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1 Statements and proofs

If K is a knot or link in R3 and S ⊂ R3 is a smoothly embedded 2-sphere
meeting K transversely in 4-points, then one can form a new knot or link
K ′ as follows. One cuts R3 along S and then glues the two pieces again
using a diffeomorphism σ : S → S that permutes the 4 distinguished points
S ∩K and whose class in the mapping class group of (S, S ∩K) is one of the
three central involutions. This operation is known as (Conway) mutation,
and is introduced in [3]. Many invariants of K (starting with the number of
components) are left unchanged by mutation.

The purpose of this paper is to record the fact that the instanton homol-
ogy group I♯(K), defined in [6], can be added to the list of invariants that
are invariant under Conway mutation, as long as we restrict our attention
to knots, rather than links. As we will explain, the proof is essentially the
observation that the earlier work of the third author [9] concerning instanton
homology of closed 3-manifolds can be applied directly to the question.

To make the connection with [9], we state our result in terms of the
closely-related operation of genus-2 mutation introduced in [8]. This is the
operation of cutting a 3-manifold Y along an embedded genus-2 surface Σ
and re-glueing using a diffeomorphism τ : Σ → Σ belonging to the class
of the central involution in the mapping class group of Σ. As observed in
[8] and [10], a Conway mutation of a knot can always be realized either
as a genus-2 mutation along a surface Σ in the knot complement, or as a
composite of two such genus-2 mutations. In [6], an instanton homology
group is introduced for triples (Y,K, ω), where Y is a closed, oriented 3-
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manifold, K ⊂ Y is a link, and ω ⊂ Y is a one-manifold with boundary,
with ω ∩ K = ∂ω, meeting K normally at its endpoints. We require also
that [ω, ∂ω] defines a class in H1(Y,K)/torsion that is not divisible by 2.
This invariant is denoted Iω(Y,K). The main result is then:

Theorem 1.1. Let (Y,K, ω) be as above, and let Σ ⊂ Y be a separating,
embedded genus-2 surface that is disjoint from both K and ω. Let Y ′ be
obtained from Y by mutation along Σ and let K ′ and ω′ be the resulting link
and 1-manifold. Then we have

Iω(Y,K) ∼= Iω
′

(Y ′,K ′)

as abelian groups with affine Z/4 gradings.

The main theorem from [9] is essentially the same statement, but is
formulated for the instanton homology of a homology 3-sphere Y , in the
sense of [5], and does not involve K or ω. For the proof of the theorem, it is
already observed in [9] that the argument of that paper is readily adaptable
to situations more general than a homology 3-sphere, though at the time
that [9] was written, the version of instanton homology which involves also
a knot or link K ⊂ Y had not been developed. In the present context it is
straightforward to see that the argument carries over mutatis mutandis.

Returning to Conway mutation, we have:

Corollary 1.2. If K1 and K2 are classical knots in R3 that are Conway
mutants, then I♯(K1) ∼= I♯(K2) as Z/4-graded abelian groups.

Proof of the corollary. As observed in [8] and mentioned above, it is suffi-
cient to examine the case that K2 is obtained from K1 by a genus-2 mutation
along some surface Σ in R3\K1. The definition of I♯(K1) from [6] is in terms
of the more general construction Iω(Y,K). Specifically, from K1 ⊂ R3 one

forms a new link K♯
1
⊂ S3 by adding to K1 a Hopf link in a ball at infinity

in S3; and one takes ω to be an arc in that ball, joining the two components
of the Hopf link. One then defines

I♯(K1) = Iω(S3,K♯
1
).

The genus-2 surface Σ in R3 \K1 becomes a surface Σ in S3 which is disjoint

from K♯
1
and ω. An application of the theorem above, we have

Iω(S3,K♯
1
) ∼= Iω(S3,K♯

2
),

which is what we need. Unlike the case of a general triple, the affine Z/4

grading has a canonical lift to an absolute Z/4 grading on Iω(S3,K♯
1
). As
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in [9], the isomorphism is derived from an explicit cobordism with orbifold
singularities, and it is straightforward to deduce from the definitions in [6]
that the map induced by the cobordism has degree 0. So the absolute Z/4
gradings coincide.

2 Further remarks

In writing this note, the authors were motivated, in part, by the open ques-
tion of whether Khovanov homology of knots is invariant under Conway
mutation. (See [4] for a survey of related questions.) It is shown in [6] that
there is a spectral sequence relating the Khovanov homology of K to I♯(K),
but we are not able to make any use of this as an approach to the conjecture.

The instanton homology group I♯(K) carries extra structure (gradings
and filtrations), some of which arise via the isomorphism between I♯(K)⊗Q
and the sutured instanton homology of the knot complement [6]. From
this extra structure one can extract (amongst other things) the genus of
the knot. Knot genus is not invariant under Conway mutation, however.
This is a reflection of the fact that the theorem does not imply that this
extra structure is mutation-invariant. The situation can be compared to
that of the Heegaard knot homology groups ĤFK (K). It is known that,
as a bigraded object, the Heegaard knot homology is sensitive to Conway
mutations [7], but in the known examples (up to knots of 12 crossings [1, 2]),

the rank of ĤFK (K) is Conway-mutation-invariant.
To return to Khovanov homology, although the question is open for Con-

way mutation, it is known that Kh(K) (as a bigraded group) is not invari-
ant under the more general genus-2 mutation [4]. The main theorem of
this paper raises the question of whether the rank of Khovanov homology is
genus-2-mutation-invariant.
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