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CLASSES OF GENERALIZED FUNCTIONS WITH

FINITE TYPE REGULARITIES

S. PILIPOVIĆ, D. SCARPALÉZOS, AND JASSON VINDAS

Abstract. We introduce and analyze spaces and algebras of gen-
eralized functions which correspond to Sobolev, Zygmund and Hölder
spaces of functions. The main scope of the paper is the characteri-
zation of the limited regularity of distributions embedded into the
corresponding space or algebra of generalized functions with finite
type regularities.

0. Introduction

In this paper we develop regularity theory in generalized function al-
gebras parallel to the corresponding theory within distribution spaces.
We consider subspaces or subalgebras in algebras of generalized func-
tions which correspond to Sobolev spaces W k,p, Zygmund spaces Cs

∗

and Hölder spaces Hk,ρ. We refer to [2], [4], [5], [11] and [17] for the
theory of generalized function algebras and their use in the study of
various classes of equations.

It is known that the elements of algebras of generalized functions are
represented by nets (fε)ε of smooth functions, with appropriate growth
as ε→ 0, that the spaces of Schwartz’s distributions are embedded into
the corresponding algebras, and that for the space of smooth functions
the corresponding algebra of smooth generalized function is G∞ (see
[17]). Intuitively, these algebras are obtained through regularization of
distributions (convolving them with delta nets) and the construction of
appropriate algebras of moderate nets and null nets of smooth functions
and their quotients, as Colombeau did, [4], [5] with his algebra G(Rd), in
such a way that distributions are included as well as their natural linear
operations (in this way the name Colombeau algebras has appeared).

The main goal of this paper is to find out conditions with respect
to the growth order in ε which characterize generalized function spaces
and algebras with finite type regularities. Actually, our main task is to
seek optimal definitions for such generalized function spaces, since we
would like to have backward information on the regularity properties of
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Schwartz distributions embedded into the corresponding space of gen-
eralized functions. Sobolev and Zygmund type spaces are very suitable
for this purpose. Especially Zygmund type spaces are useful since we
can almost literary transfer classical properties of these spaces into the
corresponding ones within spaces or algebras of generalized functions.

One can find many articles in the literature where local and microlo-
cal properties of generalized functions in generalized function algebras
have been considered. Besides the quoted monographs we refer to the
papers [6], [8]– [10], [12]– [14], [16]– [21], [24], where various classes of
generalized function spaces and algebras were introduced and studied.
The motivation of this article came partly from the papers [12] and [14],
where Zygmund type algebra of generalized functions were studied and
used in the qualitative analysis of certain hyperbolic problems. We shall
give another definition which intrinsically characterizes such spaces of
generalized functions and allows us to connect them with Hölder type
spaces. Moreover, our results concerning Tauberian theorems for regu-
larizing transforms, [22], [26]- [29] (see also [7]), enable us to consider
regularity properties of generalized functions.

The paper is organized as follows. We recall in Subsection 1.1 the
notion of the valuation v for Colombeau generalized functions and Lp

generalized functions (calling −v the calibration function) and in Sec-
tion 2 explain the main definitions of Sobolev type spaces and algebras
of generalized functions. Then, in Section 3, we investigate subspaces
and subalgebras which correspond to Sobolev function spaces and study
the properties of distributions for which we know an appropriate weak
limit growth, called association, after embedding them into the corre-
sponding generalized function space or algebra. In Section 4 we analyze
subspaces of the generalized function algebra G(Rd) which correspond
to Zygmund and Hölder spaces of functions and give the characteriza-
tion of distributions belonging, after embeddings, to these generalized
function spaces. We recall in Section 5 the regularizing transform, gen-
eralized boundedness and by the use of our Tauberian results ( [22])
give a new proof for the equality G∞ ∩D′ = C∞ which provides a new
perspective in the analysis of regularity properties of distributions and
functions.

1. Definitions

In the sequel, we shall consider open subsets Ω ⊂ Rd whose boundary
∂Ω satisfies the strong local Lipschitz condition, implying the existence
of a total extension operator for Ω (see Chapter 4 in [1]) which gives
a continuous extension of Sobolev functions out of Ω. This implies, for
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every p ∈ [1,∞],

DLp(Ω) =
⋂

m∈N0

Wm,p(Ω) ⊂
{
φ ∈ C∞(Ω) : ||φ(α)||L∞(Ω) <∞, ∀α ∈ Nd

0

}
,

(1.1)
where Wm,p denotes the Sobolev space, p ∈ [1,∞], and N0 = N ∪ {0}.

Let E(Ω) be the space of smooth functions in Ω. We consider the fam-
ilies of local Sobolev seminorms ||φ||Wm,p(ω) = sup{||φ(α)||Lp(ω); |α| ≤
m}, where m ∈ N0, p ∈ [1,∞], and ω runs over all open subsets of Ω
with compact closure (ω ⊂⊂ Ω); in case ω is replaced by Ω, we obtain
a family of norms ||φ||Wm,p(Ω), m ∈ N0.

The spaces of moderate nets and negligible nets ELp
loc
,M(Ω) and NLp

loc
(Ω),

resp., ELp,M(Ω) and NLp(Ω), consist of nets (fε)ε∈(0,1) = (fε)ε ∈ E(Ω)(0,1)

with the properties

(∀m ∈ N0)(∀ω ⊂⊂ Ω)(∃a ∈ R)(||fε||Wm,p(ω) = O(εa)) (1.2)

and (∀m ∈ N0)(∀ω ⊂⊂ Ω)(∀b ∈ R)(||fε||Wm,p(ω) = O(εb)),

resp.,

(∀m ∈ N0)(∃a ∈ R)(||fε||Wm,p(Ω) = O(εa)) (1.3)

and (∀m ∈ N0)(∀b ∈ R)(||fε||Wm,p(Ω) = O(εb))

(big O and small o are the Landau symbol). These spaces are actually
algebras because of (1.1). Note that, by Sobolev lemma,

EL∞
loc
,M(Ω) = ELp

loc
,M(Ω) = EM(Ω), NL∞

loc
(Ω) = NLp

loc
(Ω) = N (Ω), p ≥ 1.

We obtain the Colombeau algebra of generalized functions as a quo-
tient: G(Ω) = GL∞

loc
(Ω) = GLp

loc
(Ω), p ≥ 1. Furthermore, we define the

Lp type generalized function algebra GLp(Ω) = ELp,M(Ω)/NLp(Ω), p ≥
1. Let us note that ELp,M(Ω) ⊂ EM(Ω) is differential subalgebra and
NLp(Ω) ⊂ N (Ω). Thus, there is a canonical differential algebra map-
ping GLp(Ω) → G(Ω); however, in general, this mapping is not injec-
tive. So, GLp(Ω) cannot be seen as a differential subalgebra of G(Ω),
p ∈ [1,∞], we exhibit an explicit counterexample below when Ω = Rd.
Observe that the same holds for the so called tempered generalized
function algebra (see Chapter 4 in [5]), which will not be considered in
this paper.

Example 1. We show that the canonical mapping GLp(Rd) → G(Rd) is
not injective, p ∈ [1,∞]. Indeed, this would be the case if we are able to
find a net (fε)ε ∈ N (Rd)∩ELp,M(Rd) which does not belong to NLp(Rd).
Actually, the same counterexample will work for all p ∈ [1,∞]. Let
ρ ∈ D(Rd) be non-trivial and supported by the ball with center at the
origin and radius 1/2. Consider the net of smooth functions

fε(x) =
∞∑

n=0

χ[(n+1)−1,1](ε)

(n+ 1)2
ρ(x− 2ne1),
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where χ[(n+1)−1,1] is the characteristic function of the interval [1/(n +
1), 1] and e1 = (1, 0, . . . , 0). Then, clearly (fε)ε ∈ N (Rd) because on
compact sets it identically vanishes for small enough ε. On the other
hand, for each p ∈ [1,∞] and m ∈ N0,

||fε||Wm,p = ||ρ||Wm,p

∞∑

1

ε
−1≤n

1

(n+ 1)2
= ε ||ρ||Wm,p +O(ε2) as ε → 0.

Thus, the net satisfies all the requirements.

If we would like to have a version of GLp(Ω) as a differential subal-
gebra of G(Ω) then we could do this through the following definition:

G̃Lp(Ω) = {f ∈ G(Ω); ∃(fε)ε ∈ ELp,M(Ω), f = [(fε)ε]}.

We shall consider subspaces and subalgebras of G̃Lp(Ω) in Sections 2
and 3.

If the elements of the nets (fε)ε ∈ EM(Ω) are constant functions in
Ω (i.e., seminorms reduce to the absolute value), then one obtains the
corresponding algebras E0 and N0; N0 is an ideal in E0 and, as their
quotient, one obtains the Colombeau algebra of generalized complex
numbers C̄ = E0/N0 (or R̄). It is a ring, not a field.

The embedding of the Schwartz distribution space E ′(Ω) into G(Ω)
is realized through the sheaf homomorphism E ′(Ω) ∋ T 7→ ι(T ) =
[(T ∗ φε|Ω)ε] ∈ G(Ω), where the fixed net of mollifiers (φε)ε is defined
by φε = ε−dφ(·/ε), ε < 1, and φ ∈ S(Rd) satisfies

∫
φ(t)dt = 1,

∫
tmφ(t)dt = 0, m ∈ Nd

0, |m| > 0.

(tm = tm1

1 ...tmd

d and |m| = m1 + ... +md). This sheaf homomorphism,
extended over D′, gives the embedding of D′(Ω) into G(Ω), Ω ⊂ Rd. We
also use the notation ι for the mapping from E ′(Ω) to EM(Ω), ι(T ) =
(T ∗ φε|Ω)ε. Throughout this article, φ will always be fixed and satisfy
the above condition over its moments.

The generalized algebra of “smooth generalized functions" G∞(Ω) is
defined in [17] as the quotient of the algebras E∞

M (Ω) and N (Ω), where
E∞
M (Ω) consists of those nets (fε)ε ∈ E(Ω)(0,1) with the property

(∀ω ⊂⊂ Ω)(∃a ∈ R)(∀α ∈ N)( sup
|α|≤m

||f (α)
ε (x)||L∞(ω) = O(εa)).

Observe that G∞ is a subsheaf of G; it has a similar role as C∞ in D′.
We will use a continuous Littlewood-Paley decomposition of the

unity (see [15], Section 8.4, for instance). Let θ ∈ D(Rd) be a real valued
radial (independent on rotations) function with support contained in

the unit ball such that θ(y) = 1 if |y| ≤ 1/2. Set ζ(y) = −
d

dε
θ(εy)|ε=1 =

−y · ∇θ(y). The support of ζ is contained in the set 1/2 ≤ |y| ≤ 1. An

easy calculation shows that 1 = θ(y) +
∫ 1

0
η−1ζ(ηy)dη. Set ϕ = F−1(θ)

4



and ψ = F−1(ζ), then ϕ is a mollifier and ψ is a wavelet (all the mo-
ments of ψ are equal to zero). In addition, one has θ(εD)u = u ∗ ϕε
and ζ(εD)u = u ∗ ψε, thus ( [15], Section 8.6): for any u ∈ S ′(Rd),

u = u ∗ ϕ+

∫ 1

0

u ∗ ψη
dη

η
= u ∗ ϕε +

∫ ε

0

u ∗ ψη
dη

η
, 0 < ε ≤ 1, (1.4)

u ∗ ϕε = u ∗ ϕ+

∫ 1

ε

u ∗ ψη
dη

η
, 0 < ε ≤ 1. (1.5)

1.1. Growth function. Let g ∈ G(Ω) and ω ⊂⊂ Ω. We will define
a growth function cg,ω motivated by the results of [24] and [25]. First,
we repeat the definition of the usual valuation. Let ω ⊂⊂ Ω, m ∈ N0,
(gε)ε ∈ EM(Ω) and Amgε,ω = {a ∈ R; εa||gε||Wm,∞(ω) = O(1)}. Then the
valuation of (gε)ε is defined by vω,m((gε)ε) = sup{−a, a ∈ Amgε,ω}. In
order to simplify the notation we introduce the notion of calibration,
that is, cω,m((gε)ε) given by:

cω,m((gε)ε) = −vω,m((gε)ε) = inf{a, a ∈ Amgε,ω}.

If cω,m(gε) = s ∈ Amgε,ω, then we say that the calibration is reached
at s. The valuations (and calibrations) of different representatives of
g ∈ G(Ω) are obviously the same, thus we obtain a family of semi-ultra-
metrics on EM(Ω), resp., on G(Ω), defined by

Pω,m((gε)ε) = Pω,m(g) = ecω,m((gε)ε).

This family defines the so called sharp topology in EM(Ω), resp., in
G(Ω). Now, for every g = [(gε)ε] and ω ⊂⊂ Ω, we define the growth
function

cg,ω : N0 → [−∞,∞), cg,ω(m) = cω,m(g).

Clearly, it is an increasing function for any ω and g ∈ G∞(Ω). By a
theorem of Vernaeve, [25], one has cg,ω(j+1) ≤ (cg,ω(j)+cg,ω(j+2))/2,
for every ω ⊂⊂ Ω and j ∈ N0. Therefore, cg,ω is a convex function. This
implies that there are only two possibilities for the growth function
on an open connected set ω ⊂⊂ Ω : either it is precisely a constant
function, or it is constant up to some m0 ∈ N and then becomes a
strictly increasing function.

It is proved in [25] that G∞(Ω) is closed in the sense of the sharp
topology in G(Ω). We will not consider topological questions in this pa-
per and we thus refer to [20], and [25] for more information concerning
the sharp topology.

The growth functions for ELp,M(Ω) (and the corresponding algebras)
are defined by

cgε,Lp(m) = cLp,m(gε), m ∈ N0,

where cLp,m(gε) = inf{a; a ∈ Amgε,Ω,p} andAmgε,Ω,p = {a ∈ R; εa||gε||Wm,p(Ω) =
O(1)}. Once again, if cLp,m(gε) = s ∈ Amgε,Ω,p, then we say that the cal-
ibration is reached at s.
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Example 2. Let f ∈ W k,p(R) \W k+1,p(R), p ≥ 1, k ∈ N0 and let φ be a
mollifier. Then g = [(f(εx) ∗ f(x) ∗ φε)ε satisfies cg,Lp(m) = cg,Lp(0) =
0, m ≤ 3k and cg,Lp(3k + i) = i.

2. Sobolev type spaces and algebras of generalized

functions

2.1. L∞
loc−L

p− and (k, s)− generalized functions. In this paper we
are interested in nets (fε)ε ∈ EM(Ω) such that for given k ∈ N0 there
exists s̃ ∈ R such that

(∀ω ⊂⊂ Ω)(∀i ∈ Nd
0, |i| ≤ k)(εs̃‖∂ifε‖L∞(ω) = O(1), ε→ 0),

(∃ω1 ⊂⊂ Ω)(∃i ∈ Nd
0, |i| = k + 1)(εs̃‖∂ifε‖L∞(ω) 6= O(1), ε→ 0).

Such nets will be the representatives of, roughly speaking,W k,∞
loc −generalized

functions. Similarly, for p ∈ [1,∞], we can consider W k,p−generalized
functions. The precise definitions are as follows.

Definition 1. Let Ω be an open set in Rd and (fε)ε ∈ EM(Ω), resp.,
(fε)ε ∈ ELp,M(Ω). Let s ∈ R ∪ {−∞} and k ∈ N0. Then we say that
(fε)ε is of class (k, s) if

(∀ω ⊂⊂ Ω)((cg,ω(i) = s, 0 ≤ i ≤ k) ∧ (∃ω1 ⊂⊂ Ω)(cg,ω1
(k + 1) > s)

(2.1)

resp., ((cg,Lp(i) = s, 0 ≤ i ≤ k) ∧ (cg,Lp(k + 1) > s) (2.2)

and there are no other s1 < s and k1 ∈ N0 so that (2.1), resp., (2.2),
holds with (k1, s1).

It is said that (fε)ε is of class (∞, s) if s ∈ R is the infimum of all s̃
for which

(∀ω ⊂⊂ Ω)(∀i ∈ Nd
0)(ε

s̃‖∂ifε‖L∞(ω) = O(1), ε→ 0),

resp., (∀i ∈ Nd
0)(ε

s̃‖∂ifε‖Lp(Ω) = O(1), ε→ 0).

It is said that (fε)ε is of class (∞,−∞) if

(∀ω ⊂⊂ Ω)(∀k ∈ Nd
0)(∀s ∈ R)(εs‖∂kfε‖L∞(ω) = O(1), ε→ 0),

resp., (∀k ∈ Nd
0)(∀s ∈ R)(εs‖∂kfε‖Lp(Ω) = O(1), ε→ 0).

Let s ∈ [−∞,∞), k ∈ N0 ∪ {∞}. It is said that (fε)ε ∈ Ẽ (k,s)
M , resp.,

Ẽ (k,s)
Lp(Ω),M if it is of class (k, s). By definition, Ẽ (k,∞)

M = ∅, resp., Ẽ (k,∞)
Lp(Ω),M =

∅, k ∈ N0 ∪ {∞}.

The following two propositions are direct consequences of these def-
initions; we therefore omit their proofs.
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Proposition 1. a) (fε)ε ∈ Ẽ (k,s)
M (Ω) if and only if (εsfε)ε ∈ Ẽ (k,0)

M (Ω).

b) Let Ω1 ⊂ Ω. If (fε)ε ∈ Ẽ (k,s)
M (Ω), then there exist k1 ≥ k and s1 ≤ s

such that (fε|Ω1
)ε ∈ Ẽ (k1,s1)

M (Ω1).

c) Ẽ (k,s)
M (Ω) 6= Ẽ (k1,s)

M (Ω) if k 6= k1 and Ẽ (k,s)
M (Ω) 6= Ẽ (k,s1)

M (Ω) if s 6= s1.

d) Let (fε)ε ∈ Ẽ (k1,s1)
M (Ω), (gε)ε ∈ Ẽ (k2,s2)

M (Ω). Then (fε + gε)ε ∈

Ẽ (r,p)
M (Ω), for some r ≥ min{k1, k2} and p ≤ max{s1, s2}, as well as

(fεgε)ε ∈ Ẽ (r,p)
M (Ω) for some r ≥ min{k1, k2} and p ≤ s1 + s2.

e) Ẽ (∞,−∞)
M (Ω) = N (Ω) (so, it is an algebra).

f) If for every κ ∈ C∞
0 (Ω) there exist k ≥ k0 and s ≤ s0 such

that κfε ∈ Ẽ (k,s)
M (Ω), then there exist k̃ ≥ k0 and s̃ ≤ s0 such that

fε ∈ Ẽ (k̃,s̃)
M (Ω).

Proposition 2. The corresponding assertions a), b), c), d) and e) of

Proposition 1 hold if one considers the spaces Ẽ (k,s)
Lp,M(Ω).

Definition 2. Let k ∈ N0 ∪ {∞}, s ∈ R ∪ {∞}. Set

Ek,sM (Ω) :=
⋃

h∈[−∞,s],i∈{k,k+1,...}∪{∞}

Ẽ i,hM (Ω),

Gk,s(Ω) := Ek,sM (Ω)
/
N (Ω),

Ek,sLp,M(Ω) :=
⋃

h∈[−∞,s],i∈{k,k+1,...}∪{∞}

Ẽ i,hLp,M(Ω),

Gk,sLp (Ω) := {u ∈ G(Ω); ∃(fε)ε ∈ Ek,sLp,M(Ω), u = [(fε)ε]}.

Propositions 2 and 1 imply the next result.

Proposition 3. (i) G∞,∞(Ω), resp., G∞,∞
Lp (Ω) and Gk,0(Ω), k ∈ N0 ∪

{∞}, resp., Gk,0Lp (Ω), k ∈ N0 ∪ {∞}, are algebras.

(ii) Gk,s(Ω), resp., Gk,sLp (Ω), k ∈ N0 ∪ {∞}, s 6= 0,−∞, are vector
spaces.

(iii) Let P (D) =
∑

|α|≤m aαD
α be a differential operator of order m

with constant coefficients (Dα = ∂|α|

∂
α1
x1
...∂

αd
xd

) so that m ≤ k ∈ N. Then

P (D) : Gk,s(Ω) → Gk−m,s(Ω), resp., P (D) : Gk,sLp (Ω) → Gk−m,sLp (Ω).
(iv)

Gk1,s1(Ω) ⊂ Gk2,s2(Ω), resp., Gk1,s1Lp (Ω) ⊂ Gk2,s2Lp (Ω)

if and only if k1 ≥ k2, s1 ≤ s2.

Proof. Parts (i), (ii), and (iv) follow immediately from Proposition
2, Proposition 1 and the definitions. Let us prove (iii). It is enough
to consider ∂α1

x1 in the case of Gk,s(Ω). Since k ≥ 1, we have that

εs̃|f (m+(1,...,0))
ε (x)| ≤ ∞, |m| ≤ k − 1, where s̃ cannot be larger than

s, the assertion follows. �
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If (fε)ε ∈ Ek,0Lp,M(Ω), then, by Sobolev lemma [1], (fε)ε ∈ Em,0M (Ω) for
m < k − n/p (we use here the assumption over ∂Ω, see Section 1).

Therefore, Gk,0Lp (Ω) ⊂ Gm,0(Ω).
We compare E∞,∞

M (Ω) with E∞
M (Ω). Clearly, we have the inclusion

E∞,∞
M (Ω) ⊂ E∞

M (Ω). Conversely, if (fε)ε ∈ E∞
M (Ω), then (fε|Ω′)ε ∈

E∞,∞
M (Ω′) for every bounded open subset Ω′ ⊂⊂ Ω.

Example 3. 1. Let f ∈ C∞(R). Then log(1/ε)f ( · log(1/ε)) ∈ Ẽ∞,0
M (R)

and ι(f) ∈ G∞,0(Ω).
2. We say that f ∈ E ′(Ω) is strictly of order k ∈ N if it is of the

form f = ∂αF , where F ∈ L∞
loc(Ω), |α| = k and there is no other L∞

loc-
function F1 and a multi-index α1 such that f = ∂α1F1 and |α1| < k.

Then ι(f) = (f ∗ φε|Ω)ε ∈ Ẽ0,k−σ
M (Ω) with 0 ≤ σ < 1, and hence ι(f) ∈

G0,k(Ω).

3. For the delta distribution we have ι(δ(m)) ∈ Ẽ0,m+1
M (R), m ∈ N0.

4. The embedding of a locally bounded function f , which does not

have locally bounded partial derivatives, belongs to Ẽ0,0
L∞
loc
,M(Ω). Since

any f ∈ E ′(Ω) is of the form f =
∑l

i=0 f
(i)
i , where fi are compactly

supported locally bounded functions, it follows that ι(f) is of class
(k, s), for some k ∈ N0 ∪ {∞} and s ∈ [−∞,∞).

Example 4. The assumption on ∂Ω (see the beginning of Section 1)
implies that any element of a Sobolev space over Ω can be extended out
of Ω to ũ so that ũ belongs to the corresponding Sobolev space over Rd

in such a way the extension operator is continuous. So ũ∗φε|Ω, ε ∈ (0, 1),

is a representative of ι(u) in the corresponding algebra of generalized
functions.

Let u ∈ W−m,p(Ω), p ≥ 1. Then by the structural theorem (see [1])
there exist functions vα ∈ Lp(Ω), |α| ≤ m, such that u =

∑
|α|≤m ∂

αvα
in the distributional sense. Let (φε)ε be a mollifier. Then a represen-
tative of ι(u) ∈ GLp(Ω) is given by uε =

∑
|α|≤m ∂

αṽα ∗ φε, ε < 1, so
that

‖uε‖Lp = ‖
∑

|α|≤m

∂αṽα ∗ φε‖Lp

≤‖
∑

|α|≤m

ε−|α|ṽα ∗ ∂
αφε‖Lp ≤ C

∑

|α|≤m

ε−|α|‖vα‖Lp‖(∂αφ)ε‖L1 ≤ CCuCφε
−m,

where Cu =
∑

|α|≤m ‖vα‖Lp, Cφ = max|α|≤m ‖∂αφ‖L1, and the constant
C comes from the extension operator.

Thus, there exists r ≤ m, such that (uε)ε ∈ Ẽ0,r
Lp,M and so ι(u) ∈

G0,r
Lp (Ω).
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3. Characterizations through associations

Recall, generalized functions f, g ∈ G(Ω) are associated, f ∼ g,
or their representatives are associated, (fε)ε ∼ (gε)ε, if fε − gε → 0
in D′(Ω). Observe that if T ∈ D′(Ω), then f ∼ ι(T ) if and only if
limε→0+ fε = T in D′(Ω); we write in this case (fε)ε ∼ T .

Let r ∈ R; the Zygmund space Cr
∗(R

d) = Cr
∗ is defined by

Cr
∗ := {u ∈ S ′ : |u|r∗ := ||ϕ ∗ u||L∞ + sup

ε<1
(ε−r||ψε ∗ u||L∞ <∞}, (3.1)

where ϕ and ψ form a continuous Littlewood-Paley decomposition (see
(1.4) and (1.5) in Section 1). It can be shown that the definition is
independent on the choice of the Littlewood-Paley decomposition (see
Section 8.6 in [15]). We refer to [15] for further properties of Zygmund
spaces.

Theorem 1. a) Let k ∈ N0 ∪ {∞}. Then ι(W k,∞(Ω)) ⊂ Gk,0L∞(Ω) ⊂
Gk,0(Ω).

b) Let T ∈ E ′(Ω). If ι(T ) ∈ Gk,0L∞(Ω) for some k ∈ N and the
calibration, cΩ,k(ι(T )) = 0, is reached at zero, then T ∈ W k,∞(Ω),
namely, T (α) ∈ L∞(Ω), |α| ≤ k.

c) Let T ∈ S ′(Rd) such that its Fourier transformation is a bounded
function. Then ι(T ) ∈ G0,d(Rd).

Proof. a) This follows easily from the definition.
b) We have that for every |α| ≤ k, T (α)∗φε, ε < 1, is a bounded net of

smooth functions and thus it has a weakly∗ convergent subsequence in
L∞(Ω), and it also converges to T (α) in D′(Ω). Therefore, T (α) ∈ L∞(Ω).

c) We have that

|T ∗ φε(x)| ≤ |F−1(T̂ φ̂ε)(x)| ≤

∫

Rd

|T̂ (ξ)φ̂(εξ)|dx ≤M/εd, ε < 1,

hence c) follows. �

The next three theorems are the main results of this section.

Theorem 2. Let T ∈ E ′(Ω), k ∈ N0 and (fε)ε ∈ Ek,0M (Ω) such that

supp T, supp fε ⊂ ω ⊂⊂ Ω, ε < 1. (3.2)

(1) Suppose that the calibration of (fε)ε (cω,k((fε)ε) = 0) is reached at
zero. Assume further that (fε)ε ∼ T , i.e.,

(∀ρ ∈ D(Ω))(〈T − fε, ρ〉 = o(1), ε → 0+). (3.3)

Then

(∃C > 0)(∀ξ ∈ Rd)(|T̂ (ξ)| ≤ C(1 + |ξ|2)−k/2). (3.4)

In particular, ι(T ) ∈ Gk,d(Ω) and T ∈ Ck−d
∗ .

Remark 1. The conclusion holds, in particular, if (fε)ε ∈ Ek,sM (Ω), s < 0.
9



(2) Suppose that the calibration of (fε)ε (cω,k((fε)ε) = 0) is not reached
at zero. Assume that

(∃b > 0)(∀ρ ∈ D(Ω))(|〈T − fε, ρ〉| = O(εb), ε ∈ (0, 1)).

Then

(∀η > 0)(∃C > 0)(∀ξ ∈ Rd)(|T̂ (ξ)| ≤ C(1 + |ξ|2)−k/2+η). (3.5)

In particular, T ∈ Ck−d−η
∗ (Rd) for every η ∈ (0, 1).

Proof. (1) By the assumption (3.2) over the supports, we obtain that

(∀ρ ∈ E(Ω))(〈T − fε, ρ〉 = o(1), ε→ 0+).

We consider for each fixed ξ ∈ Rd the test function ρξ(·) = eiξ·, then,
pointwise,

T̂ (ξ) = 〈T, ρξ〉 = lim
ε→0+

〈fε, ρξ〉 = lim
ε→0+

f̂ε(ξ).

Now, the assumption on the calibration of (fε)ε implies the existence
of C > 0 such that

|f̂ε(ξ)| ≤ C(1 + |ξ|)−k, ξ ∈ Rd, ε < 1.

Fixing ξ ∈ Rd and taking ε→ 0+, the inequality (3.4) follows.

By part c) of the previous theorem we have that T (α) ∗ φε ∈ E0,d
M for

all |α| ≤ k and thus ι(T ) ∈ Gk,d(Ω).
The estimate (3.4) implies that

||T ∗ ϕ||L∞(Rd) ≤
1

(2π)d

∫

Rd

|T̂ (ξ)||ϕ̂(ξ)|dξ <∞

and, for ε ∈ (0, 1),

εd−k||T∗ψε||L∞(Rd) ≤
C

(2π)d
εd

∫

Rd

|ψ̂(εξ)|

|εξ|k
dξ =

C

(2π)d

∫

Rd

|ψ̂(ξ)|

|ξ|k
dξ <∞.

It follows that T ∈ Ck−d
∗ .

(2) The assumption over (fε)ε implies that:

(∀a > 0)(||(1 + | · |)kf̂ε||L∞(Rd) = O(ε−a)). (3.6)

The support condition (3.4) and the equivalence between weak and
strong boundedness in E ′(Ω) yield

(∃r ∈ N)(∃C > 0)(∀ρ ∈ E(Ω))(∀ε ∈ (0, 1))(ε−b|〈T − fε, ρ〉| ≤ C‖ψ‖r),

where ‖ρ‖r = supx∈Ω,|p|≤r |ρ
(p)(x)|. Let ξ ∈ Rd and ρξ(·) = eiξ·. We have

‖ρξ‖r ≤ C1(1 + |ξ|)r, ξ ∈ Rd.

Therefore, with C2 = CC1,

|T̂ (ξ)| ≤ C2ε
b(1 + |ξ|)r + |f̂ε(ξ)|, ξ ∈ Rd, 0 < ε < 1.

By (3.6), given any a > 0, there exists M =Ma > 0 such that

|T̂ (ξ)| ≤ C2ε
b(1 + |ξ|)r +Mε−a(1 + |ξ|)−k, ξ ∈ Rd, 0 < ε < 1.

10



Let ε = (1 + |ξ|)
−k−r

b . Then

|T̂ (ξ)| ≤ C2(1 + |ξ|)−k +M(1 + |ξ|)−k(1 + |ξ|)
ak+ar

b , ξ ∈ Rd. (3.7)

Choosing small enough a > 0 so that η = (ak + ar)/b ∈ (0, 1), the
estimate (3.5) follows after renaming the constant. The fact that T ∈
Ck−d−η

∗ for arbitrary η ∈ (0, 1) can be established as in part (1). �

Theorem 3. Let T ∈ E ′(Ω), k ∈ N0, and (fε)ε ∈ Ek,s1M (Ω), for some
s1 > 0, be such that (3.2) holds. Assume that

(∃r ∈ N)(∀a > 0)(∀ρ ∈ Er(Ω))(|〈T − fε, ρ〉| = O(εa)). (3.8)

Then

(∀η > 0)(∃C > 0)(|T̂ (ξ)| ≤ C(1 + |ξ|2)−k/2+η, ξ ∈ Rd)

In particular, T ∈ Ck−d−η
∗ (Rd) for every η ∈ (0, 1).

Proof. As in part (2) of the previous theorem, we have

ε−a|T̂ (ξ)− f̂ε(ξ)| ≤ C(1 + |ξ|)r, ξ ∈ Rd, ε < 1, i.e.,

|T̂ (ξ)| ≤ Cεa(1 + |ξ|)r + |f̂ε(ξ)|, ξ ∈ Rd, ε < 1,

for some constant C = Ca. By the assumption on the calibration of
(fε)ε, one gets that for some s > s1 there exists another constant
C = Cs,a > 0 such that

|T̂ (ξ)| ≤ Cεa(1 + |ξ|)r + Cε−s(1 + |ξ|)−k, ξ ∈ Rd, ε < 1.

Let ε = (1 + |ξ|)
−k−r

a . Then

|T̂ (ξ)| ≤ C(1 + |ξ|)−k + C(1 + |ξ|)−k(1 + |ξ|)
sk+sr

a , ξ ∈ Rd.

Thus, taking large enough a > 0 so that (sk + sr)/a = η ∈ (0, 1)
and proceeding as in the proof of Theorem 2, one establishes all the
assertions of Theorem 3. �

Recall [1], the space W k,p
0 (Ω) ⊂ W k,p(Ω) denotes the closure of D(Ω)

in the corresponding Sobolev norm.

Theorem 4. a) Let T ∈ E ′(Ω), k ∈ N0, 1 < p ≤ ∞. Assume that

ι(T ) ∈ Ek,0Lp,M(Ω) so that the calibration of (T ∗ φε)ε (cLp,k(T ∗ φε) = 0)

is reached at 0. Then T ∈ W k,p(Ω).

b) Let 1 < p < ∞, T ∈ D′(Ω) and (fε)ε ∈ Ek,0Lp,M(Ω) so that the

calibration cLp,k((fε)ε) = 0 is reached at 0 and fε ∈ W k,p
0 (Ω) for each

0 < ε < 1. If (fε)ε ∼ T , i.e., (2) holds, then T ∈ W k,p
0 (Ω) (⊂W k,p(Ω)).

Proof. a) Since for some C > 0, ||T (α)∗φε||Lp(Ω) ≤ C, |α| ≤ k, it follows
that (T ∗ φε)ε is weakly compact in W k,p(Ω) if p ∈ (1,∞) and weakly∗

compact in W k,∞(Ω) if p = ∞. This implies that the limit T belongs
to W k,p(Ω).
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b) Let p′ = p/(p− 1). Since (W k,p
0 (Ω))′ = W−k,p′(Ω), it follows that

for every ρ ∈ D(Ω),

|〈T, ρ〉| ≤ |〈fε, ρ〉|+ o(1) ≤ C||ρ||W−k,p′(Ω) + c(ε)

and since c(ε) → 0, we obtain (∀ρ ∈ D(Ω))(|〈T, ρ〉| ≤ C||ρ||W−k,p′(Ω))

which implies, because of reflexivity of W k,p
0 (Ω), that T ∈ W k,p

0 (Ω), as
required. �

4. Zygmund-type spaces and algebras

If r is of the form r = k + ρ, k ∈ N0, ρ ∈ (0, 1), then Cr
∗(R

d) equals
Hölder’s space Hk,ρ(Rd) ( [15], Ch. 8) with the equivalent norm

||f ||Hk,ρ(Rd) = ||f ||W k,∞(Rd) + sup
|α|=k,x 6=y,x,y∈Rd

|f (α)(x)− f (α)(y)|

|x− y|ρ
(4.1)

Let r ∈ R, Hörmann ( [12]) defined G̃r∗(R
d) as the space of generalized

functions u ∈ G(Rd) with a representative (uε)ε such that for α ∈ Nd
0,

‖u(α)ε ‖L∞(Rd) =






O(1), 0 ≤ |α| < r,

O(log(1/ε)), |α| = r ∈ N0

O(εr−|α|), |α| > r.

as ε→ 0, (4.2)

Remark 2. Clearly, if g = [(gε)ε] ∈ G̃r∗(R
d), then [(gε ∗ φε)ε] ∈ G̃r∗(R

d)
but the opposite does not hold, in general. However, g = [(gε)ε] and
g = [(gε∗φε)ε] are equal in the sense of generalized distributions, which
means that

〈gε ∗ φε − gε, θ〉 = o(εp) for every p and every θ ∈ D(Rd).

Originally in [12], the “tilde" did not appear in the notation but since
we will introduce a new definition, which is intrinsically related to the
classical definition of Zygmund spaces (including Hölder spaces), we
leave the notation Gr∗(R

d) for our space.

Definition 3. The space Gr∗(R
d) = Gr,0∗ (Rd), called the Zygmund space

of generalized functions of 0−growth order, consists of u ∈ G(Rd) with
a representative (uε)ε such that

||uε||
r
∗ = ||uε ∗ ϕ||L∞(Rd) + sup

η<1
η−r||uε ∗ ψη||L∞(Rd) = O(1), (4.3)

while Gr,s∗ (Rd), the Zygmund space of generalized functions of s-growth
order, consists of u ∈ G(Rd) with a representative (uε)ε such that
(εsuε)ε represents an element of Gr∗(Ω).

The main properties of these spaces are summarized in the next the-
orem. In particular, we show the embedding of the ordinary Zygmund
spaces of functions and characterize those distributions which, after
embedding, belong to our generalized version of Zygmund classes.
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Theorem 5. Let r, r1, r2, s ∈ R and φ be a radial mollifier from S(Rd)
with all non-zero moments vanishing. Then

(i) i(Cr∗(R
d)) ⊂ Gr,0∗ (Rd). If u ∈ S ′(Rd) and i(u) ∈ Gr,0∗ (Rd), then

there is θ ∈ C∞(Rd) such that u− θ ∈ Cr∗(R
d).

(ii) Gr1,s∗ (Rd) ⊂ Gr,s∗ (Rd) if r1 ≥ r; P (D)Gr,s∗ (Rd) ⊂ Gr−m,s∗ (Rd),
where m is the order of the differential operator P with constant coef-
ficients.

(iii) Let ui ∈ Gri,s∗ (Rd), i = 1, 2 and r1 + r2 > 0. Then u1u2 ∈
Gp,2s∗ (Rd), where p = min{r1, r2}. In particular, Gr,s∗ (Rd) is an algebra
if s = 0 and r > 0.

Proof. (i) Let u ∈ Cr∗(R
d) and ι(u) = (u ∗ φε)ε. By the assumption, we

have

||uε ∗ ϕ||L∞(Rd) ≤ C(1 ∗ |φε|) ≤ C1, ε < 1.

On the other hand,

sup
η<1

η−r||uε∗ψη||L∞(Rd) ≤ ||φε||L1(Rd) sup
η<1

η−r||u∗ψη||L∞(Rd) ≤ C2, 0 < ε < 1.

Let us now prove the second part of (i). Set ε = η < 1. We have that
η−d(φ ∗ ψ)(x/η) = φη ∗ ψη(x). Thus, one obtains that φ ∗ ψ is a radial
wavelet which gives the implication

sup
ε<1

ε−r|u ∗ (φε ∗ψε)| <∞, =⇒ u− θ ∈ Cr
∗(R

d) for some θ ∈ C∞(Rd).

(ii) The first part is a consequence of the definition. By the use of
Bernstein inequality ( [15], Lemma 8.6.2) and the arguments of Propo-
sition 8.6.6 in [15], we obtain the second part.

(iii) This part is a consequence of [15], Proposition 8.6.8. Actually,
we have, by this proposition, that there exists ε0 ∈ (0, 1) and K =
K(r1, r2), which does not depend on ε, such that

||ε2su1,εu2,ε||
r
∗ ≤ K||εsu1,ε||

r1
∗ ||ε

su2,ε||
r2
∗ , ε ≤ ε0.

�

Remark 3. As in the case of multiplication of continuous functions, we
have that [((u1u2) ∗ φε)ε] 6= [(u1 ∗ φε)ε][(u2 ∗ φε)ε] but these products
are associated.

Several properties are listed in the next corollary.

Corollary 1. (i) Let r ∈ R, T ∈ E ′(Rd) and ι(T ) ∈ Gr,0∗ (Rd). Then
T ∈ Cr∗(R

d). (ii) Let r ∈ R and u ∈ Gr,0∗ (Rd). If r ∈ R+ \ N, then u ∈

G[r],0
L∞ (Rd). If r ∈ N, then u ∈ Gr−1,0

L∞ (Rd). (iii) Gr,0Lp (Rd) ⊂ Gr−d/p,0∗ (Rd).

Proof. (i) is a direct consequence of Theorem 5, while (ii) follows di-
rectly from the equivalence between the norms in (3.1) and (4.1) for
0 < ρ < 1. Part (iii) is implied by Theorems 7.33 and 7.37 from [1]. �
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The following remark makes some partial comparisons between our
definition and Hörmann’s definition, [12]. We also formulate an open
question.

Remark 4. Let u = [(uε)ε] ∈ Gr∗(R
d) and let ϕ ∈ S(Rd) be the function

from the Littlewood-Paley decomposition (see (1.4)). We show that
[(uε ∗ϕε)ε] ∈ G̃r∗(R

d). For this, we will make use of Lemma 8.6.5 of [15],
which asserts that given κ with κ̂ ∈ D(Rd), there exist constants Kr,α,
α ∈ N0, such that for all v ∈ Cr

∗(R
d) and 0 < η ≤ 1, there holds

‖(v ∗ κη)
(α)‖L∞(Rd) ≤






Kr,α||v||
r
∗, 0 ≤ |α| < r,

Kr,α||v||r∗(1 + log(1/η)), |α| = r ∈ N0,

Kr,α||v||
r
∗(η

r−|α|), |α| > r,

(4.4)

where, as usual, κη(x) = η−dκ(x/η). Thus, if we employ (4.4) with v =
uε, κ = ϕ, and η = ε, together with the the fact that ||uε||r∗ is uniformly

bounded with respect to ε, we obtain at once [(uε ∗ ϕε)ε] ∈ G̃r∗(R
d), as

claimed. At this point we should mention that the precise relation be-
tween the spaces Gr∗(R

d) and G̃r∗(R
d) is still unknown; therefore, we can

formulate an open question: Find the precise inclusion relation between
these two spaces.

Remark 5. As seen from the given assertions, our Zygmund general-
ized function spaces are suitable for the analysis of pseudodifferential
operators. We leave such investigations for further work.

4.1. Hölder-type spaces and algebras of generalized functions.

Recall that Hk,1(Rd) $ Ck+1
∗ (Rd), k ∈ N0.

Definition 4. Let k ∈ N0, s ∈ [−∞,∞), ρ ∈ (0, 1] and let u ∈ G(Rd).
Then it is said that u ∈ Gk,ρ,0(Rd) if it has a representative (uε)ε ∈
EM(Rd) such that

||uε||Hk,ρ = ||uε||W k,∞+ sup
x,y∈Rd,x 6=y,|α|=k

|u(α)ε (x)−u(α)ε (y)||x−y|−ρ = O(1)

(4.5)
It is said that u ∈ Gk,ρ,s(Rd) if it has a representative (uε)ε ∈ EM(Rd)
such that [(εsuε)ε] ∈ Gk,ρ,0(Rd).

Proposition 4. If r = k + ρ, ρ ∈ (0, 1), then Gr,s∗ (Rd) = Gk,ρ,s(Rd).

Proof. There exists C > 0 such that for every ε < 1,

C−1||εsuε||
r
∗ ≤ ||εsuε||Hk,ρ ≤ C||εsuε||

r
∗,

as follows from the equivalence between the norms (3.1) and (4.1) (
[15]). This implies the assertion. �

Because of that, we will consider below only the cases Gk,1,s(Rd), k ∈ N0.
14



Theorem 6. (i) ι(Hk,1(Rd)) ⊂ Gk,1,0(Rd).
(ii) Let k ∈ N0, u ∈ S ′(Rd) and ι(u) ∈ Gk,1,0(Rd). Then u ∈

Hk,1(Rd).
(iii)

Gk,1,s(Rd) $ Gk+1,s
∗ (Rd), k ∈ N0.

(iv) Let P (D) =
∑

|α|≤m aαD
α be a differential operator of order m

with constant coefficients and m ≤ k ∈ N. Then P (D) : Gk,ρ,s(Rd) →
Gk−m,ρ,s(Rd).

(v) Gk1,1,s(Rd) ⊂ Gk,1,s(Rd) if k1 ≥ k.
(vi) Concerning the multiplication, we have

Gk1,1,s(Rd) · Gk2,1,s(Rd) ⊂ Gp,1,2s(Rd)

so that p = min{k1, k2}. In particular, Gk1,1,s(Rd) is an algebra if and
only if s = 0.

Proof. The proofs of assertions (i), (iv) and (v) are clear. We will prove
(ii), (iii) and (vi).

(ii) By the assumption {f (α)
ε , ε < 1} is a bounded and equicontinuous

net of functions on any compact set in Rd, for every |α| ≤ k. Thus,
by Arzelà-Ascoli theorem, it has a convergent subsequence for every
|α| ≤ k and, by diagonalization, there exists a sequence (fεn)n and

f ∈ Ck(Rd) such that f
(α)
εn → f (α), n → ∞, |α| ≤ k, uniformly on any

compact set K ⊂ Rd. Now let |α| = k. For every x, y ∈ Rd, x 6= y,

|f (α)(x)− f (α)(y)|

|x− y|ρ
= lim

n→∞

|f (α)
εn (x)− f

(α)
εn (y)|

|x− y|ρ
≤ C,

since

sup
x,y∈Rd, x 6=y

lim
n→∞

|f (α)
εn (x)− f

(α)
εn (y)|

|x− y|ρ
≤ sup

x,y∈Rd, x 6=y

sup
n∈N

|f (α)
εn (x)− f

(α)
εn (y)|

|x− y|ρ

≤ sup
x,y∈Rd, x 6=y,ε<1

|f (α)
ε (x)− f

(α)
ε (y)|

|x− y|ρ
≤ C,

and the assertion follows. A similar argument shows that ||f ||W k,∞(Rd) <
∞.

(iii) This follows from the fact Hk,1(Rd) 6= Ck+1
∗ (Rd) and parts (i)

and (ii).
(vi) By the Leibnitz formula, the claim is reduced to the proof of

sup
x,y∈Rd,x 6=y

|f (α)
ε (x)g

(β)
ε (x)− f

(α)
ε (y)g

(β)
ε (x)|

|x− y|ρ
≤ C, |α + β| = p.

We just have to add and subtract f
(α)
ε (x)g

(β)
ε (y) in the numerator and

then, by the use of the boundedness of ||f (α)
ε ||L∞(Rd) and of ||g(β)ε ||L∞(Rd),

the result follows. �
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5. Regularity properties of generalized functions

We recall some definitions concerning regularizing transforms and
quasiasymptotics of distributions. Let φ be a mollifier as in Section 2.
We set

Fφ(f)(x, y) = 〈f(x+ yt), φ(t)〉 = f ∗ φ̌y(x), (x, y) ∈ Hd+1 := Rd × R+,

and call it the regularizing transform with kernel φ (the φ−transform,
in ( [22]). Recall ( [7], [27], [28]) that f is said to be quasiasymptotically
bounded at the origin, resp., at ∞, with respect to εα if for each ρ ∈
S(Rd)

1

εα
〈f(εt), ρ(t)〉 = O(1), ε→ 0+,

resp.,
1

εα
〈f(εt), ρ(t)〉 = O(1), ε → ∞. (5.1)

Remark 6. The quasiasymptotic bounds and behaviors (see [7], [26],
or [27], for example) can also be defined by comparison with regularly
varying functions which have the form rαL(r), r > 0, where L is a
slowly varying function [3]. We assume in this paper that L ≡ 1 in
order to simplify the notation and the exposition.

Our aim is to give another proof of the following well known theorem
in Colombeau theory:

Theorem 7. D′(Rd) ∩ G∞(Rd) = C∞(Rd).

Since Theorem 7 is a local statement, this equality is equivalent to
the one E ′(Rd) ∩ G∞(Rd) = C∞

c (Rd), which means that if f ∈ E ′(Rd)
and ι(f) = (f ∗ φε)ε ∈ E∞

M (Rd), then f ∈ C∞(Rd).
The proof follows from our analysis developed in [22], [?] which

enables us to analyze properties of distributions f by knowing their
growth order properties with respect to ε after regularizing, fε = f ∗θε,
where θ is not necessarily a mollifier. We already demonstrated this
in the previous subsection where we have used a Tauberian theorem
from [22] for the mollifier transform. We now use Tauberian theorems
for wavelet transforms of vector-valued distributions ( [22,29]). Let E be
a Banach space, g ∈ S ′(Rd, E) := Lb(S(Rd), E) (the space of continu-
ous linear mappings), and ψ ∈ S(Rd) with

∫
Rd ψ(t)dt = 0. The wavelet

transform is defined as the E-valued function Wψg ∈ C∞(Hd+1, E)
given by

Wψg(x, y) =
1

yd
〈g(x+ yt), ψ (t)〉 := g ∗ ψ̌y(x) ∈ E, (x, y) ∈ Hd+1.

Proof of Theorem 7. We may assume f ∈ E ′(Rd). Let Ω ⊂⊂ Rd and
β ∈ Nd. We will show that f (β) ∈ C(Ω). Find Ω ∪B(0, 1) ⊂ V ⊂⊂ Rd.
Since [(f ∗ φε)ε] ∈ G∞(Rd), there is s > 0 such that for every α ∈ Nd,

sup
x∈V

|(f ∗ φε)
(β+α)(x)| = O(ε−s), i.e., sup

x∈V

|(f (β) ∗ φ(α)
ε )(x)| = O(ε|α|−s).
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Let k ∈ N be so that p = 2k−s > 0, we may assume p /∈ N. Then, with

ψ = ∆kφ̌, there exists M > 0 such that |Wψf
(β)(x, ε)| ≤ Mεp, x ∈ V ,

0 < ε < 1. Define now g ∈ S ′(Rd, C(Ω)) as 〈g, ρ〉 := (f (β)∗ρ̌)|Ω ∈ C(Ω),

ρ ∈ S(Rd). Thus, Wψg(x, y) ∈ C(Ω) is the function Wψg(x, y)(ξ) =
Wψf

(β)(x+ ξ, y), and hence

lim sup
ε→0

sup
|x|2+y2=1

ε−p||Wψg(εx, εy)||C(Ω) ≤ sup
0<ε,y≤1

sup
t∈V

ε−p|Wψf
(β)(t, εy)| ≤M.

Applying the Tauberian theorem for the wavelet transform of Ba-
nach space-valued distributions (see Subsection 6.3 in [22]), we con-
clude the existence of an C(Ω)-valued polynomial P(t) =

∑
|α|<p vαt

α,

vα ∈ C(Ω), such that for each ρ ∈ S(Rp)

sup
ξ∈C(Ω)

|(f (β)∗ρ̌ε)(ξ)−
∑

|α|<p

vα(ξ)ε
α

∫

Rd

tαρ(t)dt| = ||〈g−P, ρε〉||C(Ω) = O(εp);

in particular, if we choose the mollifier ρ = φ̌, we obtain that limε→0(f
(β)∗

φε)(ξ) = v0(ξ) uniformly for ξ ∈ Ω. This shows that f
(β)
|Ω = v0 and ac-

tually f (β) is continuous on Ω. Since β and Ω are arbitrary, the proof
is complete.
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