
ON THE INJECTIVITY RADIUS AND TANGENT CONES AT
INFINITY OF GRADIENT RICCI SOLITONS

CHIH-WEI CHEN

Abstract. A lower-bound estimate of injectivity radius for complete Riemannian
manifolds is discussed in a pure geometric viewpoint and is applied to study tangent
cones at infinity of certain gradient Ricci solitons. We also study the asymptotic
volume ratio of gradient Ricci solitons.

1. Introduction

The Ricci solitons, which are generalizations of the Einstein manifolds, are impor-
tant solutions to the Ricci flow. Besides the advantage of having explicit equations,
they occur in the analysis of blow-up limits near singularities. In this article, we only
discuss the complete non-compact solitons, which are much more complicated than
the compact ones. In the three dimensional case, the classification of shrinking soli-
tons under some reasonable conditions leads to the performance of surgery. For higher
dimensional cases, some results about the classification of solitons were obtained in
the last four years, e.g. [7, 15, 17, 19, 5, 22]. These results were derived under vari-
ous curvature assumptions such as locally conformally flat, constant scalar curvature,
nonnegative Ricci curvature(for expanding solitons) or bounded nonnegative curvature
operator(for shrinking solitons when n = 4.) In this article, we try to understand the
geometry of solitons which are not Ricci-nonnegative.

Besides the studies on the classification, there are some results and conjectures about
the non-existence. For example, B.-L. Chen and X.-P. Zhu proved that there exists no
expanding soliton with nonnegative sectional curvature and ε-pinched Ricci curvature,
i.e. Ric ≥ εRg, in [9]. Here, and afterwards, R stands for the scalar curvature. This
existence problem is still open if we discard the condition on the sectional curvature.

On the other hand, there are some classical non-existence theorems about general
complete Riemannian manifolds. For example, there exists no manifold with Ric ≥ 0,
|Sect| ≤ C · dist(O, x)−2−ε and V ol(Bs) ≥ Csn for all geodesic balls Bs with radius
s and center O, where we use C to denote various constants. This was proved by S.
Bando, A. Kasue and H. Nakajima in [2]. Another non-existence result due to R. E.
Greene and H. Wu [13] and G. Drees [11] states that there exists no manifold with
positive sectional curvature and limdist(O,x)→∞R · dist(O, x)2 = 0 except for n = 4 or
8. An approach to achieve these non-existence results is to study the tangent cones at
infinity of such manifolds. Indeed, we prove that if a nonflat nonsteady Ricci soliton
M satisfies |Sect| ≤ C · dist(O, x)−2−ε and the non-accumulated property which is
stated in Section 4, then each tangent cone at infinity of M is the Euclidean space Rn.
Here we assume that the soliton has only one end and is simply connected at infinity
with dimension n ≥ 3. (These were also assumed in the article of Bando, Kasue and
Nakajima.) To prove this, we use a new injectivity radius estimate which is derived in
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Section 4. Such estimate is developed to avoid the usage of the nonnegativity of Ricci
curvature.

We should mention that there were other results about the non-existence of Ricci
solitons. For example, S. Pigola, M. Rimoldi and A. G. Setti [20] proved that a nonflat
expanding soliton (M, g, f) cannot satisfy either |∇f | ∈ Lp(M, e−fdvol) or 0 ≤ R ∈
Lp(M, e−fdvol) for some 1 ≤ p ≤ ∞. Note that, up to today, the growth of f is
unknown for expanding solitons unless we have some control on the Ricci curvature.

In the next section, we study the behavior of f on solitons with |Ric| ≤ C ·
dist(O, x)−ε. In Section 3, we derive lower bounds of the asymptotic volume ratio for ex-
panding solitons with 1

V ol(Bs)

∫
Bs
R ≥ −Cs−ε and shrinking solitons with 1

V ol(Bs)

∫
Bs
R ≤

Cs−ε. In Section 4, we derive an lower bound estimate about the injectivity radius.
Then, in Section 5 and 6, we apply this estimate to certain Ricci solitons and study
the tangent cones at infinity of solitons with fast curvature decay.

The author appreciates the hospitality and suggestions of professors Xi-Ping Zhu and
Bing-Long Chen when he visited Guangzhou and also the discussions with Hui-Ling
Gu and Zhu-Hong Zhang. He would like to thank his advisors, Gérard Besson and
Yng-Ing Lee, for their encouragements and discussions.

2. The growth of f on Ricci solitons with certain curvature decay

Let M be a complete non-compact expanding gradient Ricci soliton, which satisfies
the following equation:

Rij +∇i∇jf = −gij,
and R be the scalar curvature of M. The following two lemmas are well-known.

Lemma 1. (R. Hamilton, [14]) We have R + |∇f |2 + 2f = C1 for some constant C1

which can be absorbed by f .

Lemma 2. (B.-L. Chen, [7]) We have R ≥ −C2 for some constant C2 > 0.

Given a fixed point O ∈ M , we set s = dist(O, x) and γ(s) be a unit-speed min-
imizing geodesic connecting O and x, where x ∈ M is chosen arbitrarily. We use
the notation ′ to denote the differentiation with respect to s along γ(s). The follow-
ing proposition, which seems to appear first time in the literature in [21], is an easy
consequence of Lemmas 1 and 2.

Proposition 1. For every expanding soliton M , we have |f ′(x)| ≤ |∇f(x)| ≤ s+L(O),

where L(x) =
√
C1 + C2 − 2f(x) =

√
C2 +R(x) + |∇f(x)|2. Moreover, when Ric ≥

0, we have f ′(x) ≤ −s+ f ′(O).

Proof. Since−C2+|∇f |2+2f ≤ R+|∇f |2+2f = C1, we have |∇f | ≤
√
C1 + C2 − 2f =

L. Combining with ∇L = −∇f√
C1+C2−2f

, we have |∇L| ≤ 1.

Integrating it from the point O to some point x = γ(s) along γ, we have

L(x)− L(O) =

∫ s

0

L′ ≤
∫ s

0

|∇L| ≤ s.

Hence, |f ′(x)| ≤ |∇f(x)| ≤ L(x) ≤ s+ L(O).
When Ric ≥ 0, ∫ s

0

f ′′ ≤
∫ s

0

Ric(γ′, γ′) +

∫ s

0

f ′′ = −s
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implies that f ′(x) ≤ −s+ f ′(O). �

From this proposition, it is easy to see that for every expanding gradient Ricci soli-
ton which has nonnegative Ricci curvature, the potential function f(x) must decrease
quadratically in s. The following theorem shows that this property holds for expanding
solitons whose Ricci curvatures may be nonpositive.

Theorem 1. If |Ric| ≤ Cs−ε, s ≡ dist(O, x), for some constant ε < 1 and some
point O ∈ M , then there exists a point p ∈ M and C3, C4 > 0 such that |Ric| ≤
C3 · dist(p, x)−ε and f satisfies

−r
(

1 +
C4

rε

)
≤ f ′(x) ≤ −r

(
1− C4

rε

)
,

where r = dist(p, x). As a consequence, we have

−1

2
r2
(

1 +
C5

rε

)
+ f(p) ≤ f(x) ≤ −1

2
r2
(

1− C5

rε

)
+ f(p).

Proof. From

−C
∫ s

0

s−ε +

∫ s

0

f ′′ ≤
∫ s

0

Ric(γ′, γ′) +

∫ s

0

f ′′ =

∫ s

0

−1 ≤ C

∫ s

0

s−ε +

∫ s

0

f ′′,

we have

−s− C
∫ s

0

s−ε ≤
∫ s

0

f ′′ ≤ −s+ C

∫ s

0

s−ε

and hence

−s
(

1 +
C4

sε

)
+ f ′(O) ≤ f ′(x) ≤ −s

(
1− C4

sε

)
+ f ′(O).

In order to achieve the conclusion, it is enough to show that f has a critical point
p (and then repeat the calculation above.) This can be observed by considering the
geodesic sphere ∂Bs(O) with s very large. Since ∇f · ∇s is negative on such sphere,
∇f must point inwards. So ∇f = 0 at some point p inside the ball Bs(O).

�

We recall that the potential function grows quadratically on every shrinking gra-
dient Ricci soliton. This was proved by H.-D. Cao and D.T. Zhou in [3]. Moreover,
by using the same proof in Theorem 1, we have r

(
1− C4

rε

)
≤ f ′(x) ≤ r

(
1 + C4

rε

)
and

1
2
r2
(
1− C5

rε

)
+ f(p) ≤ f(x) ≤ 1

2
r2
(
1 + C5

rε

)
+ f(p) for shrinking solitons which satisfy

Rij +∇i∇jf = gij and |Ric| ≤ C · dist(O, x)−ε.

Remark 1. The condition |Ric| ≤ Cs−ε in Theorem 1 can be replaced by |Ric(γ′, γ′)| ≤
Cs−ε for all γ starting from O. It is worthy to distinguish these two conditions because
a cigar-like manifold may satisfy the second condition while breaks the first one.

3. Asymptotic volume ratio of Ricci solitons with ε curvature decay

It was mentioned in [8] that a complete non-compact expanding Ricci soliton with
0 ≤ Ric ≤ C must have positive asymptotic volume ratio, which was proved by
Hamilton. The same result was proved in [4] by assuming the weaker condition that
the scalar curvature is nonnegative. We now can weaken the curvature condition to be
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1
V ol(Bs)

∫
Bs
R ≥ −Cs−ε, where Bs ⊂ M always denotes the geodesic ball with central

point O and radius s.

Theorem 2. Let (M, g, f) be a complete non-compact expanding gradient Ricci soliton
with scalar curvature R. If there exists O ∈M such that 1

V ol(Bs)

∫
Bs
R ≥ −Cs−ε, where

ε > 0 is a constant, then its asymptotic volume ratio is bounded below by a positive
constant η.

Proof. Taking the trace of the soliton equation Rij +∇i∇jf = −gij and integrating it
on Bs, we have

−nV ol(Bs) =

∫
Bs

R +

∫
Bs

∆f =

∫
Bs

R +

∫
∂Bs

∇f · ∇s ≥
∫
Bs

R−
∫
∂Bs

(s+ L(O))

=

∫
Bs

R− (s+ L(O))Area(∂Bs) =

∫
Bs

R− (s+ L(O))
d

dr
V ol(Bs).

Therefore,

d

ds
log V ol(Bs) ≥

1

(s+ L(O))V ol(Bs)

∫
Bs

R +
n

s+ L(O)

=
1

(s+ L(O))V ol(Bs)

∫
Bs

R +
d

ds
log(s+ L(O))n

⇒ d

ds
log

V ol(Bs)

(s+ L(O))n
≥ 1

(s+ L(O))V ol(Bs)

∫
Bs

R ≥ −C
(s+ L(O))sε

≥ −C
s1+ε

⇒ log
V ol(Bs)

(s+ L(O))n
≥
∫ s

ρ

−C
s1+ε

+ log
V ol(Bρ)

(ρ+ L(O))n
=
C

ε
s−ε − C

ε
ρ−ε + log

V ol(Bρ)

(ρ+ L(O))n

for any positive constant ρ < s

⇒ V ol(Bs)

(s+ L(O))n
≥
(
e
C
ε
s−ε−C

ε
ρ−ε
) V ol(Bρ)

(ρ+ L(O))n
≥ e−

C
ε
ρ−ε · V ol(Bρ)

(ρ+ L(O))n
.

Hence,

lim
s→∞

V ol(Bs)

sn
≥ e−

C
ε
ρ−ε · V ol(Bρ)

(ρ+ L(O))n
≡ η > 0.

�

For shrinking gradient Ricci solitons, the same calculation gives the following theo-
rem.

Theorem 3. Let (M, g, f) be a complete non-compact shrinking gradient Ricci soliton
which satisfies Rij +∇i∇jf = gij. If there exists O ∈M such that 1

V ol(Bs)

∫
Bs
R ≤ Csa,

where a is a nonzero constant, then its volume ratio is bounded from below by C · e−1
a
sa

for s large enough. When 1
V ol(Bs)

∫
Bs
R ≤ δ < n, we have V ol(Bs) ≥ C ·sn−δ for s large

enough.

Remark 2. A similar result to the case a = 0 was proved by H.-D. Cao and D.-T. Zhou
in [3].
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4. Smooth geodesic loops and injectivity radius estimate

Given a Riemannian manifold M and O ∈ M , we denote s := dist(O, x) for an
arbitrary point x ∈M and introduce the following condition.

Smooth Loop Condition. There are constants c0 and d0 such that there exists no
smooth geodesic loop passing through x with length less than c0 · s when s ≥ d0.

Here we recall some fundamental properties of cut points. If y ∈M is a cut point of
x ∈ M , then either y is conjugate to x or there exists a geodesic loop γ which passes
through x and y. In the second case, γ is composed by two minimizing geodesics from
x to y. If we assume that y is a nearest cut point of x, then the only possible singular
point of γ is x. We say that such y realizes the injectivity radius of x via γ. Hence the
above condition means that, if the injectivity radius of a point x is small, then there
exists another point y which either is conjugate to x or realizes the injectivity radius
of x via a nonsmooth γ.

In order to study nonsmooth geodesic loops, we develop the following notion: geo-
desic chains.

Definition 1. If a (finite) sequence of points {x(i)}mi=0 ⊂M satisfies that each x(i), i =
1, . . . ,m, realizes the injectivity radius of x(i−1) via some geodesic loop γ(i), then such
points and loops together is called a geodesic chain. We denote it as G(x(0), . . . , x(m)).

A manifold M is said to satisfy the non-accumulated property if for all D > 0, there

exists a positive integer n0 such that dist(x(0),x(n0))

inj(x(0))
> D for all x(0) ∈M and all geodesic

chains G(x(0), . . . , x(m)) ⊂M satisfying that G(x(0), . . . , x(m)) \B2D·inj(x(0)) 6= φ.

 

 

 

‧ 

‧ 

‧ 

‧ 

‧ 

‧ 

‧ 

Fig. 1. A cylinder-like end does not satisfy the non-accumulated property.

Theorem 4. Let M be a complete Riemannian manifold satisfying |Sect| ≤ C · s−2,
where s := dist(O, x). If M satisfies the smooth loop condition and the non-accumulated
property, then there exists a constant δ > 0 such that inj(x) ≥ δ · s for all x ∈M.

Proof. Let qk ∈ M and λk := 1
2
dist(O, qk) → ∞. For x ∈ Bλk(qk), we want to show

that inj(x) ≥ δ ·dist(x, ∂Bλk(qk)). If this is the case, then the lemma follows by taking
x = qk.

We argue by contradiction. Suppose that there exist δk ↘ 0 and xk ∈ Bλk(qk) such
that inj(xk) = δk ·dk, where dk := dist(x, ∂Bλk(qk)). Furthermore, we may assume that



6 CHIH-WEI CHEN

the function F (y) := inj(y)
dist(y,∂Bλk (qk))

, y ∈ Bλk(qk), achieves its minimum at xk. Hence

inj(y) = F (y) · dist(y, ∂Bλk(qk)) ≥ F (xk) ·
1

2
dist(xk, ∂Bλk(qk)) =

1

2
inj(xk)

for all y ∈ B 1
2
dk

(xk).

Let g̃k := (δkdk)
−2g and consider the sequence of rescaled pointed geodesic balls(

B̃ 1
2δk

(xk), xk, g̃k

)
. Since |S̃ect| ≤ C · λ−2k δ2kd

2
k → 0 and ĩnj ≥ 1

2
on B̃ 1

2δk

(xk), by using

the harmonic coordinates, we know that the sequence converges to a complete flat
manifold (B, x∞, g∞) in C1,σ ∩ L2,p-topology (for all p and σ ∈ (0, 1)). For the usage
of the harmonic coordinates, one can consult, for example, [1, 18].

Notice that the flat limit manifold B is non-compact because diam
(
B̃ 1

2δk

)
→∞. So

it might be Rn−1× S1 or Rn−k × Fk, where Fk is a Bieberbach manifold. (inj(x∞) = 1
implies that B 6= Rn.) For later use, we denote D as the diameter of one slice of B,
that is, S1 or Fk.

 

 

 

 

  

xk          dk/2 

       xk
(1) 

 

δkdk 

Fig. 2. Construct a geodesic chain from each x
(0)
k ≡ xk.

In the rest of the proof, we show that none of these cases can happen, hence a

contradiction arises. Consider a point x
(1)
k which realizes the injectivity radius of x

(0)
k :=

xk. By Klingenberg’s lemma and the assumption on the sectional curvature, there exists

a geodesic loop γ
(1)
k passing through x

(1)
k and xk with length 2δkdk. Since the loop is

smooth at x
(1)
k , by the smooth loop condition, this loop is not smooth at xk. This

implies that inj(x
(1)
k ) < inj(xk).

So we can find another point x
(2)
k which realizes the injectivity radius of x

(1)
k . This pro-

cess can continue until some point x
(mk)
k has its nearest cut point x

(mk+1)
k 6∈ B 1

2
dk

(xk).
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(Note that for every real number D > 0 and k large enough, there is a integer

m′k < mk such that x
(m′k)

k 6∈ BDδkdk(xk). A priori, m′k depends on k. However,
the non-accumulated condition acclaims that there exists a number n0 such that
x
(n0)
k 6∈ BDδkdk(xk) for all k. We shall use this in the next paragraph.)

Now, on each rescaled ball B̃ 1
2δk

(xk) we have a geodesic chainG(x
(0)
k ≡ xk, . . . , x

(mk)
k , . . . ).

Exactly, we have a finite sequence of points {x(i)k }
mk
i=0 and geodesic loops {γ(i)k }

mk
i=1 with

lengthes
∣∣∣γ(i)k ∣∣∣ ≥ 1

2
,∀i = 1, . . . ,mk. We want to take a subsequential limit of these

chains into B (and derive a contradiction). There are two possibilities: either there are

two limit points x
(i−1)
∞ and x

(i)
∞ lying in different slices, or all the points accumulate to

the same slice {x∞} × Fk (or {x∞} × S1). By the non-accumulated condition, there is

a limit point x
(n0)
∞ such that dist(x

(n0)
∞ , x∞) > 2D where D is the diameter of one slice

of B. Hence the second case shall be ruled out.
The first case is also impossible. Indeed, if there exists a geodesic loop γ

(i)
∞ which is

not contained in the slice {xi−1∞ } × Fk (or {xi−1∞ } × S1) of B, then we can project it to
get a strictly shorter geodesic loop which is contained in {xi−1∞ }× Fk (or {xi−1∞ }× S1).

This contradicts the fact that inj(x
(i−1)
∞ ) = 1

2

∣∣∣γ(i)∞ ∣∣∣. �

5. Geodesic loops on gradient Ricci solitons

In the following theorem, we find out some Ricci solitons which satisfy the smooth
loop condition.

Theorem 5. Consider a gradient Ricci soliton M which satisfies Rij +∇i∇jf = λgij.
Let h : M → R be a nonnegative function such that h(x) → 0 as s → ∞. If one of

the following three conditions holds:
(i) λ = 1 and Ric ≤ h · g;
(ii) λ = 0 and Ric > 0;
(iii) λ = −1 and Ric ≥ −h · g,

then M contains no smooth geodesic loop outside a compact set K (K is empty for
case (ii)). In particular, M satisfies the smooth loop condition.

Proof. Suppose that there is a smooth geodesic loop γ ⊂ M \ Bs(O) whose length is
denoted by l. Integrating the equation of soliton on γ, we have

λl =

∫
γ

λ|γ′|2 =

∫
γ

Ric(γ′, γ′) +

∫
γ

f ′′ =

∫
γ

Ric(γ′, γ′).

This contradicts all the three conditions. �

Remark 3. It is easy to see that this theorem holds for non-gradient solitons. On the
other hand, the condition Ric ≤ h ·g (resp. Ric ≥ −h ·g) can be replaced by Ric < λ ·g
(resp. Ric > λg) on the ends of M . Note that the condition Ric < λ · g on a shrinking
soliton is equivalent to the convexity of f .

From our method developed in the previous section, we can prove some noncollapsing
properties on solitons which may not have bounded curvature.

Corollary 1. Let M be a gradient Ricci soliton satisfing Rij +∇i∇jf = λgij and the
non-accumulated property. Suppose |Sect| ≤ 1

r2
on Br(x) ⊂ M for some x ∈ M and

r > 0. If
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(i) λ > 0 and Ric < λ · g on Br(x),
(ii) λ = 0 and Ric > 0 on Br(x) or
(iii) λ < 0 and Ric > λ · g on Br(x),

then inj(x) ≥ κr for some constant κ > 0.

Remark 4. In [15], A. Naber proved that every n-dimensional shrinking soliton with
bounded curvature and n ≥ 2 is κ-noncollapsed.

6. Tangent cones at inifinity of gradient Ricci solitons

Using the estimate of the injectivity radius, we can blow down a manifold to get its
tangent cone at infinity. When the sectional curvature decays faster than quadratically
on a nonsteady Ricci solitons, we have the following theorem.

Theorem 6. Let M be a complete non-compact gradient Ricci soliton which satisfies
Rij +∇i∇jf = λgij, where λ = 1 or −1, and |Sect| ≤ C ·dist(O, x)−2−ε. Furthermore,
M is assumed to satisfy the non-accumulated property. If M is simply connected at
infinity, one-ended and has dimension n ≥ 3, then every tangent cone at infinity of M
is the Euclidean space Rn.

Proof. Consider a tangent cone at infinity M∞, which is a Gromov-Hausdorff limit of a
sequence (M,O, g̃k) := (M,O, 1

λ2k
g) with vertex O, where λk →∞ as k →∞. Here we

use a tilde to emphasize that the metric is rescaled. Any arbitrary point q ∈M∞, q 6= O
and dist∞(O, q) = r0, is associated with a sequence qk → q, where distk(O, qk) =
λkr0 →∞ as k→∞. By using our injectivity radius estimate, Hamilton’s compactness
theorem and Shi’s estimate, the convergence is in fact in C∞loc-topology.

Noting that
∣∣∣∇̃i∇̃jfk

∣∣∣ =
∣∣∣(g̃k)ij − 1

λλ2k
(R̃ick)ij

∣∣∣, together with the estimates of the

growth of f and ∇f which are stated in Section 2, we know that fk := f
λλ2k

converges in

C∞loc-topology to a function f∞ with |∇f | = r on M∞\{O}. Moreover,∇∞∇∞f∞ = g∞

and f∞(q) = limk→∞
f
λλ2k

(qk) = 1
2
r20. Since q was chosen arbitrarily, we have

f∞(x) =
1

2
r2 and g∞ = Hess

(
1

2
r2
)

where r(x) := dist∞(O, x) and x ∈M∞ \ {O}.
In [6], J. Cheeger and T. H. Colding have proven that M∞ \ {O} with g = Hess( r

2

2
)

must be a warped product manifold and g = dr2 + cr2ḡ for some c > 0, where ḡ is the
metric of N := {x ∈M∞|r(x) = 1}. In order to prove that M∞ is isometric to Rn, we
only need to show that N is the standard sphere with sectional curvature c. (Because
the standard metric on Rn can be written as gEucl = dr2 + Cr2gSn−1(C) for any given
C > 0 and gSn−1(C) denotes the standard metric on sphere with sectional curvature C.)

Since |∇r| 6= 0, we can extend the normal coordinate {xi}i=2,...,n around p ∈ N to
be a local coordinate {r, xi}i=2,...,n in M such that

(gij) =


1 0 · · · 0
0 g22 · · · g2n
...

...
. . .

...
0 gn2 · · · gnn

 =


1 0 · · · 0
0 cr2ḡ22 · · · cr2ḡ2n
...

...
. . .

...
0 cr2ḡn2 · · · cr2ḡnn

 .
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Hence, for all i, j = 2, . . . , n and i 6= j, we have Γrjj(p) = −c and Γrij(p) = 0. Moreover,
∂
∂xj

(g( ∂
∂r
, ∂
∂xj

)) = 0 implies that Γjjr(p) = −1
c
Γrjj(p) = 1. When n ≥ 3, we can compute

the curvature of N at p by using

0 = Ri
ijj = R̄i

ijj + ΓiirΓ
r
jj = R̄i

ijj − c.

Because M is simply connected at infinity, N must be the standard sphere with all its
sectional curvatures equal c. �

Remark 5. For the two-dimensional case, there exists no nonflat shrinking soliton with
|Sect| ≤ C · dist(O, x)−2−ε. This is an easy consequence of L. Ni’s theorem [16] which
states that the scalar curvature R of a shrinking soliton with nonnegative Ricci curva-
ture must have a positive lower bound. Even in the three-dimensional case, Ni’s result
works because all the three-dimensional shrinking solitons have nonnegative sectional
curvatures. (This was proved by B.-L. Chen [7].) On the other hand, there exists
a two-dimensional counter-example for the expanding case, i.e. an expanding soliton
which has faster-than-quadratic-decay curvature and a tangent cone at infinity which
is not an Euclidean plane. Such soliton was constructed in [8] by smoothly extending
a cone manifold which had been conceived in [12].

References

[1] Anderson, M. T., Convergence and rigidity of manifolds under Ricci curvature bounds, Invent.
Math. 102 (1990), 429-445.

[2] Bando, S., Kasue, A. and Nakajima, H., On a construction of coordinates at infinity on manifolds
with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313-349.

[3] Cao, H.-D. and Zhou, D.T., On complete gradient shrinking Ricci solitons, J. Diff. Geom. 85
(2010), no. 2, 175-186.

[4] Carrillo, J. and Ni, L., Sharp logarithmic Sobolev inequalities on gradient solitons and applications,
Comm. Anal. Geom. 17 (2009), no. 4, 721-753.

[5] Catino, G. and Mantegazza C., Evolution of the Weyl tensor under the Ricci flow, Ann. Inst.
Fourier, to appear.

[6] Cheeger, J. and Colding, T. H., Lower bounds on Ricci curvature and the almost rigidity of warped
products, Ann. of Math., 144 (1996), 189-237.

[7] Chen, B.-L., Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), 363-382.
[8] Chow, B., Lu, P. and Ni, L., Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77. Amer.
Math. Soc., 2006.

[9] Chen, B.-L. and Zhu, X.-P., Complete Riemannian manifolds with pointwise pinched curvature,
Invent. Math. 140 (2000), 423-452.

[10] Colding, T. H., Ricci curvature and volume convergence, Ann. of Math., 145 (1997), 477-501.
[11] Drees, G., Asymptotically flat manifold of nonnegative curvature, Diff. Geom. Appl., 4 (1994),
77-90.

[12] Gutperle, M., Headrick, M., Minwalla, S. and Schomerus, V., Space-time energy decreases under
world-sheet RG flow, J. High Energy Phys. 01 (2003)073.

[13] Greene, R. E., Wu, H., Gap theorems for noncompact riemannian manifolds, Duke Math. J. 49
(1982), 731-756

[14] Hamilton, R. S., The formation of singularities in the Ricci flow, Surveys in Diff. Geom., 2 (1995),
7-136.

[15] Naber, A., Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew.
Math. 645 (2010), 125-153.

[16] Ni, L., Ancient solutions to Kähler-Ricci flow, Math. Res. Lett. 12 (2005), no. 5-6, 633-653.
[17] Ni, L. and Wallach, N., On a classification of the gradient Ricci solitons, Math. Res. Lett. 15
(2008).

[18] Petersen, P., Riemannian geometry. Graduate Texts in Mathematics, 171. Springer-Verlag, 1998.



10 CHIH-WEI CHEN

[19] Petersen, P. and Wylie, W., On the classification of gradient Ricci solitons, Geom. Topol. 14
(2010), issue 4, 2277-2300.

[20] Pigola, S., Rimoldi, M. and Setti, A. G., Remarks on non-compact gradient Ricci solitons, Math.
Z. DOI 10.1007/s00209-010-0695-4.

[21] Zhang, Z.-H., On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009),
no. 8, 2755-2759.

[22] Zhang, Z.-H., Gradient shrinking Ricci solitons with vanishing Weyl tensor, Prac. J. Math. 242
(2009), No. 1, 189-200.

National Taiwan University, Taiwan

Institut Fourier, Université Joseph Fourier, France
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