
ar
X

iv
:1

01
2.

11
57

v1
  [

m
at

h-
ph

] 
 6

 D
ec

 2
01

0

Critical Rotational Speeds in the Gross-Pitaevskii Theory on a

Disc with Dirichlet Boundary Conditions

M. Correggia∗, F. Pinskerb, N. Rougeriec, J. Yngvasond,e

a CIRM, Fondazione Bruno Kessler, Via Sommarive 14, 38123 Trento, Italy.
b DAMTP, University of Cambridge, Wilbertforce Road, Cambridge CB3 0WA, United Kingdom.
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Abstract

We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap

with Dirichlet boundary conditions, generalizing and extending previous results that were obtained

under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and quali-

tative properties of the minimizers in the parameter range | log ε| ≪ Ω . ε
−2| log ε|−1 where Ω is the

rotational velocity and the coupling parameter is written as ε
−2 with ε ≪ 1. Three critical speeds

can be identified. At Ω = Ωc1 ∼ | log ε| vortices start to appear and for | log ε| ≪ Ω < Ωc2 ∼ ε
−1

the vorticity is uniformly distributed over the disc. For Ω ≥ Ωc2 the centrifugal forces create a hole

around the center with strongly depleted density. For Ω ≪ ε
−2| log ε|−1 vorticity is still uniformly

distributed in an annulus containing the bulk of the density, but at Ω = Ωc3 ∼ ε
−2| log ε|−1 there

is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is

then well approximated by a trial function that is an eigenfunction of angular momentum but one

of our results is that the true minimizers break rotational symmetry in the whole parameter range,

including the giant vortex phase.
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1 Introduction and Main Results

The Gross-Pitaevskii (GP) theory is the most commonly used model to describe the behavior of rotating
superfluids. Since the nucleation of quantized vortices is a signature of the superfluid behavior it is of
great interest to understand that phenomenon in the framework of the GP theory. A fascinating example
of superfluid is provided by a cold Bose gas forming a Bose-Einstein condensate (BEC). The possibility
to nucleate quantized vortices in a rotating BEC has triggered a lot of interest in the last decade, both
experimental and theoretical (see the reviews [Co, Fe1] and the monograph [A] for further references).

Bose-Einstein condensates are trapped systems: A magneto-optical confinement is imposed on the
atoms. When rotating such a system, the strength of the confinement can lead to two different behaviors.
If the trapping potential increases quadratically with the distance from the rotation axis (‘harmonic’
trap), there exists a limiting angular velocity that one can impose to the gas. Any larger velocity would
result in a centrifugal force stronger than the trapping force. The atoms would then be driven out
of the trap. By contrast, a stronger confinement (‘anharmonic’ trap) allows in principle an arbitrary
angular velocity. In this paper we focus on the two-dimensional GP theory for a BEC with anharmonic
confinement.

Theoretical and numerical arguments have been proposed in the physics literature (see, e.g., [FJS, FB,
KB]) in favor of the existence of three critical speeds at which important phase transitions are expected
to happen:

• If the velocity Ω is smaller than the first critical velocity Ωc1 , then there are no vortices in the
condensate (‘vortex-free state’);

• If Ω is between Ωc1 and Ωc2 , there is a hexagonal lattice of singly quantized vortices (‘vortex-lattice
state’);

• When Ω is taken larger than Ωc2 , the centrifugal force becomes so important that it dips a hole in
the center in the condensate. The annulus in which the mass is concentrated still supports a vortex
lattice however (‘vortex-lattice-plus-hole state’), until Ω crosses the third threshold Ωc3 ;

• If Ω is larger than Ωc3 , all vortices retreat in the central low density hole, resulting in a ‘giant
vortex’ state. The central hole acts as a multiply quantized vortex with a large phase circulation.
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In [CDY1, CY, CRY, R] we have studied these phase transitions using as model case a BEC in a ‘flat’
trap, that is a constant potential with hard walls. This is the ‘most anharmonic’ confinement one can
imagine and serves as an approximation for potentials used in experiments. Mathematically, it has the
advantage that the rescaling of spatial variables as ε → 0 and/or Ω → ∞ is avoided. The GP energy
functional in the non-inertial rotating frame is defined as

EGP[Ψ] :=

∫

B

d~r
{

|∇Ψ|2 − 2Ψ∗~Ω · ~LΨ+ ε−2|Ψ|4
}

(1.1)

where we have denoted the physical angular velocity by 2~Ω, ~L = −i~r ∧ ∇ is the angular momentum
operator and B the unit two-dimensional disc. We have written the coupling constant as ε−2. The
subsequent analysis (as well as the papers [CDY1, CY, CRY, R]) is concerned about the ‘Thomas-Fermi’
(or strongly interacting) limit where ε → 0.
The simplest way to define the ground state of the system is to minimize the energy functional (1.1)
under the mass constraint

∫

B

d~r |Ψ|2 = 1

with no further conditions. This is the approach that has been considered in the previous papers [CDY1,
CY, CRY, R], leading to Neumann boundary conditions on ∂B. We will refer to this situation as the ‘flat
Neumann problem’ in the sequel.

There are, however, both physical and mathematical reasons for considering also the corresponding
problem with a Dirichlet boundary condition, i.e., requiring the wave function to vanish on the boundary
of the unit disc. Physically, this corresponds to a hard, repelling wall which is usually a closer approxi-
mation to real experimental situations than a ‘sticky’ wall modeled by a Neumann boundary condition.
The Dirichlet boundary condition can be formally implemented by replacing the flat trap with a smooth
confining potential of the form rs and taking1 s → ∞.

Mathematically, the new boundary condition poses several new aspects compared to the Neumann
case. For one thing, the density profile is no longer a monotonously increasing function of the radial
variable and the position of the density maximum has to be precisely estimated. Furthermore, energy
estimates have to be refined to take the boundary effect into account, and a boundary estimate for the
GP minimizer, that was an important ingredient in the proof of the giant vortex transition in [CRY], has
to be replaced by a different approach.

In addition to these adaptations to the new situation the present paper contains also substantial im-
provements of results proved previously in the Neumann case. These concern in particular the uniform
distribution of vorticity in the bulk (Theorem 1.1) and the rotational symmetry breaking (Theorem 1.6).
Besides, the error term in our energy estimate in Theorem 1.4 below is much smaller than the corre-
sponding term in [CRY, Theorem 1.2]. This last improvement is due to the new method for estimating
a potential function that we use to avoid the boundary estimate.

From now on the minimization of (1.1) is considered on the domain

D
GP :=

{

Ψ ∈ H1
0 (B) : ‖Ψ‖2 = 1

}

, (1.2)

where H1
0 (B) is the Sobolev space of complex valued functions Ψ on B with

∫

B
(|Ψ|2 + |∇Ψ|2) < ∞ and

Ψ(~r) = 0 on ∂B. The ground state energy is thus defined as

EGP := inf
Ψ∈DGP

EGP[Ψ], (1.3)

1This limit has to be taken with care, however, because it can not be interchanged with the asymptotic limit εΩ → ∞
we shall consider. This point will be discussed further in [CPRY].
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and any corresponding minimizer is denoted by ΨGP. This case will be referred to as the ‘flat Dirichlet
problem’. In the following we will often use a different form of the GP functional which can be obtained
by introducing a vector potential, i.e.,

EGP[Ψ] =

∫

B

d~r

{

∣

∣

∣

(

∇− i ~A
)

Ψ
∣

∣

∣

2

− Ω2r2|Ψ|2 + ε−2|Ψ|4
}

, (1.4)

where
~A := ~Ω ∧ ~r = Ωr~eϑ. (1.5)

Here (r, ϑ) are two-dimensional polar coordinates and ~eϑ a unit vector in the angular direction.

The GP minimizer is in general not unique because vortices can break the rotational symmetry (see
Section 1.3) but any minimizer satisfies in the open ball the variational equation (GP equation)

−∆ΨGP − 2~Ω · ~LΨGP + 2ε−2
∣

∣ΨGP
∣

∣

2
ΨGP = µGPΨGP, (1.6)

with additional Dirichlet conditions at the boundary, i.e.,

ΨGP(~r) = 0 on ∂B. (1.7)

The chemical potential in (1.6) is given by the normalization condition on ΨGP, i.e.,

µGP := EGP +
1

ε2

∫

B

d~r
∣

∣ΨGP
∣

∣

4
. (1.8)

For such a model, variational arguments have been provided in [FB] to support the following conjec-
tures about the three critical speeds:

Ωc1 ∝ | log ε|, (1.9)

Ωc2 ∝ ε−1, (1.10)

Ωc3 ∝ ε−2| log ε|−1. (1.11)

As for the behavior of the condensate close to Ωc1 , the centrifugal force is not strong enough for the
specificity of the anharmonic confinement to be of importance. A consequence is that the analysis
developed in [IM1, IM2] (see also [AJR] for recent developments) for harmonic traps applies and leads to
the rigorous estimate

Ωc1 = | log ε|(1 + o(1)) (1.12)

when ε → 0. In this paper we aim at providing estimates of Ωc2 and Ωc3 and thus will assume that

Ω ≫ | log ε|,

i.e., we consider angular velocities strictly above Ωc1 . The situation is then very different from that in a
harmonic trap because of the onset of strong centrifugal forces when Ω approaches Ωc2 .

Our main results can be summarized as follows. We show that if Ω ≤ 2(
√
πε)−1, the condensate is

disc-shaped, while for Ω > 2(
√
πε)−1 the matter density is confined in an annulus along the boundary of

B. In addition we prove that if

| log ε| ≪ Ω ≪ 1

ε2| log ε| ,

there is a uniform distribution of vorticity in the bulk of the condensate. Although our estimates are not
precise enough to show that there is a hexagonal lattice of vortices, these results support the qualitative
picture provided in [FB]. We deduce that when ε → 0

Ωc2 =
2√
πε

(1 + o(1)). (1.13)
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We refer to Section 1.1 for the detailed statements of these results.
In Section 1.2 we present our results about the third critical speed. We show that if Ω = Ω0ε

−2| log ε|−1

with Ω0 > (3π)−1, then there are no vortices in the bulk of the condensate. This provides an upper bound
on the third critical speed

Ωc3 ≤ 2

3πε2| log ε|−1
(1 + o(1)). (1.14)

It should be noted right away that we do believe that this upper bound is optimal. This has been proved
in [R] in the flat Neumann case and the adaptation of the adequate tools to the flat Dirichlet case is
possible but beyond the scope of this paper. We hope to come back to the regime Ω ∝ Ωc3 in the future.

In the regime Ω > Ωc3 a very natural question occurs about the distribution of vorticity in the central
hole of low matter density: Is the phase of the condensate created by a single multiply quantized vortex
at the center of the trap? We show that this is not the case in Section 1.3 and, as a consequence, the
rotational symmetry is always broken at the level of the ground state, even when Ω > Ωc3 .

Before stating our results more precisely, we want to make a comparison with the 2D Ginzburg-
Landau (GL) theory for superconductors in applied magnetic fields (see [FH, SS2] for a mathematical
presentation). The analogies between GP and GL theories have often been pointed out in the literature,
with the external magnetic field playing in GL theory the role of the angular velocity in GP theory. We
stress that our results in fact enlighten significant differences between the two theories. Whereas the
first critical speed in GP theory can be seen as the equivalent of the first critical field in GL theory,
the second and third critical speeds have little to do with the second and third critical fields of the GL
theory. The difference can be seen both in the order of magnitudes of these quantities as functions of ε
(which for a superconductor is the inverse of the GL parameter) and in the qualitative properties of the
states appearing in the theories. In GP theory there is no equivalent of the normal state and there is no
vortex-lattice-plus-hole state in GL theory. The giant vortex state of GP theory could be compared to
the surface superconductivity state in GL theory, but the physics governing the onset of these two phases
is quite different. The main reason for this different behavior is the combined influence of the centrifugal
force and mass constraint in GP theory, two features that have no equivalent in GL theory.

We will now state our results rigorously. The core analysis that we present below is an adaptation of
the techniques developed in [CDY1, CY, CRY] for the Neumann case, but the Dirichlet condition leads
to important novel aspects that we discuss in the sequel.

1.1 The Regime | log ε| ≪ Ω ≪ ε
−2| log ε|−1: Uniform Distribution of Vorticity

Before stating our results we need to introduce some notation. We define the density functional

ÊGP[f ] :=

∫

B

d~r
{

|∇f |2 − Ω2r2f2 + ε−2f4
}

, (1.15)

for any real function f . The minimization is given by

ÊGP := inf
f∈D̂GP

ÊGP[f ], D̂
GP :=

{

f ∈ H1
0 (B) : f = f∗, ‖f‖2 = 1

}

(1.16)

and g is the associated minimizer (see Proposition 2.1). In order to give a precise meaning to the
expression ‘bulk of the condensate’, we introduce the following Thomas-Fermi functional, obtained by
dropping the first term in (1.4) or (1.15):

ETF[ρ] :=
1

ε2

∫

B

d~r
{

ρ2 − ε2Ω2r2ρ
}

, (1.17)
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which is expected to provide the energy associated with the non-uniform density of the condensate. We
refer to the Appendix for the properties of its ground state energy ETF and associated minimizer ρTF.
Let us define

ATF := supp
(

ρTF
)

. (1.18)

If Ω ≤ 2(
√
πε)−1, ATF = B, while if Ω > 2(

√
πε)−1, ATF is an annulus of outer radius 1 and inner radius

Rh with 1−Rh ∝ (εΩ)−1. As we shall see below, |ΨGP|2 is close to ρTF and thus, if Ω ≫ ε−1, the mass
of ΨGP is concentrated close to the boundary of B.
Our result about the uniform distribution of vorticity in fact holds in a slightly smaller region than ATF,
namely the annulus

Abulk :=
{

~r ∈ B : R̃ ≤ r ≤ Rm

}

(1.19)

where, for a certain quantity γ := γ(ε,Ω) > 0 such that γ = o(1) as ε → 0 (see Section 3.3, Equation
(3.35) for its precise definition),

R̃ :=

{

0, if Ω ≤ Ω̄ε−1, with Ω̄ < 2/
√
π,

Rh + γε−1Ω−1, if 2(
√
πε)−1 . Ω ≪ ε−2| log ε|−1,

(1.20)

and Rm is the position of the unique maximum of the density g (see Proposition 2.2). It should be noted
that R̃ is close to Rh and Rm is close to 1 in such a way that

∣

∣ATF \ Abulk

∣

∣ ≪ O(ε−1Ω−1) =
∣

∣ATF
∣

∣ ,

i.e., the domain Abulk tends to the support of the TF density as ε → 0. Also, thanks to the above
estimate, we have

∫

Abulk

d~r |ΨGP|2 = 1− o(1), (1.21)

i.e., the mass is concentrated in Abulk. We refer to (2.22), (2.23) and (2.32) below for precise estimates
of Rm.

We now state our result about the uniform distribution of vorticity. It is the analogue of [CY, Theorem
3.3] but here we prove that the distribution of vorticity is uniform in the whole regime | log ε| ≪ Ω ≪
ε−2| log ε|−1 whereas in [CY] this was proved only for Ω . ε−1.

Theorem 1.1 (Uniform distribution of vorticity).
Let ΨGP be any GP minimizer and ε > 0 sufficiently small. If | log ε| ≪ Ω ≪ ε−2| log ε|−1, there exists a
finite family of disjoint balls2 {Bi} := {B(~ri, ̺i)} ⊂ Abulk such that

1. ̺i ≤ O(Ω−1/2),
∑

̺i ≤ O(Ω1/2) and
∑

̺2i ≪ (1 + εΩ)−1,

2.
∣

∣ΨGP
∣

∣

2 ≥ Cγ(1 + εΩ) on ∂Bi for some C > 0.

Moreover, denoting by di,ε the winding number of |ΨGP|−1ΨGP on ∂Bi and introducing the measure

ν :=
2π

Ω

∑

di,εδ (~r − ~ri,ε) , (1.22)

then, for any family of sets S ⊂ Abulk such that |S| ≫ Ω−1| log(ε2Ω| log ε|)|2 as ε → 0,

ν(S)
|S| −→

ε→0
1. (1.23)

2Throughout the whole paper the notation B(~r, ̺) stands for a ball of radius ̺ centered at ~r, whereas B(R) is a ball with
radius R centered at the origin.
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Remark 1.1 (Distribution of vorticity)
The result proven in the above Theorem implies that the vorticity measure converges after a suitable
rescaling to the Lebesgue measure, i.e., the vorticity is uniformly distributed. However such a statement
is meaningful only for angular velocities at most of order ε−1, when the TF support ATF can be bounded
independently of ε. On the opposite if Ω ≫ ε−1, ATF shrinks and its Lebesgue measure converges to 0
as ε−1Ω−1. To obtain an interesting statement one has therefore to allow the domain S to depend on ε
with |S| → 0 as ε → 0.

Remark 1.2 (Conditions on S)
We remark that the lower bound on the measure of the set S, i.e., |S| ≫ Ω−1| log(ε2Ω| log ε|)|2, is
important, even though not optimal, as it will be clear in the proof: In order to localize the energy
bounds to suitable lattice cells, one has to reject a certain number of ‘bad cells’ where nothing can be
said about the vorticity of ΨGP. However since the number of bad cells is much smaller than the total
number of cells, this has no effect on the final statement provided the measure of S is much larger than
the area of a single cell, i.e., O(Ω−1| log(ε2Ω| log ε|)|2). A similar effect occurs in [CY, Theorem 3.3],
where the stronger condition |S| > C is assumed.

Remark 1.3 (Vortex balls)
The balls contained in the family {Bi} are not necessarily vortex cores in the sense that each one might
contain a large number of vortices. However the conditions stated at point 1 of the above Theorem 1.1
have important consequences on the properties of the family. For instance, if Ω ≫ ε−1, the last one, i.e.,
∑

̺2i ≪ ε−1Ω−1, guarantees that the area covered by balls is smaller than the area of the annulus Abulk

where the bulk of the condensate is contained. At the same time the other two conditions imply that the
radius of any ball in the family is at most O(Ω−1/2) and their number can not be too large: Assuming
that for each ball ̺i ∼ Ω−1/2, the second condition would yield a number of balls of order at most Ω,
which is expected to be close to the total winding number of any GP minimizer.

An important difference between the flat Neumann and the flat Dirichlet problems can be seen directly
from the energy asymptotics. Indeed, in the flat Neumann case (see [CY, Theorem 3.2]) the energy is
composed of the contribution of the TF profile (leading order) and the contribution of a regular vortex
lattice (subleading order). In the flat Dirichlet case the radial kinetic energy arising from the vanishing
of the GP minimizer on ∂B might be larger (see Remark 1.4 below) than the contribution of the vortex
lattice. As a result the functional (1.16) that includes this radial kinetic energy plays a key role in the
energy asymptotics of the problem:

Theorem 1.2 (Ground state energy asymptotics).
As ε → 0,

EGP = ÊGP +Ω| log(ε2Ω)|(1 + o(1)), (1.24)

if | log ε| ≪ Ω . ε−1, and
EGP = ÊGP +Ω| log ε|(1 + o(1)), (1.25)

if ε−1 . Ω ≪ ε−2| log ε|−1.

Remark 1.4 (Composition of the energy)
The leading order term in the GP energy asymptotics is given by the energy ÊGP which contains the
kinetic contribution of the density profile (see (1.15)), i.e., one can decompose ÊGP as ETF +O(ε−1) +
O(ε1/2Ω3/2), where the first remainder is the most relevant in the regime Ω . ε−1 and the second becomes
dominant for angular velocities much larger than ε−1.
The kinetic energy of the density profile can in turn be decomposed into the energy associated with
Dirichlet conditions ∝ ε−1 + ε1/2Ω3/2 and the one due to the inhomogeneity of the profile ∼

√

ρTF,
which is O(1) + O(ε2Ω2| log ε|) (see Remark 2.1). The first contribution dominates for any angular
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velocity Ω ≪ ε−3| log ε|−2 and this is why it is the only one appearing in (1.24) and (1.25).
Note also that the kinetic energy due to Dirichlet boundary conditions is, in general, much larger than
the vortex energy contribution, i.e., the second term in (1.24) and (1.25), except in the narrow regime

ε−1| log(ε2Ω)|−1 ≪ Ω ≪ ε−1| log ε|,

where the latter becomes predominant.

An important consequence of the above energy asymptotics is that we always have (see Proposition
3.1)

∥

∥|ΨGP|2 − ρTF
∥

∥

L2(B)
= o(1) ≪

∥

∥ρTF
∥

∥

L2(B)
(1.26)

which allows to deduce
∫

ATF

d~r |ΨGP|2 = 1− o(1). (1.27)

This implies that if Ω > 2(
√
πε)−1, the mass of ΨGP is concentrated in an annulus, marking the transition

to the vortex-lattice-plus-hole state. We thus have

Ωc2 =
2√
πε

(1 + o(1)). (1.28)

Note that we actually prove stronger results than (1.21) and (1.27). If Ω > Ωc2 , any GP minimizer is
in fact exponentially small in the central hole, minus possibly a very thin layer close to r = Rh (see
Proposition 3.2).

1.2 The Regime Ω ∼ ε
−2| log ε|−1: Emergence of the Giant Vortex

When the angular velocity reaches the asymptotic regime Ω ∼ ε−2| log ε|−1 a transition in the GP ground
state takes place above a certain threshold: Vortices are expelled from the essential support of any GP
minimizer ΨGP. The density is concentrated in a shrinking annulus where such a wave function is vortex
free. Anticipating this transition we shall throughout this section assume that

Ω =
Ω0

ε2| log ε| , (1.29)

for some constant Ω0 > 0.
The bulk of the condensate has to be defined differently in this regime: We set

Abulk :=
{

~r ∈ B : R> ≤ r ≤ 1− ε3/2| log ε|2
}

(1.30)

where
R> := Rh + ε| log ε|−1. (1.31)

The main result in this regime is contained in the following

Theorem 1.3 (Absence of vortices in the bulk).
If the angular velocity is given by (1.29) with Ω0 > 2(3π)−1, then no GP minimizer has a zero inside
Abulk if ε is small enough.
More precisely, for any ~r ∈ Abulk,

∣

∣

∣

∣

∣ΨGP(~r)
∣

∣

2 − ρTF(r)
∣

∣

∣
≤ O(ε−3/4| log ε|2) ≪ ρTF(r). (1.32)
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Remark 1.5 (Bulk of the condensate)
As the notation indicates, the domain Abulk contains the bulk of the condensate: Using the explicit
expression (A.1) of ρTF(r), one can easily verify that

∥

∥ρTF
∥

∥

L2(Abulk)
= 1−O(| log ε|−4), (1.33)

which implies by (1.32) that the same estimate holds true also for |ΨGP|2.
A consequence of this result is the estimate

Ωc3 ≤ 2

3πε2| log ε| (1 + o(1)). (1.34)

As already noted, we believe that this upper bound is optimal, i.e., we actually have

Ωc3 =
2

3πε2| log ε| (1 + o(1)).

The proof of this conjecture could use the tools of [R] but we leave this aside for the present.

The theorem above is based on a comparison of a minimizer with a giant vortex wave function of the
form

f(r) exp {i ([Ω]− ω)ϑ} ,
where [ · ] stands for the integer part and ω ∈ Z is some additional phase. Therefore we introduce a
density functional

Egv
ω [f ] := EGP [f(r) exp {i ([Ω]− ω)ϑ}] =

∫

B

d~r
{

|∇f |2 + ([Ω]− ω)2r−2f2 − 2([Ω]− ω)Ωf2 + ε−2f4
}

=

∫

B

d~r
{

|∇f |2 +B2
ωf

2 − Ω2r2f2 + ε−2f4
}

, (1.35)

where f ∈ DGP is real-valued and

~Bω(r) :=
(

Ωr − ([Ω]− ω)r−1
)

~eϑ. (1.36)

We also set
Egv

ω := inf
f∈DGP,f=f∗

Egv
ω [f ]. (1.37)

By simply testing the GP functional on a trial function of the form above, one immediately obtains the
upper bound

EGP ≤ Egv := inf
ω∈Z

Egv
ω . (1.38)

In the following Theorem we prove that the r.h.s. of the expression above gives precisely the leading order
term in the asymptotic expansion of EGP as ε → 0 and we state an estimate of the phase optimizing Egv

ω .

Theorem 1.4 (Ground state energy asymptotics and optimal phase).
For any Ω0 > (3π)−1 and ε small enough

EGP = Egv +O((log | log ε|)−2| log ε|2). (1.39)

Moreover Egv = Egv
ωopt

with ωopt ∈ N satisfying

ωopt :=
2

3
√
πε

(1 +O(| log ε|−4). (1.40)
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Remark 1.6 (Composition of the energy)
We refer to [CRY, Remark 1.4] for details on the energy Egv (denoted ÊGP in that paper). Let us
just emphasize that in this setting the Dirichlet boundary condition is responsible for a radial kinetic
energy contribution that was not present in the flat Neumann case and gives the leading order correction
∝ ε−5/2| log ε|−3/2 to ETF in the asymptotic expansion of Egv.

A consequence of Theorem 1.3 is that the degree of ΨGP is well defined on any circle ∂B(r) of radius
r centered at the origin, as long as

R> ≤ r ≤ 1− ε3/2| log ε|2.

We are able to estimate this degree, proving that it is in agreement with that of the optimal giant vortex
trial function (1.40):

Theorem 1.5 (Degree of a GP minimizer).
If Ω0 > 2(3π)−1 and ε is small enough,

deg
{

ΨGP, ∂B(r)
}

= Ω− 2

3
√
πε

(1 +O(| log ε|−4), (1.41)

for any R> ≤ r ≤ 1− ε3/2| log ε|2.

We note that because of the Dirichlet condition there is a small region close to ∂B where the density
goes to zero. We have basically no information on the GP minimizer in this layer that could a priori
contain vortices. The existence of this layer is the main difference between the flat Dirichlet case and
the flat Neumann case considered in [CRY]. In particular the lack of a priori estimates on the phase
circulation of ΨGP on ∂B requires new ideas in the proof.

1.3 Rotational Symmetry Breaking

As anticipated above, a very natural question arising from the results in Section 1.2 is that of the
repartition of vortices in the central hole of low matter density. In particular, does one have

ΨGP = gopt(r)e
i(Ω−ωopt)ϑ,

modulo a constant phase factor, which would imply that all the vorticity is contained in a central multiply
quantized vortex?
We show below that this can not be the case: the GP functional is rotationally symmetric but if the
angular velocity exceeds a certain threshold this symmetry is broken at the level of the ground state. No
minimizer of the GP energy functional is an eigenfunction of the angular momentum, i.e. a function of
the form f(r)einϑ with f real and n an integer. A straightforward consequence is that there is not a
unique minimizer but for any given minimizing function one can obtain infinitely many others by simply
rotating the function by an arbitrary angle. In other words as soon as the rotational symmetry is broken,
the ground state is degenerate and its degeneracy is infinite.

In [CDY1, Proposition 2.2] we have proven that the symmetry breaking phenomenon occurs in the
case of a bounded trap B with Neumann boundary conditions when c| log ε| ≤ Ω . ε−1, for some given
constant c. We are now going to show that such a result admits an extension to angular velocities much
larger than ε−1, i.e., the rotational symmetry is still broken even for very large angular velocities. Such
an extension is far from obvious in view of the main result about the emergence of a giant vortex state
discussed above: Since vortices are expelled from the essential support of the GP minimizer, there might
a priori be a restoration of the rotational symmetry but the behavior of any GP minimizer inside the
hole B(Rh) remains unknown.
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Theorem 1.6 (Rotational symmetry breaking).
If ε is small enough and εΩ large enough, no minimizer of the GP energy functional (1.1) is an eigen-
function of the angular momentum.

We note that it is proved in [AJR] for a related model that the ground state is rotationally symmetric
if Ω < Ωc1 and ε is small enough. Theorem 1.6 shows that the symmetry, broken due to the nucleation
of vortices, never reappears, even when Ω > Ωc3 .

1.4 Organization of the Paper

The paper is organized as follows. Section 2 is devoted to general estimates that will be used throughout
the paper. We then prove our results about the regime | log ε| ≪ Ω ≪ ε−2| log ε|−1 in Section 3. The
analysis of the energy functional (1.15) is the main new ingredient with respect to the method of [CY].
We adapt the techniques developed in that paper for the evaluation of the energy of a trial function con-
taining a regular lattice of vortices. The corresponding lower bound is proved via a localization method
allowing to appeal to results from GL theory [SS1, SS2]. The inhomogeneity of the density profile is dealt
with using a Riemann sum approximation.
Section 4 is devoted to the giant vortex regime. Our main tools are the techniques of vortex ball con-
struction and jacobian estimates, originating in the papers [Sa, J, JS] (see also [SS2]). We implement
this approach using a cell decomposition as in [CRY]. New ideas are necessary to control the behavior of
GP minimizers on ∂B.
The symmetry breaking result is proved in Section 5. Following [Seir], given a candidate rotationally sym-
metric minimizer, we explicitly construct a wave function giving a lower energy. Finally the Appendix
gathers important but technical results about the TF functional and the third critical speed.

2 Preliminary Estimates: The Density Profile with Dirichlet

Boundary Conditions

This section is devoted to the proof of estimates which will prove to be very useful in the rest of the paper
but are independent of the main results. We mainly investigate the properties of the density profile which
captures the main traits of the modulus of the GP minimizer |ΨGP|: More precisely we study in details
the minimization of the density functional ÊGP (1.15) and prove bounds on its ground state energy ÊGP

(1.16) and associated minimizers g.
The leading order term in the ground state energy ÊGP is given by the infimum of the TF functional

(1.17), i.e.,
ETF := inf

ρ∈DTF
ETF[ρ], D

TF :=
{

ρ ∈ L1(B) : ρ > 0, ‖ρ‖1 = 1
}

. (2.1)

We postpone the discussion of the properties of ETF as well as the corresponding minimizer ρTF to the
Appendix.

Proposition 2.1 (Minimization of ÊGP).
If Ω ≪ ε−3| log ε|−2 as ε → 0,

ETF ≤ ÊGP ≤ ETF +O(ε−1) +O
(

ε1/2Ω3/2
)

. (2.2)

Moreover there exists a minimizer g that is unique up to a sign, radial and can be chosen to be positive
away from the boundary ∂B. It solves inside B the variational equation

−∆g − Ω2r2g + 2ε−2g3 = µ̂GPg, (2.3)

with boundary condition g(1) = 0 and µ̂GP = ÊGP + ε−2 ‖g‖44.
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Remark 2.1 (Composition of the energy ÊGP)
The remainders appearing on the r.h.s. of (2.2) can be interpreted as the kinetic energy due to Dirichlet
boundary conditions: The bending of the TF density close to r = 1 in order to fulfill the boundary
condition produces some kinetic energy which is not negligible and can be estimated by means of the
trial function used in the proof of the above proposition, i.e., O(ε−1) as long as Ω . ε−1, and O(ε1/2Ω3/2)
for larger angular velocities. Note indeed that the second correction becomes relevant only if Ω & ε−1.
The orders of those corrections can be explained as follows: If Ω . ε−1 the TF density goes from its
maximum of order 1 to 0 in a layer of thickness ∼ ε (because of the nonlinear term), yielding a gradient
∼ ε−1 and thus a kinetic energy of order ε−1. If Ω ≫ ε−1 the thickness of the annulus where g varies
from

√
εΩ to 0 becomes of order ε1/2Ω−1/2 and the associated kinetic energy is O(ε1/2Ω3/2).

Note that in both cases the kinetic energy associated with the boundary conditions is much larger than
the radial kinetic energy of the profile

√

ρTF which is O(1) in the first case and O(ε2Ω2| log ε|) in the
second one (see [CY, Section 4]): The condition Ω ≪ ε−3| log ε|−2 is precisely due to the comparison of
such energies for large angular velocities.
Finally we point out that, if Ω ≪ ε−1, the correction of order ε−1 due to Dirichlet boundary conditions can
become much larger than two terms of order Ω2 and ε2Ω4 contained inside ETF (see the explicit expression
(A.3) in the Appendix), so that the upper bound could be stated in that case ÊGP ≤ π−1ε−2 +O(ε−1).

Proof of Proposition 2.1.
The lower bound is trivial since it is sufficient to neglect the positive kinetic energy to get ÊGP ≥ ETF.
The upper bound is obtained by evaluating ÊGP on a trial function of the form

ftrial(r) = c
√

ρ(r)ξD(r) (2.4)

where c is the normalization constant and 0 ≤ ξD(r) ≤ 1 a cut-off function equal to 1 everywhere except
in the radial layer [1 − δ, 1], δ ≪ (1 + εΩ)−1, where it goes smoothly to 0, so that f satisfies Dirichlet
boundary conditions. The density ρ(r) coincides with ρTF(r) if Ω is below the threshold 2(

√
πε)−1 and

is given by a regularization of ρTF above it, i.e., if εΩ > 2/
√
π, we set as in [CY, Eq. (4.9)]

ρ(r) :=











0, if 0 ≤ r ≤ Rh,

Ω2ρTF(Rh +Ω−1)(r −Rh)
2, if Rh ≤ r ≤ Rh +Ω−1,

ρTF(r), otherwise.

(2.5)

Notice that ρ differs from ρTF only inside the interval [Rh, Rh +Ω−1] and

ρ(r) = ρTF(r) +O(ε2Ω). (2.6)

In order to estimate the normalization constant we use the bound ρTF ≤ C(1 + εΩ), which implies

c−2 =

∫

B

d~r ρξ2D ≥
∫

B

d~r ρTF − 2π

∫ 1

1−δ

dr r(1 − ξ2D)ρ− Cε2 ≥ 1− C[(εΩ+ 1)δ + ε2]. (2.7)

The kinetic energy of ftrial is bounded as follows:
∫

B

d~r |∇ftrial|2 ≤ 2c2
∫

B

d~r
{

|∇√
ρ|2 + ρ |∇ξD|2

}

≤ C[ε2Ω2| log ε|+ (εΩ+ 1)δ−1], (2.8)

where we refer to [CY, Eqs. (4.14) and (4.15)] for the estimate of the kinetic energy of ρ.
The interaction term can be easily estimated as

1

ε2

∫

B

d~r f4
trial ≤

1 + C(εΩ + 1)δ

ε2

∥

∥ρTF
∥

∥

2

2
≤ ε−2

∥

∥ρTF
∥

∥

2

2
+ C(Ω + ε−1)2δ. (2.9)
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To evaluate the centrifugal term we act as in [CY, Eqs. (4.44) – (4.46)]: With analogous notation

− Ω2

∫

B

d~r r2f2
trial = −2πΩ2 + 4πΩ2

∫ 1

0

dr r

∫ r

0

dr′ r′f2
trial(r

′) ≤

− 2πΩ2 + 4πΩ2

∫ 1

0

dr r

∫ r

0

dr′ r′ρTF(r′) + C[Ω + (ε2 +Ω−2)−1δ] =

− Ω2

∫

B

d~r r2ρTF + C(Ω + ε−2δ +Ω2δ), (2.10)

where we have integrated by parts twice and used (2.6), (2.7) and the normalization of ftrial. Hence one
finally obtains

ÊGP [ftrial] ≤ ETF + C[ε2Ω2| log ε|+Ω+ (εΩ + 1)δ−1 + (Ω + ε−1)2δ]. (2.11)

It only remains to optimize w.r.t. δ, which yields δ = ε, if Ω . ε−1, and δ = ε1/2Ω−1/2 otherwise, and
thus the result.

A crucial property of the density g is stated in the following

Proposition 2.2 (Behavior of g).
The density g admits a unique maximum at some point 0 < Rm < 1.

Proof. The method is very similar to what is used in [CRY, Lemma 2.1], although in that case one
considers the Neumann problem. After a variable transformation r2 → s the functional ÊGP becomes

π

∫ 1

0

ds
{

s|∇f |2 − Ω2sf2 + ε−2f4
}

, (2.12)

and the normalization condition
∫ 1

0

ds g2 = π−1. (2.13)

We first observe that the Dirichlet boundary condition implies that g cannot be constant, otherwise we
would have g = 0 everywhere, contradicting the mass constraint.
Suppose now that g has more than one local maximum. Then it has a local minimum at some point
s = s2 with 0 < s2 < 1, on the right side of a local maximum at the position s = s1, i.e., s1 < s2. For
0 < ǫ < g2(s1) − g2(s2), we consider the set Iǫ = {0 ≤ s < s2 : g2(s1)− ǫ ≤ g2(s) ≤ g2(s1)}: Since g is
continuous, the function

Φ(ǫ) :=

∫

Iǫ

ds g2 (2.14)

is strictly positive and Φ(ǫ) → 0 as ǫ → 0. Likewise, for any κ > 0, we set Jκ = {s1 < s ≤ 1 : g2(s2) ≤
g2(s) ≤ g2(s2) + κ}, so that

Γ(κ) :=

∫

Jκ

ds g2 (2.15)

has the same properties as Φ.
Hence, by the continuity of g, there always exist ǫ, κ > 0, such that g2(s2)+κ < g2(s1)−ǫ and Φ(ǫ) = Γ(κ).
Note that this implies that Iǫ and Jκ are disjoint.
We now define a new normalized function g̃ by

g̃2(s) :=











g2(s1)
2 − ǫ, if s ∈ Iǫ,

g2(s2) + κ, if s ∈ Jκ,

g2(s), otherwise.

(2.16)
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The gradient of g̃ vanishes in the intervals Iǫ and Jκ and equals the gradient of g everywhere else, so that
the kinetic energy of g̃ is smaller or equal to the one of g. The centrifugal term is lowered by g̃, because
−s is strictly decreasing and the value of g̃2 on Iǫ is larger than on Jκ. Finally since mass is rearranged
from Iǫ to Jκ, where the density is lower, ‖g̃‖44 < ‖g‖44.
Therefore the functional evaluated on g̃ is strictly smaller than ÊGP, which contradicts the assumption
that g is a minimizer. Hence g has only one maximum.

The energy asymptotics (2.2) implies that the density g2 is close to the TF minimizer ρTF:

Proposition 2.3 (Preliminary estimates of g).
If Ω ≪ ε−3| log ε|−2 as ε → 0,

∥

∥g2 − ρTF
∥

∥

L2(B)
≤ O(ε1/2 + ε5/4Ω3/4), (2.17)

g2(Rm) = ‖g‖2L∞(B) ≤
∥

∥ρTF
∥

∥

L∞(B)

(

1 +O(
√
ε) +O(ε3/4Ω1/4)

)

. (2.18)

Proof. See, e.g., [CRY, Proposition 2.1]. Note that (2.17) implies the bound

∣

∣µ̂GP − µTF
∣

∣ ≤ C (εΩ+ 1)1/2
(

ε−3/2 + ε−3/4Ω3/4
)

, (2.19)

which yields (2.18).

Next proposition is going to be crucial in the proof of the main results since it allows to replace the
density g2 with the TF density ρTF: On the one hand, using the fact that the latter is explicit, this result
will be used to obtain a suitable lower bound on g2 in some region far from the boundary and, on the
other hand, it implies that the boundary layer where g goes to 0 is very small.

Proposition 2.4 (Pointwise estimate of g).
If Ω . Ω̄ε−1 with Ω̄ < 2/

√
π as ε → 0,

∣

∣g2(r) − ρTF(r)
∣

∣ ≤ O(
√
ε), (2.20)

for any 0 ≤ r ≤ 1−O(ε| log ε|).
On the other hand3 if 2(

√
πε)−1 . Ω . ε−2,

∣

∣g2(r) − ρTF(r)
∣

∣ ≤ O(ε7/4Ω5/4), (2.21)

for any Rh +O(ε−1Ω−1| log ε|−2) ≤ r ≤ 1−O(ε1/2Ω−1/2| log ε|3/2).

Remark 2.2 (Position of the maximum of g)
The pointwise estimates (2.20) and (2.21) give some information about the position of the maximum
point of g. Assuming that Ω . ε−1, one has the lower bound

g2(Rm) ≥ ρTF(1− ε| log ε|)− C
√
ε,

since (2.20) holds true up to a distance ε| log ε| from the boundary. Hence one immediately obtains

Rm ≥ 1−O(ε−3/2Ω−2), (2.22)

which for ε−3/4 ≪ Ω . ε−1 implies that Rm = 1− o(1). For smaller angular velocities the above inequal-
ity becomes useless: Since ρTF is approximately constant in those regimes, i.e., ρTF(r) = π−1+O(ε2Ω2),

3This second estimate applies also if Ω = 2(
√
πε)−1(1 − o(1)), in which case Rh has to be set equal to 0.
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the pointwise estimate (2.20) is too rough to extract information about the maximum of g.
On the opposite if 2(

√
πε)−1 . Ω . ε−2, we get from (2.21) the following: Either Rm ≥ 1 −

ε1/2Ω−1/2| log ε|3/2 or the pointwise estimate (2.21) applies at Rm yielding g2(Rm) ≤ ρTF(Rm) +
Cε7/4Ω5/4 and

g2(Rm) ≥ ρTF(1 − ε1/2Ω−1/2| log ε|3/2)− Cε7/4Ω5/4,

so that, in any case,
Rm ≥ 1−O(ε−1/4Ω−3/4), (2.23)

since ε1/2Ω−1/2| log ε|3/2 ≪ ε−1/4Ω−3/4.

Remark 2.3 (Improved pointwise estimates of g)
Thanks to the remark above, it is possible to refine the estimates (2.20) and (2.21) and extend them up
to the maximum point of g. More precisely one has the following: If Ω . Ω̄ε−1 with Ω̄ < 2/

√
π,

∣

∣g(r)− ρTF(r)
∣

∣ ≤ O(
√
ε), (2.24)

for any 0 ≤ r ≤ max[Rm, 1− ε| log ε|]. If 2(√πε)−1 . Ω . ε−2,

∣

∣g(r) − ρTF(r)
∣

∣ ≤ O(ε7/4Ω5/4), (2.25)

for any Rh + ε−1Ω−1| log ε|−2 ≤ r ≤ max[Rm, 1− ε1/2Ω−1/2| log ε|3/2].
The extension can be easily done in the first case (Ω . Ω̄ε−1) by noticing that one can suppose Rm ≥
1−ε| log ε| (otherwise the bound is given by the original result), so that (2.24) follows from (2.18) together
with

∥

∥ρTF
∥

∥

∞
− ρTF(1 − ε| log ε|) = ρTF(1)− ρTF(1− ε| log ε|) ≤ Cε3Ω2| log ε| ≪ O(

√
ε),

and the fact that g is increasing in B(Rm).
In the other regime the key point is the estimate (2.23), which implies

max
1−ε−1/4Ω−3/4≤r≤1

∣

∣ρTF(1)− ρTF(r)
∣

∣ ≤ Cε7/4Ω5/4.

Proof of Proposition 2.3.
The proof is done exactly as in [CRY, Proposition 2.6], so we highlight only the main differences.
The result is obtained by exhibiting suitable local sub- and super-solutions to the variational equation

−∆g = 2ε−2
(

ρ̂− g2
)

g, (2.26)

where the function ρ̂ is given by
ρ̂(r) := 1

2

(

ε2µ̂GP + ε2Ω2r2
)

. (2.27)

By (2.19), if Ω ≤ 2(
√
πε)−1,

∥

∥ρ̂− ρTF
∥

∥

L∞(B)
≤ C

√
ε, (2.28)

whereas if Ω > 2(
√
πε)−1,

∣

∣ρ̂(r) − ρTF(r)
∣

∣ ≤ Cε7/4Ω5/4, (2.29)

for any r ≥ Rh.
In order to apply the maximum principle one needs a lower bound on the function ρ̂ in the domain
under consideration and it is provided by the above estimates: In the fist case, i.e., if Ω ≤ Ω̄ε−1,
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ρTF(r) ≥ C(Ω̄) > 0 and the pointwise estimate (2.28) guarantees the positivity of ρ̂ everywhere; otherwise,
if 2(

√
πε)−1 . Ω . ε−2, the condition r ≥ Rh +O(ε−1Ω−1| log ε|−2) yields

ρTF(r) ≥ CεΩ| log ε|−2 ≫ O(ε7/4Ω5/4) ≥
∣

∣ρ̂(r) − ρTF(r)
∣

∣ ,

so that ρ̂(r) > CεΩ| log ε|−2 > 0 in the region considered.
The rest of the proof is done as in [CRY, Proposition 2.6] in a local annulus [r0−δ, r0+δ] with δ = ε| log ε|,
if Ω . Ω̄ε−1, and δ = ε1/2Ω−1/2| log ε|3/2 otherwise. Note that the lack of monotonicity of the density
profile g prevents a straightforward extension of the estimate to the whole support of ρTF.

For angular velocities larger than the threshold 2(
√
πε)−1 the TF density develops a hole centered at

the origin of radius Rh (see the Appendix) and in this case one can show that the density g is exponentially
small there:

Proposition 2.5 (Exponential smallness of g inside the hole).
If Ω ≥ 2(

√
πε)−1 as ε → 0,

g2(r) ≤ CεΩ exp

{

− 1− r2

1−R2
h

}

(2.30)

for any ~r ∈ B. Moreover, if Ω ≥ 2(
√
πε)−1 +O(1), there exist a strictly positive constant c such that for

any ~r such that r ≤ Rh −O(ε7/6),

g2(r) ≤ CεΩ exp
{

− c

ε1/6

}

. (2.31)

Proof. See [CRY, Proposition 2.2]. Note that in the proof of the second estimate, the condition Ω ≥
2(
√
πε)−1 +O(1) is needed in order to guarantee that Rh ≫ O(ε7/6).

The pointwise estimates (2.24) and (2.25) and the exponential smallness stated in the proposition
above have some important consequences as, e.g., an improved L2 estimate on the density g close to the
boundary of the trap:

Proposition 2.6 (Estimate of Rm and L2 estimate of g).
If ε−1 . Ω ≪ ε−2,

Rm ≥ 1−O(ε−5/8Ω−7/8), ‖g‖2L2(B\B(Rm)) ≤ O(ε3/8Ω1/8). (2.32)

Proof. Without loss of generality we can assume Ω > 2(
√
πε)−1, since the proof in the other case, i.e.,

without the hole, is even simpler. Because of the normalization of both ρTF and g, we have
∫

B\B(Rm)

d~r
(

ρTF − g2
)

=

∫

B(Rm)

d~r
(

g2 − ρTF
)

.

The monotonicity of g in B(Rm) and the bound (2.25) yield g2(Rh) ≤ g2(Rh + ε−1Ω−1| log ε|−1) ≤
εΩ| log ε|−1, so that, setting for convenience R0 := Rh + ε−1Ω−1| log ε|−1 and using the exponential
smallness (2.31), one obtains

∫

B(R0)

d~r
∣

∣ρTF − g2
∣

∣ ≤
∫

B(Rh−ε7/6)

d~r g2 + Cε1/6Ω−1| log ε|−1 +

∫

B(R0)\B(Rh)

d~r
∣

∣ρTF − g2
∣

∣ ≤

C
∥

∥ρTF − g2
∥

∥

L2(B)
ε−1/2Ω−1/2| log ε|−1/2 + Cε1/6Ω−1| log ε|−1 ≤ Cε3/4Ω1/4| log ε|−1/2.

For r ≥ R0 one can apply the pointwise estimate (2.25), which yields
∫

B(Rm)\B(R0)

d~r
∣

∣ρTF − g2
∣

∣ ≤ Cε3/4Ω1/4.
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Collecting the above estimates one therefore has
∫

B\B(Rm)

d~r
(

ρTF − g2
)

≤ Cε3/4Ω1/4. (2.33)

On the other hand by (2.25), g2(Rm) ≤ ρTF(Rm) + Cε7/4Ω5/4), so that

∫

B\B(Rm)

d~r
(

ρTF − g2
)

≥ ε2Ω2

2

∫

B\B(Rm)

d~r
(

r2 −R2
m

)

− Cε7/4Ω5/4(1−R2
m) ≥

1
4πε

2Ω2(1−R2
m)

2 − Cε7/4Ω5/4(1−R2
m),

which gives the estimate of Rm.
Since the argument leading to (2.33) is symmetric in g2 and ρTF, it is also true that

∫

B\B(Rm)

d~r g2 ≤
∫

B\B(Rm)

d~r ρTF + Cε3/4Ω1/4 ≤ Cε3/8Ω1/8, (2.34)

due to the lower bound on Rm (2.32).

3 The Regime | log ε| ≪ Ω ≪ ε
−2| log ε|−1

This section contains the proof of the main results stated in the Introduction for the regime | log ε| ≪
Ω ≪ ε−2| log ε|−1. We also prove some additional estimates, which are basically corollaries of the main
results and will be used also in the analysis of the giant vortex regime.

3.1 GP Energy Asymptotics

The most important result proven in this section is the GP ground state energy asymptotics:

Proof of Theorem 1.2.
The result is proven by exhibiting upper and lower bounds for the GP ground state energy.

Step 1. For the upper bound we evaluate the GP functional on the trial function

Ψtrial(~r) := c g(r)ξ(~r)Φ(~r), (3.1)

where c is a normalization constant, Φ(~r) the phase factor introduced in [CY, Eq. (4.6)] and ξ a cut-off
function: More precisely, using the complex notation ζ = x + iy ∈ C for points ~r = (x, y) ∈ R2, we can
express Φ as

Φ(~r) :=
∏

ζi∈L

ζ − ζi
|ζ − ζi|

, (3.2)

where we denote by L a finite, regular lattice (triangular, rectangular or hexagonal) of points ~ri ∈ B such
that the corresponding cell Qi is contained in B: Each lattice point ~ri lies at the center of a lattice cell
Qi and the lattice constant ℓ is chosen so that the area of the fundamental cell Q is

|Q| = πΩ−1. (3.3)

Thus ℓ = CΩ−1/2 and the total number of lattice points in the unit disc is Ω(1−O(Ω−1/2)). In order to
get rid of the singularities of the phase factor Φ at lattice points, we define the function

ξ(~r) :=

{

1, if |ζ − ζi| > t, ∀ζi ∈ L,
t−1|ζ − ζi|, if |ζ − ζi| ≤ t, for some ζi ∈ L

(3.4)
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where t is a variational parameter satisfying the conditions min[ε, ε1/2Ω−1/2] ≤ t ≪ Ω−1/2.
The normalization constant takes into account the effect of the cut-off function ξ and it is not difficult
to see that 1 ≤ c2 ≤ 1 + CΩt2.
We start by computing the kinetic energy of Ψtrial:

∫

B

d~r
∣

∣

∣

(

∇− i ~A
)

Ψtrial

∣

∣

∣

2

= c2
∫

B

d~r |∇ (gξ)|2 + c2
∫

B

d~r ξ2g2
∣

∣

∣
∇Φ− ~A

∣

∣

∣

2

. (3.5)

The first term in the expression above can be estimated as follows:

c2
∫

B

d~r |∇ (gξ)|2 −
∫

B

d~r |∇g|2 ≤ 1
2c

2

∫

B

d~r∇g2 · ∇ξ2 + C
(

Ω+ Ωε−1t2 + ε1/2Ω5/2t2
)

≤

1
2c

2
∑

~ri∈L

∫

∂B(~ri,t)

dσ g2∂nξ
2 − 1

2c
2

∫

B

d~r g2∆ξ2 + C
(

Ω + Ωε−1t2 + ε1/2Ω5/2t2
)

≤

C
(

Ω + Ωε−1t2 + ε1/2Ω5/2t2
)

(3.6)

where we have used the bounds |∇ξ| ≤ t−1, |∆ξ2| ≤ Ct−2 and ‖∇g‖22 ≤ C(ε−1 + ε1/2Ω3/2) (see (2.2)).
We have also used the fact that

∑

~ri∈L

sup
~r∈B(~ri,t)

g2(r) ≤ CΩ,

which can be seen as a consequence of the upper bound g2 ≤ C(εΩ + 1) in addition to the exponen-
tial smallness (2.31), which allows to estimate the above quantity as the number of cells contained in
supp

(

ρTF
)

times εΩ+ 1, i.e., O(Ω).
In order to estimate the last term in (3.5), we act exactly as in [CY, Proposition 4.1]. The estimate (4.37)
in [CY], that is obtained by making use of an analogy with an electrostatic problem, reads in our case

∫

B

d~r ξ2g2
∣

∣

∣
∇Φ− ~A

∣

∣

∣

2

≤ (1 + CtΩ1/2)
∑

~ri∈L

sup
~r∈Qi

g2(r)
(

π| log(t2Ω)|+O(1)
)

. (3.7)

It remains then to use the Riemann sum approximation and the normalization of g2 to estimate the sum
in the above expression: If Ω ≤ Ω̄ε−1 for some Ω̄ < 2/

√
π, we can simply use (2.24) to replace g2 with

ρTF and proceed as in the proof of Proposition 4.1 in [CY], obtaining

∫

B

d~r ξ2g2
∣

∣

∣
∇Φ− ~A

∣

∣

∣

2

≤
[

1 +O(tΩ1/2) +O(
√
ε)
]

|Q|−1
(

π| log(t2Ω)|+O(1)
)

. (3.8)

Note that inside each cell sup ρTF − inf ρTF ≤ Cε2Ω3/2 ≪ √
ε, so this error term can be absorbed in the

O(
√
ε) in the equation above.

In the opposite case, if Ω ≥ 2(
√
πε)−1, we set

D :=
{

~r ∈ B : r ≥ R̄
}

, (3.9)

with
R̄ := Rh + ε−1Ω−1| log(ε2Ω| log ε|)|−1, (3.10)

so that R̄−Rh ≪ ε−1Ω−1 and

ρTF(r) ≥ 1
2εΩ| log ε|

−1(1− o(1)), ∀~r ∈ D, (3.11)

since | log(ε2Ω| log ε|)| ≤ | log ε|(1 + o(1)).
Now we can replace g2 with ρTF inside D by means of (2.25). Moreover in the region r ≤ R̄ we can use the
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exponential smallness (2.31), if r ≤ Rh − ε7/6, and the pointwise bound g2(r) ≤ g2(R̄) ≤ CεΩ| log ε|−1,
if Rh − ε7/6 ≤ r ≤ R̄, which follows from (2.25) and the monotonicity of g2(r) in B(Rm). The result is
the upper estimate

∫

B

d~r ξ2g2
∣

∣

∣
∇Φ− ~A

∣

∣

∣

2

≤
[

1 + C(tΩ1/2 + ε3/4Ω1/4| log ε|)
]

∑

~ri∈L∩D

sup
~r∈Qi

ρTF(r)
(

π| log(t2Ω)|+O(1)
)

+

CεΩ| log ε|−1
∣

∣

∣
{~r : Rh − ε7/6 ≤ r ≤ R̄}

∣

∣

∣
|Q|−1 | log ε|+ CεΩ| log ε| exp

{

−cε−1/6
}

≤
[

1 + C(tΩ1/2 + ε3/4Ω1/4| log ε|)
]

∑

~ri∈L

sup
~r∈Qi

ρTF(r)
(

π| log(t2Ω)|+O(1)
)

+ CΩ| log ε|−1 ≤
[

1 + C(tΩ1/2 + ε3/4Ω1/4| log ε|+ εΩ1/2)
]

|Q|−1 (
π| log(t2Ω)|+O(1)

)

+ CΩ| log ε|−1, (3.12)

where we have used the estimate sup ρTF − inf ρTF ≤ Cε2Ω3/2 inside any cell Qi ⊂ D.

The estimate of ETF[|Ψtrial|2] can be obtained as in [CY, Eqs. (4.42) and (4.48)] (see also (2.10)):

ETF
[

|Ψtrial|2
]

≤ (1 + CΩt2)ε−2

∫

B

d~r g4 − Ω2

∫

B

d~r r2g2 + Cε−1Ω2t2 ≤

ETF
[

g2
]

+ C
[

ε−2Ωt2 + ε−1Ω2t2
]

. (3.13)

To conclude the proof of the upper bound it only remains to choose the variational parameter t: In
the regime Ω ≤ Ω̄ε−1, Ω̄ < 2/

√
π, we take t = ε so that the remainder occurring in the above estimate

becomes O(Ω) as in (3.6) and (3.8), whereas, if Ω ≥ 2(
√
πε)−1, the remainder in (3.13) leads to t2 = εΩ−1

in order to recover the same error term O(Ω) as in (3.6). In (3.8) there is an additional remainder of
order O(εΩ3/2| log ε|) which might become larger than Ω for very large angular velocities and is due to
the Riemann sum approximation.
The final result is therefore

EGP [Ψtrial] ≤ ÊGP +Ω| log(ε2Ω)|+O(Ω), (3.14)

if 1 ≪ Ω . ε−1, and

EGP [Ψtrial] ≤ ÊGP +Ω| log ε|+O(Ω) +O(εΩ3/2| log ε|), (3.15)

if Ω ≪ ε−2.
Step 2. The starting point of the lower bound proof is a decoupling of the energy which can be

obtained by defining a function u(~r) as

u(~r) := g−1(r)ΨGP(~r). (3.16)

Note that, thanks to the positivity of g, the function u is well defined in the open ball {~r : r < 1}.
By means of this definition and the variational equation (2.3), one can decouple the energy (see, e.g.,
[CRY, Proposition 3.1] or [Se, Lemma 2.2]) to obtain, using the L2 normalization of both ΨGP and g,

EGP[ΨGP] = ÊGP +

∫

B

d~r g2
{

∣

∣

∣
(∇− i ~A)u

∣

∣

∣

2

+ ε−2g2
(

1− |u|2
)2
}

.

We deduce the lower bound

EGP = EGP[ΨGP] ≥ ÊGP +

∫

D̃

d~r g2
{

∣

∣

∣
(∇− i ~A)u

∣

∣

∣

2

+ ε−2g2
(

1− |u|2
)2
}

(3.17)
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by restricting the last integral to D̃, with

D̃ :=

{

{~r ∈ B : r ≤ 1− ε| log ε|} , if Ω ≤ Ω̄ε−1, with Ω̄ < 2/
√
π,

B(Rm) ∩D if Ω & 2(
√
πε)−1.

(3.18)

The pointwise estimates (2.24) and (2.25) allow the replacement of g2 with ρTF:

EGP ≥ ÊGP +
[

1− C
(√

ε+ ε3/4Ω1/4
)]

∫

D̃

d~r ρTF

{

∣

∣

∣
(∇− i ~A)u

∣

∣

∣

2

+ ε−2ρTF
(

1− |u|2
)2
}

. (3.19)

Moreover as in [CY, Section 5] we define another regular (square) lattice

L̂ :=
{

~ri = (mℓ̂, nℓ̂),m, n ∈ Z : Q̂i ⊂ D̃
}

, (3.20)

where Q̂i is the cell centered at ~ri and the lattice spacing satisfies the same conditions as in [CY, Eq.
(5.16)], i.e.,

| log ε|1/2Ω−1/2 ≪ ℓ̂ ≪ min
[

1, (εΩ)−1| log(ε2Ω| log ε|)|−1
]

, (3.21)

so that
sup
~r∈Qi

∣

∣ρTF(r) − ρTF(ri)
∣

∣ ≤ CεΩℓ̂| log ε|ρTF(ri).

Hence (3.19) yields the lower bound

EGP − ÊGP ≥
[

1−O(
√
ε)−O(ε3/4Ω1/4| log ε|)−O(εΩℓ̂| log ε|)

]

∑

~ri∈L̂

ρTF(ri)E(i)[u] ≥

(1− o(1))
∑

~ri∈L̂

ρTF(ri)E(i)[u], (3.22)

where E(i) is defined as in [CY, Eq. (5.18)], i.e.,

E(i)[u] :=

∫

Q̂i

d~r

{

∣

∣

∣
(∇− i ~A)u

∣

∣

∣

2

+ ε−2ρTF(ri)
(

1− |u|2
)2
}

. (3.23)

After a suitable scaling the energy above can be seen as a Ginzburg-Landau energy with a fixed external
field hex in the range | log ǫ| ≪ hex ≪ ǫ−2 where ǫ is a new small parameter. We can thus use the lower
bound for the Ginzburg-Landau energy (see [SS1, SS2]) as in [CY, Proposition 5.1]. The result is

E(i)[u] ≥ Ωℓ̂2| log(min[ε, ε2Ω])|(1 − o(1)), (3.24)

for any | log ε| ≪ Ω ≪ ε−2| log ε|−1.
To complete the proof if suffices then to use, for any Ω ≪ ε−1, the estimate ρTF(r) ≥ π−1(1 − o(1)),
which yields

∑

~ri∈L̂

ρTF(ri) ≥ (1− o(1))π−1(1 −O(ε| log ε|))|B||Q̂|−1 ≥ (1 − o(1))ℓ̂−2, (3.25)

and thus the result. On the other hand, if Ω & ε−1, a simple computation (see, e.g., (2.34)) using the
estimates (2.22) and (2.32) gives

∥

∥ρTF
∥

∥

L1(B\B(Rm))
≤ o(1), (3.26)
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which implies
∑

~ri∈L̂

ρTF(ri) ≥ (1− o(1))ℓ̂−2

∫

B(Rm)∩D

d~r ρTF(r) ≥ (1 − o(1))ℓ̂−2, (3.27)

thanks to the normalization of ρTF.
By putting together (3.22), (3.24), (3.25) and (3.27), one obtains the lower bound matching (3.14) and
(3.15).

3.2 Estimates for GP Minimizers

The GP energy asymptotics has many important consequences on the asymptotic behavior of GP min-
imizers: For instance the upper bounds (3.14) and (3.15) immediately imply the L2 convergence of any
minimizing density |ΨGP|2 to the TF density ρTF:

Proposition 3.1 (L2 convegence of |ΨGP|2).
As ε → 0, if | log ε| ≪ Ω . ε−1,

∥

∥|ΨGP|2 − ρTF
∥

∥

L2(B)
≤ O(ε1/2) +O(εΩ1/2| log(ε2Ω)|1/2), (3.28)

whereas, if ε−1 ≪ Ω ≪ ε−2,

∥

∥|ΨGP|2 − ρTF
∥

∥

L2(B)
≤ O(εΩ1/2| log ε|1/2) +O(ε5/2Ω3/2). (3.29)

Proof. See [CRY, Proposition 2.1].

Acting as in the derivation of [CRY, Eq. (2.8)], one can show that the above L2 estimates imply a
bound on the chemical potential µGP occurring in the variational equation (1.6) solved by ΨGP:

∣

∣µGP − µTF
∣

∣ ≤ O(ε−3/2) +O(ε−1/2Ω1/2| log(ε2Ω)|1/2), (3.30)

if | log ε| ≪ Ω . ε−1, while, for ε−1 ≪ Ω ≪ ε−2,

∣

∣µGP − µTF
∣

∣ ≤ O(εΩ2) +O(ε−1/2Ω| log ε|1/2). (3.31)

Such estimates can in turn be used to prove a pointwise upper bound for |ΨGP|2 (see [CRY, Proposition
2.1]), i.e.,

∥

∥ΨGP
∥

∥

2

L∞(B)
≤ ρTF(1) ·

{

1 +O(ε1/2) +O(ε3/2Ω1/2| log(ε2Ω)|1/2), if | log ε| ≪ Ω . ε−1,

1 +O(ε2Ω) +O(ε1/2| log ε|1/2), if ε−1 ≪ Ω ≪ ε−2.
(3.32)

We finally state another very useful pointwise estimate of ΨGP analogous to [CRY, Proposition 2.2]
and Proposition 2.5. As is the case for the density profile g, if the angular velocity is above the threshold
2(
√
πε)−1, any GP minimizer is exponentially small inside the hole B(Rh).

Proposition 3.2 (Exponential smallness of ΨGP inside the hole).
If Ω ≥ (2/

√
π)ε−1 + O(1), as ε → 0, there exists a strictly positive constant c such that for any ~r such

that r ≤ Rh −O(ε7/6),
∣

∣ΨGP(~r)
∣

∣

2 ≤ CεΩ exp
{

− c

ε1/6

}

. (3.33)

Proof. See [CRY, Proposition 2.2].
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3.3 Distribution of Vorticity

We are now able to prove the uniform distribution of vorticity:

Proof of Theorem 1.1.
The proof follows very closely the proof of [CY, Theorem 3.3] and relies essentially on [SS1, Proposition
5.1].

The argument has to be slightly adapted depending on the value of the angular velocity: For any
Ω ≤ Ω̄ε−1, with Ω̄ < 2/

√
π, the proof of [CY, Theorem 3.3] applies with only one minor modification,

since the cells in the lattice L̂ occurring in the lower bound proof do not cover the whole of B. However,
since the region covered by cells tends to ATF as ε → 0 and the area of the excluded set close to the
boundary is of order O(ε| log ε|), i.e., much smaller than the cell area, such a difference in the lattice
choice has no consequences for the final result.

We now discuss the modifications in the regime ε−1 ≪ Ω ≪ ε−2| log ε|−1 which was not taken into
account in [CY, Theorem 3.3]. The starting point is the localization of the energy bounds (3.15), (3.22)
and (3.24), which can be rewritten as

∑

~ri∈L̂

ρTF(ri)
∣

∣

∣
E(i)[u]− Ωℓ̂2| log ε|

∣

∣

∣
≤ η Ωℓ̂2| log ε|

∑

~ri∈L̂

ρTF(ri), (3.34)

for some
η = η(ε,Ω) ≪ 1 as ε → 0.

In order to obtain a similar estimate inside one lattice cell, one first needs a suitable lower bound on the
density ρTF and this can be obtained by restricting the analysis to the bulk of the condensate, i.e.,

Abulk :=
{

~r ∈ B : R̃ ≤ r ≤ Rm

}

where, if Ω ≫ ε−1, R̃ is given by

R̃ := Rh + γε−1Ω−1, γ := | log η|−1. (3.35)

We then have, for some C > 0,
ρTF(r) ≥ CεΩ| log η|−1 on Abulk. (3.36)

Moreover, the localization of the energy estimate requires that a certain number of bad cells be rejected:
As in [CY, Theorem 3.3] we first introduce a new small parameter

ǫ :=

√

2ε| log ε|
Ω

≪ 1, (3.37)

so that | log(ǫ2Ω)| = | log ε|(1 + o(1)) and (3.34) yields

∑

~ri∈L̂

ρTF(ri)E(i)
ǫ [u] ≤ (1 + η)

∑

~ri∈L̂

ρTF(ri)Ωℓ̂
2| log(ǫ2Ω)|, (3.38)

where

E(i)
ǫ [u] :=

∫

Q̂i

d~r

{

∣

∣

∣
(∇− i ~A)u

∣

∣

∣

2

+ ǫ−2
(

1− |u|2
)2
}

, (3.39)

with η(ǫ,Ω) → 0 as ǫ → 0.
We then say that a cell Q̂i ⊂ Abulk is a good cell if

E(i)
ǫ [u] ≤ (1 +

√
η)Ωℓ̂2| log(ǫ2Ω)|, (3.40)
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whereas the cell is bad if the inequality is reversed.
Now given any set S ⊂ Abulk such that |S| ≫ |Q̂|, the upper bound (3.38), the definition of bad cells,
(3.36) and the upper bound ρTF ≤ O(εΩ) imply that

NB ≤ √
η γ−1N =

√
η| log η|N ≪ N, (3.41)

where NB and N stand for the number of bad cells and the total number of cells contained inside S
respectively.
On the other hand by the definition (3.40) good cells satisfy the assumptions of [SS1, Proposition 5.1]
and therefore one can construct a finite collection of disjoint balls {Bi} := {B(~ri, ̺i)} such that |u| > 1/2
on the boundary of each ball and ̺i ≤ O(Ω−1/2). Hence one can define the winding number di,ε of u on
∂Bi, which coincides with the winding number of ΨGP and, using [SS1, Proposition 5.1]

2π
∑

di,ε = Ωℓ̂2(1 + o(1)), 2π
∑

|di,ε| = Ωℓ̂2(1 + o(1)). (3.42)

The rest of the statement of Theorem 1.1 easily follows by noticing that one can always take ℓ̂ =
Ω−1/2| log(ε2Ω| log ε|)|, which satisfies (3.21), obtaining the lower condition on the area of the set S.

4 The Giant Vortex Regime Ω ∼ ε
−2| log ε|−1

As a preparation for the proof of the main results contained in Theorems 1.3 and 1.4 we formulate and
prove in Section 4.1 some important propositions about the properties of the giant vortex density profiles.
The proof of the absence of vortices in the bulk will follow the analysis of the ground state energy asymp-
totics, which is achieved in several steps. The main ingredients are the energy decoupling (Section 4.2),
the vortex ball construction and the jacobian estimate (Section 4.4). Each individual step is analogous to
the corresponding one contained in [CRY] and we will often omit some details, only stressing the major
differences with the analysis of [CRY] and referring to that paper for further details.

4.1 Giant Vortex Density Profiles

In this section we investigate the properties of the giant vortex profiles and the associated energy func-
tional defined in (1.35). Actually for technical reasons which will be clearer later we consider a functional
identical to (1.35) but on a different integration domain, i.e.,

A := {~r ∈ B : r ≥ R<} , (4.1)

where R< < Rh is suitably chosen in order to apply some estimates: All the conditions on R< occurring
in the subsequent proofs are satisfied if we take

R< := Rh − ε8/7. (4.2)

More precisely we define

D̃
GP :=

{

f ∈ H1(A) : f = f∗, ‖f‖L2(A) = 1, f = 0 on ∂B
}

(4.3)

and set, for any f ∈ D̃GP,

Ẽgv
ω [f ] :=

∫

A

d~r
{

|∇f |2 + ([Ω]− ω)2r−2f2 − 2([Ω]− ω)Ωf2 + ε−2f4
}

=

∫

A

d~r
{

|∇f |2 +B2
ωf

2 − Ω2r2f2 + ε−2f4
}

. (4.4)
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We recall that
Bω = Ωr − ([Ω]− ω) r−1.

The associated ground state energy is

Ẽgv
ω := inf

f∈D̃GP

Ẽgv
ω [f ] (4.5)

and we denote gω any associated minimizer.
The TF-like functional obtained from (4.4) by dropping the kinetic term is denoted by ẼTF

ω (see (A.4))
and its minimization discussed in the Appendix.

Proposition 4.1 (Minimization of Ẽgv
ω ).

If Ω ∝ ε−2| log ε|−1 and |ω| ≤ O(ε−5/4| log ε|−3/4) as ε → 0, then

ETF ≤ ẼTF
ω ≤ Ẽgv

ω ≤ ẼTF
ω +O(ε−5/2| log ε|−3/2) ≤ ETF +O(ε−5/2| log ε|−3/2). (4.6)

There exists a minimizer gω that is unique up to a sign, radial and can be chosen to be positive away
from the boundary ∂B. It solves inside A the variational equation

−∆gω +B2
ωgω − Ω2r2gω + 2ε−2g3ω = µ̃gv

ω gω, (4.7)

with boundary conditions gω(1) = 0 and g′ω(R<) = 0 and µ̃gv
ω = Ẽgv

ω + ε−2 ‖gω‖44.
Moreover gω has a unique global maximum at R̃m with R< < R̃m < 1.

Remark 4.1 (Composition of the energy)
Unlike the flat Neumann case, the remainder in the r.h.s. of (4.6) is of the same order even if the refined
TF energy ẼTF

ω is extracted. The reason is that such a remainder is actually due to the radial kinetic
energy of the giant vortex density profile and in particular to Dirichlet boundary conditions.
In order to give some heuristics to explain such a difference with the flat Neumann case, it is indeed
sufficient to note that, by the pointwise estimate (2.21), the density gω goes from its maximum value
∼ ε1/2Ω1/2 ∼ ε−1/2| log ε|−1/2 to 0 in a region of width at most O(ε1/2Ω−1/2| log ε|3/2) = O(ε3/2| log ε|2).
This yields an estimate for the kinetic energy of gω in that region as O(ε−5/2| log ε|−3), i.e., approximately
the same remainder as in (4.6), which is in any case much larger than the difference between the TF
energies ẼTF

ω − ETF (see (A.5)).

Proof of Proposition 4.1.
The proof of Proposition 2.1 applies to the functional Ẽgv

ω as well by noticing that

|Bω(r)| ≤ Ω sup
~r∈A

(

r−1 − r
)

+ C |ω| ≤ C
(

ε−1 + |ω|
)

, (4.8)

which implies that the B2
ω term in the functional (see the second expression in (4.4)) is always smaller

than the remainder in (2.2), provided |ω| ≤ O(ε−5/4| log ε|−3/4). The Neumann condition at the inner
boundary of A is a direct consequence of the assumption f ∈ H1(A).

Since the asymptotic behavior of the energy Ẽgv
ω is the same as that of ÊGP (see (2.2)) for any

|ω| ≤ O(ε−5/4| log ε|−3/4), most of the estimates proven for the density profile g hold true for gω as well,
provided the phase ω satisfies the estimate required in Proposition 4.1. We sum up such estimates in the
following

Proposition 4.2 (Estimates for gω).
If Ω ∼ ε−2| log ε|−1 and |ω| ≤ O(ε−5/4| log ε|−3/4) as ε → 0,

∥

∥g2ω − ρTF
∥

∥

L2(A)
≤ O(ε−1/4| log ε|−3/4), (4.9)
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g2ω(R̃m) = ‖gω‖2L∞(A) ≤
∥

∥ρTF
∥

∥

L∞(B)

(

1 +O(ε1/4| log ε|−1/4)
)

. (4.10)

Moreover for any ~r ∈ A such that Rh +O(ε| log ε|−1) ≤ r ≤ max[R̃m, 1− ε3/2| log ε|2]
∣

∣g2ω(r) − ρTF(r)
∣

∣ ≤ O(ε−3/4| log ε|−5/4) ≤ O(ε1/4| log ε|7/4)ρTF(r) ≪ ρTF(r), (4.11)

and the maximum position R̃m(ω) of gω satisfies the bounds

R̃m(ω) ≥ 1−O(ε9/8| log ε|7/8), ‖gω‖2L2(B\B(R̃m)) ≤ O(ε1/8| log ε|1/8). (4.12)

Finally for any ~r such that r ≤ Rh −O(ε7/6),

g2ω(r) ≤ Cε−1| log ε|−1 exp
{

− c

ε1/6

}

. (4.13)

Proof. The results are proven exactly as the analogous statements contained in Propositions 2.3, 2.4, 2.5
and 2.6.

4.2 Energy Decoupling and Optimal Phases

The first step in the proof of the absence of vortices is a restriction of the GP energy to a subdomain of
B and its splitting in a suitable energy functional plus the giant vortex profile energy. More precisely we
consider the annulus A defined in (4.1) with an inner radius R< = Rh − ε8/7 suitably chosen in such a
way that outside A the estimates (3.33) and (4.13) yield the exponential smallness in ε of both ΨGP and
the density profile gω.

We also recall the functional Ẽgv
ω introduced in (4.4), which is going to give the energy of the giant

vortex profile, and the reduced energy

Eω[v] :=
∫

A

d~r g2ω

{

|∇v|2 − 2 ~Bω · (iv,∇v) + ε−2g2ω(1− |v|2)2
}

, (4.14)

where
(iv,∇v) := 1

2 i (v∇v∗ − v∗∇v) . (4.15)

Proposition 4.3 (Reduction to an annulus).
For any ω ∈ Z such that |ω| ≤ O(ε−5/4| log ε|−3/4) and for ε sufficiently small

Ẽgv
ω + Eω[uω]−O(ε∞) ≤ EGP ≤ Ẽgv

ω +O(ε∞), (4.16)

where the function uω is defined in A by the decomposition

ΨGP(~r) =: gω(r)uω(~r) exp {i([Ω]− ω)ϑ} . (4.17)

Proof. As in [CRY, Proposition 5.4] the only ingredients for the proof of the above result are the ex-
ponential smallness (3.33) of ΨGP outside A and the variational equation solved by gω. Note that the
function uω is well defined away from the boundary ∂B where both ΨGP and gω vanish.

The idea behind the decomposition (4.17) is that, if the phase factor ω is chosen in a suitable way,
the function uω obtained by the extraction from ΨGP of a density g and the giant vortex phase, i.e., the
phase factor exp{i([Ω]− ω)ϑ}, contains basically no more vorticity and |uω| ∼ 1 in some region close to
the boundary of the trap. The optimal giant vortex phase is determined by inspecting the dependence
on ω of the energy Ẽgv

ω , i.e., one needs to identify the ω0 minimizing Ẽgv
ω .
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Proposition 4.4 (Properties of the optimal phase ω0 and density gω0
).

For every ε > 0 there exists an ω0 ∈ Z minimizing Ẽgv
ω . Moreover one has

ω0 =
2

3
√
πε

(1 +O(| log ε|−4),

∫

A

d~r g2ω0

(

Ω− [Ω]− ω0

r2

)

= O(1). (4.18)

Proof. The existence of a minimizing ω0 ∈ Z can be deduced as in [CRY, Proposition 3.2] as well as the
second estimate in (4.18).

The estimate of ω0 is a straightforward consequence of the estimates4 on gω0
contained in Proposition

4.2, since one has (recall the definition of the annulus Abulk in (1.30))

Ω

∫

A

d~r
(

r−2 − 1
)

g2ω0
≤ Ω

(

1 +O(ε1/4| log ε|7/4)
)

∫

Abulk

d~r
(

r−2 − 1
)

ρTF +O(ε−1)

∫

A\Abulk

d~rg2ω0
≤

Ω
(

1 +O(ε1/4| log ε|7/4)
)

∫

ATF

d~r
(

r−2 − 1
)

ρTF +O(ε−1| log ε|−4), (4.19)

where we have used the fact that |A \ Abulk| ≤ O(ε| log ε|−1) and the estimates (4.10) and (4.11), which
also imply that

sup
~r∈A\Abulk

g2ω0
(r) ≤ O(ε−1| log ε|−3).

On the other hand since

Ω

∫

ATF

d~r
(

r−2 − 1
)

ρTF =
πε2Ω3

4

[

1−R4
h + 2R2

h logR
−2
h

]

=
2

3
√
πε

(1 +O(ε| log ε|)), (4.20)

and
∫

A

d~r r−2g2ω0
≥ R−2

h (1−O(ε8/7)) ≥ 1−O(ε| log ε|),

the result easily follows.

The analogue in the whole ball B is discussed in the following

Proposition 4.5 (Optimal phase ωopt).
For every ε > 0 there exists an ωopt ∈ N fulfilling

ωopt =
2

3
√
πε

(1 +O(| log ε|−4) (4.21)

which minimizes Egv
ω , i.e.,

Egv = Egv
ωopt

. (4.22)

Proof. The existence of ωopt can be proven as in Proposition 4.4 above. Moreover, as in [CRY, Proposition
3.2], it is not difficult to show that the following estimate

∫

B

d~r g2opt

(

Ω− [Ω]− ω0

r2

)

= O(1), (4.23)

holds true, where gopt is the minimizing density associated with ωopt.
In order to extract the same information as in the proof of Proposition 4.4 one needs however to restrict the
above integration to a domain comparable to A and this requires some further analysis of the properties

4Note that the second estimate in (4.18) allows to extract the simple bound |ω0| ≤ O(ε−1) which guarantees that all
the estimates proven in Section 4.1 apply to gω0 .
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of gopt.
Using a regularization of gω0

as a trial function for Egv
ωopt

and exploiting the exponential smallness (4.13)
one can easily show that

Egv = Egv
ωopt

≤ Ẽgv
ω0

+O(ε∞), (4.24)

which guarantees that all the estimates proven in Proposition 4.2 apply also to gopt. Hence one can
use the exponential smallness of gopt (see (4.13)) to estimate the integral inside B \ A, but this is not

completely sufficient because the potential ~Bωopt
contains a singular term at the origin ∼ r−2 and one

needs an additional estimate showing that gopt vanishes as r → 0. This is proven in Lemma 4.1 below.
By using (4.26) and the analogue of (4.13), one thus obtains from (4.23)

∫

A

d~r g2opt

(

Ω− [Ω]− ω0

r2

)

= O(1), (4.25)

which implies the result exactly as5 in the proof of Proposition 4.4.

Lemma 4.1 (Pointwise estimate of gopt close to the origin).
The density gopt minimizing the functional Egv

ωopt
defined in (1.35) satisfies the pointwise estimate

gopt(r) ≤ ‖gopt‖L∞(B) (2r)
[Ω/2]. (4.26)

for any 0 ≤ r ≤ 1/2.

Proof. The function W (r) := ‖gopt‖∞ (2r)[Ω/2] is a supersolution in [0, 1/2] for the variational equation
solved by gopt, i.e.,

−∆gopt + ([Ω]− ωopt)
2r−2gopt − 2Ω([Ω]− ωopt)gopt + 2ε−2g3opt = µoptgopt,

since

−∆W + ([Ω]− ωopt)
2r−2W − 2Ω([Ω]− ωopt)W + 2ε−2W 3 − µoptW ≥

{[

([Ω]− ωopt)
2 − [Ω/2]2 − CΩ

]

r−2 − 2Ω([Ω]− ωopt)− µopt

}

W (r) ≥ CΩW (r) ≥ 0,

where we have used the estimate µopt = −Ω2(1−o(1)) and the fact that we are in the interval r ∈ [0, 1/2].
Since at the boundary ∂B1/2 one has gopt(1/2) ≤ ‖gopt‖∞ = W (1/2), the maximum principle (see, e.g.,
[E]) guarantees that gopt(r) ≤ W (r) and therefore the result.

4.3 Estimates of the Reduced Energies

The next crucial step in the proof of the absence of vortices is the lower bound for the reduced energy
functional Eω0

and in the rest of this section we will focus on such a problem. Since the optimal phase
ω0 as well as the associated density gω0

can be fixed throughout the rest of the proof, we simplify the
notation for the sake of clarity and set

Eω0
[v] =: E [v], gω0

=: g, R̃m(ω0) =: R̃m, ~Bω0
(r) =: ~B(r) =

[

Ωr − ([Ω]− ω0) r
−1

]

~eϑ, (4.27)

and

F [v] :=

∫

A

d~r g2
{

|∇v|2 + ε−2g2
(

1− |v|2
)2
}

, (4.28)

5Note that the other estimates of gopt (analogous to those stated in Proposition 4.2) which are needed to complete the
proof can be derived from the energy bound (4.24).
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where R< := Rh − ε8/7 and (see (4.1))

A := {~r ∈ B : r ≥ R<} .

We also recall that u := uω0
is defined inside A by

ΨGP(~r) =: g(r)u(~r) exp {i([Ω]− ω0)ϑ} ,

and the annulus Abulk is (see (1.30))

Abulk :=
{

~r ∈ B : R> ≤ r ≤ 1− ε3/2| log ε|2
}

with R> := Rh + ε| log ε|−1 (see (1.31)). Note that thanks to the pointwise estimate (4.11), we have the
lower bound

g2(r) ≥ C

ε| log ε|3 on Abulk. (4.29)

We can now state the main result in this section, which is going to be the crucial ingredient in the
proof of the absence of vortices:

Proposition 4.6 (Bounds on the reduced energies).
If Ω = Ω0ε

−2| log ε|−1 with Ω0 > 2(3π)−1, then for ε small enough

F [u] ≤ O
( | log ε|2
log | log ε|2

)

, E [u] ≥ −O
( | log ε|2
log | log ε|2

)

. (4.30)

The proof of the above results is quite involved and before the discussion of its details, which is
postponed to Section 4.5, we are going to give a quick sketch of it together with the statement of several
preliminary results.

The main trick in the estimate of the reduced energy is an integration by parts of the second term
in (4.14), which is made possible by the introduction of a potential function F (r) already considered in
[CRY]. Such a function satisfies the key properties

∇⊥F = 2g2 ~B, F (R<) = 0, (4.31)

and it is explicitly given by

F (r) := 2

∫ r

R<

ds g2(s)

(

Ωs− ([Ω]− ω0)
1

s

)

= 2

∫ r

R<

ds g2(s) ~B(s) · ~eϑ. (4.32)

Other important properties of F are formulated in the next lemma and are basically straightforward
consequences of (4.18) and the bound

|B(r)| ≤ O(ε−1) on A, (4.33)

which follows from the definition of A.

Lemma 4.2 (Useful properties of F ).
Let F be defined in (4.32). The following bounds hold true:

‖F‖L∞(A) ≤ O(ε−1), ‖∇F‖L∞(A) ≤ O(ε−2| log ε|−1). (4.34)

Moreover one has the pointwise estimates

|F (1)| ≤ O(1), |F (r)| ≤ C

{

ε−1|r −R<|g2(r), if r ∈ [R<, R̃m],

1 + ε−1|1− r|g2(r), if r ∈ [R̃m, 1].
(4.35)
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Proof. Most of the proof follows from [CRY, Lemma 4.1]. The estimate (4.18) yields |F (1)| ≤ O(1). The
last inequality in (4.35) for r ∈ [R̃m, 1] is a consequence of this bound together with the identity

F (r) = F (1)− 2

∫ 1

r

ds g2(s) ~B(s) · ~eϑ,

and the fact that g(r) is decreasing for r ∈ [R̃m, 1].

Due to the lack of control of the behavior of the function u at the boundary ∂B, we need to use a
suitable decomposition of F : An integration by parts (Stokes theorem) of the second term in (4.14) would
indeed give

− 2

∫

A

d~r g2 ~B · (iu,∇u) =

∫

A

d~r F (r)curl(iu,∇u)−
∫

∂B

dσ F (1)(iu, ∂τu), (4.36)

and the last term in the expression above clearly depends on u at the boundary. While Neumann boundary
conditions allow to extract some information about u on ∂B and in particular an upper estimate for that
term, on the opposite, if Dirichlet conditions are imposed, u is not even well posed on ∂B, since both
ΨGP and g vanish there. A way out to avoid such a problem is the decomposition of F into a function
vanishing on ∂B and another one whose gradient can be explicitly controlled: More precisely we set

Fout(r) := F (1)

[
∫ 1

R<

ds s−1g2(s)

]−1 ∫ r

R<

ds s−1g2(s), (4.37)

so that
∇
(

g−2∇Fout

)

= 0, Fout(1) = F (1). (4.38)

If we now define
Fin(r) := F (r) − Fout(r), (4.39)

one can easily verify that

∇
(

g−2∇Fin

)

= 2∇ ·B(r)~er , Fin(1) = 0, (4.40)

and, integrating by parts only the term involving Fin in (4.36) we obtain

− 2

∫

A

d~r g2 ~B · (iu,∇u) = −
∫

A

d~r∇⊥Fout · (iu,∇u) +

∫

A

d~r Fin(r)curl(iu,∇u). (4.41)

The energy E [u] can thus be rewritten as

E [u] =
∫

A

d~r
{

g2 |∇u|2 + Fin(r)curl(iu,∇u) + ε−2g4
(

1− |u|2
)2
}

−
∫

A

d~r ∇⊥Fout · (iu,∇u). (4.42)

The first three terms above are the most important ones and their estimate is the key result in the proof
of the absence of vortices. The last term on the other hand can be estimate separately and one can show
that it yields only a smaller order correction.
More precisely the first two terms can be estimated in terms of the vorticity of u: As in [CRY], if we
suppose that |u| ∼ 1 except in some balls {B(~aj, t)}j∈J , J ⊂ N, whose radius t is much smaller than the
width of Abulk, and we denote by dj the degree of u around ~aj ,

∫

A

d~r Fin(r)curl(iu,∇u) ≃
∑

j∈J

2πFin(aj)dj . (4.43)
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and, optimizing w.r.t. the radius t,

∫

A

d~r g2 |∇u|2 '
∑

j∈J

2πg2(aj)|dj | log
(

ε| log ε|
t

)

'
∑

j∈J

πg2(aj)|dj || log ε|. (4.44)

Hence
E [u] '

∑

j∈J

2π|dj |
(

1
2g

2(aj)| log ε|+ Fin(aj)
)

, (4.45)

and, if Ω0 > 2(3π)−1, the sum between parenthesis is positive for any ~aj in the bulk (see Section A.2),
which means that vortices become energetically unfavorable. Note that there is an important difference
with the analysis contained in [CRY] since F is replaced in the expression above by Fin. This is basically
the main effect of Dirichlet boundary conditions.

The starting point of the reduced energy estimate is given by the following preliminary upper bounds:

Lemma 4.3 (Preliminary energy bounds).
If Ω ∼ ε−2| log ε|−1 as ε → 0,

F [u] ≤ O(ε−2), E [u] ≥ −O(ε−2). (4.46)

Proof. See [CRY, Lemma 4.2].

4.4 Vortex Ball Construction and Jacobian Estimate

In order to construct families of balls containing all the vortices of u, we need to exploit some local energy
bound on F [u]. However the bounds (4.46) are not sufficient for our purposes, since they imply that the
area of the set where u can possibly vanish is of order ε2| log ε|2, whereas the vortex balls method requires
to cover it by balls whose radii are much smaller than the width of A, which is O(ε| log ε|).
As in [CRY] there is a way out to this obstruction in the localization of the energy bound (4.46), given
by the decomposition of the domain into suitable good and bad cells:

Definition 4.1 (Good and bad cells).
We decompose A into almost rectangular cells An, n ∈ N, of side length O(ε| log ε|), given by

An := {~r ∈ A : ϑ ∈ [nθ, (n+ 1)θ[} , (4.47)

where θ := 2π/N and N ∼ ε−1| log ε|−1 is the total number of cells. Let 0 ≤ α < 1
2 be a parameter to be

fixed later on.
We say that An is an α-good cell if

∫

An

d~r g2
{

|∇u|2 + ε−2g2
(

1− |u|2
)2
}

≤ ε−1−α| log ε|, (4.48)

whereas inside α-bad cells the (strict) inequality is reversed. We denote by NG
α and NB

α the numbers of
α-good and bad cells and by GSα and BSα the sets covered by good and bad cells respectively.

By definition of bad cells, one has that (4.46) immediately implies

NB
α < ε1+α| log ε|−1F [u] ≤ Cε−1+α| log ε|−1 ≪ N, (4.49)

i.e., there are very few α-bad cells. Note also that the final estimate (4.30) implies that there are actually
no bad cells at all.

We can now construct the vortex balls inside good cells but, since the density has to be large enough,
we need to restrict the analysis to the subdomain Abulk ⊂ A (see (1.30) for its definition):
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Proposition 4.7 (Vortex ball construction inside good cells).
For any 0 ≤ α < 1

2 and ε small enough, there exists a finite collection {Bi}i∈I := {B(~ai, ̺i)}i∈I of disjoint
balls with centers ~ai and radii ̺i such that

1.
{

~r ∈ GSα ∩ Abulk : ||u| − 1| > | log ε|−1
}

⊂ ⋃

i∈I Bi,

2. for any α-good cell An,
∑

i, Bi∩An 6=∅
̺i = ε| log ε|−5.

Setting di := deg{u, ∂Bi}, if Bi ⊂ Abulk ∩GSα, and di = 0 otherwise, we have the lower bounds

∫

Bi

d~r g2 |∇u|2 ≥ 2π

(

1

2
− α

)

|di|g2(ai) |log ε|
(

1− C
log |log ε|
|log ε|

)

. (4.50)

Proof. See [CRY, Proposition 4.2].

Given a suitable family of disjoint balls as in the above proposition, one can prove that in the α-good
set the vorticity measure of u will be close to a sum of Dirac masses, i.e.,

curl(iu,∇u) ≃
∑

i∈I

2πdiδ(~r − ~ai),

where δ(~r − ~ai) stands for the Dirac delta centered at ~ai.

Proposition 4.8 (Jacobian estimate).
Let 0 ≤ α < 1

2 and φ be any piecewise-C1 test function with compact support supp(φ) ⊂ Abulk ∩ GSα.
Let also {Bi}i∈I := {B(~ai, ̺i)}i∈I be a disjoint collection of balls as in Proposition 4.7.
Then setting di := deg{u, ∂Bi}, if Bi ⊂ Abulk ∩GSα, and di = 0 otherwise, one has

∣

∣

∣

∣

∑

i∈I

2πdiφ(~ai)−
∫

GSα∩Abulk

d~r φ curl(iu,∇u)

∣

∣

∣

∣

≤ C ‖∇φ‖L∞(GSα)
ε2| log ε|−2F [u]. (4.51)

Proof. See [CRY, Proposition 4.3].

4.5 Completion of the Proofs

The main goal in this section is the proof of Proposition 4.6, which will lead to the proof of Theorem 1.4.
As anticipated before, the first important step is an integration by parts of the second term in (4.14),
but, since it has to be performed cell by cell, it generates boundary terms living on the frontiers between
good and bad cells. Such terms are artificial, since the cell decomposition has no physical meaning, and
we want to avoid having to estimate them.
As in [CRY] we introduce an azimuthal partition of unity to get rid of these terms (see also [CRY,
Definition 4.2 and Eq. (4.69)]): We define a pleasant set PSα as the set generated by good cells such
that their neighbor cells are both good (pleasant cells), whereas the average set ASα is made of good cells
with exactly one good cell as neighbor (average cells). Finally the unpleasant set UPSα contains all the
remaining good and bad cells (unpleasant cells). Denoting by NP

α , N
AS
α , NUP

α the number of pleasant,
average and unpleasant cells respectively, it is not difficult to see that

NUP
α ≤ 3

2N
B
α ≪ N, NA

α ≤ 2NB
α ≪ N. (4.52)

The partition of unity is given by two functions χin(ϑ) and χout(ϑ) such that χin(ϑ) + χout(ϑ) = 1 for
any ϑ ∈ [0, 2π] and

χout(ϑ) :=

{

1, if ϑ ∈ UPSα,

0, if ϑ ∈ PSα,
χin(ϑ) :=

{

1, if ϑ ∈ PSα,

0, if ϑ ∈ UPSα,
(4.53)
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Since both functions vary from 1 to 0 inside an average cell, one can always impose the bounds

|∇χout| ≤ O(ε−1| log ε|−1), |∇χin| ≤ O(ε−1| log ε|−1), (4.54)

because the side length of a cell is ∝ ε| log ε|.
In order to apply the jacobian estimate proven in Proposition 4.8 to the function φ = χinFin, whose

support is not contained in Abulk but only in A, we also need a radial partition of unity: We define two
radii as (recall that R> = Rh + ε| log ε|−1 as in (1.31))

R+
cut := 1− ε| log ε|−1, R−

cut := R> + ε| log ε|−1, (4.55)

and two positive functions ξin(r) and ξout(r) satisfying ξin(r) + ξout(r) = 1 for any ~r ∈ A and (recall
(4.2), i.e., R< = Rh − ε7/6)

ξout(r) :=

{

1, if r ∈ [R<, R>], or [1− ε3/2| log ε|2, 1]
0, if r ∈ [R−

cut, R
+
cut],

(4.56)

ξin(r) :=

{

1, if r ∈ [R−
cut, R

+
cut],

0, if r ∈ [R<, R>], or [1− ε3/2| log ε|2, 1].
(4.57)

Thanks to (4.55) we can also assume

|∇ξout| ≤ O(ε−1| log ε|), |∇ξin| ≤ O(ε−1| log ε|). (4.58)

We are now ready to prove the bound on the reduced energies:

Proof of Proposition 4.6.
For the sake of simplicity we denote by {Bi}i∈I := {B(~ai, ̺i)}i∈I a collection of disjoint balls as in
Proposition 4.7, whereas the subset J ⊂ I identifies balls such that dj 6= 0.

The starting point is an integration by parts as in (4.42), i.e.,

E [u] =
∫

A

d~r
{

g2 |∇u|2 + Fin(r)curl(iu,∇u) + ε−2g4
(

1− |u|2
)2
}

−
∫

A

d~r ∇⊥Fout · (iu,∇u). (4.59)

The last term in the expression above is the easiest to bound: By using the explicit expression of
Fout, one obtains

∣

∣

∣

∣

∫

A

d~r∇⊥Fout · (iu,∇u)

∣

∣

∣

∣

≤ C

∫

A

d~r g2(r)|u| |∇u| ≤ C

(

δ

∫

A

d~rg2|u|2 + δ−1

∫

A

d~rg2 |∇u|2
)

≤

C
(

δ + δ−1F [u]
)

≤ CF [u]1/2, (4.60)

where we have introduced a parameter δ and chosen δ = F [u]1/2 (recall that F [u] ≥ 0).
The remaining term in (4.59) can be estimated exactly as in [CRY, Proof of Proposition 4.1], with

only one difference due to the presence of Fin instead of F : Since by definition the former vanishes on
∂B, we can get rid of all the boundary terms (see, e.g., [CRY, Eq. (4.86)]) and the final result is, for
some parameters γ, δ that we fix below,

∫

A

d~r
{

g2 |∇u|2 + Fin curl(iu,∇u)
}

≥
∑

j∈J

ξin(aj)|dj |
[

(1− γ)

(

1

2
− α

)

g2(aj) |log ε|
(

1− C
log |log ε|
|log ε|

)

− |Fin(aj)|
]

+

(1− γ)

∫

A

d~r ξoutg
2|∇u|2 −

∫

A

d~r ξout|Fin(r)||∇u|2 + (γ − δ)

∫

A

d~r g2|∇u|2

− C

δε2

∫

UPSα∪ASα

d~r g2|u|2 − C| log ε|−1F [u]. (4.61)



Critical Speeds in the GP Theory – CPRY – December 6th, 2010 33

We can now choose the parameters α, δ and γ as follows:

γ = 2δ =
log | log ε|
| log ε| , α = α̃

log | log ε|
| log ε| , (4.62)

where α̃ is a large enough constant (see below).
Using the properties of the function H(r) := 1

2g
2 |log ε| − |Fin| proven in Proposition A.1, we have for

Ω0 > (3π)−1

1
2g

2(aj) |log ε| − |Fin(aj)| ≥ Cε−1| log ε|−2

for any ~aj ∈ Abulk, so that

(1− γ)
(

1
2 − α

)

g2(aj) |log ε|
(

1− C
log |log ε|
|log ε|

)

− |Fin(aj)| ≥

1
2g

2(aj) |log ε| − |Fin(aj)| − Cg2(aj) log |log ε| ≥ Cε−1| log ε|−2

(

1− C log |log ε|
|log ε|

)

> 0, (4.63)

where we have used (4.29).
On the other hand for any ~r ∈ supp(ξout) either |r − R<| ≤ Cε| log ε|−1 or |r − 1| ≤ Cε| log ε|−1, which
by the bounds (4.35) imply that in the first case

|Fin(r)| ≤ C
(

| log ε|−1g2(r) + |Fout(r)|
)

≤ C
(

| log ε|−1g2(r) + 1
)

≤ C| log ε|−1g2(r), (4.64)

thanks to (4.29), whereas in the second case

|Fin(r)| ≤ |F (1)− Fout(r)| + 2

∫ 1

r

ds |B(s)|g2(s) ≤

|F (1)|
(
∫ 1

R<

ds s−1g2(s)

)−1 ∫ 1

r

ds s−1g2(s) + C| log ε|−1g2(r) ≤ C| log ε|−1g2(r). (4.65)

Note that in this second case there is no need to assume that r ≥ Rm in order to use that g is decreasing
in [r, 1]: By the bounds (4.10) and (4.11), for any 1− ε| log ε|−1 ≤ r ≤ 1,

g2(r) ≥ (1− o(1))ρTF(1− ε| log ε|−1) ≥ (1− o(1))g2(R̃m),

so that we can always bound in the integrals g2(s) by (1 + o(1))g2(r).
In conclusion

|Fin(r)| ≪ g2(r), (4.66)

for any ~r ∈ supp(ξout) and thus

∫

A

d~r ξout
[

(1− γ) g2(r) − |Fin(r)|
]

|∇u|2 ≥ 0. (4.67)

Finally we have from (4.61), (4.63) and (4.67)

∫

A

d~r
{

g2 |∇u|2 + Fin(r) curl(iu,∇u)
}

≥

C
log |log ε|
|log ε|

∫

A

d~r g2|∇u|2 − C
| log ε|

ε2 log |log ε|

∫

UPSα∪ASα

d~r g2|u|2 − C| log ε|−1F [u], (4.68)



Critical Speeds in the GP Theory – CPRY – December 6th, 2010 34

and adding
∫

A

d~r
g4

ε2
(

1− |u|2
)2

to both sides of (4.68) and using (4.59) and (4.60), we get the lower bound

E [u] ≥ C

{

log |log ε|
|log ε| F [u]−F [u]1/2 − | log ε|

ε2 log |log ε|

∫

UPSα∪ASα

d~r g2|u|2
}

, (4.69)

valid for ε small enough and Ω0 > (3π)−1. But g2|u|2 = |ΨGP|2 ≤ Cε−1| log ε|−1, whereas the side length
of a cell is O(ε| log ε|), thus

∫

UPSα∪ASα

d~r g2|u|2 ≤ C |UPSα ∪ ASα|
ε| log ε| ≤ Cε| log ε|

(

NUP
α +NA

α

)

≤ Cε2+αF [u], (4.70)

by (4.49) and (4.52). Therefore (4.69) becomes

E [u] ≥ C

{

log |log ε|
|log ε| F [u]− | log ε|

log | log ε|ε
αF [u]−F [u]1/2

}

. (4.71)

Recalling the choice of α in (4.62), we now take a constant α̃ > 2, so that

| log ε|
log | log ε|ε

α =
| log ε|1−α̃

log | log ε| ≪
log |log ε|
|log ε|

and

O(ε∞) ≥ E [u] ≥
(

log |log ε|
|log ε| F [u]−F [u]1/2

)

(4.72)

which yields both results.

The proof of the energy asymptotics is essentially a corollary of the reduced energy estimates together
with the discussion contained in Section 4.1:

Proof of Theorem 1.4.
By (4.16) and (4.30)

EGP ≥ Ẽgv
ω0

+ E [u]−O(ε∞) ≥ Ẽgv
ω0

− C(log | log ε|)−2| log ε|2,

but one can easily show that Ẽgv
ω0

≥ Egv
ω0

− O(ε∞) by simply testing the functional Egv
ω0

on a suitable
regularization of gω0

and thus

EGP ≥ Egv
ω0

− C(log | log ε|)−2| log ε|2 ≥ Egv − C(log | log ε|)−2| log ε|2,

which concludes the lower bound proof.
The upper bound (1.38) is trivially obtained by testing the GP functional on a giant vortex function

with phase [Ω]− ωopt (see Proposition 4.5).

Using the equations satisfied by ΨGP and g, one can derive an equation satisfied by u:

−∇(g2∇u)− 2ig2 ~B · ∇u+ 2
g4

ε2
(

|u|2 − 1
)

u = λg2u

where λ = µGP − µ̃gv
ω0
. A useful estimate on the gradient of u follows from this equation and allows to

conclude the proof of Theorem 1.3. We state the estimate for convenience and refer to [CRY, Lemma
5.1] for its proof.
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Lemma 4.4 (Estimate for the gradient of u).
Recall the definition of u in (4.17). There is a finite constant C such that

‖∇u‖L∞(Abulk)
≤ C

| log ε|3/2
ε3/2

. (4.73)

We now complete the

Proof of Theorem 1.3. Suppose that at some point ~r0 ∈ Abulk we have

||u(~r0)| − 1| ≥ ε1/4| log ε|3.

Then, using (4.73), there is a constant C such that, for any ~r ∈ B(~r0, Cε7/4| log ε|3/2), we have

||u(~r)| − 1| ≥ 1
2ε

1/4| log ε|3.

This implies (recall (4.29))

∫

B(~r0,Cε7/4| log ε|3/2)

d~r
g4

ε2
(

1− |u|2
)2 ≥ C| log ε|3,

and thus
F [u] ≥ C| log ε|3, (4.74)

which is a contradiction with (4.6).
We have thus proven that

∣

∣|ΨGP|2 − g2
∣

∣ ≤ g2
∣

∣|u|2 − 1
∣

∣ ≤ C
| log ε|2
ε3/4

(4.75)

on Abulk. The result then follows by combining (4.11) and (4.75).

Theorem 1.5 follows as a corollary:

Proof of Theorem 1.5.
Given any R> ≤ r ≤ 1 − ε3/2| log ε|2, Theorem 1.3 guarantees that deg{u, ∂Br} is well defined and
independent of r. Moreover one has

2π |deg{u, ∂Br}| ≤
∫

∂Br

ds |u|−1 |∂τu| ≤ C

∫

∂Br

ds |∂τu| ,

because u is bounded below in Abulk as a consequence of the proof of Theorem 1.3. Now integrating in
r from R> to 1 − ε3/2| log ε|2 both sides of the above expression and using the fact that the degree is
independent of r because u has no vortices, we obtain

2π |deg{u, ∂Br}| ≤ Cε−1| log ε|−1

∫

Abulk

d~r |∇u| ≤ Cε−1| log ε|−1 |Abulk|1/2 ‖∇u‖L2(Abulk)
, (4.76)

where we have used Cauchy-Schwarz inequality and the fact that |Abulk| = 2π(1 − ε3/2| log ε|2 − R>) =
O(ε| log ε|). On the other hand, (4.29) and (4.6) imply

‖∇u‖L2(Abulk)
≤ Cε1/2| log ε|5/2.

We conclude
2π |deg{u, ∂Br}| ≤ C| log ε|2

and final result is thus a simple consequence of the definition (4.17).
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5 Rotational Symmetry Breaking

We first introduce some notation that will be used in the proof of Theorem 1.6: The result stated there
is equivalent to prove that no GP minimizer is a symmetric vortex, i.e., a wave function of the form
f(r) exp{inϑ}, n ∈ Z. We therefore denote by En the energy obtained by minimizing the GP functional
on symmetric vortices, i.e.,

En := inf
f∈DGP

EGP [f(r) exp{inϑ}] = EGP [fn(r) exp{inϑ}] , (5.1)

where fn(r) is the unique real minimizer.
We also define n̄ ∈ N through minn∈ZEn =: En̄: Note that a minimizing n̄ certainly exists for any ε
thanks to the convexity in n of the functional. However such a minimizer needs not be unique because
of some accidental degeneracy (there are at most 2 minimizers), which can be removed by a infinitesimal
change of ε.

The next lemma contains several useful properties of fn̄:

Lemma 5.1 (Symmetric vortex minimizer).
For any ε > 0 and Ω ≫ ε−1, there exists some n̄ ∈ Z minimizing En̄ and it satisfies the estimate
n̄ = Ω(1 +O(ε−1Ω−1)).
The associated minimizer fn̄(r) is unique and, up to multiplication by a constant phase factor, it is given
by a positive radial function vanishing only at r = 0 and r = 1. Moreover it has a unique maximum at
some point 0 < R∗ < 1 and satisfies the L2 estimate ‖fn̄‖L2(B\BR∗

) = o(1).

Proof. We first notice that by setting n̄ =: [Ω] − ω for some ω ∈ Z, one can easily recover the coupled
minimization problem studied in Proposition 4.5 (see also Proposition 4.4) for some different angular
velocity Ω. It is very easy to realize that the existence of a minimizing ω (and thus n̄) as well as the
estimate ω = O(ε−1) can be deduced in the same way as in Proposition 4.5.

On the other hand for any given n ∈ Z the uniqueness and positivity of the minimizer fn(r) can be
deduced by standard arguments, whereas the existence of a unique maximum at some point 0 < R∗ < 1
can be proven by a rearrangement argument as in Proposition 2.2 by noticing that the potential n̄2r−2

is strictly decreasing.
In order to prove the L2 estimate, we first notice that the fact that n̄ = Ω(1−O(ε−1Ω−1) implies the

upper bound
En̄ ≤ ETF +O(ε−2) +O(ε1/2Ω3/2), (5.2)

which is a consequence of the pointwise estimates (2.5) and (4.26) together with the bound |B[Ω]−n̄(r)| ≤
O(ε−1) +O([Ω]− n̄) for any ~r ∈ A. As in (2.19) the above estimate yields

∣

∣µn̄ − µTF
∣

∣ ≤ O(ε−3/2Ω1/2) +O(ε−1/4Ω5/4). (5.3)

We can thus repeat the proof of the pointwise estimate (2.21) and the final result is
∣

∣g2(r)− ρTF(r)
∣

∣ ≤ O(ε1/2Ω1/2) +O(ε7/4Ω5/4),

for any R2
h + ε−1Ω−1| log ε|−1 ≤ r2 ≤ 1 − ε1/2Ω−1/2| log ε|3/2. The argument described in Remark 2

therefore gives
R2

∗ ≥ 1− o(ε−1Ω−1), (5.4)

which in addition to f2
n̄ ≤ O(εΩ) implies the result.

The main tool in the proof of the breaking of the rotational symmetry is the investigation of the
second variation of the GP energy functional evaluated at some local minimizer: Given some Ψ solving
the variational equation

−∆Ψ− 2~Ω · ~LΨ+ 2ε−2 |Ψ|2 Ψ = µΨΨ, (5.5)
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where µΨ := EGP[Ψ]+ ε−2‖Ψ‖44, and some perturbation Ξ(~r) ∈ H1
0 (B), one has EGP[Ψ+ ǫΞ] = EGP[Ψ]+

ǫ2QΨ[Ξ] +O(ǫ3), where

QΨ[Ξ] :=

∫

B

d~r
{

|∇Ξ|2 − 2Ξ∗~Ω · ~LΞ + 4ε−2|Ψ|2|Ξ|2 − µΨ|Ξ|2
}

+ 2ε−2ℜ
∫

B

d~r (Ψ∗)2Ξ2. (5.6)

By definition, if there exists some Ξ ∈ H1
0 (B) such that QΨ[Ξ] < 0, the associated local minimizer Ψ is

globally unstable and in particular can not be a global minimizer of the GP functional.

Proof of Theorem 1.6.
Assuming that the GP minimizer was given by a symmetric vortex fn̄(r) exp{in̄ϑ} for some n̄, we explicitly
exhibit a trial function Ξ(~r) such that the quadratic form QΨ[Ξ] evaluated at Ψ(~r) = fn̄(r) exp{in̄ϑ} is
negative (for simplicity we denote it by Qn̄), which yields a contradiction with the assumption that the
symmetric vortex is a global minimizer.

For any d > 1 we set

Ξ(~r) := (A(r) +B(r)) ei(n+d)ϑ + (A(r) −B(r)) ei(n−d)ϑ, (5.7)

with

A(r) :=

{

rd+1f ′
n̄(r), if 0 ≤ r ≤ R∗,

0, if R∗ ≤ r ≤ 1,
B(r) :=

{

n̄rdfn̄(r), if 0 ≤ r ≤ R∗,

n̄Rd
∗fn̄(r), if R∗ ≤ r ≤ 1.

(5.8)

A trial function of this form was first introduced in [Seir, Theorem 2] to prove symmetry breaking for a
special class of trapping potential but here we replace in the original definition [Seir, Eq. (2.30)] d with
−d. Moreover in order to satisfy the condition Ξ ∈ H1

0 (B), we have modified the function A setting it
equal to 0 for r ≥ R∗. Note that the function certainly belongs to H1(B) since fn̄ is differentiable and
A(r) +B(r) ∼ rn̄+d as r → 0, but B /∈ H2

0 (B) because of the singularity in the derivative at r = R∗.
We can simply borrow the explicit computations from [Seir, Eqs. (2.31) and (2.33)] (recall that in our
case there is no external potential, A vanishes for r ≥ R∗, d has to be replaced with −d and Ω with 2Ω)
and, denoting by µn̄ the chemical potential associated with fn̄, we obtain

Qn̄[Ξ] = 8π

∫ R∗

0

dr r2d+2fn̄(r)f
′
n̄(r)

{

(d+ 1)µn̄ − 2(d+ 1)

ε2
f2
n̄ + 2Ωn̄

}

+ 4πn2d2
∫ 1

R∗

dr
R2d

∗

r
f2
n̄(r). (5.9)

Using the estimate (5.3), one immediately obtains that µGP = µn̄ = −Ω2(1 − o(1)). We can thus
estimate the quantity between brackets in the first term in (5.9) as

(d+ 1)µn̄ − 2ε−2(d+ 1)f2
n̄ + 2Ωn̄ ≤ −Ω2 (d− 1− o(1)) (5.10)

which implies the bound

8π

∫ R∗

0

dr r2d+2fn̄(r)f
′
n̄(r)

{

(d+ 1)µn̄ − 2ε−2(d+ 1)f2
n̄ + 2Ωn̄

}

≤

− 8πΩ2(d− 1− o(1))

∫ R∗

0

dr r2d+2fn̄(r)f
′
n̄(r) ≤

− 4πΩ2(d− 1− o(1))

[

R2d+2
∗ f2

n̄(R∗)− (2d+ 2)R2d
∗

∫ R∗

0

dr rf2
n̄(r)

]

≤

− 4πΩ2(d− 1− o(1))R2d+2
∗ f2

n̄(R∗)
(

1− Cdε−1Ω−1
)

, (5.11)

where we have used the fact that f is increasing between 0 and R∗ and the lower bound (5.4).
On the other hand the last term in (5.9) can be bounded as

4πn2d2R2d
∗

∫ 1

R∗

dr r−1f2
n̄(r) ≤ 2n2d2R2d−2

∗ ‖fn̄‖2L2(B\BR∗
) ≤ o(1)R2d−2

∗ Ω2d2. (5.12)
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Hence (5.11) and (5.12) yield

Qn̄[Ξ] ≤ −4πdΩ2R2d+2
∗ f2

n̄(R∗)
(

1− d−1 − o(1)− Cε−1Ω−1d
)

< 0

for any finite d ≥ 2 and ε small enough.

Remark 5.1 (Flat Neumann case)
The above proof applies with minor modifications to the case of the bounded trap B with Neumann
conditions at the boundary ∂B: It is indeed sufficient to make the replacements in the trial function Ξ

A(r) = rd+1f ′
n̄(r), B(r) = n̄rdfn̄(r),

for any ~r ∈ B and compute

Qn̄[Ξ] = 8π

∫ R∗

0

dr r2d+2fn̄(r)f
′
n̄(r)

{

(d+ 1)µn̄ − 2(d+ 1)ε−2f2
n̄ + 2Ωn̄

}

.

Now since fn̄ is increasing in the Neumann case, f2
n̄ ≤ O(εΩ) and µn̄ = −Ω2(1 − o(1)), the quadratic

form can be made negative for d large enough.

Appendix A

In this Appendix we discuss some useful properties of the TF-like functionals involved in the analysis as
well as the critical angular velocities.

A.1 The Thomas-Fermi Functionals

The minimization of the TF functional introduced in (1.17) has already been discussed in other papers
(see, e.g., [CY, Appendix] or [CRY, Appendix A]), so we only sum up here the main results: The
minimizer among positive functions is unique and explicitly given by

ρTF(r) := 1
2

[

ε2µTF + ε2Ω2r2
]

+
, (A.1)

where [ · ]+ stands for the positive part and µTF := ETF + ε−2
∥

∥ρTF
∥

∥

2

2
. If Ω ≥ 2(

√
πε)−1, the chemical

potential is given by µTF = −Ω2R2
h with

Rh :=

√

1− 2√
πεΩ

, (A.2)

and the TF minimizer can be rewritten as ρTF(r) = 1
2ε

2Ω2
[

r2 −R2
h

]

+
, which makes explicit the fact

that it vanishes for r ≤ Rh.
The corresponding ground state energy can be explicitly evaluated and is given by

ETF =

{

1
π ε

−2 − 1
2Ω

2 − 1
48πε

2Ω4, if Ω ≤ Ωc2 ,

−Ω2 [1− 4/(3
√
π)Ω] , if Ω > Ωc2 .

(A.3)

Note that above the second critical velocity, the annulus ATF := supp
(

ρTF
)

has a shrinking width of
order ε| log ε| (see (A.2)) and the leading order term in the ground state energy asymptotics is −Ω2,
which is due to the convergence of ρTF to a distribution supported at the boundary of the trap.
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In the giant vortex regime another TF-like functional becomes more relevant, i.e.,

ẼTF
ω [ρ] :=

∫

B

d~r
{

−Ω2r2ρ+B2
ω(r)ρ + ε−2ρ2

}

=

∫

B

d~r
{

([Ω]− ω)2 r−2ρ+ ε−2ρ2
}

− 2Ω[Ω− ω], (A.4)

where the potential ~Bω is defined in (1.36), ω ∈ Z and we have used the normalization in L1(B) of the
density in the last term. The minimization of such a functional was studied in details in [CRY, Appendix
A] and we recall here only the most important fact, i.e., the ground state energy ẼTF satisfies the estimate

ẼTF
ω = ETF +

[

ω − 2

3
√
πε

]2

+
2

9πε2
+O(ε−2| log ε|−1), (A.5)

which suggests that it is minimized by a phase ωTF := 2(3
√
πε)−1.

A.2 The Third Critical Angular Velocity Ωc3

In this last part of the Appendix we state the estimate of the critical velocity Ωc3 , which is defined
as the angular velocity at which vortices disappear from the bulk of the condensate. To estimate this
velocity we need to compare the vortex energy cost 1

2g
2
ω0
(r)| log ε| with the vortex energy gain |Fin(r)| (see

(4.39), (4.32) and (4.37)). In [CRY, Appendix] a similar comparison is performed when the density g2ω0
is

replaced by ρTF and it is shown that, if Ω > Ωc3 in the sense that Ω = Ω0ε
−2| log ε|−1 with Ω > 2(3π)−1,

then the function
HTF(r) := 1

2 | log ε|ρ
TF(r) −

∣

∣FTF(r)
∣

∣ , (A.6)

where

FTF(r) := 2

∫ r

Rh

ds ~BωTF(r) · ~eϑ ρTF(r), (A.7)

satisfies the lower bound
HTF(r) ≥ Cε−1| log ε|−2 > 0 (A.8)

for any ~r such that r ≥ R> = Rh + ε| log ε|−1.
The analogous result for the original function

H(r) := 1
2g

2
ω0
(r)| log ε| − |Fin(r)| , (A.9)

is proven in the following

Proposition A.1 (Third critical velocity Ωc3).
If Ω0 > 2(3π)−1 and ε is small enough, there exists a finite constant C such that

H(r) ≥ Cε−1| log ε|−2 > 0

for any ~r such that r ≥ R> = Rh + ε| log ε|−1.

Proof. The result can be proven in the same way as [CRY, Proposition A.2] by noticing that |Fout| ≤
|F (1)| ≤ O(1) and using such an estimate to replace Fin(r) with F (r) in H(r).
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