by Ñα, we obtain:

lim
α→0

log(supk1≤Ñα pk1,k2(ε, α))

Nα
≤ −ε

2q + d1

1− ε
+ d1

(
1 +

ε

1− ε

)
= − ε2q

1− ε
.

Clearly this shows that supk1≤Ñα pk1,k2(ε, α) → 0, concluding the proof. The proof for the third
statement is the same the above, except the sum over the priors is only over the cases λ1 < λ2.

(ii) The proof is as in (i), except we use the change of measure for k2 < k1:

P∞,k2
(
k1 ≤ ν1 < k1 + (1− ε)L̃α1

)
= Ek1,k2

{
I
(
k1 ≤ ν < k1 + (1− ε)L̃α1

)
e−(Rk1ν1 (X))

}
.

For k1 ≤ k2 we use the same change of measure as in (i). We again can use Lemma 3(ii). For the cases
(iii) and (iv) the proofs proceed similarly.
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D. Lemma 5

Lemma 5. Let the stopping time ν1 = ν(X,Z) defined in Eq. (9). If Assumption VII.4, then as α→ 0,
for all m ≤ r, and all events A:

Ek1,k2 [(ν1 − λ1)+]m ≤
[
L1
α

]m
(1 + o(1)),

Eλ1,λ2
[(ν1 − λ1)+]m ≤

[
L1
α

]m
(1 + o(1)),

Ek1,k2 [(ν1 − λ1)+I(ν1 ∈ A)]m ≤
[
L1
α

]m Pk1,k2(ν1 ∈ A)(1 + o(1)),

Eλ1,λ2
[(ν1 − λ1)+I(ν1 ∈ A)]m ≤

[
L1
α

]m Pλ1,λ2
(ν1 ∈ A)(1 + o(1)),

Ek1,k2 [(ν̃1 − λ1)+]m ≤
[
L̃1
α

]m
(1 + o(1)),

Eλ1,λ2
[(ν̃1 − λ1)+]m ≤

[
L̃1
α

]m
(1 + o(1)),

Ek1,k2 [(ν̃1 − λ1)+I(ν̃1 ∈ A)]m ≤
[
L̃1
α

]m
Pk1,k2(ν̃1 ∈ A)(1 + o(1)),

Eλ1,λ2
[(ν̃1 − λ1)+I(ν̃1 ∈ A)]m ≤

[
L̃1
α

]m
Pλ1,λ2

(ν̃1 ∈ A)(1 + o(1)),

where L1
α and L̃1

α are given in Definition 6.

Proof: By definition of ν1, since we are using the SRP statistic:

log(Λn(X,Z)) ≥ log

(
π1(k1)

Π1
n

)
+Rk1n (X) +Rk1n (Z)

= Sk1n .

We can define a stopping time:

η(k1) = inf
{
n : Sk1k1+n−1 ≥ log(Bα)

}
.

Notice that ν1− k1 ≤ η(k1) on ν1 ≥ k1, as η(k1) starts at k1 and the Shiryaev statistics only includes
values in range (k1, n) after time k1. Define:

T̃ (k1)
ε = sup

{
n ≥ 1 :

∣∣∣∣ 1nSk1k1+n−1(X)− q1(X) + q1(Z) + d1

∣∣∣∣ > ε

}
.

Due to Assumption VII.4, and because 1
n log

(
π1(k1)

Π1
n

)
→ d1 as n→∞, we have Ek1,k2 [T̃

(k1)
ε ] <∞.

Furthermore, from the definition of η and setting qd = q1(X) + q1(Z) + d1:

log(Bα) ≥ Sk1η(k1)−1 ≥ (η(k1)− k1)(qd − ε) on
{
η(k)− 1 > T̃ (k1)

ε

}
.

We can bound for all 0 < ε < qd:

η(k1) ≤ k1 +
log(Bα)

qd − ε
I{η(k)−1>T̃

(k1)
ε } + (T̃ (k1)

ε + 1)I{η(k)−1≤T̃ (k1)
ε }

≤ T̃ (k1)
ε + 1 + k1 +

log(Bα)

qd − ε
.

So:

ν1 − k1

log(Bα)
≤ T̃

(k1)
ε

log(Bα)
+

1 + k1

log(Bα)
+

1

qd − ε
.
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Letting ε → 0, noticing Ek1,k2 [T̃
(k1)
ε ] < ∞, and letting α → 0 (log(Bα) → ∞) we obtain the first

result in the Theorem for all m ≤ r. Averaging over the priors, noticing Eλ1,λ2
[T̃

(k1)
ε ] < ∞ we obtain

the second. For the third and fourth results, it suffices to notice that:

(ν1 − k1)I(ν1 ∈ A)

log(Bα)
≤ T̃

(k1)
ε

log(Bα)
+

1 + k1

log(Bα)
+

I(ν1 ∈ A)

qd − ε
.

The proof follows along similar lines for ν̃1.

E. Lemma 6

Lemma 6. Let µα(k1, k2) = Pk1,k2(ν1 > ν̃1) and µα = Pλ1,λ2
(ν1 > ν̃1), where ν1 and ν̃1 are given in

Eqns. (9) and (10). Then µα(k1, k2) = o(1) and µα = o(1) as α→ 0.

Proof: First, we note that

Pk1,k2(ν1 > ν̃1) ≤ Pk1,k2(ν1 > ν̃1, ν̃1 ≥ k1 + L̃α) + Pk1,k2(ν̃1 < k1) + Pk1,k2(k1 ≤ ν̃1 ≤ k1 + L̃α),

and asymptotically, in α, the last two terms are o(1). Next, we follow along the lines of the first part
of Lemma 1, to derive the result. Let P denote Pk1,k2 , E(X) = {log Λl(X) ≥ logBα} and I(L̃α) =

[k1 + L̃α,∞):

Pk1,k2(ν1 > ν̃1, ν̃1 ≥ k1 + L̃α) ≤
∞∑

l=k1+L̃α

P ({log Λl(X,Z) ≤ logBα} ∩ E(X), ν̃1 = l)

≤
∞∑

l=k1+L̃α

P
({

log Λl(X) + min
s∈[1,l]

Rsl (Z)− log Π1(l) ≤ logBα

}
∩ E(X), ν̃1 = l

)

≤
∞∑

l=k1+L̃α

P
(

max
s∈[1,l]

−Rsl (Z) ≥ − log Π1(l), ν̃1 = l

)

≤
∞∑

l=k1+L̃α

P(ν̃1 = l)P
(

max
s∈[1,l]

−Rsl (Z) ≥ − log Π1(l)

)

≤ max
l∈I(L̃α)

P
(

max
s∈[1,l]

−Rsl (Z) ≥ − log Π1(l)

)
≤ max

l∈I(L̃α)
l max
s∈[1,l]

P (−Rsl (Z) ≥ − log Π1(l))

≤ max
l∈I(L̃α)

l max
r∈[1,l]

exp

{
−(Vl + l d1 −min(r, k1) q0(Z) + [l −max(r, k1) + 1]+q1(Z))2

l max(σ2
0(Z), σ2

1(Z))

}
,

where Vl = − log Π1(l)− l d1. Note that for l > L for some L, |Vl| < ε due to Assumption VII.1. Thus
when r ≤ k1, the maximum happens at r = k1, with rate upper bounded by

r(l) =

{
(ε+ l d1 − k1 q0(Z) + (l − k1 + 1)q1(Z))2

l max(σ2
0(Z), σ2

1(Z))

}
.

Else, the maximum happens at r = l, with rate upper bounded by

r(l) =

{
(ε+ l d1 + q1(Z))2

l max(σ2
0(Z), σ2

1(Z))

}
.
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In both cases, for any l ∈ [k1 + L̃α,∞], r(l) → ∞ as α → 0. Thus we obtain Pk1,k2(ν1 > ν̃1, ν̃1 ≥
k1 +L̃α) = o(1). Since k1 only appears multiplying an exponentially small probability, as both rates go to
infinity uniformly over k1, we can apply expectation to both sides, and obtain that Pλ1,λ2

(ν1 > ν̃1) = o(1),
as E[k1] = λ1 <∞.
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