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Abstract

In this paper, we study a class of initial and boundary value problems proposed by
Colin and Ghidalia for the Korteweg-de Vries equation posed on a bounded domain (0, L).
We show that the initial-value problem is locally well-posed in the classical Sobolev space
Hs(0, L) for s > −

3

4
, which provides a positive answer to one of the open questions of Colin

and Ghidalia [18].

1 Introduction

In this paper we study a class of initial-boundary value problem (IBVP) for the Korteweg-de
Vries (KdV) equation posed on a finite domain with nonhomogeneous boundary conditions,

{
ut + ux + uxxx + uux = 0, u(x, 0) = φ(x), x ∈ (0, L), t ∈ R+,

u(0, t) = h1(t), ux(L, x) = h2(t), uxx(L, t) = h3(t).
(1.1)

This IBVP can be considered as a model for propagation of surface water waves in the situation
where a wave-maker is putting energy in a finite-length channel from the left (x = 0) while the
right end (x = L) of the channel is free (corresponding the case of h2 = h3 = 0) (see [16]). The
problem was first proposed and studied by Colin and Ghidaglia in the late 1990s [16, 17, 18].
In particular, they investigated the well-posedness of the IBVP in the classical Sobolev space
Hs(0, L) and obtained the following results.

Theorem A ([18])

(i) Given hj ∈ C1([0,∞)), j = 1, 2, 3 and φ ∈ H1(0, L) satisfying h1(0) = φ(0), there exists a
T > 0 such that the IBVP (1.1) admits a solution (in the sense of distribution)

u ∈ L∞(0, T ;H1(0, L)) ∩ C([0, T ];L2(0, L)).

(ii) The solution u of the IBVP (1.1) exists globally in H1(0, L) if the size of its initial value
φ ∈ H1(0, L) and its boundary values hj ∈ C1([0,∞)), j = 1, 2, 3 are all small.

In addition, they showed that the associate linear IBVP

{
ut + ux + uxxx = 0, u(x, 0) = φ(x) x ∈ (0, L), t ∈ R+

u(0, t) = 0, ux(L, x) = 0, uxx(L, t) = 0
(1.2)

possesses the following smoothing property:

For any φ ∈ L2(0, L), the linear IBVP (1.2) admits a unique solution

u ∈ C(R+;L2(0, L)) ∩ L2
loc(R

+;H1(0, L)).

Aided by this smoothing property, Colin and Ghidaglia showed that the homogeneous IBVP
(1.1) is locally well-posed in the space L2(0, L).

Theorem B ([18])

Assuming h1 = h2 = h3 ≡ 0, then for any φ ∈ L2(0, L), there exists a T > 0 such that the
IBVP (1.1) admits a unique weak solution u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).
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The well-posedness results presented in Theorem A are not in the full strength of the well-
posedness in the sense of Hadamard since both uniqueness and continuous dependence are miss-
ing, in particular, for the IBVP (1.1) with nonhomogeneous boundary conditions. To encourage
further investigation, a series of open problems were proposed by Colin and Ghidaglia in [18], of
which, two of them are listed below.

Problems

(1) Is it possible to prove global existence of solutions of (1.1) for e.g. smooth solutions (as it
in the case for both quarter plane and the whole line cases)?

It is remarked by Colin and Ghidaglia in [18]: “ for these problems, uniqueness rely on
a priori estimate in H2 that we are not able to extend here and therefore establish the
existence of more regular solutions.”

(2) Is it possible to establish the existence of solutions of (1.1) with their initial value in the
space Hs(0, L) for some s < 0 as in the case of the whole line?

Colin and Ghidaglia expected the answer to be positive because of the the strong smoothing
property of the associated linear IBVP (1.2).

In this paper, we will continue Colin and Ghidalia’s work [16, 17, 18] to study the well-
posedness problem of the IBVP (1.1) in the space Hs(0, L). We aim at 1) establishing the well-
posedness of the IBVP (1.1) in the full strength of Hadamard including existence, uniqueness
and continuous dependence and 2) showing that the IBVP (1.1) is (locally) well-posed in the
space Hs(0, L) when s ≥ 0 and − 3

4 < s < 0.

In order to describe precisely our results, we introduce the some notations.

For given T > 0 and s ∈ R, let

H
s(0, T ) := H

s+1

3 (0, T )×H
s
3 (0, T )×H

s−1

3 (0, T ),

Ds,T := Hs(0, L)×H
s(0, T )

and
Zs,T = C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L))

For the well-posedness of the IBVP (1.1), we intend to establish in this paper, some compatibility
conditions relating the initial datum φ(x) and the boundary data hj(t), j = 1, 2, 3 are needed.
A simple computation shows that if u is a C∞-smooth solution of the IBVP (1.1), then its
initial data u(x, 0) = φ(x) and its boundary values hj(t), j = 1, 2, 3 must satisfy the following
compatibility conditions:

φk(0) = h
(k)
1 (0), φ′k(L) = h

(k)
2 (0), φ′′k(L) = h

(k)
3 (0) (1.3)

for k = 0 , 1, · · · , where h
(k)
j (t) is the k−th order derivative of hj and





φ0(x) = φ(x)

φk(x) = −
(
φ

′′′

k−1(x) + φ
′

k−1(x) +
∑k−1

j=0 (φj(x)φk−j−1(x))
′
) (1.4)

for k = 1, 2, · · · . When the well-posedness of (1.1) is considered in the space Hs(0, L) for some
s ≥ 0, the following s−compatibility conditions thus arise naturally.
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Definition 1.1. (s−compatibility ) Let T > 0 and s ≥ 0 be given. A four-tuple

(φ,~h) = (φ, h1, h2, h3) ∈ Ds,T

is said to be s−compatible with respect to the IBVP (1.1) if

φk(0) = h
(k)
1 (0) (1.5)

when k = 0, 1, . . . [s/3]− 1 and s− 3[s/3] ≤ 1/2,

φk(0) = h
(k)
1 (0), φ′k(1) = h

(k)
2 (0) (1.6)

when k = 0, 1, . . . [s/3] and 1/2 < s− 3[s/3] ≤ 3/2 and

φk(0) = h
(k)
1 (0), φ′k(1) = h

(k)
2 (0) φ′′k(1) = h

(k)
3 (0) (1.7)

when k = 0, 1, . . . [s/3] + 1 and 3/2 ≤ s − 3[s/3] ≤ 9/2. We adopt the convention that (1.5) is
vacuous if [s/3]− 1 < 0.

As one of the main results in this paper, the following theorem states that the IBVP (1.1) is
locally well-posed in the space Hs(0, L) for any s ≥ 0.

Theorem 1.2. Let s ≥ 0, T > 0 and r > 0 be given with

s 6=
2j − 1

2
, j = 1, 2, · · · .

There exists a T ∗ ∈ (0, T ] such that for any s−compatible

(φ,~h) ∈ Ds,T

satisfying
‖(φ,~h)‖Ds,T

≤ r,

the IBVP (1.1) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L)).

Moreover, the corresponding solution map is Liptschitz continuous 1.

To get the well-posedness of the IBVP (1.1) in the space Hs(0, L) with s < 0, the following
Bourgain spaces are needed (cf. [21, 26, 7]).

For any given s ∈ R, 0 ≤ b ≤ 1, 0 ≤ α ≤ 1 and function w ≡ w(x, t) : R2 → R, define

Λs,b(w) =

(∫ ∞

−∞

∫ ∞

−∞
< τ − (ξ3 + ξ) >2b< ξ >2s |ŵ(ξ, τ)|

2
dξdτ

) 1
2

,

λα(w) =

(∫ ∞

−∞

∫

|ξ|≤1

< τ >2α |ŵ(ξ, τ)|2 dξdτ

) 1
2

(1.8)

1The solution map, is in fact, real analytic (cf. [48, 49, 50]
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where < · >:= (1 + | · |2)
1
2 . In addition, define

Gs(w) =

(∫ ∞

−∞
(1 + |ξ|)2s

(∫ ∞

−∞

|ŵ(ξ, τ)|

1 + |τ − (ξ3 − ξ)|
dτ

)2

dξ

)1/2

,

Qs,b(w) =



∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s

|ŵ(ξ, τ)|2
(
1 + |τ − (ξ3 − ξ)|

)2b dτdξ




1/2

and

Pα(w) =

(∫ ∞

−∞

∫

|ξ|≤1

|ŵ(ξ, τ)|2

(1 + |τ |)2(1−α)
dτdξ

)1/2

.

Let Xs,b be the space of all functions w satisfying

‖w‖Xs,b
:= Λs,b(w) <∞

while Ys,b is the space of all w satisfying

‖w‖Ys,b
:=
(
G2
s (w) +Q2

s,b(w)
)1/2

<∞.

In addition, let Xα
s,b be the space of all functions w satisfying

‖w‖Xα
s,b

:=
(
Λ2
s,b(w) + λ2α(w)

)1/2
<∞

and let Y α
s,b be the space of all w satisfying

‖w‖Y α
s,b

:=
(
P2
α(w) + G2

s (w) +Q2
s,b(w)

)1/2
<∞.

The spaces Xs,b, Ys,b, X
α
s,b and Y

α
s,b are all Banach spaces. Note that Xs,b and X

α
s,b are equivalent

when b ≥ α. The spaces Ys,b and Xs,−b are also equivalent when b < 1
2 . Define also

Xα
s,b ≡ C(R;Hs(R)) ∩Xα

s,b

with the norm

‖w‖Xα
s,b

=

(
sup
t∈R

‖w(·, t)‖2Hs(R) + ‖w‖2Xα
s,b

)1/2

.

The above Bourgain-type spaces are defined for functions posed on the whole plane R × R.
However, the IBVP (1.1) is posed on the finite domain (0, L)× (0, T ). It is thus natural to define
a restricted version of the Bourgain space Xs,b to the domain (0, L)× (0, T ) as follows:

XT
s,b = Xs,b

∣∣∣
(0,L)×(0,T )

with the quotient norm

‖u‖XT
s,b

≡ inf
w∈Xs,b

{‖w‖Xs,b
: w(x, t) = u(x, t) on (0, L)× (0, T )}

for any given function u(x, t) defined on (0, L)× (0, T ). The spaces Y T
s,b, X

α,T
s,b , Y α,T

s,b and Xα,T
s,b

are defined similarly.

Next theorem, another main result of this paper, provides a positive answer to Problem (2)
listed earlier.
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Theorem 1.3. Let s ∈ (− 3
4 , 0), T > 0 and r > 0 be given. There exist T ∗ ∈ (0, T ], α > 1

2 and
0 < b < 1

2 such that for any

(φ,~h) ∈ Ds,T

satisfying
‖(φ,~h)‖Ds,T

≤ r,

the IBVP (1.1) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩Xα,T∗

s,b .

Moreover, the corresponding solution map is Liptschitz continuous.

The following remarks are in order.

(i) According to Theorem 1.2, the IBVP (1.1) is well-posed in the space Hs(0, L) for any
s ≥ 0, not just for s = 0 or s = 1. In particular, it demonstrates the existence of classical
solutions and shows that the smoother of the initial value and boundary data, the smoother
the corresponding solution.

(ii) In order to have solution u in the space C(0, T ];Hs(0, L)), Theorem 1.2 only requires that
its initial value φ ∈ Hs(0, L) and its boundary data

h1 ∈ H
s+1

3 (0, T ), h2 ∈ H
s
3 (0, T ), h3 ∈ H

s−1

3 (0, T ). (1.9)

In particular, if s = 1, it is sufficient to require that

h1 ∈ H
1
3 (0, T ), h2 ∈ L2(0, T ), h3 ∈ H− 1

3 (0, T ),

rather than hj ∈ C1(0, T ), j = 1, 2, 3 as in Theorem A. Moreover, the condition (1.9) is
optimal in order to have the corresponding solution u ∈ C([0, T ];Hs(0, L)).

(iii) Taking hint from the recent works of Bona, Sun and Zhang [9], Molinet [36], and Molinet
and Vento [37], we conjecture that the IBVP (1.1) is locally well-posed in the spaceHs(0, L)
for −1 < s ≤ − 3

4 , but ill-posed in the space Hs(0, L) for any s < −1.

In the literature, there is another class of IBVP of the KdV equation posed on the finite
domain (0, L) as given below which has been well studied in the past few years [47, 5, 26, 9].

{
ut + ux + uxxx + uux = 0, u(x, 0) = φ(x) x ∈ (0, L), t ∈ R+,

u(0, t) = h1(t), u(L, x) = h2(t), ux(L, t) = h3(t).
(1.10)

It is interesting and constructive to compare the study of the IBVP (1.10) with that of the IBVP
(1.1).

While the study of the IBVP (1.10) goes back as early as [12, 13], the nonhomogeneous IBVP
(1.10) was first shown by Bona, Sun and Zhang [5] to be locally well-posed in the space Hs(0, L)
for any s ≥ 0:

Let s ≥ 0 , r > 0 and T > 0 be given. There exists T ∗ ∈ (0, T ] such that for
any s−compatible 2

φ ∈ Hs(0, L), ~h = (h1, h2, h3) ∈ H
s+1

3 (0, T )×H
s+1

3 (0, T )×H
s
3 (0, T )

2see [5] for the exact definition of s−compatibbility.
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satisfying
‖φ‖Hs(0,L) + ‖~h‖

H
s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ r,

the IBVP (1.10) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous in the corresponding spaces.

Later Holmer [26] showed that the IBVP (1.10) is locally well-posed in the space Hs(0, L)
for any − 3

4 < s < 1
2 :

Let s ∈ (− 3
4 ,

1
2 ), r > 0 and T > 0 be given. here exists a T ∗ ∈ (0, T ] such that for any

φ ∈ Hs(0, L), ~h = (h1, h2, h3) ∈ H
s+1

3 (0, T )×H
s+1

3 (0, T )×H
s
3 (0, T )

satisfying
‖φ‖Hs(0,L) + ‖~h‖

H
s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ r,

the IBVP (1.10) admits a unique mild solution 3

u ∈ C([0, T ∗];Hs(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous in the corresponding spaces.

More recently, Bona, Sun and Zhang [9] showed that the IBVP (1.10) is locally well-posed
Hs(0, L) for any s > −1.

Let r > 0, −1 < s ≤ 0 and T > 0 be given. There exists a T ∗ ∈ (0, T ] such that for any

φ ∈ Hs(0, L), ~h = (h1, h2, h3) ∈ H
s+1

3 (0, T )×H
s+1

3 (0, T )×H
s
3 (0, T )

satisfying
‖φ‖Hs(0,L) + ‖~h‖

H
s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ r,

the IBVP (1.10) admits a unique mild solution

u ∈ C([0, T ∗];Hs(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous in the corresponding spaces.

Although there is only a slight difference between the boundary conditions of IBVP (1.1) and
the IBVP (1.10), there is a big gap between their well-posedness results. For the IBVP (1.1),
the well-posedness results presented in Theorem 1.2 and Theorem 1.3 are local in the sense that

3A function u ∈ C([0, T ∗];Hs(0, L)) is said to be a mild solution of the IBVP (1.10) if there exist a sequence

un ∈ C1([0, T ∗];L2(0, L)) ∩ C[(0, T ∗];H3(0, L)), n = 1, 2, · · ·

solving the equation in (1.10) and as n → ∞,

un → u in C([0, T ∗];Hs(0, L)),

h1,n := un(0, ·) → h1, h2,n := u(L, ·) → h2 inH
s+1

3 (0, T ∗)

and
h3,n := ∂xun(L, ·) → h3 inH

s
3 (0, T ∗).
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the time interval (0, T ∗) in which the solution exists depends on r and, in general, the larger the
r, the smaller the T ∗. By contrast, the IBVP (1.10) is known to be globally well-posed in the
space Hs(0, L) for any s ≥ 0 in the sense one always has (0, T ∗) = (0, T ) no matter how large
the r is (cf. [5, 23]). The cause of this difference is that the L2−energy of the solution of the

homogeneous IBVP (1.10) (~h = 0) is decreasing:

d

dt

∫ L

0

u2(x, t)dx = −
3

2
u2x(0, t) for any t ≥ 0.

But for the homogeneous IBVP (1.1), it is not clear at all, in general, whether the L2−energy of
its solution is increasing or decreasing since

d

dt

∫ L

0

u2(x, t) = −
3

2
u2x(0, t) + 3u3(L, t) for any t ≥ 0.

The approach used in the proof of their results in [5, 22, 26] is very much different from what
used in the proof of Theorem A, but more or less along the line used in the proof of Theorem B,
in which the smoothing property of the associated linear system play an important role. In this
paper, we will use the same approach as that developed in [5, 7] to prove our Theorem 1.2 and
Theorem 1.3. The key ingredients of the approach are listed below.

(1). An explicit solution formula will be derived for the following nonhomogeneous boundary
value problem of the linear equation:





vt + vx + vxxx = 0, x ∈ (0, L), t ≥ 0,

v(x, 0) = 0,

v(0, t) = h1(t), vx(L, t) = h2(t),

vxx(L, t) = h3(t),

(1.11)

which not only enables us to establish the well-posedness of the IBVP (1.1) with the optimal reg-
ularity conditions imposed on the boundary data, but also plays an important roles in obtaining
the well-posedness of the IBVP (1.1) in the space Hs(0, L) with − 3

4 < s < 0.

(2). The smoothing property of the associated linear problem




vt + vx + vxxx = f, x ∈ (0, L), t ≥ 0,

v(x, 0) = φ(x),

v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t).

(1.12)

For given 0 ≤ s ≤ 3 and T > 0, there exists a constant C > 0 such that the solution v of (1.12)
satisfies

‖v‖Zs,T
≤ C

(
‖(φ,~h)‖Ds,T

+ ‖f‖
W

s
3
,1(0,T ;Hs(0,L))

)

for any (φ,~h) ∈ Ds,T and f ∈ W
s
3
,1(0, T ;Hs(0, L)). This property is an extension of the

smoothing property obtained by Colin and Ghidalia to the nonhomogeneous problem.

(3). Following Bona, Sun and Shuming [7], the IBVP (1.1) will be converted to an integral
equation posed on the whole line R which make it possible to conduct Bourgain spaces analysis
to obtain the well-posedness of the IBVP (1.1) in Hs(0, L) for − 3

4 < s < 0.

This paper is organized as follow. In Section 2, we will study various linear problems associ-
ated to the IBVP (1.1). The Section 3 is devoted to the well-posedness of the nonlinear IBVP
(1.1). The paper is ended with some concluding remarks given in Section 4. Some open questions
will also be listed in Section 4 for further investigations.
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2 Linear Problems

2.1 The boundary integral operators

Consider the nonhomogeneous boundary-value problem
{
vt + vx + vxxx = 0, v(x, 0) = 0, x ∈ (0, L), t ≥ 0.

v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t).
(2.1)

We derive an explicit solution formula of the IBVP (2.1). (Without loss of generality, we assume
that L = 1 in this subsection). Applying the Laplace transform with respect to t, (2.1) is
converted to {

sv̂ + v̂x + v̂xxx = 0,

v̂(0, s) = ĥ1(s), v̂x(1, s) = ĥ2(s), v̂xx(1, ξ) = ĥ3(s),
(2.2)

where

v̂(x, ξ) =

∫ +∞

0

e−stv(x, t)dt

and

ĥj(s) =

∫ ∞

0

e−sthj(t)dt, j = 1, 2, 3.

The solution of (2.2) can be written in the form

v̂(x, s) =

3∑

j=1

cj(s)e
λj(s)x

where λj(s), j = 1, 2, 3 are solutions of the characteristic equation

s+ λ+ λ3 = 0

and cj(s), j = 1, 2, 3, solves the linear system




1 1 1
λ1e

λ1 λ2e
λ2 λ3e

λ3

λ21e
λ1 λ22e

λ2 λ23e
λ3




︸ ︷︷ ︸
A



c1
c2
c3


 =



ĥ1
ĥ2
ĥ3




︸ ︷︷ ︸
~̂h.

(2.3)

By Cramer’s rule,

cj =
∆j(s)

∆(s)
, j = 1, 2, 3

with ∆ the determinant of A and ∆j the determinant of the matrix A with the column j replaced

by ~̂h. Taking the inverse Laplace transform of v̂ and following the same arguments as that in [5]
yield the representation

v(x, t) =

3∑

m=1

vm(x, t)

with

vm(x, t) =

3∑

j=1

vj,m(x, t)

9



and
vj,m(x, t) = v+j,m(x, t) + v−j,m(x, t)

where

v+j,m(x, t) =
1

2πi

∫ +i∞

0

est
∆j,m(s)

∆(s)
ĥm(s)eλj(s)xds

and

v−j,m(x, t) =
1

2πi

∫ 0

−i∞
est

∆j,m(s)

∆(s)
ĥm(s)eλj(s)xds

for j,m = 1, 2, 3. Here ∆j,m(s) is obtained from ∆j(s) by letting ĥm(s) = 1 and ĥk(s) = 0
for k 6= m, k,m = 1, 2, 3. Making the substitution s = i(ρ3 − ρ) with 1 < ρ < ∞ in the the
characteristic equation

s+ λ+ λ3 = 0,

the three roots are given in terms of ρ by

λ+1 (ρ) = iρ, λ+2 (ρ) =

√
3ρ2 − 4− iρ

2
λ+3 (ρ) =

−
√
3ρ2 − 4− iρ

2
. (2.4)

Thus v+j,m(x, t) has the form

v+j,m(x, t) =
1

2π

∫ ∞

1

ei(ρ
3−ρ)t

∆+
j,m(ρ)

∆+(ρ)
ĥ+m(ρ)eλ

+

j (ρ)x(3ρ2 − 1)dρ

and
v−j,m(x, t) = v+j,m(x, t)

where ĥ+m(ρ) = ĥm(i(ρ3 − ρ)), ∆+(ρ) and ∆+
j,m(ρ) are obtained from ∆(s) and ∆j,m(s) by

replacing s with i(ρ3 − ρ) and λ+j (ρ) = λj(i(ρ
3 − ρ)).

For given m, j = 1, 2, 3, let Wj,m be an operator on Hs
0(R

+) defined as follows: for any
h ∈ Hs

0 (R
+),

[Wj,mh](x, t) ≡ [Uj,mh](x, t) + [Uj,mh](x, t) (2.5)

with

[Uj,mh](x, t) ≡
1

2π

∫ +∞

1

ei(ρ
3−ρ)te−λ+

j (ρ)(1−x)(3ρ2 − 1)[Q+
j,mh](ρ)dρ

=
1

2π

∫ +∞

1

ei(ρ
3−ρ)te−λ+

j (ρ)x′

(3ρ2 − 1)[Q+
j,mh](ρ)dρ, (x′ = 1− x), (2.6)

for j = 1, 2, m = 1, 2, 3 and

[U3,mh](x, t) ≡
1

2π

∫ +∞

1

ei(ρ
3−ρ)teλ

+

3
(ρ)x(3ρ2 − 1)[Q+

3,mh](ρ)dρ (2.7)

for m = 1, 2, 3. Here

[Q+
3,mh](ρ) :=

∆+
3,m(ρ)

∆+(ρ)
ĥ+(ρ), [Q+

j,mh](ρ) =
∆+

j,m(ρ)

∆+(ρ)
eλ

+

j (ρ)ĥ+(ρ)

for j = 1, 2 and m = 1, 2, 3, ĥ+(ρ) = ĥ(i(ρ3 − ρ)). Then the solution of the IBVP (2.1) has the
following representation.
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Lemma 2.1. Given h1, h2 and h3, defining ~h = (h1, h2, h3). The solution v of the IBVP (2.1)
can be written in the form

v(x, t) = [Wbdr
~h](x, t) :=

3∑

j,m=1

[Wj,mhm](x, t). (2.8)

2.2 Linear estimates

Consideration is first given to the IBVP of the linear equation:




vt + vx + vxxx = f, x ∈ (0, L)

v(x, 0) = φ(x),

v(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0.

(2.9)

By the standard semigroup theory [39], for any φ ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)), it admits
a unique solution v ∈ C([0, T ];L2(0, L)), which can be written in the form

v(t) =W0(t)φ+

∫ t

0

W0(t− τ)f(τ)dτ

where W0 is the C0-Semigroup in the space L2(0, L) generated by the linear operator

Af = −f ′′′ − f ′

with the domain
D(A) = {f ∈ H3(0, L) : f(0) = f ′(L) = f ′′(L) = 0}.

Proposition 2.2. Let T > 0 be given. There exists a constant C such that for any φ ∈ L2(0, L)
and f ∈ L1(0, T ;L2(0, L)), the corresponding solution v of the IBVP (2.9) belongs to the space
Z0,T and

‖v‖Z0,T
≤ C

(
‖φ‖+ ‖f‖L1(0,T ;L2(0,L))

)
. (2.10)

Proof. First multiplying the both sides of the equation in (2.9) by 2v and integrating over (0, L)
with respect to x yields that

d

dt

∫ L

0

v2(x, t) + v2(L, t) + v2x(0, t) = 2

∫ L

0

f(x, t)v(x, t)dx.

Then, multiplying the both sides of the equation in (2.9) by 2xv and integrating over (0, L) with
respect to x yields that

d

dt

∫ L

0

xv2(x, t) + Lv2(L, t) + 3

∫ L

0

v2xdx =

∫ L

0

v2dx+

∫ 1

0

f(x, t)v(x, t)dx.

The estimate (2.10) follows easily.

Next we consider the nonhomogeneous boundary-value problem




vt + vx + vxxx = 0, x ∈ (0, L)

v(x, 0) = 0,

v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t)

(2.11)

We have the following estimate for the solution of the IBVP (2.11)

11



Proposition 2.3. For given T > 0, there exists a constant C such that for any ~h ∈ Hs(0, T ),
the corresponding solution v of the (2.11) belongs to the space Z0,T and

‖v‖Z0,T
≤ C‖~h‖Hs(0,T ).

Proof: As

λ+1 (ρ) = iρ, λ+2 (ρ) =

√
3ρ2 − 4− iρ

2
λ+3 (ρ) =

−
√
3ρ2 − 4− iρ

2
,

the asymptotic behaviors of the ratios
∆+

j,m(ρ)

∆+(ρ) for ρ→ +∞ are listed below.

∆+

1,1(ρ)

∆+(ρ) ∼ e−
√

3
2

ρ ∆+

2,1(ρ)

∆+(ρ) ∼ e−
√
3ρ ∆+

3,1(ρ)

∆+(ρ) ∼ 1

∆+

1,2(ρ)

∆+(ρ) ∼ ρ−1 ∆+

2,2(ρ)

∆+(ρ) ∼ ρ−1e−
√

3

2
ρ ∆+

3,2(ρ)

∆+(ρ) ∼ ρ−1

∆+

1,3(ρ)

∆+(ρ) ∼ ρ−2 ∆+

2,3(ρ)

∆+(ρ) ∼ ρ−2e−
√

3
2

ρ ∆+

3,3(ρ)

∆+(ρ) ∼ ρ−2

For m = 1, 2, 3 and j = 1, 2, set

ĥ∗
+

3,m(ρ) := [Q+
3,mhm](ρ) =

∆+
3,m(ρ)

∆+(ρ)
ĥ+m(ρ)

and

ĥ∗
+

j,m(ρ) := [Q+
j,mhm](ρ) =

∆+
j,m(ρ)

∆+(ρ)
eλ

+

j (ρ)ĥ+m(ρ)

and view h∗j,m as the inverse Fourier transform of ĥ∗
+

j,m. It is straightforward to see that for any
s ∈ R, 




h1 ∈ H
(s+1)/3
0 (R+) ⇒ h∗j,1 ∈ H

s+1

3 (R), j = 1, 2, 3,

h2 ∈ H
s/3
0 (R+) ⇒ h∗j,2 ∈ H

s+1

3 (R), j = 1, 2, 3,

h3 ∈ H
(s−1)/3
0 (R+) ⇒ h∗j,3 ∈ H

s+1

3 (R), j = 1, 2, 3.

(2.12)

The proof is completed by using the same argument as that used in the proofs of Proposition
2.7, Proposition 2.8 and Proposition 2.9 in [5]. �

Combining Proposition 2.2 and Proposition 2.3 leads to the following estimates for solutions
of the IBVP 




vt + vx + vxxx = f, x ∈ (0, L)

v(x, 0) = φ(x),

v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t)

(2.13)

Proposition 2.4. Let T > 0 and s ∈ [0, 3] with s 6= j
2 , j = 1, 3, 5 be given. There exists a

constant C > 0 such that for any given s−compatible (φ,~h) ∈ Ds,T and f ∈ W
s
3
,1(0, T ;L2(0, L)),

the IBVP (2.13) admits a unique solution v ∈ Zs,T ∩H
s
3 (0, T ;H1(0, L)) satisfying

‖v‖
Zs,T∩H

s
3 (0,T ;H1(0,L))

≤ C
(
‖(φ,~h)‖Ds,T

+ ‖f‖
W

s
3
,1(0,T ;L2(0,L))

)
.
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Proof: We only prove it holds for s = 0 and s = 3. The other case of s follows by standard inter-
polation. Note that this proposition holds for s = 0 because of Proposition 2.2 and Proposition
2.3. To see it holds for s = 3, let w = vt. Then w solves





wt + wx + wxxx = ft, x ∈ (0, L)

w(x, 0) = φ∗(x),

w(0, t) = h′1(t), wx(L, t) = h′2(t), wxx(L, t) = h′3(t)

with
φ∗(x) = ft(x, 0)− φ′′′(x) − φ′(x).

Thus
‖vt‖Z0,T

= ‖w‖Z0,T
≤ C

(
‖f‖W 1,1(0,T ;L2(0,L)) + ‖(φ,~h)‖X3,T

)
.

Since
vxxx = f − vt − vxxx − vx,

we obtain further that

‖v‖Z3,T
≤ C

(
‖f‖W 1,1(0,T ;L2(0,L)) + ‖(φ,~h)‖D3,T

)
.

The proof is complete. �

Proposition 2.4 will be sufficient for us to obtain the local well-posedness of the IBVP (1.1)
int the space Hs(0, L) for s ≥ 0. However, to obtain its well-posedness in the space Hs(0, L) with
s < 0, we need to extend the problem posed on the finite domain (0, L)× (0, T ) to an equivalent
problem posed on the whole plane R× R in order to use Bourgain space analysis.

First recall the solution of the following linear KdV equation,
{
vt + vx + vxxx = 0, x ∈ R, t ∈ R+

v(x, 0) = ψ,
(2.14)

has the explicit form

v(x, t) =WR(t)]ψ(x) = c

∫

R

ei(ξ
3−ξ)teixξψ̂(ξ)dξ (2.15)

Here ψ̂ denotes the Fourier transform of ψ.
Taking advantage of this simplicity as it is done in [5], we rewrite W0(t) in term of WR(t)

and Wbdry(t) as follows. For any φ ∈ Hs(0, L), let φ∗ ∈ Hs(R) be its standard extension from
(0, L) to R. Let v = v(x, t) is the solution of

{
vt + vx + vxxx = 0, x ∈ R, t ≥ 0

v(x, 0) = φ∗,

and set g1(t) = v(0, t), g2(t) = vx(L, t) and g3(t) = vxx(L, t), ~g = (g1, g2, g3) and

v~g = v~g(x, t) = [Wbdr(t)~g](x),

which is the corresponding solution of the nonhomogeneous boundary-value problem 2.11 with
boundary data hj(t) = gj(t) for j = 1, 2, 3 and t ≥ 0. Then v(x, t) − v~g solves the IBVP (2.9).
This leads us thus a particular representation of W0(t) in terms of Wbdr(t) and WR(t).

Let B : Hs(0, L) → Hs(R) be a standard extension operator from Hs(0, L) to Hs(R).
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Lemma 2.5. Given s ∈ R and φ ∈ Hs(0, L), let φ∗ = Bφ. Then

W0(t)φ =WR(t)φ
∗ −Wbdr(t)~g (2.16)

for any t > 0 and x ∈ (0, L), where ~g is obtained from the trace of WR(t)φ
∗ at x = 0, L.

The solution of the non-homogeneous initial boundary-value problem




vt + vx + vxxx = f(x, t), x ∈ (0, L), t ≥ 0

v(x, 0) = 0,

v(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0

(2.17)

can also be expressed in terms of WR(t) and Wbdr(t).

Lemma 2.6. If f∗(., t) = Bf(., t), with B as was defined before the extension of f from [0, L]×
R+ → R× R+, then the solution u of the extended problem (2.17) is

v(x, t) =

∫ t

0

W0(t− τ)f(τ)dτ =

∫ t

0

WR(t− τ)f∗(., τ)dτ −Wbdr(t)~v

for any x ∈ (0, L) and t ≥ 0 where ~v ≡ ~v(t) = (v1(t), v2(t), v3(t)) is the appropriate boundary
traces of

q(x, t) =

∫ t

0

WR(t− τ)f∗(τ)dτ

at x = 0, L i.e.
v1(t) = q(0, t), v2(t) = qx(1, t), v3(t) = qxx(L, t)

Lemma 2.5 and Lemma 2.6 are validated when x ∈ (0, L) and t ≥ 0 since some of the
operators that we have constructed are defined only in this interval, moreover the only operator
that is defined in the whole line is WR(t) for any values of x and t. In the equation (2.16), the
left hand side is defined for all x ∈ R but the right hand side is defined just in (0, L). Since we
want to use the Bourgain Spaces, we need to extend the operator of the right hand side.

Recall that

Wbdr(t)~h =

3∑

j,m=1

Wj,mhj

and each Wj,mhj is either of the form (see Lemma 2.1)

[U1
bdr(t)]h(x) =

1

2π
Re

∫ ∞

1

eit(µ
3−µ)e

−
√

3µ2−4−iµ

2
x(3µ2 − 1)ĥ(µ)dµ (2.18)

or of the form

[U2
bdr(t)]h(x) =

1

2π
Re

∫ ∞

1

eit(µ
3−µ)eiµx(3µ2 − 1)ĥ(µ)dµ (2.19)

where ĥ(µ) = h(i(µ3 − µ)). Therefore by the extension method introduced in [7], the operator
Wbdr(t) can be extended as Wbdr(t) with

[Wbdr(t)~h](x, t)

defined for any t, x ∈ R and

[Wbdr(t)~h](x, t) = [Wbdr
~h](x, t) for any (x, t) ∈ (0, L)× (0, T ).

Moreover, the following estimates hold.

14



Proposition 2.7. For given α > 1
2 and (b, s) such that s ≤ 0 and b < 1/2 satisfying

0 ≤ b < 1/2− s/3,

there exists a constant C such that for any T > 0 and any ĥ ∈ Hs(0, T ),

Wbdrĥ ∈ C([0, T ];Hs(0, L)) ∩Xα,T
s,b

and
‖Wbdrĥ‖C([0,T ];Hs(0,L))∩Xα,T

s,b

≤ C‖~h‖Hs(0,T ).

The following lemmas are important in establishing the well-posedness of of the IBVP (1.1)
in Hs(0, L) with s < 0 whose proofs can be found in [31, 21, 26, 7].

Lemma 2.8. Let −∞ < s <∞, 0 < b ≤ 1, 1
2 < α ≤ 1, and ψ ∈ C∞

0 (R) be given. There exists
a constant C depending only on s, α, b and ψ such that

‖ψ(t)WR(t)φ‖Xα
s,b

≤ C‖φ‖Hs(R) (2.20)

and ∥∥∥∥ψ(t)
∫ t

0

WR(t− t′)f(t′)dt′
∥∥∥∥
Xα

s,b

≤ Cδ‖f‖Y 1−α
s,1−b

(2.21)

Next we present the spatial trace estimates ofWR(t)φ and
∫ t

0 WR(t−t
′)f(·, t′)dt′ whose proofs

can be found in [21, 26]

Lemma 2.9. Let s ∈ [−1, 2] be given. There exists a constant C depending only on s such that

sup
x∈R

‖WR(t)φ‖
H

s+1
3

t (R)
≤ ‖φ‖Hs(R), (2.22)

sup
x∈R

‖∂xWR(t)φ‖
H

s
3
t (R)

≤ ‖φ‖Hs(R) (2.23)

and
sup
x∈R

‖∂xxWR(t)φ‖
H

s−1
3

t (R)
≤ ‖φ‖Hs(R) (2.24)

Lemma 2.10. Let 0 ≤ b < 1/2, −1 ≤ s ≤ 2, ψ ∈ C∞
0 (R) and

w(x, t) =

∫ t

0

WR(t− t′)f(·, t′)dt′

there exists C depending only on b, s and ψ such that

sup
x∈R

‖ψ(·)w(x, .)‖
H

s+1
3

t (R)
≤ C‖f‖Ys,b

,

sup
x∈R

‖ψ(·)wx(x, .)‖
H

s
3
t (R)

≤ C‖f‖Ys,b

and
sup
x∈R

‖ψ(·)wxx(x, ·)‖
H

s−1
3

t (R)
≤ C‖f‖Ys,b

The following bilinear estimate is crucial in establishing the well-posedness of the IBVP (1.1
whose proof can be found in [31, 21, 26]).

Lemma 2.11. Given s > − 3
4 , there exist b = b(s) < 1

2 , α = α(s) > 1
2 and C, µ > 0 such that

‖∂x(uv)‖Y α
s,b

≤ CT µ‖u‖Xα
s,b
‖v‖Xα

s,b
(2.25)

for any u, v ∈ Xα
s,b with compact support in [−T, T ].

15



3 Nonlinear Problem

In this section, we consider the well-posedness of the following nonlinear problem in the space
Hs(0, L).





vt + vx + vvx + vxxx = 0, x ∈ (0, L), t > 0

v(x, 0) = φ(x),

v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t) t ≥ 0.

(3.1)

First we consider its well-posedness in the space Hs(0, L) for s ≥ 0. Recall that for given s ≥ 0
and T > 0,

Ds,T := Hs(0, L)×H
s+1

3 (0, T )×H
s
3 (0, T )×H

s−1

3 (0, T )

and
Zs,T := C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)).

In addition, let
Zs,T := Zs,T ∩H

s
3 (0, T ;H1(0, L)).

The proof of the following lemma can be found in [5, 33].

Lemma 3.1. (i) For s ≥ 0 there exists a C ≥ 0 such that for any T > 0 and u, v ∈ Zs,T ,

T∫

0

‖uvx‖Hs(0,L) dτ ≤ C(T
1
2 + T

1
3 )‖u‖Zs,T

‖v‖Zs,T
(3.2)

(ii) For 0 ≤ s ≤ 3 there exists a C ≥ 0 such that for any T > 0 and u, v ∈ Zs,T ,

‖uvx‖W
s
3
,1(0,T ;L2(0,1))

≤ C(T
1
2 + T

1
3 )‖u‖Zs,T

‖v‖Zs,T
(3.3)

Theorem 3.2. Let T > 0, r > 0 and s ≥ 0 be given with s 6= 2j+1
2 for j = 0, 1, 2, · · · . There

exists a T ∗ ∈ (0, T ] such that for any s−compatible (φ,~h) ∈ Xs,T , the IBVP (3.1) admits a
unique solution

v ∈ Zs,T∗ .

Moreover, the corresponding solution map is Lipschitz continuous.

Proof: Since the proof is similar to that presented in [5], we only provide a sketch and refer to
[5] for more detail.

1). We first consider the case of 0 ≤ s ≤ 3. Let r > 0 and 0 < θ ≤ max{1, T } be constants
to be determined. Set

Sθ,η = {w ∈ Zs,θ, ‖w‖Zs,θ
≤ η}.

For given (φ,~h) ∈ Ds,T with

‖(φ,~h)‖Ds,T
≤ r,

define a nonlinear map on Sθ,η by
v = Γ(w)
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being the unique solution of the IBVP





vt + vx + vxxx = −wwx, x ∈ (0, L), t > 0

v(x, 0) = φ(x),

v(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t) t ≥ 0

for w ∈ Zθ,η. Using Proposition 2.4 and Lemma 3.1, one can show that there exist η > 0 and
θ > 0 depending only on s, r and T such that the map Γ is a contraction on the metric space Sθ,η

whose fixed point is the desired solution for the IBVP (3.1) Thus the theorem hods for 0 ≤ s ≤ 3.

2). Next we consider the following IBVP of the linear KdV equation with variable coefficients.





vt + vx + vxxx + (av)x = f, x ∈ (0, L), t > 0

v(x, 0) = φ(x),

v(0, t) = h1(t), vx(L, t)− v(L, t) = h2(t), vxx(L, t)− v(L, t) = h3(t) t ≥ 0

(3.4)
As in the step 1, using the contraction mapping principle, one can show the following proposition
holds.

Proposition 3.3. Let T > 0 and 0 ≤ s ≤ 3 be given and assume that a ∈ Zs,T . Then for

any s−compatible (φ,~h) ∈ Ds,T and f ∈ W
s
3
,1(0, T ;L2(0, L)), the IBVP (3.4) admits a unique

solution v ∈ Zs,T . Moreover, there exists a constant C > 0 depending only on T and ‖a‖Zs,T

such that
‖v‖Z0,T

≤ C
(
‖(φ,~h)‖Ds,T

+ ‖f‖
W

s
3
,1(0,T ;Hs(0,L))

)
.

3). Now we prove the theorem hold for 3 ≤ s ≤ 6. The other of s > 6 follows similarly. First
of all, according to Step 2), the IBVP (3.1) admits a unique solution uv ∈ Z3,T∗ . We just need
to prove this solution v also belong to the space Zs,T∗ . To see that, let z = vt. Then z solves
the following linearized IBVP





zt + zx + (a(x, t)z)x + zxxx = 0,

z(x, 0) = φ1(x),

z(0, t) = h
(1)
1 (t), zx(L, t) = h

(1)
2 (t), zxx(L, t) = h

(1)
3 (t)

where a(x, t) = v(x, t) ∈ Z3,T∗ and

φ1 ∈ Hs−3(0, L), h
(1)
1 ∈ H

s−2

3 (0, T ∗), , h
(1)
2 ∈ H

s−3

3 (0, T ∗), h
(1)
3 ∈ H

s−4

3 (0, T ∗).

It thus follows from Proposition 3.3 that

z = vt ∈ Zs−3,T∗

and therefore
v ∈ Zs,T∗

since
vxxx = −vt − vx − vvx.
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Next we consider the well-posedness of the IVP (3.1) in the space Hs(0, L) with s < 0. We
first rewrite the IBVP (3.1) in its integral form;

v(t) =W0(t)φ+Wbdr(t)~h−

∫ t

0

W0(t− τ)(vvx)(τ)dτ. (3.5)

Theorem 3.4. Let T > 0, r > 0 and − 3
4 < s < 0 be given. There exists a T ∗ ∈ (0, T ] and

b ∈ (0, 12 ) such that for any (φ,~h) ∈ Xs,T , (3.5) admits a unique solution

v ∈ C([0, T ∗], Hs(0, L)) ∩ Y T∗

s,b .

Moreover, the corresponding solution map is Lipschitz continuous.

The following lemmas are needed to prove Theorem 3.4. Let

Xα,T
s,b := C([0, T ];Hs(0, L)) ∩Xα,T

s,b .

Lemma 3.5. Let T > 0, s < 0, 1
2 < α ≤ 1 and b ∈ (0, 1) be given satisfying

0 < b <
1

2
−
s

3
.

For any φ ∈ Hs(0, L), W0(t)φ ∈ Xα,T
s,b and

‖W0(t)φ‖Xα,T

s,b

≤ C‖φ‖Hs(0,L)

where C > 0 is independent of φ.

Proof: It follows from Lemma 2.5, Lemma 2.8, Lemma 2.9, and Proposition 2.7.

Lemma 3.6. Assume that −1 ≤ s < 1, 1
2 < α ≤ 1 and 0 < b < 1

2 . For any T > 0, there is a

constant C such that for any f ∈ Y 1−α,T
s,b ,

u =

∫ t

0

W0(t− τ)f(τ)dτ ∈ Xα,T
s,b

and satisfies the inequality
‖u‖Xα,T

s,b

≤ C‖f‖Y 1−α,T

s,b

. (3.6)

In addition, there exists a b∗ ∈ (0, 12 ) such that if f ∈ Y 1−α,T
s,b∗ , then u belongs to the space Xα,T

s, 1
2

and satisfies the bound
‖u‖Xα,T

s,1
2

≤ C‖f‖Y 1−α,T

s,b∗
. (3.7)

Proof: It follows from Lemma 2.6, Lemma 2.8, Lemma 2.10, and Proposition 2.7.

Lemma 3.7. Given T > 0, s > − 3
4 , there exist b = b(s) < 1

2 , α = α(s) > 1
2 and C, µ > 0 such

that
‖∂x(uv)‖Y α,T

s,b

≤ CT µ‖u‖Xα,T

s,b

‖v‖Xα,T

s,b

(3.8)

for any u, v ∈ Xα,T
s,b .
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Proof: It follows from Lemma 2.11 directly.

Now we at the stage to present of the proof of Theorem 3.4

Proof of Theorem 3.4:

For given (φ,~h) ∈ Ds,T and s ∈ (− 3
4 , 0), let θ ∈ (0, 1] to be determined. Define Γ : Xα,θ

s, 1
2

→

Xα,θ

s, 1
2

such that

Γ(ω) :=W0(t)φ+Wbdr(t)~h−

∫ t

0

W0(t− τ)
(
ωωx)(τ)dτ

By Lemmas 3.5, Lemma 3.6 and Lemma 3.7, we have

‖Γ(ω)‖Xα,θ

s, 1
2

≤ ‖W0(t)φ‖Xα,θ

s, 1
2

+ ‖Wbdr(t)~h‖Xα,θ

s, 1
2

+‖

∫ t

0

W0(t− τ)
(
ωωx)(τ)‖Xα,θ

s, 1
2

≤ C‖(φ,~h)‖Ds,T
+ Cθµ‖ω‖2Xα,θ

s,1
2

Let r = 2C‖(φ,~h)‖Ds,T
and the ball

Br : {w ∈ Yθ
s,b) : ‖w‖Xα,θ

s, 1
2

≤ r}

‖Γ(ω)‖Xα,θ

s,1
2

≤ r/2 + Cθµr2

≤ r (1 + Cθµr)

≤ r/2 + r/2 = r.

when we select T ∗ = θ > 0 and 2C(T ∗)µr < 1.

Therefore,
Γ(Br) ⊂ Br.

Similarly, taking v, ω ∈ YT∗

s,b ,

‖Γ(v)− Γ(ω)‖Xα,T∗

s,b

≤ Cθµ‖v − ω‖Xα,T∗

s,b

‖v + ω‖Xα,T∗

s,b

≤ Cθµ‖v − ω‖Xα,T∗

s,b

(
‖v‖Xα,T∗

s,b

+ ‖ω‖Xα,T∗

s,b

)

≤ 2rCθµ‖v − ω‖YT∗
s,b

≤ β‖v − ω‖Xα,T∗

s,b

with β = 2C(T ∗)µr < 1 as we have defined before. Then, by the contraction mapping theorem,
the fixed point u is the unique solution of (3.5).
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4 Concluding remarks

The focus of our discussion has been the well-posedness of the initial value problem of the KdV
equation posed on the finite interval (0, L):





ut + ux + uxxx + uux = 0, x ∈ (0, L), t > 0,

u(x, 0) = φ(x),

u(0, t) = h1(t), ux(L, x) = h2(t), uxx(L, t) = h3(t).

(4.1)

It is considered with the initial data φ ∈ Hs(0, L) and the boundary data ~h = (h1, h2, h3) belongs

to the space Ds,T := H
s+1

3 (0, T )×H
s
3 (0, T )×H

s−1

3 (0, T ) with s > − 3
4 . Using the approaches

developed in [5, 7] we have succeeded in showing that the IBVP (4.1) is locally well-posed in the
space Hs(0, L) for any s > − 3

4 with s 6= 2j+1
2 , j = 0, 1, 2, · · · , which extends and improve the

earlier works of Colin and Ghidalia [16, 17, 18].

However, the well-posedness results presented in Theorem 1.1 and Theorem 1.3 are conditional
in the sense that the uniqueness holds in a stronger Banach space than that of C([0.T ];Hs(0, L)).
In particular, in the case of s ≥ 0, according to Theorem 1.1, the uniqueness holds in the space

C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L))

rather than in the space C([0, T ];Hs(0, L)). Also when − 3
4 < s < 0, Theorem 1.3 states that

the uniqueness holds in the space

C([0, T ];Hs(0, L)) ∩Xα,T

s, 1
2

which is a stronger subspace of C([0, T ];Hs(0, L)). A question arises naturally:

Does the uniqueness hold in the space C([0, T ];Hs(0, L))?

If the uniqueness does hold in the space C([0, T ];Hs(0, L)), then the corresponding well-
posedness is called unconditional well-posedness. (The interesting readers are referred to Bona,
Sun and Zhang [6] for conditional and unconditional well-posedness of evolution equations.)

By using the usual energy estimate method, one can show that the uniqueness does hold for
the IBVP (4.1) in the space C([0, T ];Hs(0, L)) when s > 3

2 . Thus the IBVP (4.1) is uncondi-
tionally (locally) well-posed in the space Hs(0, L) for any s > 3

2 with

s 6=
2j + 1

2
, j = 1, 2, · · ·

The following question remains open.

Question 4.1: Is the IBVP (4.1) unconditionally well-posed in the space Hs(0, L) for some
s < 3

2?
By contrast, the IBVP





ut + ux + uxxx + uux = 0, x ∈ (0, L), t > 0,

u(x, 0) = φ(x),

u(0, t) = h1(t), u(L, x) = h2(t), ux(L, t) = h3(t).

(4.2)

is known to be unconditionally well-posed in the space Hs(0, L) for any s > −1. This is because
that the IBVP (4.2) is known to be globally well-posed in the space Hs(0, L) for any s ≥ 0. In
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particular, its classical solutions exist globally. However, the IBVP (4.1) is only known to be
locally well-posed. Whether it is globally well-posed is still an open question.

Question 4.2: Is the IBVP (4.1) globally well-posed in the space Hs(0, L) for some s ≥ 0?

This is the same question asked earlier by Colin and Ghidalia [18]. They showed that that if
φ ∈ H1(0, L) and hj ∈ C1(R+), j = 1, 2, 3 are small enough, then the corresponding solution u
of (4.1) exists globally:

u ∈ L∞(R+;H1(0, L)).

Recently, Rivas, Usman and Zhang [41] showed that the solutions of the IBVP (4.1) exist

globally (in time) in the space Hs(0, L) for any s ≥ 0 as long as its auxiliary data (φ,~h) is
small in the space Ds

T . In addition, they have shown that those small amplitude solutions decay

exponentially if their boundary value ~h(t) decays exponentially. In particular, those solutions
satisfying homogenous boundary conditions decay exponentially in the space Hs(0, L) if their
initial values are small in Hs(0, L).

Note that a positive answer to Question 4.2 leads to a positive answer to Question 4.1 using
the general approach developed by Bona, Sun and Zhang [6] for establishing unconditional well-
posedness of nonlinear evolution equations.

Recently, Bona, Sun and Zhang [9] showed that the IBVP (4.2) is locally (unconditionally)
well-posed in the space Hs(0, L) for any s > −1. One of the key steps in their approach is
to transfer the IBVP (4.2) of the KdV equation to an equivalent IBVP of the KdV-Burgers
equation. Precisely, let

u(x, t) = e2t−xv(x, t).

Then u is a solution of the IBVP (4.2) if and only if v is a solution of the following IBVP of the
KdV-Burgers equation posed on the finite interval (0, L):





vt + 4vx − 3vxx + vxxx + e2t−x(vvx − v2) = 0, x ∈ (0, L), t ≥ 0,

v(x, 0) = φ(x)ex,

v(0, t) = e−2t+Lh1(t), V (L, t) = e−2t+Lh2(t),

vx(L, t) = e−2t+Lh3(t) + h1(t)e
−2t+L.

(4.3)

Consequently, one can adapt the approach of Molinet [35] in dealing with the pure initial value
problems of the KdV-Burgers equation posed either on the whole line R or on a periodic domain T

to show that the IBVP (4.3) is locally well-posed in the space Hs(0, L) for any s > −1. However,
the same transformation converts the IBVP(4.1) to the following IBVP of the KdV-Burgers
equation 




vt + 4vx − 3vxx + vxxx + e2t−x(vvx − v2) = 0, x ∈ (0, L), t ≥ 0,

v(x, 0) = φ(x)ex,

v(0, t) = e−2t+Lh1(t), vx(L, t)− v(L, t) = e−2t+Lh2(t),

vxx(L, t)− v(L, t) = e−2t+L(2h2(t) + h3(t)).

(4.4)

Note that the boundary conditions of (4.4) are different from those of (4.3). That brings a
challenge to show that the IBVP (4.4) to be locally well-posed in Hs(0, L) for s > −1. The
following question thus remains to be open.

Question 4.3: Is the IBVP well-posed in the space Hs(0, L) for −1 < s ≤ − 3
4?

Finally we would like to point out that the KdV equation including, in particular, the IBVP
(4.2) has been extensively studied in the past twenty years from control point of view (cf [34,
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45, 46, 42, 47, 51, 20, 14, 15, 40, 38, 43] and the reference therein). The interested readers are
specially referred to Rosier and Zhang [44] for a recent survey on this subject. By contrast, the
study of the IBVP (4.1) is still widely open. It will be very interesting to see if there are any
differences between the IBVP (4.1) and the the IBVP (4.2) from control point view.
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Vries sur un intervalle borné. (French) [A boundary value problem for the Korteweg-de
Vries equation on a bounded interval] Journes ”quations aux Drives Partielles” (Saint-
Jean-de-Monts, 1997), Exp. No. III, 10 pp., école Polytech., Palaiseau, 1997.
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