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ABSTRACT. Given a symplectic manifold (M,ω) and a Lagrangian submani-

fold L, we construct versions of the symplectic blow-up and blow-down which

are defined relative to L. Furthermore, we show that if M admits an anti-

symplectic involution φ, i.e. a diffeomorphism such that φ2 = Id and φ∗ω =

−ω, and we blow-up an appropriately symmetric embedding of symplectic balls,

then there exists an antisymplectic involution on the blow-up M̃ as well. We de-

rive a homological condition for real Lagrangian surfaces L = Fix(φ) which

determines when the topology of L changes after a blow down, and we then use

these constructions to study the relative packing numbers for (CP 2,RP 2).
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1. INTRODUCTION

The blow-up and blow-down constructions are important techniques in complex
geometry, leading to methods for resolving singularities as well as classification
schemes based on birational equivalence. In the symplectic category, the notion of
blowing up a point or submanifold has also been defined and studied from various
points of view, as the in papers by Guillemin and Sternberg [13], Lerman [19], and
McDuff and Polterovich [22]. When combined with the theory of J-holomorphic
curves, the blow-up and blow-down have yielded a great deal of information on
symplectic manifolds, notably in packing problems [3, 22], in the classification
of rational and ruled symplectic 4-manifolds [20, 17, 16], and in the study of the
topology of the space of symplectic embeddings of balls, as, for example, in [18,
26, 1]. In this note, we study relative and real versions of the symplectic blow-
up and blow-down, in order to apply them to questions regarding the topology of
Lagrangian submanifolds. The relative blow-up takes the pair (M,L) and a set of
relative ball embeddings ψ :

∐k
j=1(B2n

j (1+2ε), λ2
jω0, BR,j(1+2ε))→ (M,ω,L)

and obtains another pair (M̃, L̃), and a symplectic form ω̃, in which the balls have
been replaced by copies of the tautological disk bundle over CPn−1, and L̃ is
Lagrangian in (M̃, ω̃). The blow-down is the reverse procedure. The real blow-
up and blow-down are similar constructions which also respect a so-called real
structure on the manifolds.

As a first application, we study the packing problem in real symplectic mani-
folds. The relative and mixed packing problems were first introduced by Barraud
and Cornea in [2], and upper bounds for the relative embedding of one ball on the
Clifford torus in CPn was given by Biran and Cornea in [4] using Pearl Homology.
Buhovsky [6] further showed that the upper bound given for the Clifford torus is
sharp. Schlenk, in [28], directly constructed relative packings of k ≤ 6 balls in
(CP 2,RP 2) through a detailed analysis of the moment map. A related construc-
tion for packing CP 2 for k = 7, 8 balls was done by Wieck in [29]. In Section 4,
we construct relative embeddings using J-holomorphic techniques, following the
general line of argument in [22] and [3]. Our results extend those of McDuff and
Polterovich [22] to the real setting. Our packing method depends on the presence
of a real structure φ for which L = Fix(φ), and because of this, we do not recover
the lower bounds on the Clifford Torus considered by Buhovsky [6]. Our methods
can be used to extend the results of Biran [3] to real embeddings of k ≥ 9 balls,
but we postpone the treatment of this case to a future paper.
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The results in this paper form a part of my PhD thesis, carried out at the Univer-
sité de Montréal under the supervision of Octav Cornea and François Lalonde.

1.1. Setting and Notation. We now give several definitions and set notation for
all that follows.

Definition 1.1. Let (M2n, ω) be a symplectic manifold. We say that a submanifold
L is Lagrangian if dim L = n and ω|TL = 0.

Definition 1.2. (1) We letLn denote the tautological complex line bundle over
CPn−1, and let Rn be the real tautological line bundle over RPn−1, i.e.
Ln = {(z, l) ∈ Cn×CPn−1|z ∈ l} andRn = {(x, l) ∈ Rn×RPn−1|x ∈
l}. We will suppress the dimension n when it is clear from the context.

(2) π : L → Cn and θ : L → CPn−1 denote the canonical projections.

(3) L(r) andR(r) denote the canonical disk bundles over CPn−1 and RPn−1,

respectively, of radius r.

(4) For each κ, λ > 0, we define a closed two-form ρ(κ, λ) on L(r) by

ρ(κ, λ) = κ2π∗ω0 + λ2θ∗σ,

where ω0 is the standard form on Cn, and σ is the standard Kähler form
on CPn−1 normalized so that

´
CPn−1 σ = 1.

(5) Let c̃ : L → L be the map c̃(z, l) = (z̄, l̄), i.e. the restriction to L of the
complex conjugation map on Cn × CPn−1.

In addition, the manifolds we treat in our applications will have an additional
structure, as defined by

Definition 1.3. Let (M,ω) be a symplectic manifold. A symplectic anti-involution,
or real structure, is a diffeomorphism φ : M → M such that φ2 = Id and φ∗ω =

−ω. We call a symplectic manifold equipped with a real structure a real symplectic
manifold, or simply a real manifold, if the symplectic form is understood.

Remark 1.4. Note that Fix(φ) is a Lagrangian.

Definition 1.5. Let (M,ω, φ) and (M
′
, ω
′
, φ
′
) be real symplectic manifolds. We

say that an embedding ψ : (M
′
, ω
′
, φ
′
) → (M,ω, φ) is a real symplectic embed-

ding if φ ◦ ψ = ψ ◦ φ′ and ψ∗ω = ω
′
.
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Lemma 1.6. Let (M,ω0) be a symplectic manifold, and let (N,ω1, φ) be a real
symplectic manifold with symplectic form ω1 and real structure φ. Suppose that
there exists a symplectic embedding ψ : (M,ω0) → (N,ω1) such that Im(φ ◦
ψ) = Im(ψ). Then there exists an anti-symplectic involution c on M such that
φ ◦ ψ = ψ ◦ c.

Proof. Define c := ψ−1◦φ◦ψ. Then φ◦ψ = ψ◦c and c∗ω0 = ψ∗φ∗(ψ−1)∗ψ∗ω1 =

−ω0, so φ is an anti-symplectic involution on M . �

With the notation in Definition 1.2, we have

Corollary 1.7. c̃∗ρ(κ, λ) = −ρ(κ, λ), andR = Fix(c̃).

Proof. Let c : Cn → Cn and c̄ : CPn−1 → CPn−1 denote complex conjugation
on Cn and CPn−1, respectively. Then by the definition of c̃, c̃(z, l) = (c(x), c̄(l)).
Since Rn = Fix(c) and RPn−1 = Fix(c̄),R = Fix(c̃).

Now let (v0, w0), (v1, w1) ∈ T(z,l)L ⊂ TzCn ⊕ TlCPn−1. Then

c̃∗ρ(κ, λ)((v0, w0), (v1, w1)) = c̃∗π∗κ2ω0((v0, w0), (v1, w1)) +

c̃∗θ∗λ2σ((v0, w0), (v1, w1))

= κ2ω0(π∗c̃∗((v0, w0), (v1, w1))) +

λ2σ(θ∗c̃∗((v0, w0), (v1, w1)))

= κ2ω0(c∗v0, c∗v1) + λ2σ(c̄∗w0, c̄∗w1)

= ω0(v0, v1)− λ2σ(w0, w1)

= −ρ(κ, λ)((v0, w0), (v1, w1)),

which completes the proof. �

In order to put a symplectic form on the blow-up of a manifold M , we will need
to consider the relative embeddings of symplectic manifolds, defined below.

Definition 1.8. Let (M,ω,L) and (M
′
, ω
′
, L
′
) be symplectic manifolds with La-

grangians L and L
′
, respectively. We say that a map ψ : (M

′
, ω
′
, L
′
)→ (M,ω,L)

is a relative symplectic embedding when ψ is a symplectic embedding, ψ∗ω = ω
′
,

and ψ−1(L) = L
′
.

We will be primarily concerned with the following example.

Example 1.9. Let (M2n, ω, L) be a symplectic manifold with Lagrangian L. Let
(B(λ), ω0) be the ball of radius λ in Cn with the standard symplectic structure



LAGRANGIAN BLOW-UPS, BLOW-DOWNS, AND APPLICATIONS 5

ω0, and let BR(λ) denote the ball of radius λ in Rn ⊂ Cn. Then a symplectic
embedding ψ : (B2n(λ), ω0) ↪→ (M2n, ω) is a relative symplectic embedding iff
ψ−1(L) = BR(λ).

Remark 1.10. Note that in Definition 1.8, we have ψ−1(L) = L
′
, and not ψ(L

′
) ⊆

L. This is an important distinction, as shown by the following example. Let C
denote an embedding of S1 into C1, and let

Λ := {λ ∈ R|∃ a relative embedding ψ : (B2(1), λ2ω0, BR(1)) ↪→ (C1, ω0, C)}.

and Λsup := sup Λ. Then for any λ ∈ Λ, λ2π ≤ 2A, where A is the area inside

C ⊂ C2. Therefore Λsup ≤
√

2A
π . If, however, we only require that ψ(BR(1)) ⊆

C, then Λ is not bounded above.

Definition 1.11. Let ψ :
∐k
i=1(Bi(r), ω0, BR,i(r)) ↪→ (M,ω,L) be a symplectic

embedding, and let ψi := ψ|Bi . If p of the ψi’s are relative embeddings, and for the
other q = k−p of the ψi’s, we have Im(ψi)∩L = ∅, then we call ψ a (p, q)-mixed
embedding.

1.2. Anti-Symplectic Involutions and Compatible Almost Complex Structures.
Our constructions will use auxiliary almost complex structures which satisfy cer-
tain additional properties. In this section, we give the necessary definitions, and
prove the existence of the complex structures that we need.

Definition 1.12. Let (M,ω) be a symplectic manifold. Then an almost complex
structure J tames ω or is ω-tame if ω(·, J ·) > 0.

Definition 1.13. Let (M,ω) be a symplectic manifold. Then an almost complex
structure J is compatible with ω or is ω-compatible if J tames ω, and if, in addition,
ω(J ·, J ·) = ω(·, ·).

Definition 1.14. Let (M,ω) be a symplectic manifold, let L ⊂M be a Lagrangian
submanifold, and let p be a point in L ⊂M . We say that J is relatively integrable
at p if there is a holomorphic chart U ⊂ M , α : U → Cn centered at p such that
α−1(Rn) = U ∩ L.

Definition 1.15. Let (M,ω, φ) be a real symplectic manifold with real structure
φ. Let L denote Fix(φ), and let p be a point in L. We say that J is symmetrically
integrable at p if there is a holomorphic chart U ⊂ M , α : U → Cn centered at p
such that α ◦ φ = c ◦ α.
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We first prove the existence of almost complex structures J on a real symplec-
tic manifold (M,ω, φ) which tame ω and satisfy Jφ∗ = −φ∗J . Our discussion
follows the methods in Cannas da Silva [8] and McDuff and Salamon [23].

Definition 1.16. Given a symplectic form ω and an ω-compatible almost complex
structure J , we denote by gJ : V × V → R the bilinear form defined by

(1.1) gJ(v, w) = ω(v, Jw).

Lemma 1.17. Let (V, ω,Φ) be a real symplectic vector space, i.e. a vector space
V with a closed, non-degenerate, skew-symmetric bilinear form ω and linear map
Φ such that Φ2 = I and Φ∗ω = −ω. Let JΦ(V, ω) be the space of ω-compatible
almost complex structures on V with ΦJ = −JΦ, and let MetΦ(V ) denote the
space of positive definite bilinear forms g such that Φ∗g = g. Then there exists a
1-1 map r :MetΦ(V )→ JΦ(V, ω) such that r(gJ) = J .

The proof follows [8].

Proof. Let g ∈MetΦ(V ) and define the automorphism A : V → V by ω(v, w) =

g(Av,w). Then ω(v, w) = −ω(w, v) implies that g(Av,w) = −g(v,Aw), and
therefore that A∗ = −A. Let A = QJ be the polar decomposition of A. Then Q is
the unique square root of A∗A which is g-self-adjoint and g-positive-definite. We
claim that Jg := Q−1A is a complex structure compatible with ω. First, note that
A commutes with Q, and therefore J2

g = Q−1AQ−1A = −Id, so Jg is an almost
complex structure. To see that it is orthogonal, we have

ω(Jgv, Jgw) = g(AQ−1Av,Q−1Aw)

= g(−A2Q−2v,Q−1A∗Q−1Aw)

= g(Av,w) = ω(v, w).

Also, ω(v, Jgv) = g(Av,Q−1Av) = g(v,A∗Q−1Av) = g(v,Q−1A∗Av) > 0,
since both Q and A∗A are positive definite. Therefore Jg is compatible with ω.

Define Jg := r(g) = Q−1A. Note that for an ω-compatible J , we have

r(gJ) = r(ω(·, J ·)) = J,

since, in this case, J = A and Q = Id.
To see that ΦJg = −JgΦ, we have first that −g(Av,w) = Φ∗ω(v, w), and

therefore

−g(Av,w) = ω(Φv,Φw) = g(AΦv,Φw) = g(ΦAΦv, w),
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and therefore ΦAΦ = −A. Now note that ΦA∗AΦ = −ΦA2Φ = ΦAΦA =

−A2 = A∗A. Therefore ΦQΦ = Q as well, and JgΦ = Q−1AΦ = −Q−1ΦA =

−ΦQ−1A = −ΦJg, as desired. �

Corollary 1.18. Let (M,ω, φ) be a real symplectic manifold. Let Jφ(V, ω) denote
the space of ω-compatible almost complex structures on V with φ∗J = −Jφ∗,
and letMetφ(M) denote the space of positive definite bilinear forms g such that
φ∗g = g. Then there exists a 1-1 map r : Metφ(M) → Jφ(V, ω) such that
r(gJ) = J .

Proof. Let g be a φ-invariant Riemannian metric on M . Since the polar decompo-
sition is canonical, the desired almost complex structure J is given by constructing
Jx as in Lemma 1.17 for each x ∈M . �

Remark 1.19. In particular, this corollary shows that, for a real symplectic mani-
fold (M,ω, φ), there exists an ω-compatible (and therefore tame) almost complex
structure J with φ∗J = −Jφ∗.

Remark 1.20. Note that if ψ : (B(1+2ε), λ2ω0, BR(1+2ε))→ (M,ω,L) is a rel-
ative or real symplectic embedding, then the above constructions imply that there
exists an ω-tame (compatible) almost complex structure J which equals ψ∗iψ−1

∗ on
a neighborhood of ψ(0), and therefore J is symmectrically or relatively integrable
at ψ(0) if ψ is a real or relative embedding, respecively. If, in addition,M has a real
structure φ and ψ is a real symplectic embedding, then J also may be taken to sat-
isfy φ∗Jφ∗ = −J . Similarly, if ψ̃ : (L(1+2ε), ρ(1, δ),R(1+2ε))→ (M̃, ω̃, L̃) is
a real or relative embedding, then there exists an ω̃-tame almost complex structure
J̃ such that J̃ = ψ̃∗ĩψ̃

−1
∗ in a neighborhood of L(0).

1.3. Main Results. We now state our main theorems, using the notation in Section
1.1. Theorems 1.21 and 1.22 are proved in Section 2.

Theorem 1.21 (Blow-up). (1) Let (M,ω) be a symplectic manifold and let
L ⊂ M be a Lagrangian submanfiold. Suppose that for some small ε > 0

there is a (p, q)-mixed symplectic embedding

ψ :

k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε)) ↪→ (M,ω,L),

and let P ⊂M be the set P := {ψj(0)}kj=1.
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Then there exists a symplectic manifold (M̃, ω̃), a Lagrangian subman-
ifold L̃ ⊂ M̃ , and an onto map Π : M̃ → M such that the following is
satisfied:

(a) Π is a diffeomorphism on Π−1(M\P ),

(b) Π−1(ψj(0)) ∼= CPn−1,

(c) Π(L̃) = L, and

(d) ω̃ is in the cohomology class

[ω̃] = [Π∗ω] +
k∑
j=1

λ2
jej ,

where the ej are the Poincaré duals of the exceptional classes Ej =

[Π−1(ψj(0))].

(2) If, in addition, M admits an anti-symplectic involution φ which satisfies

(a) Fix(φ) = L,

(b) Im(φ ◦ ψ) = Im(ψ),

(c) Im(φ ◦ ψj) ∩ Im(ψj) = ∅ if Im(ψj) ∩ L = ∅, and

(d) ψj ◦ c = φ ◦ ψj if Im(ψj) ∩ L 6= ∅,
then M̃ admits an anti-symplectic involution φ̃ such that Fix(φ̃) = L̃ and
φ ◦Π = Π ◦ φ̃.

Theorem 1.22 (Blow-down). (1) Let (M̃, ω̃) be a symplectic manifold with
Lagrangian L̃. Suppose there is a (p, q)-mixed symplectic embedding

ψ̃ :
k∐
j=1

(Lj(rj), ρj(δj , λj),Rj(rj)) ↪→ (M̃, ω̃, L̃)

such that ψ−1(L̃) =
∐p
j=1Rj(rj). Let Cj ⊂ M̃ denote ψ̃j(L(0)), and let

C = ∪jCj .
Then there exists a symplectic manifold (M,ω), a (p, q)-mixed symplec-

tic embedding

(1.2) ψ :

k∐
j=1

(B(1 + 2ε), λjω0, BR(1 + 2ε))→ (M,ω,L),

a Lagrangian submanifold L ⊂ M , and an onto map Π : M̃ → M such
that the following is satisfied:
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(a) Π is a diffeomorphism on M̃\C,

(b) Π(Cj) = pj ∈M , where pj is a point,

(c) Π(L̃) = L, and

(d) ω satisfies
[ω̃]− [Π∗ω] ∈ E ,

where E is the linear vector space generated by e1, . . . , ek, the Poincaré
duals of the exceptional classes Ej = [ψ̃j(0)].

(2) Suppose, in addition, M̃ admits an anti-symplectic involution φ̃ which sat-
isfies

(a) Fix(φ̃) = L̃,

(b) Im(ψ̃) = Im(φ̃ ◦ ψ̃),

(c) Im(φ̃ ◦ ψ̃i) ∩ Im(ψ̃i) = ∅ if Im(ψi) ∩ L = ∅, and

(d) ψ̃i ◦ c̃ = φ̃ ◦ ψ̃i if Im(ψ̃i) ∩ L̃ 6= ∅.
Then (M,ω) admits an anti-symplectic involution φ such that φ ◦ Π =

Π ◦ φ̃.

The idea of the relative blow-up construction is the same as blowing up in the
purely symplectic case: we remove the interior of a ball from both M and CPn

(the bar indicating that the orientation is reversed), and we glue them along their
boundaries, ensuring that the symplectic form ω̃ of the blow up M̃ acts appropri-
ately. The difference in the relative case is that the real parts of the balls removed
from M and CPn are constrained to intersect the Lagrangians L and RPn, and the
gluing proceedes so that the boundary of the (n-dimensional) ball removed from
L is then glued to the boundary of the corresponding hole in RPn, resulting in a
new Lagrangian L#RPn ∼= L̃ ⊂ M̃ in the blow-up. The blow-down is the reverse
process. We make these operations precise in Section 2.

In four-dimensional complex geometry and symplectic topology, it is extremely
useful to know that one can blow down a symplectic manifold M along a J-
holomorphic sphere C when [C] · [C] = −1. In complex geometry this is the
so-called Castelnuovo-Enriques criterion (see, for example, [12], p.476). Unfor-
tunately, it is a difficult problem in general to derive a similar condition to detect
when an arbitrary two-dimensional Lagrangian in a symplectic 4-manifold may be
blown down along a curve whose normal bundle in TL is diffeomorphic to the nor-
mal bundle of RP 1 in T (RP 2). However, for Lagrangian submanifolds which are
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the fixed point set of an anti-symplectic involution φ on a symplectic 4-manifold
M , we have the following result, which we prove in Section 3.

We now give the following definition.

Definition 1.23. We call E ∈ H2(M4;Z) an exceptional class if E · E = −1. If
u : Σ ↪→ M4 is an embedding of the surface Σ, and u∗[Σ] = E, then we say that
u(Σ) is an exceptional curve.

Theorem 1.24. Let (M,ω, φ) be a real symplectic manifold with L := Fix(φ),
and let J be an almost complex structure on M which tames ω and which satisfies
φ∗Jφ∗ = −J . Suppose C is an exceptional J-holomorphic curve in a homology
class E ∈ H2(M ;Z) such that E · E = −1 and φ∗E = −E. Then there exists a
real symplectic manifold (M̌, ω̌, φ̌) and an onto map Π : M → M̌ that satisfies

(1) Π is a diffeomorphism on M\C,

(2) Π(C) = p ∈ M̌ , where p is a point,

(3) Π ◦ φ = φ̌ ◦Π, and

(4) ω̌ satisfies
[ω]− [Π∗ω̌] ∈ E ,

where E is the linear vector space generated by e, the Poincaré dual of the
exceptional class E = [Π−1(p)].

As an application of the above theorems, we have the following theorem on the
real packing numbers for (CP 2,RP 2), defined below.

Definition 1.25. Let (M,ω) be a symplectic manifold with Lagrangian submani-
fold L ⊂M . We call the number

pL,k := sup
ψ

Vol
(∐k

i=1(B(λ), ω0, BR(λ))
)

Vol(M)

the k-th relative packing number for (M,L), where the sup is taken over all relative
symplectic embeddings

ψ :

k∐
i=1

(B(λ), ω0, BR(λ))→ (M,ω,L).

IfM is a real manifold with real structure φ, Fix(φ) = L, and the sup is taken over
all real embeddings of k balls, then pL,k is called the k-th real packing number. If
the supremum is taken over all symplectic embeddings of k balls into M , then we
denote the number pk and we call it the k-th packing number of M .
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Theorem 1.26. For the pair (CP 2,RP 2) with the standard symplectic form and
real structure, the relative packing numbers pRP 2,k for k ≤ 8 balls are equal to the
packing numbers for CP 2.

2. CONSTRUCTING THE RELATIVE AND REAL BLOW-UP AND BLOW-DOWN

We now construct the blow-up and blow-down of a symplectic manifold (M,ω)

relative to a Lagrangian submanifold L or a real structure φ. The general strategy is
to perform a complex blow-up or blow-down locally and then define a symplectic
form for the resulting manifold. In each case, we first discuss the local models for
the symplectic forms in these constructions, and we then construct the global blow
up and blow down given a mixed, relative or real symplectic embedding

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε)) ↪→ (M,ω,L), or

ψ̃ :
k∐
j=1

(Lj(1 + 2ε), ρ(δ, λ),Rj) ↪→ (M̃, ω̃, L̃)

and the local models.
The proofs of the lemmas used in these constructions are collected in Section

2.3.

2.1. Blow-up. In this section, we prove Theorem 1.21, which we restate here for
the convenience of the reader.

Theorem (Theorem 1.21). (1) Let (M,ω) be a symplectic manifold and let
L ⊂ M be a Lagrangian submanfiold. Suppose that for some small ε > 0

there is a (p, q)-mixed symplectic embedding

ψ :

k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε)) ↪→ (M,ω,L),

and let P ⊂M be the set P := {ψj(0)}kj=1.

Then there exists a symplectic manifold (M̃, ω̃), a Lagrangian subman-
ifold L̃ ⊂ M̃ , and an onto map Π : M̃ → M such that the following is
satisfied:

(a) Π is a diffeomorphism on Π−1(M\P ),

(b) Π−1(ψj(0)) ∼= CPn−1,

(c) Π(L̃) = L, and
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(d) ω̃ is in the cohomology class

[ω̃] = [Π∗ω] +
k∑
j=1

λ2
jej ,

where the ej are the Poincaré duals of the exceptional classes Ej =

[Π−1(ψj(0))].

(2) If, in addition, M admits an anti-symplectic involution φ which satisfies

(a) Fix(φ) = L,

(b) Im(φ ◦ ψ) = Im(ψ),

(c) Im(φ ◦ ψj) ∩ Im(ψj) = ∅ if Im(ψj) ∩ L = ∅, and

(d) ψj ◦ c = φ ◦ ψj if Im(ψj) ∩ L 6= ∅,

then M̃ admits an anti-symplectic involution φ̃ such that Fix(φ̃) = L̃ and
φ ◦Π = Π ◦ φ̃.

The construction proceeds as follows. We first construct a family of symplectic
forms τ̃(ε, λ) on L by pulling back the standard form ω0 on R2n by a family of
specially constructed maps from L → R2n. We arrange, in particular, that the sub-
manifoldR ⊂ L is a Lagrangian for the forms τ̃(ε, λ). We then consider a relative
symplectic and holomorphic embedding ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε), i) →
(M,ω,L, J), and we construct the blow-up manifold (M̃, L̃) by removing the ball
and gluing in (L(1 + 2ε),R(1 + 2ε)) along the boundary. Finally, we use the local
forms τ̃(ε, λ) created on L in the first step to construct the global symplectic form
ω̃ on the blow-up M̃ . For a real manifold M , we also construct a real structure on
the blow up M̃ . We then show that, given a relative symplectic embedding, and in
view of some appropriate (and non-restrictive) assumptions on the almost complex
structures, we may find a holomorphic embedding of a smaller ball which is com-
patible with L (or a real structure φ), and we use this to remove the assumption of
holomorphicity on the embeddings.

In the following proposition, we construct the forms τ̃(ε, λ). Note that points 1,
2, and 3 were proved in Proposition 5.1.A of McDuff and Polterovich [22].

Proposition 2.1. Using the notation in Section 1.1, for every ε, λ > 0 there exists
a symplectic form τ̃(ε, λ) on L such that the following holds:

(1) τ̃(ε, λ) = π∗(λ2ω0) on L − L(1 + ε)

(2) τ̃(ε, λ) = ρ(1, λ) on L(δ) for some δ > 0
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(3) τ̃(ε, λ) is compatible with ĩ, the canonical integrable complex structure on
L.

(4) c̃∗τ̃(ε, λ) = −τ̃(ε, λ), where c̃ denotes complex conjugation on L.

(5) τ̃(ε, λ)|R = 0

The proof of this proposition will be based on the following lemmas, which we
state here and prove in Section 2.3. We begin with a definition.

Definition 2.2. We say that f : Cn → Cn is a radial function if f(z) = α(|z|)z
for some real-valued function α : R → [0,∞). We say that a radial function f is
monotone if |z0| ≤ |z1| =⇒ |f(z0)| ≤ |f(z1)|.

Lemma 2.3. Let h : R2n → R be the function h(x) =
(

1 + λ2

|x|2

)1/2
and ω0 be the

standard symplectic form on R2n. Let H : R2n\{0} → R2n\B(λ) be the mapping
given by H(x) = h(x)x. Then π∗H∗ω = ρ(1, λ) on L\{(0, l)|l ∈ CPn−1}.

Lemma 2.4. Let (M,ω) be a symplectic manifold. Then ω is a Kähler form iff ω
is compatible with an integrable almost complex structure J .

Lemma 2.5. Let ω be a Kähler form on Cn, and suppose f : Cn\{0} → Cn\{0}
is a monotone radial function. Then f∗ω is a Kähler form.

Proof of Proposition 2.1. For each λ > 0, let hλ : R2n\{0} → R be given by

hλ(x) =
(

1 + λ2

|x|2

)1/2
, and let δ > 0 satisfy δ2 < λ2ε/2. For x ∈ B(δ), we

therefore have |hλ(x)x|2 = |x|2 + λ2 ≤ δ2 + λ2 < λ2(ε/2 + 1). Now define
F : R2n\{0} → R2n by

F (x) =


hλ(x)x, |x| < δ

(β(|x|)hλ( δx|x|)
δx
|x| + (1− β(|x|))λ (1+ε)x

|x| , δ ≤ |x| ≤ 1 + ε

λx, 1 + ε ≤ |x|

where β(t) is a bump function which is 1 for t ≤ δ and 0 for t ≥ 1 + ε. We define
the form τ̃(ε, λ) by τ̃(ε, λ) = π∗F ∗ω0 on L\π−1(0). We start with a preparatory
lemma.

Lemma 2.6. The function F defined above is a monotone radial function.
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Proof. First, we note that F is radial by definition, and that

|F (z)| =


(|z|2 + λ2)1/2 |z| ≤ δ
β(|z|)(δ2 + λ2)1/2 + (1− β(|z|)λ(1 + ε)) δ < |z| < 1 + ε

λ|z| 1 + ε < |z|.

It follows immediately that, if z1, z2 ∈ B(δ) or |z1|, |z2| > 1 + ε, then |z1| ≤
|z2| =⇒ |F (z1)| ≤ |F (z2)|. Now suppose z1, z2 ∈ B(1 + ε)\B(δ) with |z1| ≤
|z2|. Then

|F (z2)| − |F (z1)| = β(|z2|)(δ2 + λ2)1/2 + (1− β(|z2|)λ(1 + ε)−
β(|z1|)(δ2 + λ2)1/2 − (1− β(|z1|)λ(1 + ε)

= (β(|z2|)− β(|z1|))(δ2 + λ2)1/2 +

(β(|z1|)− β(|z2|))λ(1 + ε).

We now recall that, by assumption, β(|z1|) > β(|z2|) and

δ2 + λ2 < λ2(1 + ε/2) < λ2(1 + 2ε+ ε2) = λ2(1 + ε)2,

from which it follows that (δ2+λ2)
1
2 < λ(1+ε), and therefore |F (z2)|−|F (z1)| >

0, as desired.
Furthermore, we have, for any t ∈ (0, 1)

(δ2 + λ2)
1
2 ≤ β(t)(δ2 + λ2)1/2 + (1− β(t))λ(1 + ε) ≤ λ(1 + ε)

from which it follows that F is monotone on all of R2n. �

We now return to the proof of Proposition 2.1.
By Lemma 2.3, π∗F ∗ω0 = ρ(1, λ) = τ̃(ε, λ) on L(δ)\L(0). Since ρ(1, λ) is

a symplectic form on all of L(δ), we may extend τ̃(ε, λ) to all of L by assigning
τ̃(ε, λ) := ρ(1, λ) on L(0) = π−1(0). Now note that this form satisfies condition
1 and 2 in the proposition by Lemma 2.3 and the definition of F .

To see that τ̃(ε, λ) is symplectic, we note that F is a diffeomorphism from
R2n\{0} to its image, and therefore π∗F ∗(ωn0 ) = τ̃(ε, λ)n is a volume form on
L\π−1(0). Therefore, τ̃(ε, λ) is non-degenerate on L\π−1(0). That τ̃ is closed on
L\π−1(0) is seen by
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dτ̃(ε, λ) = dπ∗F ∗ω0

= π∗F ∗dω0

= 0.

On π−1(0), we have that τ̃ = ρ(1, λ), which is non-degenerate, and since dτ̃ =

dρ(1, λ) = 0, it is closed as well. Therefore τ̃ is symplectic on all of L.
To prove 3, we let ĩ and i represent the standard almost complex structures on

L and Cn, respectively. Since π is the complex blow-down map, we have that
i∗ ◦ π∗ = π∗ ◦ ĩ∗. Therefore, for v 6= 0, (x, l) ∈ L(r)\L(0), we have,

τ̃(ε, λ)(̃iv, v) = π∗F ∗ω0(̃iv, v)

= F ∗ω0(π∗ĩv, π∗v)

= F ∗ω0(iπ∗v, π∗v)

> 0,

where the last inequality follows because, by Lemma 2.5, F ∗ω0 is Kähler, so by
Lemma 2.4, F ∗ω0 is compatible with i.

On π−1(0), τ̃ = ρ(1, λ), and therefore, for v 6= 0, we have

τ̃(ε, λ)(v, ĩv) = π∗ω0(v, ĩv) + λ2θ∗σ(v, ĩv)

= ω0(π∗v, π∗ĩv) + λ2σ(θ∗v, θ∗ĩv)

= ω0(π∗v, iπ∗v) + λ2σ(θ∗v, iθ∗v)

> 0

because ω0 and σ are compatible with i. We conclude that ĩ is a τ̃ -tame complex
structure. To see that τ̃ is compatible with ĩ, we compute

τ̃(ε, λ)(̃iv, ĩw) = π∗F ∗ω0(̃iv, ĩw)

= F ∗ω0(π∗ĩv, π∗ĩw)

= F ∗ω0(iπ∗v, iπ∗w)

= F ∗ω0(π∗v, π∗w)

= τ̃(v, w).

Here, again, the fourth equality follows because, by Lemma 2.5, F ∗ω0 is Kähler,
so by Lemma 2.4, F ∗ω0 is compatible with i.
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Again, on π−1(0), τ̃(ε, λ) = ρ(1, λ), and therefore

τ̃(ε, λ)(̃iv, ĩw) = π∗ω0(̃iv, ĩw) + θ∗σ(̃iv, ĩw)

= ω0(π∗ĩv, π∗ĩw) + λ2σ(θ∗ĩv, θ∗ĩw)

= ω0(iπ∗v, iπ∗w) + λ2σ(iθ∗v, iθ∗w)

= ω0(π∗v, π∗w) + λ2σ(θ∗v, θ∗w)

= π∗ω0(v, w) + λ2θ∗σ(v, w)

= τ̃(ε, λ)(v, w),

since ω0 and σ are compatible with i. Therefore τ̃(ε, λ) is compatible with i.
We now show item 4. We first note that, by the definitions of π, c, and c̃, c◦π =

π ◦ c̃. Since, by definition, F (z) = α(|z|)z for a real function α : R→ R, we have

c ◦ F (z) = c ◦ (α(|z|)z) = α(|z|)z = α(|z|)z = F (z) = F ◦ c(z),

so F commutes with c. Furthermore,

c̃∗τ̃ = c̃∗π∗F ∗ω0 = π∗c∗F ∗ω0 = π∗F ∗c∗ω0 = −π∗F ∗ω0 = −τ̃ ,

which proves item 4. It follows that, since Fix(c̃) = R(r),R(r) is a Lagrangian in
L(r), proving item 5. This completes the proof. �

In the next proposition, we construct the global relative blow-up of a manifold
M using a relative symplectic and holomorphic embedding of the ball (B(1 +

2ε), λ2ω0, BR(1 + 2ε)) with the standard complex structure i. The use of holo-
morphic embeddings here gives us extra control over the complex structure in the
blow-up, which we will be useful in our applications.

Proposition 2.7. Let (M,ω) be a symplectic manifold with Lagrangian L, and let
J be an ω-tame (compatible) almost complex structure. Suppose that for λ > 0

and some small ε > 0, there is a relative symplectic and holomorphic embedding

ψ :

k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε), i) ↪→ (M,ω,L, J).

Then there exists a symplectic manifold (M̃, ω̃) with Lagrangian L̃ ⊂ M̃ , an
ω̃-tame (compatible) almost complex structure J̃ , and an onto map Π : M̃ → M

such that

(1) Π is a diffeomorphism on Π−1(M\ ∪kj=1 ψj(0)),

(2) For all j ∈ {1, . . . , k},Π−1(ψj(0)) ∼= CPn−1,
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(3) Π(L̃) = L, and

(4) ω̃ is in the cohomology class

[ω̃] = [Π∗ω] +

k∑
j=1

λ2
jej ,

where the ej are the Poincaré duals of the exceptional classesEj = [Π−1(ψj(0))].

Remark 2.8. Note that the Ei in the theorem above are the classes represented by
the exceptional curves added in the blow-up.

Proof. First, we consider the case when k = 1. Consider the map π : (L(1 +

2ε),R(1 + 2ε), ĩ)→ (B(1 + 2ε), BR(1 + 2ε), i) from Definition 1.2, where ĩ and
i are the standard complex structures on L and Cn, respectively. Observing that π
gives a diffeomorphism between the boundaries (∂B(1 + 2ε), ∂BR(1 + 2ε)) and
(∂L(1 + 2ε), ∂R(1 + 2ε)), we let π∂ denote the restriction of π to ∂L(1 + 2ε), and
we define M̃ to be M̃ := M\ψ((B(1 + 2ε), BR(1 + 2ε))∪ψ◦π∂ (L(1 + 2ε), R(1 +

2ε)). This operation is summarized in the diagram below, with δ = 1 + 2ε.

(2.1) (L(δ),R(δ))

π

��

� � ψ̃ // (M̃, L̃)

Π
��

(B(δ), BR(δ)) � �

ψ
// (M,L)

where ψ and ψ̃ are embeddings, and where the map Π : (M̃, L̃) → (M,L) is
defined by

Π(x) =

x, x /∈ Im ψ̃

ψ ◦ π ◦ ψ̃−1(x) x ∈ Im ψ̃

making the diagram commutative. Note that only ψ is a symplectomorphism a
priori.

We now define a symplectic form on M̃ . Recall that ψ∗ω = λ2ω0 by hypothesis.
We assign a symplectic form to M̃ by:

(2.2) ω̃ =

Π∗ω on M̃\ψ̃(L(1 + ε))

(ψ̃−1)∗τ̃(ε, λ) on ψ̃(L(1 + 2ε))
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We check that ω̃ is well-defined on L(1 + 2ε)−L(1 + ε). By Proposition 2.1 and
the definition of ω̃ and Π, on L(1 + 2ε)− L(1 + ε) we have

Π∗ω = (ψ̃−1)∗π∗ψ∗ω

= λ2(ψ̃−1)∗π∗ω0

= (ψ̃−1)∗τ̃(ε, λ),

so ω̃ is well defined.
We define the almost complex structure J̃ on M̃ by

J̃ =

ψ̃∗ĩψ̃−1
∗ on Im(ψ̃)

Π−1
∗ JΠ∗ on M̃\Im(ψ̃)

Note that since π and ψ are holomorphic diffeomorphisms near the boundary of
their respective domains, Π−1

∗ JΠ∗ = ψ̃∗ĩψ̃
−1
∗ on ψ̃(1 + 2ε)\ψ̃(1 + ε), and so J̃

is well defined. To see that ω̃ tames (is compatible with) J̃ , we first note that Π is
holomorphic for x ∈ M̃ − L(1 + ε), and we recall that ω̃ = Π∗ω on this region.
Therefore, if ω tames J , then for v, w ∈ TxM , ω̃(v, J̃v) = λ2ω(Π∗v,Π∗J̃v) =

λ2ω(Π∗v, JΠ∗v) > 0, so ω̃ tames J̃ on this region. If, in addition, ω is compatible
with J , we have,

ω̃(J̃v, J̃w) = Π∗ω(J̃v, J̃w)

= ω(Π∗J̃v,Π∗J̃w)

= ω(JΠ∗v, JΠ∗w)

= ω(Π∗v,Π∗w)

= Π∗ω(v, w)

as desired.
For x ∈ L(1 + ε), we have that ω̃ = (ψ̃−1)∗τ̃ . Since τ̃ is compatible with ĩ,

the canonical complex structure on L, and ψ̃ is holomorphic, then ω̃ is compatible
with J̃ on this region. Therefore, if ω tames (is compatible with) J on M , then ω̃
tames (is compatible with) J̃ on all of M̃ .

Blowing up more than one point is done as above for each ball in the disjoint
product ψ :

∐k
j=1(Bj(r), ω0, BR,j(r)) ↪→ (M,ω,L). That ω̃ is in the desired

cohomology class follows immediately from this construction. �

Remark 2.9. When we want to emphasize the embedding ψ, we will refer to the
symplectic blow up constructed as above as the blow-up of M relative to ψ.
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In the following proposition we construct a real structure on the blow-up M̃
given a real symplectic manifold M and a suitably symmetric embedding ψ of a
disjoint union of balls into M .

Proposition 2.10. Let (M,ω, φ) be a real symplectic manifold, let J be an ω-tame
(compatible) almost complex structure on M which satisfies φ∗Jφ∗ = −J , and let

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, i) ↪→ (M,ω, J)

be a symplectic and holomorphic embedding. Suppose φ and ψ satisfy

(1) Im(φ ◦ ψ) = Im(ψ),

(2) Im(φ ◦ ψj) ∩ Im(ψj) = ∅ if Im(ψj) ∩ L = ∅, and

(3) ψj ◦ c = φ ◦ ψj if Im(ψj) ∩ L 6= ∅.
Then there exists a real symplectic manifold (M̃, ω̃, φ̃) and an onto map Π :

M̃ →M which satisfies

(1) Π is a diffeomorphism on Π−1(M\ ∪j ψj(0)),

(2) Π−1(ψj(0)) ∼= CPn−1,

(3) Π ◦ φ̃ = φ ◦Π, and

(4) ω̃ is in the cohomology class

[ω̃] = [Π∗ω]−
k∑
j=1

λ2
jej ,

where the ej are the Poincaré duals of the exceptional classesEj = [Π−1(ψj(0))] ∈
H2(M̃ ;Z).

Furthermore, the real structure φ̃ and the almost complex structure J̃ in the blow-
up M̃ satisfy φ̃∗J̃ = −J̃ φ̃∗, and for every j with ψj ◦ c = φ ◦ ψj , we have
φ∗Ej = −Ej ∈ H2(M̃ ;Z).

Remark 2.11. As we will see in the proof, in the case where there are balls which
are embedded off of the Lagrangian, the blow-up is not constructed relative to ψ,
but relative to another symplectic, holomorphic embedding with the same image.
The ball embeddings whose image intersects the Lagrangian are left untouched,
and those which take pairs of balls to M\L are changed to commute with φ and
the standard real structure on R2n.

In order to prove this proposition, we use the following lemmas. In the first
lemma, we construct the blow-up given a real embedding ψ on one ball such that
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ψ ◦ c = φ ◦ψ. In the second, we construct the simultaneous blow-up of an embed-
ding ψ of two balls B1 and B2 such that Im(φ ◦ ψ(B1)) = Im(ψ(B2).

Lemma 2.12. Let (M,ω, φ) be a real symplectic manifold, let J be an ω-tame
(compatible) almost complex structure on M which satisfies φ∗Jφ∗ = −J . Sup-
pose

ψ : (B(1 + 2ε), λ2ω0, i) ↪→ (M,ω, J)

is a symplectic and holomorphic embedding such that ψ ◦ c = φ ◦ ψ. Then there
exists a symplectic manifold (M̃, ω̃) that admits an anti-symplectic involution φ̃
such that Π and ω̃ satisfy the conclusions of Proposition 2.7.

Furthermore, the real structure φ̃ in the blow-up M̃ satisfies φ̃∗J̃ = −J̃ φ̃∗, and

φ̃∗[Π
−1(ψ(0))] = −[Π−1(ψ(0))] ∈ H2(M̃ ;Z).

Proof. We first note thatψ is a relative embedding, sinceψ−1(Fix(φ)) = Fix(c) =

BR(1+2ε). Now construct the blow-up (M̃, ω̃) of (M,ω) relative to ψ as in Propo-
sition 2.7. Denote by c̃ the complex conjugation map on L and recall that we have
π ◦ c̃(z, l) = c ◦ π(z, l), since z ∈ l ⇐⇒ z ∈ l and 0 = 0. Given ε, λ > 0, let
τ̃(ε, λ) be the symplectic form on L constructed in Proposition 2.1, and recall that
c̃∗τ̃(ε, λ) = −τ̃(ε, λ). We now define a map φ̃ : M̃ → M̃ by

φ̃(x) =

Π−1 ◦ φ ◦Π(x), x ∈ M̃\ψ̃(L(1 + ε))

ψ̃ ◦ c̃ ◦ ψ̃−1(x), x ∈ ψ̃(L(1 + 2ε)).

By the commutativity of Figure 2.1, and the equivariance of ψ we have, for x ∈
L(1 + 2ε)\L(1 + ε),

ψ̃ ◦ c̃ ◦ ψ̃−1(x) = ψ̃ ◦ π−1 ◦ c ◦ π ◦ ψ̃−1(x)

= Π−1 ◦ ψ ◦ c ◦ ψ−1 ◦Π(x)

= Π−1 ◦ ψ ◦ ψ−1 ◦ φ ◦Π(x)

= Π−1 ◦ φ ◦Π(x).

Therefore φ̃ is well-defined and a diffeomorphism. That φ̃ is an anti-symplectic
involution follows from the fact that Π−1◦φ◦Π and ψ̃◦ c̃◦ψ̃−1 are anti-symplectic
involutions on their respective domains.
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To see the last statement in the proposition, for x ∈ M̃\ψ̃(L(1+ε)), we compute

φ̃∗J̃ = Π−1
∗ φ∗Π∗J̃

= Π−1
∗ φ∗JΠ∗

= −Π−1
∗ Jφ∗Π∗

= −J̃Π−1
∗ φ∗Π∗

= −J̃ φ̃.

For x ∈ ψ̃(L(1 + 2ε)), we have

φ̃∗J̃ = ψ̃∗c̃∗ψ̃
−1
∗ J̃

= ψ̃∗c̃∗ĩψ̃
−1

= −ψ̃∗ĩc̃∗ψ̃−1

= −J̃ ψ̃∗c̃∗ψ̃−1

= −J̃ φ̃,

as desired.
Let E = ψ̃(L(0)). To see that φ̃∗E = −E, we note that c̃(L(0)) = L(0), and

that c̃ reverses orientation. This completes the proof.
�

Lemma 2.13. Let (M,ω, φ) be a real symplectic manifold, let J be an ω-tame
(compatible) almost complex structure. Suppose

γ :
2∐
i=1

(Bi(1 + 2ε), λ2ω0, i)→ (M,ω, J)

is a symplectic and holomorphic embedding such that Im(φ ◦ γ1) = Im(γ2).
Then there exists a real symplectic manifold (M̃, ω̃) with real structure φ̃, an ω̃-
tame (compatible) almost complex structure, and an onto map Π : M̃ →M which
satisfies the conclusions of Proposition 2.7.

Furthermore, the real structure φ̃ and the almost complex structure J̃ in the
blow-up M̃ satisfy φ̃∗J̃ = −J̃ φ̃∗.

Proof. Define a map ψ : Π2
i=1(Bi(1 + 2ε), λ2ω0, i)→ (M,ω, J) by

ψ(x) =

γ(x) x ∈ B1

φ ◦ γ ◦ c ◦ ι(x) x ∈ B2
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where ι : Π2
i=1Bi → Π2

i=1Bi is the map given by ι(x ∈ Bi) = x ∈ Bi+1 mod 2.
We note that, since c and φ are anti-holomorphic and γ is holomorphic, ψ is holo-
morphic, and, similarly, since c and φ and anti-symplectic, and γ is symplectic, ψ is
symplectic as well. Furthermore, γ, c, φ, and ι are all 1-1, and we conclude that ψ
is a symplectic, holomorphic embedding. Now observe that c◦ ι is an antisymplec-
tic involution on Π2

i=1Bi, Im(ψ) = Im(γ) by definition, and that ψ◦c◦ ι = φ◦ψ,
so that ψ is a real embedding for the real structures c ◦ ι and φ. We now construct
the blow up of M relative to ψ as in McDuff and Polterovich [22] (which is as in
the relative blow-up without the Lagrangian).

On
∐2
i=1 Li, we put the anti-symplectic involution c̃ ◦ ι̃, where c̃ is complex

conjugation on L, and, as above, ι̃ :
∐2
i=1 Li →

∐2
i=1 Li is given by ι̃((z, l) ∈

Li) = (z, l) ∈ Li+1 mod 2. Recall that π ◦ c̃(z, l) = c ◦ π(z, l), since z ∈
l ⇐⇒ z ∈ l and 0 = 0, and note that, by definition of ι and ι̃, we also have
π ◦ c̃ ◦ ι̃(z, l) = c ◦ ι ◦ π(z, l).

Given ε, λ > 0, we define ν(ε, λ) to be the symplectic form on
∐2
i=1 Li(1+2ε),

such that the restriction on each Li is given by ν(ε, λ)|Li := τ̃(ε, λ), where τ̃(ε, λ)

is the symplectic form on L constructed in Proposition 2.1.
Now define a map φ̃ : M̃ → M̃ by

φ̃(x) =

Π−1 ◦ φ ◦Π(x), x ∈ M̃\ψ̃
(∐2

i=1 L(1 + ε)
)

ψ̃ ◦ c̃ ◦ ι̃ ◦ ψ̃−1(x), x ∈ ψ̃
(∐2

i=1 L(1 + 2ε)
)
,

where ψ̃ is the embedding of
∐2
i=1 L(1 + 2ε) as in Figure 2.1. By the commu-

tativity of Figure 2.1, we have, for x ∈ L(1 + 2ε)\L(1 + ε)

ψ̃ ◦ c̃ ◦ ι̃ ◦ ψ̃−1(x) = ψ̃ ◦ π−1 ◦ c ◦ ι ◦ π ◦ ψ̃−1(x)

= Π−1 ◦ ψ ◦ c ◦ ι ◦ ψ−1 ◦Π(x)

= Π−1 ◦ ψ ◦ ψ−1 ◦ φ ◦Π(x)

= Π−1 ◦ φ ◦Π(x).

Therefore φ̃ is well-defined and a diffeomorphism. That φ̃ is an anti-symplectic
involution follows from the fact that Π−1 ◦ φ ◦ Π and ψ̃ ◦ c̃ ◦ ι̃ ◦ ψ̃−1 are anti-
symplectic involutions on their respective domains.
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To see the last statement in the proposition, for x ∈ M̃\ψ̃(L(1+ε)), we compute

φ̃∗J̃ = Π−1
∗ φ∗Π∗J̃

= Π−1
∗ φ∗JΠ∗

= −Π−1
∗ Jφ∗Π∗

= −J̃Π−1
∗ φ∗Π∗

= −J̃ φ̃∗.

For x ∈ ψ̃(L(1 + 2ε)), we have

φ̃∗J̃ = ψ̃∗c̃∗ι̃∗ψ̃
−1
∗ J̃

= ψ̃∗c̃∗ι̃∗ĩψ̃
−1
∗

= −ψ̃∗ĩc̃∗ι̃∗ψ̃−1
∗

= −J̃ ψ̃∗c̃∗ι̃∗ψ̃−1
∗

= −J̃ φ̃∗,

as desired. �

Proof of Proposition 2.10. For each γi with Im(γi)∩L 6= ∅ we construct the blow
up using Lemma 2.12. For each γi such that Im(γi) ∩ Fix(φ) = ∅, we first recall
that, by hypothesis, Im(γi) ∩ Im(φ ◦ γi) = ∅. Since Im(φ ◦ γ) = Im(γ), then
there is a γi′ with Im(φ◦γi) = Im(γi′ ). We blow-up the pair γi,γi′ using Lemma
2.13. The result follows. �

We now remove the hypothesis that our ball embeddings are holomorphic. To do
this, we start with a relative or real symplectic ball embedding, and then adjust it so
that a small region around the center is also holomorphic, which we may do under
appropriate assumptions on an almost complex structure that tames the symplectic
form. We then create a family of symplectic forms ωt on the blow-up such that
the original one tames (or is compatible with) the almost complex structure J̃ on
the blow-up, and the last one is in the cohomology class corresponding to the ball
embedding. This is the same strategy as that of McDuff and Polterovich [22], and
the following proposition and its proof are variants of Proposition 2.1.C in [22],
which we modify to keep track of the Lagrangians L and L̃ throughout the process.

Proposition 2.14. (1) Let ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε)) → (M,ω,L)

be a relative symplectic embedding. Suppose that J is an almost complex
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structure on M which tames (is compatible with) ω and which is relatively
integrable at ψ(0).

Then there exists a manifold M̃ with a submanifold L̃, a family of sym-
plectic forms ω̃t, t ∈ [0, 1] on M̃ , an almost complex structure J̃ on M̃ ,
and an onto map Π : M̃ → M such that ω̃0 tames (is compatible with) J̃ ,
L̃ is a Lagrangian for all the ω̃t, Π(L̃) = L, and ω̃1 satisfies

[ω̃1] = [Π∗ω]− λ2e,

where e is the Poincare dual of the class [Π−1(ψ(0))] ∈ H2(M ;Z).

(2) Suppose, furthermore, M is a real symplectic manifold with real structure
φ, Fix(φ) = L, J satisfies φ∗Jφ∗ = −J , and ψ ◦ c = φ ◦ ψ. Then
there exists a family of real structures φ̃t on M̃ such that φ̃∗t ω̃t = −ω̃t,
(φ̃t)∗J̃(φ̃t)∗ = −J̃ .

The proof depends on the following proposition, which is an adaptation of
Proposition 5.5.A in McDuff and Polterovich [22], and which we prove in Sec-
tion 2.3.

Proposition 2.15. (1) Let (M,ω) be a symplectic manifold and let L ⊂M be
a Lagrangian submanifold. Let

ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω,L)

be a relative symplectic embedding, and let J be an almost complex struc-
ture on M which tames ω and is relatively integrable at ψ(0) ∈ L.

Then, for every compact subset K ⊂ M\ψ(0) there exists a number
δ
′ ∈ (0, 1), a symplectic form ω

′
on M isotopic to ω, and a relative sym-

plectic embedding

ψ
′

: (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω
′
, L)

with the following properties:

(a) ψ
′ |B(δ′) is holomorphic

(b) ω′ tames J and coincides with ω on K

(c) L is a Lagrangian for ω′

(2) In addition to the above, suppose thatM is a real symplectic manifold with
real structure φ, Fix(φ) = L, J satisfies φ∗Jφ∗ = −J , J is symmetrically
integrable around ψ(0), and φ ◦ ψ = ψ ◦ c.
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Then we can construct the map ψ
′

and the symplectic form ω
′

on M to
satisfy the conclusions above, and so that φ is a real structure for ω

′
and

ψ
′

satisfies φ ◦ ψ′ = ψ
′ ◦ c.

Proof of Proposition 2.14. By Proposition 2.15, we may assume that ψ is holo-
morphic on B(δ) for some δ > 0. Let St : B(λ + ε) → B(λ + ε) be defined
by:

St(x) = β(t)x+ (1− β(t))
[
λ(1 + γ)δ−1α(|x|) + (1− α(|x|))

]
x,

where β(t) is a bump function with β(t) = 1 for t ≤ 0 and β(t) = 0 for t ≥ 1,
and α(t) is a bump function with α(t) = 1 for t ≤ δ and α(t) = 0 for t ≥ 1 − λ
for some small λ > 0. We wish to show that St has the following properties:

(1) S0 = Id

(2) St is equal to the identity near ∂B(λ+ ε)

(3) S∗t ω0 = µ(t)ω0, where µ(t) : R→ R and µ(1) = λ2(1 + γ)2δ−2 on B(δ)

for some γ > 0.

(4) BR(λ+ ε) is a Lagrangian for S∗t ω0

The first three items above follow directly from the definitions of St, α and β. We
check item 4. Let c denote complex conjugation. Then St◦c = c◦St, and therefore
c∗S∗t ω0 = S∗t c

∗ω0 = −S∗t ω0, so BR is a Lagrangian for all t.
Now let Ft : M → M be the extension of ψ ◦ St ◦ ψ−1 : Im(ψ) ⊂ M → M

by the identity map, and set ωt = F ∗t ω. Now let

νt(z) = ψ

(
δ

1 + γ
z

)
:

(
B(1 + γ),

δ2

(1 + γ)2
µ(t)ω0

)
→ (M,ωt).

Then since ψ is a relative embedding, ν is a relative holomorphic embedding,
and since ν∗t ωt = δ2

(1+γ)2
µ(t)ω0, it is also symplectic. Now take the forms ω̃t ob-

tained by blowing up the family ωt by the embeddings νt. We claim that ω̃t verifies
the conclusion of the theorem. By definition, ν0 is a symplectic and holomorphic
map into M , so by Proposition 2.7, ω̃0 is compatible with J̃ . Since F1 is isotopic
to the identity, we see that [ω1] = [ω], from which it follows that [Π∗ω̃1] = [Π∗ω̃].
ω̃1 is therefore in the desired cohomology class, and the first part of the theorem is
proved.

IfM has a real structure φ, and ψ satisfies the hypotheses in the latter half of the
theorem, then by 2.10, blowing up the forms νt, we create a family of involutions
φ̃t on M̃ such that φ̃∗t ω̃t = −ω̃t and (φ̃t)∗J̃(φ̃t)∗ = −J̃ , finishing the proof of the
proposition. �
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We now prove Theorem 1.21.

Proof of Theorem 1.21. By Remark 1.20, there exists an almost complex structure
on M which is relatively integrable in a neighborhood of the points ψj(0). Then
by Proposition 2.14, there exists a manifold M̃ with submanifold L̃ and a family
of symplectic forms ω̃t on the M̃ such that L̃ is a Lagrangian for all ω̃t, and which
satisfies [ω̃t] = [Π∗ω] −∑q

k=1 λ
2
kek, where the ek are the Poincaré duals of the

exceptional spheres Ck added in the blow-up.
If, in addition, M has a real structure φ and Im(ψ) = Im(φ ◦ ψ), then, by

Remark 1.20, J may be chosen so that it is symmetrically integrable around the
points ψj(0) and φ∗Jφ∗ = −J . Therefore, by Proposition 2.14, there exists a
family of maps φ̃t on the blow-up such that φ̃∗t ω̃t = −ω̃t, and this proves the
theorem. �

2.2. Blow-down. We now construct the blow-down of a symplectic manifold (M̃, ω̃, L̃).
In particular, we will prove Theorem 1.22, stated again below.

Theorem (Theorem 1.22). (1) Let (M̃, ω̃) be a symplectic manifold with La-
grangian L̃. Suppose there is a (p, q)-mixed symplectic embedding

ψ̃ :

k∐
j=1

(Lj(rj), ρj(δj , λj),Rj(rj)) ↪→ (M̃, ω̃, L̃)

such that ψ−1(L̃) =
∐p
j=1Rj(rj). Let Cj ⊂ M̃ denote ψ̃j(L(0)), and let

C = ∪jCj .
Then there exists a symplectic manifold (M,ω), a (p, q)-mixed symplec-

tic embedding

(2.3) ψ :
k∐
j=1

(B(1 + 2ε), λjω0, BR(1 + 2ε))→ (M,ω,L),

a Lagrangian submanifold L ⊂ M , and an onto map Π : M̃ → M such
that the following is satisfied:

(a) Π is a diffeomorphism on M̃\C,

(b) Π(Cj) = pj ∈M , where pj is a point,

(c) Π(L̃) = L, and

(d) ω satisfies
[ω̃]− [Π∗ω] ∈ E ,
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where E is the linear vector space generated by e1, . . . , ek, the Poincaré
duals of the exceptional classes Ej = [ψ̃j(0)].

(2) Suppose, in addition, M̃ admits an anti-symplectic involution φ̃ which sat-
isfies

(a) Fix(φ̃) = L̃,

(b) Im(ψ̃) = Im(φ̃ ◦ ψ̃),

(c) Im(φ̃ ◦ ψ̃i) ∩ Im(ψ̃i) = ∅ if Im(ψi) ∩ L = ∅, and

(d) ψ̃i ◦ c̃ = φ̃ ◦ ψ̃i if Im(ψ̃i) ∩ L̃ 6= ∅.
Then (M,ω) admits an anti-symplectic involution φ such that φ ◦ Π =

Π ◦ φ̃.

In parallel to the blow-up construction, we begin by constructing a family of
forms on Cn from the forms ρ(δ, λ), which we will then use to construct the global
form in the blow-down. The following proposition is adapted from Proposition
5.1.B in [22].

Proposition 2.16. For every ε, δ, λ > 0, there exists a Kähler form τ = τ(ε, δ, λ)

on Cn such that the following holds:

(1) π∗(τ) = ρ(δ, λ) on L − L(1 + ε)

(2) τ = λ2ω0 on B(1) ⊂ Cn

(3) τ is compatible with i.

(4) c∗τ = −τ , where c denotes complex conjugation on Cn.

(5) Rn is a Lagrangian for τ .

Proof. Note first that ρ(δ, λ) = δ2ρ(1, ν) for ν = λ/δ. Let hλ(z) =

(
1 +

(
λ
|z|

)2
)1/2

.

Let β(t) be a bump function which is 1 for t ≤ 1 and 0 for t ≥ 1 + ε. Then we
define the map G : Cn → Cn by

G(z) =


νz for |z| ≤ 1

νβ(|z|) z
|z| + (1− β(|z|))hν

(
(1+ε)z
|z| )

)
(1+ε)z
|z| for 1 < |z| < 1 + ε

hν(z)z for |z| ≥ 1 + ε

and we define the form τ = δ2G∗ω0. We claim that τ satisfies the properties in
the proposition. The first property follows from Lemma 2.3, then second from the
definitions of τ and G for |z| ≤ 1, and the third follows from Lemmas 2.4 and
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2.5 and the fact that G is a monotone radial function. To see the fourth point, note
that G(z) = α(|z|)z for some real-valued function α : R → R. This implies that
c ◦G = G ◦ c, where c is complex conjugation on Cn, and therefore c∗δ2G∗ω0 =

δ2G∗c∗ω0 = −δ2G∗ω0, as desired. This, in turn, proves the fifth point as well, and
completes the proof. �

In parallel to the blow-up construction, we split the blow-down into two parts,
the relative blow-down, in which we consider only a Lagrangian, and we do not
consider a real structure, and the real blow-down. We now construct the relative
blow-down.

Proposition 2.17. Let (M̃, ω̃) be a symplectic manifold with Lagrangian L̃, and
let J̃ be an ω̃-tame (compatible) almost complex structure. Suppose there is a
(p, q)-mixed holomorphic and symplectic embedding

ψ :

k∐
j=1

(Lj(rj), ρj(δj , λj),Rj(rj), i) ↪→ (M̃, ω̃, L̃, J̃)

such that

ψ−1(L) =

p∐
j=1

Rj(rj).

Then the conclusions of the first part of Theorem 1.22 are satisfied.

Proof. We consider the case when (p, q) = (1, 0). Let ψ̃ : (L(1+2ε0), ρ(δ, λ),R(1+

2ε0)) → (M̃, ω̃, L̃) be a relative symplectic embedding such that ψ̃∗ω̃ = ρ(δ, λ).
We then perform a local complex blow down in L(1 + 2ε), and we define the
manifold M by

M := M̃\ψ̃(L(1 + 2ε)) ∪ψ̃◦π−1|∂L(1+2ε) B(1 + 2ε)

after which, as in the blow-up, we arrive at the commutative diagram

(2.4) (L(1 + 2ε),R(1 + 2ε))

π

��

� � ψ̃
// (M̃, L̃)

Π
��

(B(1 + 2ε), BR(1 + 2ε)) � �

ψ
// (M,L)

where Π is defined by

Π(x) =

x x ∈ M̃\ψ̃(L(1 + 2ε))

ψ ◦ π ◦ (ψ̃−1) x ∈ ψ̃(L(1 + 2ε)).
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We now define the following form on M :

ω =

(Π−1)∗ω̃ on M\ψ(B(1 + ε))

(ψ−1)∗τ(ε, δ, λ) on ψ(B(1 + 2ε)).

We check that the definition of ω agrees on ψ(B(1 + 2ε))\ψ(B(1 + ε)). On this
region, we have

ω = (ψ−1)∗τ(ε, δ, λ)

= (ψ−1)∗(π−1)∗ρ(1, λ)

= (ψ−1)∗π∗ψ̃∗ω̃

= (Π−1)∗ω̃,

so ω is well defined. Furthermore, we claim that ω is a symplectic form. Too see
this, note that Π is a diffeomorphism on Π−1(M\ψ(B(1 + ε))), so ωn is a volume
form on M\ψ(B(1 + ε)), and ω is therefore non-degenerate there. It is closed by
definition. For ψ(B(1 + 2ε)), we first note that by Proposition 2.16, τ is Kähler,
and therefore symplectic on R2n. Since ψ−1 is a diffeomorphism on B(1 + 2ε), ω
is non-degenerate here as well, and closed by definition.

We define the almost complex structure J on M by

J =

ψ∗iψ−1
∗ on Im(ψ)

Π∗J̃Π−1
∗ on M\Im(ψ)

Note that since π and ψ are holomorphic diffeomorphisms near the boundary
of their respective domains, ψ∗iψ−1

∗ = Π∗J̃Π−1
∗ on ψ(1 + 2ε)\ψ(1 + ε), and

so J is well defined. To see that ω tames (is compatible with) J , we first note
that Π is holomorphic and a diffeomorphism for x ∈ M̃ − L(1 + ε), and we
recall that ω = (Π−1)∗ω̃ on M\B(1 + ε). Therefore, if ω̃ tames J , then for
v, w ∈ TΠ(x)M , ω(v, Jv) = ω̃(Π−1

∗ v,Π−1
∗ J̃v) = ω̃(Π−1

∗ v, JΠ−1
∗ v) > 0, so

ω tames J on M\ψ(B(1 + ε). If, in addition, ω̃ is compatible with J̃ , then on
M\B(1 + ε), we have

ω(Jv, Jw) = (Π−1)∗ω̃(Jv, Jw)

= ω̃(Π−1
∗ Jv,Π−1

∗ Jw)

= ω̃(J̃Π−1
∗ v, J̃Π−1

∗ w)

= ω̃(Π−1
∗ v,Π−1

∗ w)

= (Π−1)∗ω̃(v, w)
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as desired.
For x ∈ L(1 + ε), we have that ω = (ψ−1)∗τ . Since τ is compatible with i, the

canonical complex structure on B(1 + 2ε), and ψ is holomorphic (tautologically,
by the definition of J), then ω is compatible with J on this region. Therefore, if ω̃
tames (is compatible with) J̃ on M̃ , then ω tames (is compatible with) J on M .

The condition on the cohomology class of ω follows immediately from the con-
struction. This completes the proof of the proposition. �

We now construct the real blow-down for a real symplectic manifold M̃ .

Proposition 2.18. Let (M̃, ω̃, φ̃) be a real symplectic manifold and let L̃ = Fix(φ̃).
Let J̃ be an ω̃-tame (compatible) almost complex structure on M̃ . Suppose that

ψ̃ :
k∐
j=1

(Lj(rj), ρj(δj , λj),Rj(rj), i) ↪→ (M̃, ω̃, L̃, J̃)

is a symplectic and holomorphic embedding such that

(1) ψ−1(L̃) =
∐k
j=1Rj(rj),

(2) Im(ψ̃) = Im(φ̃ ◦ ψ̃),

(3) Im(φ̃ ◦ ψ̃i) ∩ Im(ψ̃i) = ∅ if Im(ψi) ∩ L = ∅, and

(4) ψ̃i ◦ c̃ = φ̃ ◦ ψ̃i if Im(ψ̃i) ∩ L̃ 6= ∅.

Then the conclusions of the second part of Theorem 1.22 are satisfied.

As in the blow-up, we prove this in two parts. The first is the following.

Lemma 2.19. Let (M̃, ω̃, φ̃) be a real symplectic manifold and let L̃ = Fix(φ̃).
Let J̃ be an ω̃-tame (compatible) almost complex structure on M̃ , and suppose
that ψ̃ : (L(r), ρ(δ, λ),R(r)) ↪→ (M̃, ω̃, L̃) is a symplectic embedding such that
ψ̃ ◦ c = φ̃◦ ψ̃. Then the blow-down (M,ω,L) admits an anti-symplectic involution
φ and an almost complex structure J such that Fix(φ) = L and φ∗Jφ∗ = −J .

Proof. Construct the blow-down (M,ω) as in Proposition 2.17. Now define a map
φ by

φ(x) =

Π ◦ φ̃ ◦Π−1 x ∈M\ψ(B(1 + ε))

ψ ◦ c ◦ ψ−1(x) x ∈ ψ(B(1 + 2ε))
,
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Note that, for x ∈ ψ(B(1 + 2ε)−B(1 + ε)),

ψ ◦ c ◦ ψ−1(x) = ψ ◦ π ◦ c̃ ◦ π−1 ◦ ψ−1(x)

= Π ◦ ψ̃ ◦ c̃ ◦ ψ̃−1 ◦Π−1(x)

= Π ◦ φ̃ ◦Π−1(x),

so the map φ is well-defined and a diffeomorphism. Furthermore, φ2 = Id by
definition. To see that φ∗ω = −ω, we have, for x ∈M\ψ(B(1 + 2ε)),

φ∗ωx = φ∗(Π−1)∗ω̃x

= (Π−1)∗φ̃∗ω̃x

= −(Π−1)ω̃x

= −ωx,

and for x ∈ ψ(B(1 + 2ε)), we have

φ∗ωx = (ψ−1)∗c∗ψ∗(ψ−1)∗τ(ε, δ, λ)

= (ψ−1)∗c∗τ(ε, δ, λ)

= −(ψ−1)∗τ(ε, δ, λ)

= −ωx,

We now check that φ∗Jφ∗ = −J . For x ∈M\ψ(B(1 + ε)), we compute

φ∗J = Π∗φ̃∗Π
−1
∗ J

= Π∗φ̃∗J̃Π−1
∗

= −Π∗J̃ φ̃∗Π
−1
∗

= −JΠ−1
∗ φ∗Π∗

= −Jφ∗.

For x ∈ ψ(B(1 + 2ε)), we have

φ∗J = ψ∗c∗ψ
−1
∗ J

= ψ∗c∗iψ
−1
∗

= −ψ∗ic∗ψ−1
∗

= −Jψ∗c∗ψ−1
∗

= −Jφ∗,
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which completes the proof. �

Lemma 2.20. Let (M̃, ω̃, φ̃) be a real symplectic manifold and let L̃ = Fix(φ̃).
Suppose that γ̃ :

∐2
j=1(Lj(rj), ρj(δj , λj),R(r)) ↪→ (M̃, ω̃, L̃) is a symplectic

embedding such that ψ−1(L̃) = ∅ and Im(φ̃ ◦ γ̃1) = Im(γ̃2). Then the blow-
down (M,ω) admits an anti-symplectic involution φ.

Proof. Since Im(φ̃ ◦ γ̃1) = Im(γ̃2), we can replace γ with an embedding

ψ̃ :

2∐
j=1

(Lj(rj), ρj(δj , λj),R(r)) ↪→ (M̃, ω̃, L̃)

defined by

ψ̃ =

γ̃1(x) x ∈ L1

φ̃ ◦ γ̃1 ◦ c̃ ◦ ι̃(x) x ∈ L2,

where ι̃ :
∐2
j=1 Lj →

∐2
j=1 Lj is given by ι̃(x ∈ Lj) = x ∈ Lj+1 mod 2. Note

that c̃ ◦ ι̃ is a real structure on
∐2
j=1 Lj which makes ψ̃ a real map. The proof now

follows exactly the proof of Lemma 2.19, with c̃ ◦ ι̃ in place of c̃. �

Proof of Proposition 2.18. For each ψ̃j with Im(ψ̃j) ∩ L 6= ∅, we construct the
blow-down as in 2.19. The rest of the maps come in pairs by assumption, and for
each pair, we construct the blow-down as in 2.20. The Proposition follows. �

Theorem 1.22 now follows easily from the above propositions. We finish the
proof here.

Proof of Theorem 1.22. First, by Remark 1.20, there is an ε
′
> 0, ε′ < ε, and an

ω̃-tame almost complex structure J̃ such that J̃ is integrable on ψi(L(1 + 2ε′))

and which makes ψi|(Li(1+2ε′) holomorphic. Define N :=
∐k
i=1 Li(1 + 2ε

′
). If

M is not a real manifold, then we use Proposition 2.17 to blow down M̃ using
the map ψ|N . For a real manifold M̃ and a real embedding ψ̃, the theorem then
follows from Proposition 2.18, again using the restriction ψ|N . This completes the
proof. �

Remark 2.21. We should note that the forms obtained in the local models, i.e.
Propositions 2.1 and 2.16 are not the same as the forms constructed, respectively,
from blowing up Cn at 0 and blowing down L along the exceptional divisor using
Theorems 1.21 and 1.22. Constructing the genuine blow-up and blow-down forms,
even of Cn and L, still requires an auxiliary symplectic embedding of either B(r)

orL(r), and these are absent from the form constructions of τ and τ̃ in Propositions
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2.1 and 2.16. Because of this, we still use the constructions of Theorems 1.21 and
1.22, even in these cases.

2.3. Lemmata. In this section we prove the lemmas used in Sections 2.1 and 2.2
above. We first prove Lemma 2.3, which we restate here. This lemma is proved in
Guillemin and Sternberg [13] by different methods.

Lemma (Lemma 2.3). Let h : R2n → R be the function h(x) =
(

1 + λ2

|x|2

)1/2

and ω0 be the standard symplectic form on R2n. Let H : R2n\{0} → R2n\B(λ)

be the mapping given by H(x) = h(x)x. Then π∗H∗ω = ρ(1, λ) on L\{(0, l)|l ∈
CPn−1}.

Proof of Lemma 2.3. We recall from Definition 1.2 that for each κ, λ > 0, the
closed two-form ρ(κ, λ) on L(r) is defined by

ρ(κ, λ) = κ2π∗ω0 + λ2θ∗σ.

Now note that at a point x ∈ R2n, the differential form
∑

i dxi ∧ dyi(v, w) =

ω0(v, w) = vtAw, where

A =

(
0 −I
I 0

)
.

Therefore, H∗ω0(v, w) = ω0(H∗v,H∗w) = vtHt
∗AH∗w. Calculating the i, j-th

entry of H∗, we have

(H∗)ij =

(
1 +

λ2

|x|2
)−1/2

xixj
|x|4 +

(
1 +

λ2

|x|2
)1/2

δij .

Now let α =
(

1 + λ2

|x|2

)1/2
and B = 1

|x|4

(
(xixj)ij

)
. Then H∗ = αI + 1

αB, and

ω0(H∗v,H∗w) = ω0((αI +
1

α
B)v, (αI +

1

α
B)w)

= α2ω0(v, w) + ω0(v,Bw) + ω0(Bv,w) +
1

α2
ω0(Bv,Bw).

We first claim that ω0(B·, B·) = 0. To see this, note that B is a symmetric
matrix, and therefore Bt = B. We write

B =

(
C D

D E

)
,
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where C,D, and E are n × n matrices, and C and E are symmetric. With this
notation,

BtAB =

(
C D

D E

)(
0 −I
I 0

)(
C D

D E

)

=

(
C D

D E

)(
−D −E
C D

)
=

(
0 D2 − CE

CE −D2 0

)
.

However, Dij = Bi,j+n = Bj+n,i, and Cij = Bij , Eij = Bi+n,j+n, and therefore

|x|8(D2)ij =
∑
k

DikDkj =
∑
k

Bi,k+nBk,j+n =
∑
k

xixk+nxkxj+n

|x|8(CE)ij =
∑
k

CikEkj =
∑
k

BikBk+n,j+n =
∑
k

xixkxk+nxj+n

which implies that D2 − CE = 0.
Let {ei, fi}ni=1 ∈ R2n be the standard basis in R2n, and let zdz and zdz denote∑n
i=1 zidzi and

∑n
i−1 zidzi, where zi = xi + ixi+n, i ∈ {1, . . . , n}. Then

|x|4ω0(ei, Bej) + ω0(Bei, ej) = xixj+n − xjxi+n = −izdz ∧ zdz(ei, ej),
ω0(ei, Bfj) + ω0(Bei, fj) = −xixj − xi+nxj+n = −izdz ∧ zdz(ei, fj),
ω0(fi, Bej) + ω0(Bfi, ej) = xixj + xi+nxj+n = −izdz ∧ zdz(fi, ej), and

ω0(fi, Bfj) + ω0(Bfi, fj) = −xixj+n + xjxi+n = −izdz ∧ zdz(fi, fj).

Note that here we understand ei ∈ Rn ⊂ Cn, and fi = iei ∈ iRn ⊂ Cn. Therefore
H∗ω0 = ω0 − i

(
λ2dz∧dz
|x|2 + λ2zdz∧zdz

|z|4

)
, so π∗H∗ω0 = π∗ω0 + λ2θ∗σ by Section

4 of Guillemin and Sternberg [13]. This completes the proof. �

We now use this lemma to prove the following proposition.

Proposition 2.22. For each κ, λ > 0, ρ(κ, λ) is a symplectic form on L.

Proof. Let Ω = ωn0 denote the volume form on R2n, and let H be defined as in
the proof of Lemma 2.3. Since H ◦ π is diffeomorphism on L∗ := L\{(0, z)|z ∈
CPn−1}, π∗H∗Ω is a volume form on L, and therefore ρ(1, λ) is non-degenerate
for any λ > 0. Since ρ(κ, λ) = δ2ρ(1, λ/κ), this implies that ρ(κ, λ) is non-
degenerate for κ, λ > 0 as well. Since both ω0 and σ are closed, ρ(κ, λ) is closed
as well on L∗.

Now let (0, l) ∈ L(0). Then T(0,l)L ≡ TlCP 1 ⊕ T0C. Taking v ∈ TlCP 1.
Then ρ(κ, λ)(v, iv) = λ2θ∗σ(v, iv) = σ(v, iv) > 0. Similarly, for v ∈ T0C,
ρ(κ, λ)(v, iv) = π∗ω0(v, iv) > 0, and therefore ρ(κ, λ) is non-degenerate on
L(0). Since ρ(κ, λ) is closed as well, the form is symplectic as desired. �
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We now give the proof of Lemma 2.4, which we restate below.

Lemma (Lemma 2.4). Let (M,ω) be a symplectic manifold. Then ω is a Kähler
form iff ω is compatible with an integrable almost complex structure J .

Proof of Lemma 2.4. First, assume that ω is compatible with J . We must show
that iω∈Ω2(M)⊗C is the imaginary part of a Hermitian metric. For each x ∈M ,
define gx(v, w) := ωx(Jv,w). Since ω is compatible with J , g is a Riemannian
metric on M . Now let Hx(v, w) := gx(v, w) + iωx(v, w). Then

Hx(Jv,w) = gx(Jv,w) + iω(Jv,w)

= ωx(J2v, w) + ig(v, w)

= −ωx(v, w) + ig(w, v)

= i(gx(v, w) + iω(v, w))

= iHx(v, w)

We also have

Hx(v, Jw) = g(v, Jw) + iω(v, Jw)

= g(Jw, v)− iω(Jw, v)

= ω(J2w, v)− ig(w, v)

= −ω(w, v)− ig(v, w)

= ω(v, w)− ig(v, w)

= −iHx(v, w)

= iHx(v, w)

It follows from the linearity of ωx and gx that H is complex linear in the first
variable and complex anti-linear in the second. It only remains to show that H is
positive definite. If v ∈ Rn, then

H(v, v) = H(v, v) = g(v, v) + i · 0 > 0

We now assume v = Jw for some w ∈ Rn. Then

H(v, v) = H(Jw, Jw) = iiH(w,w) = H(w,w) > 0,

and H is therefore a Hermitian metric with iω as its imaginary part. Since ω is
closed, H is a Kähler metric, and ω is its Kähler form.
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Now suppose that ω is a Kähler form of the Kähler metric H(v, w). We wish to
show that ω is compatible with J . First, note that ω = Im(H) = −i

2 (H −H), and

ω(Jv, Jw) =
−i
2

(H(Jv, Jw)−H(Jv, Jw))

=
−i
2

(H(v, w)−H(v, w))

= ω(v, w)

Next, for any v 6= 0 we have

ω(Jv, v) =
−i
2

(H(Jv, v)−H(Jv, v))

=
−i
2

(iH(v, v)− iH(v, v))

=
1

2
(H(v, v) +H(v, v))

= Re(H(v, v)) > 0

as desired. Therefore ω is compatible with J . �

We now prove Lemma 2.5, which we restate here. First recall from Definition
2.2 that f : Cn → Cn is a monotone radial function if f(z) = α(|z|)z for some
real-valued function α : R→ [0,∞), and if |z0| ≤ |z1| =⇒ |f(z0)| ≤ |f(z1)|.

Lemma (Lemma 2.5). Let ω be a Kähler form on Cn, and suppose f : Cn\{0} →
Cn\{0} is a monotone radial function. Then f∗ω is a Kähler form.

Proof of Lemma 2.5. By Lemma 2.4, we must show that f∗ω is compatible with i,
the standard almost complex structure for Cn. Let z ∈ Cn v, w ∈ TzCn ∼= Cn.
We denote by zv the vector in TzCn with coordinates identical to z ∈ Cn. Because
ω tames i, the subspace Tz(Czv) ∼= Span{zv, izv} is symplectic, and therefore
TzCn ∼= Tz(Czv)⊕ (Tz(Czv))ω, where (Tz(Czv))ω denotes the symplectic com-
plement of Tz(Czv). We now write v and w as v = x0 + α0z

v + β0iz
v, w =

x1 + α1z
v + β1iz

v, where αi, βi ∈ R, and xi ∈ (Tz(Czv))ω. Since f is radial, we
have that it is of the form f = f0(|z|)zv. Therefore, df(z)(xn +αnz

v + iβnz
v) =

xn + g(|z|)αzv + βizv. Furthermore, since the norm of f is non-decreasing, g is
a non-negative real valued function of one real variable. Therefore

df(z)(i(xn + αnz
v + iβnz

v)) = df(z)(ixn + iαnz
v − βnzv)

= ixn + iαnz
v − g(|z|)βnzv.
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Computing f∗ω(iv, v), we see that

f∗ω(iv, v) = ω(f∗iv, f∗v)

= ω(ix0 + iα0z
v − g(|z|)β0z

v, x+ α0z
v + ig(|z|)β0z

v)

= ω(ix0, x0) + ω(i(α0 + ig(|z|)β0)zv, (α0 + ig(|z|)β0)zv)

+ ω(i(α0 + ig(|z|)β0)zv, x0) + ω(ix0, (α0 + g(|z|)β0)zv)

> 0.

The last two terms on the right are equal to zero because x0 ∈ Span{zv, izv}ω, and
the first two terms are greater then zero because ω(i·, ·) is a Riemannian metric.

Similarly, computing f∗ω(iv, iw), we have

f∗ω(iv, iw) = ω(f∗iv, f∗iw)

= ω(f∗i(x0 + α0z + β0iz), f∗i(x1 + α1z + β1iz))

= ω(ix0 + α0iz − β0g(|z|)z, ix1 + α1iz − β1g(|z|)z)
= ω(ix0, ix1) + ω(i(α0 + iβ0g(|z|))z, i(α1 + iβ1g(|z|))z)

+ω(ix, i(α1 + iβ1g(|z|))z) + ω(i(α0 + iβ0g(|z|))z, ix)

= ω(ix0, ix1) + ω(i(α0 + iβ0g(|z|))z, i(α1 + iβ1g(|z|))z)
= ω(x0, x1) + ω((α0 + iβ0g(|z|))z, (α1 + iβ1g(|z|))z)
= ω(x0,x1) + ω(α0z, β1g(|z|)iz) + ω(β0g(|z|)1iz, α1z)

= ω(x0, x1) + α0β1g(|z|)ω(z, iz) + α1β0ω(iz, z)

= ω(x0, x1) + g(|z|)(α0β1 − α1β0)ω(z, iz).

The fifth and sixth equalities in the above calculation follow from the fact that
x, ix ∈ (Span{z, iz})ω and because ω tames i by hypothesis. On the other hand,
we have
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f∗ω(v, w) = ω(f∗v, f∗w)

= ω(f∗(x0 + α0z + β0iz), f∗(x1 + α1z + β1iz))

= ω(x0 + α0g(|z|)z + β0iz, x1 + α1g(|z|)z + iβ1z)

= ω(x0, x1) + ω((α0g(|z|) + iβ0)z, (α1g(|z|) + iβ1)z)

+ ω(x, (α1g(|z|) + iβ1)z) + ω((α0g(|z|) + iβ0)z, x)

= ω(x0, x1) + ω((α0g(|z|) + iβ0)z, (α1g(|z|) + iβ1)z)

= ω(x0, x1) + ω(α0g(|z|)z, β1iz) + ω(β0iz, α1g(|z|)z)
= ω(x0, x1) + α0β1g(|z|)ω(z, iz) + α1β0g(|z|)ω(iz, z)

= ω(x0, x1) + g(|z|)(α0β1 − α1β0)ω(z, iz)

= f∗ω(iv, iw)

as desired. �

Lemma 2.23. Let (M,ω) be a symplectic manifold, and let J be an almost complex
structure tamed by ω. Suppose there exists an anti-holomorphic involution φ (a
map φ : M → M such that φ2 = Id and φ∗Jφ∗ = −J). Then the 2-form
ω = 1

2(ω − φ∗ω) has the properties

(1) ω is symplectic

(2) φ∗ω = −ω
(3) ω tames J

Proof. Since ω tames J , we have that

ω =
1

2
(ω(v, Jv)− ω(φ∗v, φ∗Jv)) =

1

2
(ω(v, Jv) + ω(φ∗v, Jφ∗v) > 0,

and therefore ω tames J . It follows that ω is non-degenerate. Furthermore, dω =
1
2d(ω − φ∗ω)) = 0, so ω is closed, and therefore symplectic. �

2.4. Invariant Symplectic Neighborhoods and the Moser Stability Theorem
in Real Symplectic Manifolds. In this section we present a version of the Sym-
plectic Neighborhood Theorem adapted to leave invariant the fixed-point set of a
real symplectic manifold (M,ω, φ). We will use this below to establish real pack-
ing results in (CP 2,RP 2). We closely follow the presentation of the analogous
theorems for symplectic manifolds with no real structure in McDuff and Salamon
[23].
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We begin with a definition.

Definition 2.24. Let M be a smooth manifold and let G be a compact Lie group
which acts smoothly on M . We say that a vector field X on M is equivariant with
respect to G (or G-equivariant) if ∀x ∈M, g ∈ G, we have X(gx) = g∗X(x).

We now quote the following standard result in equivariant dynamics, which we
quote from Ortega and Ratiu [25] (Proposition 3.3.2(i))

Proposition 2.25. Let M be a smooth manifold, A a subgroup of the group of
diffeomorphisms of M . Let U be an A-invariant open subset of M , and X an A-
equivariant vector field defined on U . Then, the domain of definition Dom(Ft) ⊂
U of the flow Ft of X is A-invariant and Ft is itself A-equivariant.

Lemma 2.26. Let (M,ω, φ) be a real symplectic manifold with Fix(φ) = L, and
suppose ωt, t ∈ [0, 1] is a smooth family of symplectic forms with ω0 = ω and
φ∗ωt = −ωt. Suppose, furthermore, that there exists a family of one-forms σt
with d

dtωt = dσt and φ∗σt = −σt. Then there exists a family of diffeomorphisms
αt : M →M such that

α∗tωt = ω0,(2.5)

αt(L) ⊆ L,(2.6)

αt ◦ φ = φ ◦ αt.(2.7)

Proof. We first note that, since the ωt are non-degenerate, there exists a unique
vector field Xt which satisfies

(2.8) σt + ι(Xt)ωt = 0.

. Given such a vector field Xt, let αt be the solutions of

d

dt
αt = Xt ◦ αt,(2.9)

α0 = Id.(2.10)

We now note that, because ωt is closed, dωt = 0, and d
dtωt = dσt, Equation 2.8

implies that

0 = α∗t

(
d

dt
ωt + ι(Xt)dωt + dι(Xt)ωt

)
=

d

dt
α∗tωt.
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If Xt is φ-equivariant, then by 2.25 the flow αt will be φ-equivariant as well. To
see that Xt is φ-equivariant, we first remark that

φ∗(σt + ι(Xt)ωt) = 0,

= φ∗σt + φ∗ι(Xt)ωt

= −σt + φ∗ι(Xt)ωt,

which implies that φ∗ι(Xt)ωt = σt = −ι(Xt)ωt. Therefore, for all v ∈ TqM ,

ωt(φ(q);Xt(φ(q)), φ∗v) = −ωt(q;Xt(q), v).

However, −ωt(q;Xt(q), v) = ωt(φ(q);φ∗Xt(q), φ∗v), so

ωt(φ(q);Xt(φ(q)), φ∗v) = ωt(φ(q);φ∗Xt(q), φ∗v).

Since this is true for all v ∈ TqM , φ∗ is an isomorphism, and ωt is non-degenerate,
this implies that φ∗Xt(q) = Xt(φ(q)), and therefore the vector field Xt is φ-
equivariant.

Furthermore,for v ∈ TqL, v 6= 0, we have that σt(q; v) = −σt(q;φ∗v) = 0,

so ω(q;Xt, v) = 0, which implies that Xt ∈ TqL ⊂ TqM . Since this is true
for all t ∈ [0, 1], the diffeomorphisms αt determined by equation 2.9 satisfy the
constraints in equation 2.6 as required. �

Lemma 2.27. Let M be a 2n-dimensional smooth manifold, and let φ : M → M

be a diffeomorphism with φ2 = Id. Let L = Fix(φ), and suppose Q ⊂ M is a
φ-invariant submanifold. Suppose that ω0, ω1 ∈ Ω2(M) are closed two forms with
φ∗ωi = −ωi and such that, at every point q ∈ Q, ω0|TqM = ω1|TqM and the ωi
are non-degenerate on TqM . Then there exist neighborhoods N0,N1 of Q and a
diffeomorphism α : N0 → N1 which satisfies

(1) α|Q = Id,

(2) α∗ω1 = ω0,

(3) α(N0 ∩ L) ⊂ L,

(4) α ◦ φ = φ ◦ α.

Proof. We may assume thatQ∩L 6= ∅, since, if this was not the case, we could just
take the Ni small enough so that Ni ∩ L = ∅ and invoke the ordinary symplectic
neighborhood theorem.
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We first show that there exists a 1-form σ ∈ Ω1(N0) such that

σ|TQM = 0 = σ|TL,(2.11)

φ∗σ = −σ,(2.12)

dσ = ω1 − ω0.(2.13)

To prove this, we endow M with a φ-invariant Riemannian metric, and consider
the restriction of the exponential map to the normal bundle TQ⊥. Since Q is φ-
invariant, TQ is φ∗ invariant inside TM , and, therefore, since φ∗ is an isomorphism
from TxM to Tφ(x)M , TQ⊥ is φ∗-invariant as well. Now, for a real number ε > 0,
consider the neighborhood of the zero section of TQ⊥

Vε = {(q, v) ∈ TM |q ∈ Q, v ∈ TqQ⊥, |v| < ε}.

Define the set Uε := (Vε ∪ φ(Vε)). Then Uε is φ-invariant, and for ε sufficiently
small, the restriction of the exponential map to Uε is a diffeomorphism from Uε to
a neighborhood N1 of Q. By a standard result in equivariant differential topology
(Lemma 3.6, to be proven in Section 3.1), exp is equivariant as well. Now define
ψt : Uε → N1, 0 < t < 1, by ψt(exp(q, v)) = exp(q, tv). For t > 0, ψt is
a diffeomorphism onto its image. At t = 0, Im(ψ) ⊆ Q, at t = 1, ψ1 = Id,
and ψt|Q = Id for all t ∈ [0, 1]. Since exp is equivariant, we also have ψt ◦
φ(exp(q, v)) = ψt(exp(c(q), φ∗v)) = exp(φ(q), tφ∗v) = φ ◦ exp(q, tv) = φ ◦ψt,
so φ and ψt commute.

Let τ = ω1 − ω0. Then ψ∗0τ = 0 and ψ∗1τ = τ , and since ψt is an equivariant
diffeomorphism, we may define a φ-equivariant vector field for t > 0 by Xt =

( ∂∂tψt) ◦ ψ−1
t . Note that Xt becomes singular at t = 0. Nonetheless, we have

d

dt
ψ∗t τ = ψ∗tLXtτ = d(ψ∗t ι(Xt)τ).

Let σt = ψ∗t ι(Xt)τ . Therefore, d
dtψ
∗
t τ = dσt, and, by the definition of Xt, σt is

equal to

σt(q; v) = τ(ψt(q);
d

dt
ψt(q), dψt(q)v).

Since σt vanishes onQ for all t, we may define σ0 = 0, making σt a smooth family
for t ∈ [0, 1]. In addition, we have that

τ = ψ∗1τ − ψ∗0τ =

ˆ 1

0

d

dt
ψ∗t τ dt = dσ,

where σ =
´ 1

0 σtdt. It also follows from the equivariance of ψt that (q, v) ∈ TL,
σt = 0 for all t ∈ [0, 1]. To see this, note that for (q, v) ∈ TL, dψt(q)v ∈ TqL, and
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since ψt(q) ∈ L for all t, then d
dtψt(q) ∈ Tψt(q)L as well, making σt(q; v) vanish

by definition of τ , because L is Lagrangian for ω0 and ω1. To see that φ∗σt = −σt,
we compute

φ∗σt(v) = φ∗τ(ψt(q);
d

dt
ψt(q), dψt(q)·)(v)

= ω1(ψt ◦ φ(q);
d

dt
ψt(φ(q)), dψt ◦ dφ(q)v)

−ω0(ψt ◦ φ(q);
d

dt
ψt(φ(q)), dψt ◦ dφ(q)v)

= ω1(φ ◦ ψt(q);
d

dt
φ ◦ ψt(q), dφ ◦ dψt(q)v)

−ω0(φ ◦ ψt(q);
d

dt
φ ◦ ψt(q), dφ ◦ dψt(q)v)

= (ω1(φ ◦ ψt(q); dφ
d

dt
ψt(q), dφ ◦ dψt(q)v)

−ω0(φ ◦ ψt(q); dφ
d

dt
ψt(q), dφ ◦ dψt(q) · v))

= −τ(ψt(q);
d

dt
ψt(q), dψt(q)v)

= −σt(v).

Therefore, φ∗ω =
´ 1

0 φ
∗σt dt = −ω. We have now created the desired 1-form.

Now consider the family of two-forms onN0 given by ωt = ω0 + t(ω1−ω0) =

ω0 + tdσ, t ∈ [0, 1], and note that φ∗ωt = −ωt and d
dtωt = dσ. The result now

follows from Lemma 2.26. �

Theorem 2.28. For j = 0, 1 let (Mj , ωj , cj) be real symplectic manifolds with
compact cj-invariant symplectic submanifolds Qj . Suppose that there is an equi-
variant symplectic isomorphism Φ : νQ0 → νQ2 of the symplectic normal bundles
to Q0 and Q1 such that the restriction of Φ to the zero section is the symplec-
tomorphism ψ : (Q0, ω0) → (Q1, ω1). Then there exist cj-invariant neighbor-
hoods Nj of the Qj such that ψ extends to an equivariant symplectomorphism
ψ
′

: (N0, ω0, c0)→ (N1, ω1, c1), and dψ
′

induces Φ on νQ0 .

Proof. We first show thatψ extends to an equivariant diffeomorphismψ1 : N (Q0)→
N (Q1) that induces the map Φ on νQ0 . By Lemma 3.6, we may take the maps expi
on TMi to be equivariant with respect to ci. Define the map ψ1 = exp1 ◦Φ◦exp−1

0 ,
and consider the forms ω0 and ω

′
1 = (ψ1)∗ω1 on N (Q0). Note that, by construc-

tion, they are non-degenerate and they correspond on TQ0M0. By Lemma 2.27,
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there is an equivariant diffeomorphism ψ of N (Q0) such that ψ
∗
ω
′
1 = ω0. The

composition ψ
′

= ψ1 ◦ ψ is the desired map. �

Proposition 2.29. Let (M,ω, φ) be a real symplectic manifold with real locus
L := Fix(φ). Let x ∈ L. Then there exists a symplectic equivariant map from a
neighborhood U of 0 in (R2n, ω0, c) to a neighborhood V of x ∈M .

In order to prove this proposition, we will need the following lemma.

Lemma 2.30. Let Φ : R2n → R2n be a linear map such that Fix(Φ) = Rn (seen
as the real part of Cn), Φ2 = Id and Φ∗ω0(v, w) = −ω0(v, w) for all v, w ∈ R2n.
Then there exists a linear symplectic isomorphism Ψ : R2n → R2n such that
ΨΦ = c∗Ψ, where c is the standard anti-symplectic involution on R2n.

Proof. We first consider the case n = 1. (We do this to demonstrate the construc-
tion. The proof does not proceed by induction.) Let v ∈ Fix(Ψ) = Fix(c∗)

such that ω0(v, iv) = 1, where i is the standard complex structure on R2. Then
R2 = Span{v, iv}. Let w be an eigenvector of Ψ with eigenvalue −1. Let
β := ω0(v, w). Now note that {v, iv} and {v, w} are bases for R2. We define
the map Ψ : R2 → R2 to be the matrix sending v 7→ v and w 7→ (0, ω0(v, w)),
where the coordinates are the standard (x, y) = (v, iv) coordinates on R2. Then,
for two vectors av + bw, cv + dw, we have

ω0(av + bw, cv + dw) = ω0(av, dw) + ω0(bw, cv)

= (ad− bc)β.

On the other hand,

ω0(Ψ(av + bw),Ψ(cv + dw)) = ω0(av + β · biv, cv + β · div)

= (ad− bc)β.

Since the constants a, b, c, d ∈ R were arbitrary, we see that Ψ is a linear symplec-
tomorphism.

Now consider Φ : R2n → R2n, a linear anti-symplectic involution withFix(Φ) =

Rn. Let ei, i ∈ {1, . . . , 2n} denote the standard basis in R2n, and consider the stan-
dard coordinates (x1, . . . , xn, y1, . . . , yn) in R2n. Take a basis (v1, . . . , vn) of the
−1 eigenspace of Φ, and define the map Ψ : R2n → R2n to be the unique linear
map sending ei 7→ ei, and vi 7→ (0, . . . , 0, ω0(e1, vi), . . . , ω0(en, vi)), where there
are n leading zeros in the coordinate (i.e. the −1 eigenspace of Φ is sent to the −1

eigensapce of c∗).
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We now show that Ψ is a symplectomorphism. First note that for i ∈ {1, . . . , n}
we have ω0(ei, ej) = 0 = Φ∗ω0(ei, ej). Furthermore, we see that

−ω0(vi, vj) = Φ∗ω0(vi, vj) = ω0(Φvi,Φvj) = ω0(vi, vj),

which implies that ω0(vi, vj) = 0 = Φ∗ω(vi, vj). Now note that

Φ∗ω0(ei, vj) = ω0(ei, vj)ω0(ei, ei) = ω0(ei, vj),

as desired. Since ΨΦ = Φc∗, the proof of the lemma is complete. �

Proof of 2.29. We first consider a φ-invariant chart (U,α), α : U ⊂ M → R2n

centered at the point p ∈ L which sends L→ Rn ⊂ Cn. We now consider the real
structure Φ := α◦φ◦α−1 on Im(α). By Lemma 2.30, there is a linear symplectic
isomorphism Ψ : R2n → R2n such that Φ∗Ψ = c∗Ψ at the point 0. Now apply
Theorem 2.28 to the point 0 ∈ R2n. �

We now prove a real version of the Moser stability theorem.

Proposition 2.31. Let M be a closed manifold, and suppose that ωt is a family
of cohomologous symplectic forms on M with anti-symplectic involution φ, i.e.
such that φ∗ωt = −ωt. Then there is a family of diffeomorphisms ψt such that
φ ◦ ψt = ψt ◦ φ, ψ0 = id, and ψ∗t ω = ωt.

Proof. We must show that there is a smooth family of one forms σt such that

(2.14) dσt =
d

dt
ωt

and φ∗σt = −σt.
The proof of Moser stability theorem (Theorem 3.17 in [23]) shows that there

exists a smooth family of one forms τt satisfying (2.14). Let σt = 1
2(τt − φ∗τt).

Then dσt = 1
2( ddtωt − φ∗ ddtωt) = 1

2( ddtωt − d
dtφ
∗ωt) = d

dtωt. Applying Lemma
2.26, we arrive at the desired result. �

2.5. Locally holomorphic maps. In this section we show that, given a relative
or real symplectic embedding ψ : (B(1), λ2ω0, BR(1)) → (M,ω,L) and an
almost complex structure on M which satisfies some additional conditions, we
may find a form ω

′
on M isotopic to ω, and a relative symplectic embedding

ψ
′

: (B(1), λ2ω0, BR(1)) → (M,ω
′
, L) with the same image as ψ but which

is holomorphic near the origin. We state the main proposition of this section here.
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Proposition (Proposition 2.15). (1) Let (M,ω) be a symplectic manifold and
let L ⊂M be a Lagrangian submanifold. Let

ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω,L)

be a relative symplectic embedding, and let J be an almost complex struc-
ture on M which tames ω and is relatively integrable at ψ(0) ∈ L.

Then, for every compact subset K ⊂ M\ψ(0) there exists a number
δ
′ ∈ (0, 1), a symplectic form ω

′
on M isotopic to ω, and a relative sym-

plectic embedding

ψ
′

: (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω
′
, L)

with the following properties:

(a) ψ
′ |B(δ′) is holomorphic

(b) ω′ tames J and coincides with ω on K

(c) L is a Lagrangian for ω′

(2) In addition to the above, suppose thatM is a real symplectic manifold with
real structure φ, Fix(φ) = L, J satisfies φ∗Jφ∗ = −J , J is symmetrically
integrable around ψ(0), and φ ◦ ψ = ψ ◦ c.

Then we can construct the map ψ
′

and the symplectic form ω
′

on M to
satisfy the conclusions above, and so that φ is a real structure for ω

′
and

ψ
′

satisfies φ ◦ ψ′ = ψ
′ ◦ c.

In the proof we will use the following lemma, which is a modification of Propo-
sition 5.5.B in McDuff and Polterovich [22].

Lemma 2.32. Let ω be a symplectic form on B(1) which tames the standard com-
plex strcutre i and satisfies c∗ω = −ω for the standard real structure c. Then there
exists a family of symplectic forms on B(1), say Ωt, t ∈ [0, 1] with the following
properties:

(1) Ω0 = ω

(2) Ωt coincides with ω near the boundary of the ball;

(3) Ωt tames i;

(4) Ω1 is i-standard near 0, i.e. it is Kähler, and the associated metric is flat.

(5) c∗Ωt = −Ωt, and, in particular, BR(1) is a Lagrangian for Ωt.
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Proof. We divide the proof into three steps.
Step 1. We claim that for every κ > 1 and every 1 > ε > 0, there exists a Kähler

form, say τκ on B(1) which is equal to κ2ω0 in B(ε/2κ) and coincides with ε2ω0

near the boundary, where ω0 is the standard symplectic form onB(1). Indeed, take
the monotone map h defined by h(z) = (κ/ε)z for z ∈ B(ε/2κ) and h is equal
to the identity map near the boundary. Then the form τκ = h∗(ε2ω) is Kähler by
Lemma 2.5.

Step 2. Let ρ be a bump function on R2n which is radial, equal to 1 near the
origin, and vanishes for |z| > 1 − δ, for some δ > 0. Let ω0 be the standard
symplectic form on R2n. Choose ε > 0 so that ω − ε2ω0 tames i, and set ρκ(z) =

ρ(2(κ/ε)z). Finally, denote by β a primitive of ω so that ω = dβ. Now consider
the family of forms

ω
′
t(κ) = ω + t(τκ − ε2ω0 − d(ρκβ)).

We claim that ω
′
t(κ) satisfies the first four properties provided κ is sufficiently

large.
We note that ω

′
t(κ) coincides with ω near the boundary for all t, and near the

origin ω
′
1(κ) is equal to (κ2 − ε2)ω0, and is therefore J-standard there. Moreover,

ρk = 0 outside B(2ε/κ), and therefore ω
′
t(κ) = ω − t(ε2ω0 + τκ) there. By

assumption on ε, ω − tε2ω0 tames i on this region, and since τk is Kähler and
t ≤ 1, ωt′(κ) tames i as well.

We now check that ω
′
t(κ) tames i inside B(ε/2κ). On this region

ω
′
t(κ) = t(κ2 − ε2)ω0 + (1− tρκ)ω − 2t(κ/ε)dρ ∧ β.

Since B(ε/2κ) is compact, the sphere bundle

S = {(x, ξ)|x ∈ B, |ξ| = 1} ⊂ TR2n

is compact, and therefore the function dρκ ∧β(ξ, iξ) has a maximum, say α, on S.
For any ξ ∈ TxB(1),

dρκ ∧ β(ξ, iξ) = |ξ|2dρκ ∧ β
(
ξ

|ξ| , i
ξ

|ξ|

)
and therefore the maximum of dρk ∧ β(ξ, iξ) on Sa = {(x, ξ)|x ∈ B, |ξ| = a} ⊂
TR2n is |ξ|2α. We conclude that ω

′
t(κ)(ξ, iξ) > ((κ2 − ε2 − α(κ/ε))|ξ|2t. Since

the quantity on the right is positive for sufficiently large κ, ω
′
t(κ) tames i if we

choose κ large enough. It follows, additionally, that ω
′
t(κ) is symplectic for every

t.
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Step 3. We see from the above that the family of symplectic forms ω
′
t(κ)

satisfies the first four properties, but does not necessarily respect the real struc-
ture. By Lemma 2.23, however, since ω

′
t(κ) tames i and c∗ic∗ = −i, the forms

Ωt = 1
2(ω

′
t(κ) − c∗ω′t(κ)) are symplectic, and satisfy the last property. We check

that it satisfies the first three properties as well. Ω tames i by Lemma 2.23, and,
since ω

′
t(κ) = t(κ2 − ε2)ω0 near the origin, Ωt(κ) = ω

′
t(κ) near the origin, and is

therefore i-standard on the same region as ω
′
t(κ). Furthermore, since ω

′
1(κ) coin-

cides with ω near the boundary of the ball and c∗ω = −ω, then Ω1 = ω
′
1(κ) = ω

near the boundary of the ball as well. Thus Ωt(κ) satisfies the conclusion of the
lemma for κ sufficiently large. Furthermore, since Ω0 = ω0 = ω, this completes
the proof. �

Proof of Proposition 2.15. The goal of the proof is to find a diffeomorphism H :

M → M supported in a neighborhood of ψ(0) and which is C1-close to the iden-
tity, and then define a new form ω

′
by (H−1)∗ω and a new embedding ψ

′
:= H◦ψ.

The proof proceeds in three steps. First, we perturb the form ω in a neighborhood
of ψ(0) so that the new form is J-standard close to ψ(0). Second, we find a sym-
plectomorphism s : B(1 + 2ε) → B(1 + 2ε) with support near ψ(0) such that
s ◦ ψ is J-holomorphic at the point 0 ∈ B(1 + 2ε). Third, we use a symmetric,
holomorphic chart around ψ(0) to find a diffeomorphism H : M → M which
gives (H−1)∗ω and H ◦ ψ the desired properties.

We first assume that M is a real symplectic manifold with real structure φ, J
satisfies φ∗Jφ∗ = −J , and ψ ◦ c = φ ◦ ψ.

Step 1. Let (V, γ), γ : V ⊂ M → Cn be a symmetric, holomorphic chart cen-
tered at ψ(0) which exists because J is symmetrically integrable around ψ(0). Let
W ⊂ γ(V ) be a small ball centered at 0 inside γ(V ), and let ω

′
= (γ−1)∗ω. By

Lemma 2.32, (γ−1)∗ω is isotopic to a form ω which is i-standard near 0 and coin-
cides with (γ−1)∗ω near the boundary of W . Therefore, by Proposition 2.31, there
is a c-equivariant diffeomorphism f : W → W which fixes 0 and is the identity
near the boundary of W such that ω = f∗(γ−1)∗ω. We pull back f to γ−1(W ) by
defining F := γ−1 ◦ f ◦ γ, and we extend F to an equivariant diffeomorphism F

′

on M by defining it to be the identity outside γ−1(W ). We now consider the form
Ω = (F

′
)∗ω, which is now J-standard near ψ(0). We replace the embedding ψ by

ψ
′

:= (F
′
)−1 ◦ ψ, which is a symplectic embedding for Ω.

Step 2. Consider the almost complex structure j = (ψ
′
)−1
∗ Jψ

′
∗ on B(1 + 2ε).

By the above paragraph, we see that we may choose a chart (U, γ
′
), γ

′
: U →
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Cn of ψ
′
(0) which is symplectic, holomorphic, and symmetric. Therefore, A =

((ψ
′
)−1)∗(γ)

′
∗(0) is a symplectic linear map from R2n → R2n such that Ai = jA

and Ac = cA. We note that the composition ψ
′ ◦ A is therefore equivariant and

that it satisfies ψ
′
∗ ◦ A∗ ◦ i = J ◦ ψ′∗ ◦ A∗ at 0. For the remainder of the proof, we

let α := ψ
′ ◦A.

Step 3.We now wish to find a differentiable map H : M →M such that

(1) H ◦α : (B(1 + 2ε), i)→ (M,J) is holomorphic on a small neighborhood
of 0,

(2) The support of H is a subset of Im(α) ∩Kc

(3) H is C1 close to the identity,

(4) Im(H ◦ α) = Im(α),

(5) H ◦ φ = φ ◦H .

LetW ⊂ U∩Kc∩Im(α) be φ-invariant, and consider the mapH
′

:= γ
′◦α−1|W :

W ∩ Im(α) → M . Then H
′ ◦ φ = φ ◦ H ′ , H ′ ◦ α = γ

′
, and therefore H

′
is

holomorphic, symplectic, and symmetric on U . We also have

H
′
∗(ψ(0)) = γ

′
∗α
−1
∗ (ψ(0))

= γ
′
∗A
−1
∗ (ψ

′
)−1
∗ (ψ(0))

= γ
′
∗γ
−1
∗ ψ

′
∗(ψ

′
)−1
∗ (ψ(0))

= Id.

We define H := H
′

on a small neighborhood C ⊂ W , and we extend H to
an equivariant diffeomorphism of M with support on Kc = M −K. In addition,
since H ◦ α(0) = α(0) and H∗(0) = Id, by choosing C sufficiently small, we
may restrict the support of H so that H is C1 close to the identity. Now suppose
(x, ξ) ∈ TM is satisfies ωx(ξ, Jξ) > 0. Therefore we have that, for any ε > 0,
we may choose an H such that |ωx(ξ, Jξ) − H∗ωx(ξ, Jξ)| < ε. Since Im(α) is
compact, Ωx(ξ, Jξ) has a minimum strictly greater than 0 for x ∈ Im(α), |ξ| = 1,
so we may choose ε < infx∈Im(α),|ξ|=1 Ωx(ξ, Jξ) and H so that |ωx(ξ, Jξ) −
H∗ωx(ξ, Jξ)| < ε, and therefore H∗ωx(ξ, Jξ) > 0, for all ξ 6= 0. For such an H ,
then, H∗ω tames J .

Also, with such anH and t ∈ [0, 1], the forms Ωt = tω+(1−t)H∗ω, tame J and
are therefore nondegenerate. Since they are clearly closed, the Ωt are symplectic,
and therefore H∗ω is isotopic to ω. Define ω

′
:= H∗ω, and abusing notation, take
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ψ
′

to be H−1 ◦ψ′ , making ψ
′

symplectic for ω′. This completes the proof of point
2.

For the first part of the theorem, we note that, since J is relatively integrable,
there is a chart (V, γ) around ψ(0) such that γ(L) ⊂ Rn. If we use this chart
in the place of (V, γ) above and follow the same reasoning as above, the result
follows. �

3. TOPOLOGICAL CRITERION FOR THE REAL BLOW-DOWN

In this section we prove Theorem 1.24, which gives a sufficient condition for
blowing down a real Lagrangian submanifold. We begin by collecting the state-
ments of several results from equivariant differential topology which we will need
for the proof of this theorem. The proofs are found in Bredon [5] and Kawakubo
[15]

3.1. Equivariant Differential Topology.

Definition 3.1. Let M be a C∞ manifold, and G be a compact Lie group. If
Φ : G ×M → M is a smooth action of G, then we call Φ a G-action on M , and
if M admits such a G-action, we call M a G-manifold.

Lemma 3.2. Let G be a compact Lie group, and let M be a finite-dimensional
G-manifold. Then there exists a G-invariant Riemannian metric g on M .

Lemma 3.3. Let G be a compact Lie group, and let M be a topological G-space.
Then the fixed point set of G, MG, is a closet set.

Proof. Let ∆ ⊂M ×M be the diagonal in M ×M , and let Γ(g) : M →M ×M
be the graph of the action of an element g ∈ G, so Γ(g)(m) = (m, g(m)). We note
that Fix(g) = Γ(g)−1(∆). Since ∆ is closed in M ×M and Γ(g) is continuous,
we have that (Γ(g))−1(∆) is closed in M . Fix(G) = ∩g∈GFix(g) by definition, so
Fix(G) is closed in M as well. �

We now state an equivariant version of the tubular neighborhood theorem.

Theorem 3.4. Let M be a G-manifold with G finite. If A is a closed G-invariant
submanifold of M , then A has an open G-invariant tubular neighborhood in M.

We use this to prove the following, following Kawakubo [15]

Proposition 3.5. Let G be a compact Lie group, and let M be a G-manifold. Then
the fixed point set of G, MG, is a smooth closed submanifold of G.
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Proof. First, if MG = ∅, then it is a closed submanifold of M and we are done.
We now assume that MG is non-empty. By Lemma 3.3, MG is closed, and we
now show that it is a submanifold without boundary. Let x ∈ MG. Note that for
x ∈ Fix(G), {dg}g∈G gives a linear G-action on TxM induced from the action
of G on M , and that TxMG is therefore a linear subspace of TxM . Let Dx(r) be
an open ball of radius r in TxM , and note that it is therefore also a disk bundle
in Tx{x}⊥. By Theorem 3.4, for small enough r we may define a G-equivariant
tubular neighborhood f : Dx(r) → M , such that f(x, 0) = x. Therefore, f−1 :

f(D(x))→ TxM defines a chart of M . The equivariance of f implies that

f−1(f(D(x)) ∩MG) = f−1(f(D(x))) ∩ TxMG,

and therefore
f−1|f(D(x))∩MGf(D(x)) ∩MG → TxM

G

is a chart of MG, and therefore MG is a submanifold of M . Furthermore, since
TxM

G is a linear subspace of TxM , C := D(x) ∩ TxMG is open in TxMG, and
therefore f(C) contains no point on the boundary ofMG. In particular, x /∈ ∂MG.
Since x ∈MG is arbitrary, we see that MG does not have a boundary. �

The next lemma gives the equivariance of the exp map associated to a G invari-
ant Riemannian metric.

Lemma 3.6. Let G be a compact Lie group, let M be a finite dimensional G-
manifold and let g be a G-invariant Riemannian metric. Then the associated exp
map is G-equivariant.

3.2. Proof of the Blow-down Criterion. In this section, we prove Theorem 1.24,
which we restate for convenience.

Theorem (Theorem 1.24). Let (M,ω, φ) be a real symplectic manifold with L :=

Fix(φ), and let J be an almost complex structure on M which tames ω and which
satisfies φ∗Jφ∗ = −J . Suppose C is an exceptional J-holomorphic curve in a
homology class E ∈ H2(M ;Z) such that E ·E = −1 and φ∗E = −E. Then there
exists a real symplectic manifold (M̌, ω̌, φ̌) and an onto map Π : M → M̌ that
satisfies

(1) Π is a diffeomorphism on M\C,

(2) Π(C) = p ∈ M̌ , where p is a point,

(3) Π ◦ φ = φ̌ ◦Π, and



LAGRANGIAN BLOW-UPS, BLOW-DOWNS, AND APPLICATIONS 51

(4) ω̌ satisfies
[ω]− [Π∗ω̌] ∈ E ,

where E is the linear vector space generated by e, the Poincaré dual of the
exceptional class E = [Π−1(p)].

We begin by recalling a version of the adjunction inequality, as given in McDuff
[21].

Theorem 3.7. Let (M,J) be an almost complex 4-manifold and A ∈ H2(M ;Z)

be a homology class that is represented by a somewhere injective (closed) J-
holomorphic curve u : Σ→M . Then

g ≤ 1 +
1

2
(A ·A− c1(A)),

with equality iff u is an embedding, where g is the genus of Σ.

We recall Definition 1.23 from Section 1.

Definition. We call E ∈ H2(M4;Z) an exceptional class if E · E = −1. If
u : Σ ↪→ M4 is an embedding of the surface Σ, and u∗[Σ] = E, then we say that
u(Σ) is an exceptional curve.

We next recall a standard result in algebraic topology

Lemma 3.8. Let M be a 4-manifold, and let Σ ↪→ M be a 2-dimensional sub-
manifold of M in class H ∈ H2(M ;Z). Then H · H = c1(N(Σ)), where N(Σ)

denotes the normal bundle of Σ in M .

Proof. Note that c1 is the top-dimensional Chern class for Σ, and therefore c1(N(Σ)) =

e(N(Σ)), where e is the Euler class. However, the Euler class of the bundle equals
the self-intersection number of a transverse section of the bundle with the zero-
section, and this number equals the intersection number H ·H . �

Remark 3.9. We first recall from McDuff and Salamon [24], Proposition 2.5.1 that
a simple J-holomorphic curve is somewhere injective. Now consider an excep-
tional class E ∈ H2(M ;Z) in a symplectic four-manifold M4 which is repre-
sented by a simple J-holomorphic sphere u : S2 → M . Then by Lemma 3.8,
c1(E) = c1(TS2) ⊕ c1(NS2) = 2 − 1 = 1, where we use NS2 to denote the
normal bundle of u in M . We therefore have 0 = g ≤ 1 − 1 = 0, and so u is an
embedding.
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Remark 3.10. Let (M,ω, φ) be a real symplectic manifold with an almost complex
structure J which tames ω and satisfies φ∗Jφ∗ = −J . Let u : Σ → M be
a closed J-holomorphic curve, and suppose it is an embedding whose image is
invariant under u. Then Σ inherits the symplectic form u∗ω and the anti-symplectic
involution u−1 ◦ φ ◦ u.

Proposition 3.11. Let (S2, ω) be endowed with an anti-symplectic involution φ. If
Fix(φ) 6= ∅, then the fixed point set of φ is a circle.

Proof. Let G = Z2 with smooth actions on M given by the functions {Id, φ}.
From Proposition 3.5 we see that Fix(G) = Fix(φ) is a closed submanifold of S2.
Denote this submanifold by K. Now suppose p ∈ K, and let v, w ∈ TpK. Then
ω(v, w) = φ∗ω(v, w) = −ω(v, w) = 0, and so the fixed point set is an isotropic
submanifold of S2. We claim that L is one-dimensional. To see this, we first note
that the dimension must be ≤ 1 since Fix(φ) is isotropic. Now suppose that L is
zero dimensional. Since φ2 = Id, if K is zero-dimensional, the eigenvalues of
dφ(x) : TxM → TxM for x ∈ L are all −1. Hence dφ(x) = −Id, and hence
φ∗ωx = ωx, a contradiction. Therefore K cannot be zero-dimensional, and must
be one dimensional. Fix(φ) is therefore equal to a closed Lagrangian submanifold
of S2 and is therefore diffeomorphic to a union of non-intersecting circles. This
union is compact, and therefore finite, since Fix(φ) is topologically closed and S2

is compact.
Suppose there is more than one circle in Fix(φ), say α1, ..., αk. Now choose two

circles, which we denote γ1 and γ2. S2 therefore decomposes as S2 = D1∪C∪D2,
where the Di are the non-intersecting disks bounded by the γi, and C is the closed
cylinder between the discs. Now consider φ(D1). Since φ is a diffeomorphism, it
must send D1 onto a disc bounded by γ1, i.e. either D1 or C ∪D2.

Now suppose φ(D1) = C ∪ D2. Then there is a point x ∈ D1 such that
φ(x) ∈ γ2 ⇒ φ2(x) ∈ γ2 * D1, which contradicts the assumption that φ2 = Id.
Therefore, φ(D1) = D1.

Since there are only a finite number of total circles in Fix(φ), we may choose
γ1 so that D1 ∩ Fix(φ) = γ1, i.e. so there are no fixed points in the interior of
D1. Note that for any x ∈ γ1, one of the eigenvalues of dφ(x) is −1. Therefore,
there are points in a collar neighborhood of γ1 inD1 which are sent by φ to a collar
neighborhood of γ1 in D2 ∪ C. However, this contradicts that φ(D1) = D1, and
concludes the proof. �
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Corollary 3.12. Let (M,ω, φ) be a real symplectic manifold, and let L := Fix(φ).
Let J be an almost complex structure on M such that φ∗Jφ∗ = −J , and let
E ∈ H2(M ;Z) be an exceptional class with φ∗E = −E. Suppose u : Σ → M is
a simple J-holomorphic curve that represents E. Then u(Σ) ∩ L is diffeomorphic
to a circle.

Proof. By Theorem 3.7 and Remark 3.9, u is an embedding. Note, too, that φ◦u◦c
is another simple J-holomorphic embedding that represents E, and its image is
equal to Im(φ ◦ u). Suppose now that Im(u) 6= Im(φ ◦ u). Let c denote complex
conjugation on Σ = S2. Because both maps u and φ ◦ u ◦ c are J-holomorphic,
their intersections are at most countable, and since [Im(φ ◦ u ◦ c)] = [Im(u)] =

E ∈ H2(M ;Z), positivity of intersections in dimension 4 (e.g. Theorem E.1.4 in
McDuff and Salamon [24]) implies that 0 ≤ |{Im u}∩{Im φ◦u◦c}| ≤ E·E = −1,

which is a contradiction. Therefore, Im(u) = Im(φ ◦ u). By Remark 3.10, u(Σ)

inherits a real structure from M , and it follows from Proposition 3.11 that the fixed
point set of φ restricted to u(Σ) is a circle. Since Fix(φ) = L ⊂M , it follows that
u(Σ) ∩ L is diffeomorphic to a circle. �

Lemma 3.13. There is a natural isomorphism between the oriented Lagrangian
subspaces of R2n and the quotient space U(n)/SO(n).

Proof. We recall from McDuff and Salamon [23] that the unitary matrix U = X+

iY given by a unitary Lagrangian frame is determined by the Lagrangian subspace
Λ up to right multiplication by a matrix in O(n). Similarly, given an orientation
o(Λ) of Λ, we see that U is determined by (Λ, o(Λ)) up to right multiplication by
a matrix in SO(n). �

Lemma 3.14. Let u : (D, ∂D)→ (M,L) be a J-holomorphic disk with boundary
on a Lagrangian L. Suppose the Maslov index of u, µ(u), satisfies µ(u) mod 2 =

1. Then TL|∂D is a non-trivial bundle.
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Proof. Consider the commutative diagram

π1(SO(n))
i

//

0
��

π1(O(n))

0
��

π1(U(n)) ∼=
//

��

π1(U(n)) ∼= Z

��
π1(U(n)/SO(n))

α
//

��

π1(U(n)/O(n)) ∼= Z

β

��
0 //

��

Z2

��
0 // 0

Note that the vertical exact sequences in the diagram are taken from the respective
homotopy long exact sequences. Note that it follows from the diagram that the
map β is onto, and therefore that the map α is multiplication by 2. Identifying
the Maslov class of a loop γ of Lagrangians with [γ] ∈ π1(U(n)/O(n)), we see
that the Maslov class of any loop γ of oriented Lagrangians is even. Now consider
a trivialization Φ : u∗TM → D × Cn. If TL|∂D is trivial, then the loop of La-
grangians Λ◦Φ|∂D → U(n)/O(n) is a loop of oriented Lagrangians, and therefore
µ(u) is even. This concludes the proof. �

Lemma 3.15. Let (M,ω, φ) be a four-dimensional real symplectic manifold with
real structure φ. Denote the fixed point set of φ by L, and let E ∈ H2(M ;Z) be a
homology class such that E · E = −1. Suppose u : (CP 1, σ, i) → (M,ω, J) is a
J-holomorphic embedding such that u∗[CP 1] = E, and such that the intersection
Im(u) ∩ L ∼= S1. Then the intersection of TL with the normal bundle of Im(u),
i.e. TL ∩ ν(Im(u)), is nontrivial.

Proof. We note that c1(u∗TM) = 2 − 1 = 1, and that the Maslov number of
u = 2c1(E) = 2. Let u1, u2 : D2 → M denote the two disks which make up u.
We claim that the Maslov index of each disc must be 1. First, recall that µ(u1) +

µ(u2) = µ(u) by the properties of the Maslov index. Second, the involution φ :

M → M induces a diffeomorphism from Im(u1) to Im(u2), and φ∗ : TM →
TM is a vector bundle isomorphism from u∗1TM to u∗2TM . Again, the properties
of the Maslov index (see Theorem C.3.5 in McDuff and Salamon [24]) imply that
µ(u1) = µ(u2), and this implies that possibilities other than (1, 1) for the Maslov
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indices of the two discs may not occur. It follows that that the bundle TS1L =

TS1 ⊕ νL(S1) is non-trivial by Lemma 3.14, where νTL(S1) denotes the part of
the normal bundle of S1 which lies in TL. Since TS1 is trivial, then νL(S1) cannot
be, and the lemma is proved. �

Lemma 3.16. Let M be a four-dimensional real symplectic manifold with real
structure φ. Denote the fixed point set of φ by L, and let E ∈ H2(M ;Z) be a
homology class such that E ·E = −1 and φ∗E = −E. Suppose, furthermore, that
there exists an embedding of the surface Σ, i : Σ → M , with i∗[Σ] = E. Then
E · L = 1 mod 2.

Proof. First, we perturb i so that i(Σ) ∩ L and i(Σ) ∩ φ ◦ i(Σ) are generic. Let
p ∈ i(Σ) ∩ φ ◦ i(Σ), p /∈ L. Then φ(p) ∈ i(Σ) ∩ φ ◦ i(Σ), φ(p) /∈ L, and, in
particular, p and φ(p) do not affect the value of either E ·E mod 2 or E ·L mod 2.
Suppose now that E · L = 0 mod 2. Then there exist an even number of points in
the intersection i(Σ)∩L, and, combined with the above, this implies that there are
an even number of points in i(Σ)∩ φ ◦ i(Σ). However, i∗[Σ] · φ∗i∗[Σ] = 1 mod 2,

which is a contradiction. Therefore E · L = 1 mod 2. �

We recall a version of the Riemann Mapping Theorem from [27] (see also [7]).

Theorem 3.17. LetD denote the unit disk in C, let Ω be a simply connected domain
in C, (Ω 6= C), and assume that the boundary ∂Ω is locally connected. Then there
is a holomorphic isomorphism f : D → Ω that extends to a continuous map from
D̄ → Ω̄. Moreover, if ∂Ω is a Jordan curve, then f extends to a homeomorphism
from D̄ to Ω̄.

We now prove Theorem 1.24.

Proof of Theorem 1.24. Let u : Σ→M be the J-holomorphic curve whose image
is C. By hypothesis, [C] · [C] = −1 so Lemma 3.16 implies that C ∩ L 6= ∅. By
Corollary 3.12, C intersects L in a circle, whose preimage we denote S. Let D1

and D2 be the two open discs in C with boundary S. Note that, for each x ∈ D1,
φ(x) ∈ D2. Now letH1 andH2 denote the two hemispheres of CP 1 with boundary
RP 1. By Theorem 3.17 there exists a holomorphic map α : D1 → H1 which
extends to a homeomorphism from D̄1 to H̄1. Now define a map α̃ : C → CP 1 by

(3.1) α̃(x) =

α(x) if x ∈ D̄1

c ◦ α(φ(x)) if x ∈ D2,
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where c denotes complex conjugation on CP 1. We claim that α̃ is holomorphic on
all of CP 1. First, choose a holomorhpic chart γ1 : W ⊂ C → C centered at a point
x ∈ RP 1 which sends U ∩ RP 1 to R. Let γ2 : V ⊂ CP 1 → C be a holomorphic
chart centered at α̃(x) ∈ V , and note that α̃ is holomorphic iff γ2 ◦ α̃ ◦ γ−1

1 is
holomorphic for any pair of charts. To prove that this is the case, we appeal to
Morera’s theroem, which we recall below, as stated in Conway [9], following the
proof of the Schwartz Reflection Principle.

Theorem 3.18 (Morera’s Theorem). Let U be a region in C and let f : U → C be
a continuous function such that

´
T f = 0 for every triangular path T in U . Then

f is analytic in U .

To apply this theorem, we need to show that for each triangular path T ⊂ U ,´
T f = 0. Denote γ−1

1 (U) byU , letU+ = U∩{z|Im(z) > 0},U0 = {z|Im(z) =

0}, U− = {z|Im(z) < 0}, and f := γ2 ◦ α̃ ◦ γ−1 : U → C. Choose a triangular
path T in U . We see that

´
T f = 0 iff

´
P f = 0 for any triangular or quadrilateral

path P in U+ ∪ U0 and U− ∪ U0. Furthermore, if P ⊂ U±, then
´
P f = 0,

since f is holomorphic on U± by definition. We therefore let T be the triangle
with vertices [a, b, c], where the edge [b, c] is contained in the real axis. The same
argument applies for a quadrilateral path. Let ∆ denote the union of the path T
and its interior. f is continuous on U+ ∪ U0 by construction, and therefore it is
uniformly continuous on ∆. Therefore, for any ε > 0 there exists a δ > 0 such that
|z − z′ | < δ =⇒ |f(z) − f(z

′
)| < ε. Now choose a small ε > 0, and a δ > 0

such that 0 < δ < ε and |z − z′ | < δ =⇒ |f(z) − f(z
′
)| < ε. Pick points α

and β on the line segments [a, b] and [a, c], respectively, so that |c − α| < δ and
|b− β| < δ. Let T

′
and Q be the paths T

′
= [α, β, a, α] and Q = [α, c, b, β, α] as

in Figure 3.1 below. Then ˆ
T
f =

ˆ
T ′
f +

ˆ
Q
f.

However, since T
′

and its interior are contained in U+, f is holomorphic there,
and therefore

´
T ′ f = 0.

We now approximate
´
Q f . First, note that, for t ∈ [0, 1],

|[tβ + (1− t)α]− [tb+ (1− t)c]| < δ

and therefore
|f(tβ + (1− t)α)− f(tb+ (1− t)c)| < ε.
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U ⊂ C a

c b

α β

R

T
T

′

Q

FIGURE 3.1

Now let M = max {|f(z)| | z ∈ ∆}, and let l = the length of the perimeter of T .
Then ∣∣∣∣∣

ˆ
[α,c]

f

∣∣∣∣∣ ≤M |c− α| ≤Mδ∣∣∣∣∣
ˆ

[β,b]
f

∣∣∣∣∣ ≤M |b− β| ≤Mδ,

and∣∣∣∣∣
ˆ

[b,c]
f +

ˆ
[β,α]

f

∣∣∣∣∣ =

∣∣∣∣(b− c) ˆ 1

0
f(tb+ (1− t)c)dt− (β − α)

ˆ 1

0
f(tβ + (1− t)α)dt

∣∣∣∣
≤ |b− c|

∣∣∣∣ˆ 1

0
f(tb+ (1− t)c)− f(tβ + (1− t)α)

∣∣∣∣
+|(b− c)− (β − α)|

∣∣∣∣ˆ 1

0
f(tβ + (1− t)α)dt

∣∣∣∣
≤ ε|b− c|+M |(b− β) + (c− α)|
≤ εl + 2Mδ.

Therefore, ∣∣∣∣ˆ
T
f

∣∣∣∣ ≤ εl + 4Mδ.

Since ε is arbitrary, and we may choose δ < ε, it follows that
´
T f = 0, and

therefore f is holomorphic. From this we conclude that α̃ is holomorphic as well.
We have now shown the existence of a holomorphic map α̃ that verifies φ◦α̃◦c =

α̃ and Im(α̃) = Im(u). Now let S = C ∩ L.
We now remark that the cohomology class [α̃∗ω] ∈ H2(L(0)) is determined

by the integral
´
CP 1 α̃

∗ω, where here we understand CP 1 = L(0). Therefore, for
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λ2 :=
´
CP 1 α̃

∗ω, the form ρ(1, λ) is in the same cohomology class. By Proposition
2.31, there exists a diffeomorphism β0 : L(0)→ L(0) such that β∗0 α̃

∗ω = ρ(1, λ).
Let γ0 := α̃ ◦ β0.

Now, by Lemma 3.15 the normal bundle of S in TL is non-trivial. Consider
the bundles γ∗0(ν(C)) and ν(L(0)), where ν(·) denotes the normal bundle of the
submanifold in question. Since the Chern class of C is 2, the Maslov index of
the two disks D1 and D2 in C with boundary on L is 1, and the restriction of
ν(C) to L is non-trivial, then by Therem C.3.7 in McDuff and Salamon [24], there
is a (complex) isomorphism Φ between the bundles γ∗0(ν(D1), TL ∩ ν(D1)) and
ν(L(0)+,R(0)), where L(0)± denote the upper and lower hemispheres of L(0),
respectively.

Now note that φ̃∗Φc̃∗ gives an isomorphism of α̃∗(ν(D2), TL ∩ ν(D2)) and
ν(L(0)−,R(0)), and therefore the map

Ψ =

Φ (x, v) ∈ ν(L(0)+)

φ̃∗Φc̃∗ (x, v) ∈ ν(L(0)−)

is a complex equivariant isomorphism from ν(L(0))→ α∗ν(C).
Furthermore, since Ψ is a complex bundle isomorphism, it is symplectic as well.

It therefore follows from Proposition 2.28, that for some δ > 0, we can find a Z2-
equivariant map βλ : L(δ) → M such that β∗λω = ρ(1, λ) which restricts to the
symplectomorphism γ0 : L(0)→ C ⊂M . We may now construct the blow-down
by theorem 1.22 using the equivariant symplectic map β : L(δ)→M . �

4. APPLICATIONS TO REAL PACKING

We now apply our constructions above to the problem of packing k ≤ 8 balls
into RP 2 in CP 2, adapting the techniques in McDuff and Polterovich [22] to our
setting. That is, we wish to know the quantity

pL,k = supψ,r
Vol ψ

(∐k
i=1Bi(r)

)
Vol M

,

where ψ :
∐k
i=1Bi(r) ↪→ CP 2 is a symplectic embedding such that the preimage

ψ−1(L) =
∐k
i=1Bi,R(r). We first treat the case (CP 2,RP 2, φ) with the canonical

real structure φ, where RPn = Fix(φ). In particular, we will prove Theorem 1.26,
restated below.
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Theorem (Theorem 1.26). For the pair (CP 2,RP 2) with the standard symplectic
form and real structure, the relative packing numbers pRP 2,k for k ≤ 8 balls are
equal to the packing numbers for CP 2.

The packing numbers are given in Table 4.1 below.

k 1 2 3 4 5 6 7 8

pRP 2,k 1 1
2

3
4 1 4

5
24
25

63
64

288
289

TABLE 4.1. pRP 2,k(CP 2) = pk(CP 2)

The following proposition is an adaptation of Proposition 2.1.C in McDuff and
Polterovich [22] to real symplectic manifolds.

Proposition 4.1. Let (M,ω, φ) be a real symplectic manifold, and let J be an
ω-tame almost complex structure which is symmetrically integrable around a set
of k points I = {p1, . . . , pk} ⊂ L, where L = Fix(φ). Suppose that for some
set of real numbers κq > 0, q ∈ {1, . . . , k}, there exists a real symplectic and
holomorphic embedding

ψ =
k∐
q=1

ψq :
∐

(B(1 + 2εq), BR(1 + 2ε), κ2
qω0, i, c)→ (M,L, ω, J, φ)

such that ψq(0) = pq. Let Π : M̃ → M denote the real symplectic blow-up of
(M,L) relative to ψ, and let J̃ , ω̃, and φ̃ be the complex, symplectic, and real
structures, respectively, on M̃ constructed from J , ω, and φ by blowing-up M . Let
Cq, q ∈ {1, ..., k} denote the exceptional curves Π−1(ψq(0)) added in the blow-
up, and let eq ∈ H2(M ;Z) denote the Poincaré duals of the homology classes
[Cq] ∈ H2(M ;Z).

Suppose, furthermore, that there exists a smooth family of symplectic forms ω̃t
on M̃ such that

(1) ω̃0 = ω̃ is obtained by a real blow up relative to the embedding ψ.

(2) ω̃0 tames J̃ ,

(3) For all q ∈ {1, ..., k}, ω̃t|Cq , the restriction of ω̃ to the exceptional divisors
{Cq}kq=1 added in the blow-up, tames J̃ |Cq ,

(4) φ∗ω̃t = −ω̃t, so that L̃ = Π−1(L) is Lagrangian for each of the forms ω̃t,
and
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(5) [ω̃t] = [Π∗ω]−∑k
i=1 λ

2
i (t)eq for positive constants λq(t), 0 ≤ t ≤ 1.

Then (M,L, ω, φ) admits a real symplectic embedding of k disjoint standard
symplectic balls of radii λq(1), q ∈ {1, ..., k}.

Proof. Since M̃ is the real symplectic and holomorphic blow-up at k real points
of (M,L, J, φ, ω), then, according to the construction in the proof of Proposition
2.10, there exists a real symplectic and holomorphic embedding

ψ̃ =
k∐
q=1

ψ̃q :
∐

(L(1 + 2εq),R(1 + 2ε), ρ(1, κq), i, c̃)→ (M̃k, L̃, ω̃0, J, φ̃)

We will show that for each q there exists a family of equivariant diffeomor-
phisms gt : M̃ → M̃, t ∈ [0, 1] with the following properties:

(1) g0 = Id

(2) There exists a δ ∈ R, 0 < δ < 1 + 2ε, such that, for all t, ψ̃∗qg
∗
t ω̃t =

ρ(1, λq(t)) on L(δ)

(3) gt ◦ φ̃ = φ̃ ◦ gt, gt(Im(ψ̃)) = Im(ψ̃), and gt(ψ̃q(L(0)) = ψ̃q(L(0)).

To see this, first note that the λi(t) satisfy the equation
´
L(0) ψ̃

∗
q ω̃t = λi(t)

2
´
L(0) σ =

λi(t)
2, so ψ̃∗q ω̃t is in the same cohomology class on L(0) as ρ(1, λq(t)). Then since

both of these forms tame ĩ on L(0), the forms sρ(1, λq(t)) + (1− s)ψ̃∗q ω̃t are non-
degenerate for all s ∈ [0, 1]. Therefore, by Proposition 2.31, for each t, there exists
an equivariant symplectomorphism Fq,t : (L(0), ρ(1, λ(t)))→ (L(0), ψ̃∗ω̃t) such
that c̃◦Fq,t = Fq,t◦c̃ and F ∗q,tψ̃

∗ω̃t = ρ(1, λq(t)) onL(0). Since ω̃t and ρ(1, λq(t))

form smooth families of forms, the Fq,t must also be smooth with respect to t as
well.

We extend the Fq,t to an isomorphism of the normal bundle ν of L(0) in L(1 +

2ε) by defining fq,t : ν → ν by fq,t(z, v) = (Fq,t(z), v). Since the restriction of
both ρ(1, λ(t)) and ρ(1, κq) = ψ̃∗q ω̃ to the fiber νz is ω0, this isomorphism is both
equivariant and symplectic. Then, by Theorem 2.28, Fq,t extends to an equivariant
symplectomorphism Gq,t of a neighborhoodN0,t of L(0) in (L(1 + 2ε), ρ(1, λ(t))

to a neighborhoodN1,t of L(0) in (L(1 + 2ε), ψ̃∗ω̃t). Let δq ∈ R, 0 < δq < 1 + 2ε

be such that L(δq) ⊂ N0,t and for all t ∈ [0, 1]. Note now that the Gq,t|L(δq) also
form a smooth family of maps with respect to t. Extend Gq,t to a smooth family of
equivariant differentiable maps from L(1 + 2ε)→ L(1 + 2ε) which is the identity
in a neighborhood of the boundary.
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Define gq,t = ψ̃q ◦Gq,t ◦ ψ̃−1, extend the gq,t to all of M̃ by the identity outside

ψ̃
(∐k

q=1 L(1 + 2ε)
)

, and denote the extension by gt. Then ψ̃∗g∗t ω̃t = ρ(1, λq(t))

on L(δq), making ψ̃ a symplectomorphism with respect to the forms g∗t ω̃ for all t.
Now let δ = min{δq}kq=1, and let (M,ωt) be the blow-down of (M̃, g∗t ω̃t)

using the symplectic and holomorphic embedding ψ̃|∐k
q=1 Lq(δ). Note that by The-

orem 1.22, each form of the family ωt is cohomologous to ω0. Also, ω0 tames J
and [ω0] = [ω], and therefore all the forms ωt and sω0 + (1 − s)ω, t, s ∈ [0, 1],
are symplectic and in the same cohomology class. Furthermore, note that d

dtωt is
supported on a finite union of balls, and is therefore exact. Therefore, by Propo-
sition 2.31 and Lemma 2.27, there exists a family of equivariant diffeomorphisms
Hr : M → M , r ∈ [0, 1], such that H0 = Id and H∗1ω = ω1. Since (M,ω1)

admits a real symplectic embedding of
∐k
q=1(B(1 + 2ε), λqωst), where ωst here is

the standard symplectic form on B(1 + 2ε), this completes the proof. �

The following corollary is an easy consequence.

Corollary 4.2. Let (M,ω, φ) be a real symplectic manifold with almost com-
plex structure J which tames ω and is symmetrically integrable around the points
{p1, . . . , pk}. Let (M̃, ω̃0, φ̃) be a real manifold obtained by blowing up a real
symplectic and holomorphic embedding ψ of balls of radii κ > 0, κ small, and let
J̃ be the almost complex structure created in the blow-up.

Now suppose that there exists a symplectic form ω̃ on M̃ such that ω̃ tames the
almost complex structure J̃ on M̃ . Suppose furthermore that

[ω̃] = [Π∗ω]−
k∑
i=1

πλ2
i ei.

Then (M,L, ω) admits a relative symplectic embedding of k disjoint standard
symplectic balls of radii λ1, ..., λk.

Proof. By Proposition 2.10, the blow-up ω̃0 relative to ψ tames J̃ , and therefore
the forms ωs := ω̃0 + (1− s)ω̃ tame J̃ as well, so the family of forms ωs satisfies
the hypothesis of Proposition 4.1. The conclusion follows. �

We now use all of the above facts to derive relative packing inequalities for
(CP 2,RP 2). Let M̃I denote a complex surface obtained from CP 2 by blowing-
up at a φ-invariant set of k points. Let {A,E1, ..., Ek} be the standard basis in
H2(M̃I ;Z), and let {a, e1, ..., ek} be the Poincaré-dual basis in H2(M̃I ;R).



62 ANTONIO RIESER

Remark 4.3. Since a relative packing is also an absolute packing, the following
upper bound on the packing numbers follows immediately from the absolute case
in McDuff and Polterovich [22].

Suppose that (M,ω,L) admits a symplectic packing by k standard balls of radii
λ1, ..., λk. Then for every exceptional class bA−∑k

q=1mqEq we have the inequal-
ity
∑k

q=1mqλ
2
q < b.

We will now investigate lower bounds for the relative packing numbers of (CP 2,RP 2).
In particular, we prove the following.

Theorem 4.4. Let M̃I be the real blow up at a φ-invariant set of k points of
(CP 2,RP 2). Let k ≤ 8, and suppose the real numbers {λ1, ..., λk} have the
properties that

(1)
∑k

q=1 λ
4
q < 1, and

(2) For every homology class [C] = bA −∑k
q=1mqEq which admits a real

rational exceptional holomorphic curve,

k∑
q=1

mqλ
2
q < b.

Then (CP 2,RP 2) admits a real packing by k balls of radii λ1, ..., λk.

Given this theorem, the main theorem of this section follows easily, as we see
here.

Proof of Theorem 1.26. Any real numbers λ1, ..., λk that satisfy the conditions in
Theorem 4.4 also satisfy the conditions in Theorem 1.3.E of [22] and vice versa,
since the conditions on the λi are identical in both theorems. Therefore, the packing
numbers are the same in the real and absolute cases, as claimed. �

In order to prove Theorem 4.4, we will appeal to the form of the Nakai-Moishezon
criterion found in Friedman and Morgan [11] (Chapter II, Proposition 3.4). In order
to be able to use this result, we need the following definitions and proposition.

Definition 4.5. We call a simply connected algebraic variety X good if for some
smooth elliptic curve F , the divisor classes KX and F satisfy KX = −F . We
call X generic if, in addition, it does not contain a holomorphic sphere C with
C · C = −2.

We now give the following definition of general position, following Demazure
[10].
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Definition 4.6. Given a manifold M and a collection of points Σ = {z1, ..., zk},
1 ≤ k ≤ 8, we say Σ is in general position if k < 3 or k ≥ 3 and there does not
exist

(1) A holomorphic line C which passes through any three points of Σ,

(2) A conic which passes through any six points of Σ, or

(3) A cubic which passes through any seven points of Σ with a double point at
the eighth.

The following result now follows directly from Theorem 1 in Demazure [10]
and the proof of Lemma 2.6 in [11], Chapter 1:

Theorem 4.7. The blow up of CP 2 at the set of points Σ = {x1, ..., xk} is good
and generic iff |Σ| ≤ 8 and Σ is in general position.

The next proposition shows that there are ’many’ such good sets of points in
RP 2.

Proposition 4.8. For each k ≤ 8, the set of collections Σ of k distinct points in
general position in RP 2 is dense in the set of collections of k points in RP 2.

To prove this, we will use the following lemma.

Lemma 4.9. Let Σ be a set of k ≤ 8 distinct points of RP 2 which contains a
subset of k − 1 points in general position. Then there is a sequence Σi of k points
in general position which approaches Σ.

We begin with a definition,

Definition 4.10. We define the quadratic transformation centered at

{[1, 0, 0], [0, 1, 0], [0, 0, 1]} ⊂ CP 2

to be the birational transformation given by the function

f(x0, x1, x2) = (x1x2, x0x2, x0x1)

for (x0, x1, x2) ∈ CP 2 with no two coordinates equal to 0. A quadratic transfor-
mation centered at P1, P2, P3 ∈ CP 2 we take to be the composition of the func-
tion f with a projective change of coordinates taking three non-collinear points
P1, P2, P3 to {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.

Proof of Lemma 4.9. First we note that the projective change of coordinates that
sends P1, P2, P3 ∈ RP 2 to [1, 0, 0], [0, 1, 0], [0, 0, 1] ∈ RP 2 leaves the Lagrangian
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RP 2 invariant. Next, from the formula in the definition, we see that the quadratic
transformation centered at [1, 0, 0], [0, 1, 0], [0, 0, 1] also sends RP 2 to itself, and
therefore, quadratic transformations centered at points P1, P2, P3 in RP 2 preserve
RP 2. Next, from Exercises 4.3 and 4.13(a) in Hartshorne [14], a set of points
Σ is in general position iff, after any finite sequence of quadratic transformations
centered at points in Σ, no three points in Σ are on the same line.

By hypothesis, Σ contains a subset Σ0 of k − 1 points in general position. Let
{x} denote Σ\Σ0. For each n ∈ N, there are a finite number, say N , of sequences
of n quadratic transformations centered at points in Σ0. Consider now a particular
sequence of n quadratic transformations, call it α. LetCα denote the union of com-
plex lines which pass through α(Σ0). Then CP 2\Cα is open and dense in CP 2,
and, since RP 2 is totally real and each curve in Cα is holomorphic, Cα∩RP 2 con-
tains no open set of RP 2, and therefore its complement, say Lα, is open and dense
in RP 2. Since α is an isomorphism on the complement of Cα and αn preserves
RP 2, the inverse image α−1(Lα) is open and dense in RP 2. Now let {αi}Ni=1 be
the collection of sequences of n quadratic transformations. Then α−1

i (Lαi) is open
and dense for every i, and therefore ∆n := ∩Ni=1α

−1
i (Lαi) is open and dense in

RP 2. It follows that the intersection L := ∩∞n=1∆n is dense in RP 2. We may
therefore choose a sequence of points {xi}∞i=1 ∈ L which approaches {x}. By
construction, for each i there is no finite sequence of quadratic transformations
centered at any three points in Σ0 ∪ {xi} which sends three points of Σ0 ∪ {xi}
to a line. Therefore the sequence of collections of points Σ0 ∪ {xi} satisfies the
conclusions of the theorem. �

Proof of Proposition 4.8. Let k ∈ {1, . . . , 8}. We consider a set Σ of k distinct
points in RP 2 which is not in general position, and we will construct a sequence
Σi of collections of k distinct points of RP 2 in general position which approaches
Σ. First, choose a subset of Σ which is in general position, and call it ∆. By
definition of general position, ∆ must contain at least 2 points. Now choose a
point x ∈ Σ such that ∆ ∪ {x} is no longer in general position. Then, by 4.9,
there is a sequence of sets, say ∆i1 , which approaches ∆ ∪ {x}. If ∆ ∪ {x} = Σ,
then we are done. If not, choose another point {x2} ∈ Σ. Then, for each ∆i1 ,
i1 ∈ N, Lemma 4.9 gives us a sequence ∆(i1,i2) of collections of points in general
position which approach ∆i1 ∪ {x2}. Note that, by construction, the sequence
∆(i,i), i ∈ N approaches ∆ ∪ {x} ∪ {x2}, and each collection ∆(i,i) is in general
position. Abusing notation, we refer to this new sequence ∆(i,i) as ∆i. Continuing
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in this way until ∆∪ {x} ∪ ...{xm} = Σ, we see that the collections of 1 ≤ k ≤ 8

points of RP 2 in general position are dense in the set of all collections. �

Theorem 4.11. Let M be a good, generic complex surface. Let ρ ∈ H2(M ;R)

be a cohomology class on the complex surface M , and suppose M is endowed
with a complex real structure φ (i.e. φ∗i = −iφ∗ for the standard almost complex
structure i). Then ρ is represented by a Kähler form κ with real structure φ if
φ∗ρ = −ρ, ρ2 > 0, and 〈ρ, [C]〉 > 0 for all complex exceptional curves and on the
anti-canonical divisor.

Proof. By Theorem 3.4, Chapter II in Friedman and Morgan [11], ρ is represented
by a Kähler form iff ρ2 > 0 and 〈ρ, [C]〉 > 0 for all complex exceptional curves
and on the anti-canonical divisor. Let κ̂ be such a Kähler form. By Lemma 2.4, we
have that κ̂ is compatible with i, and therefore by Lemma 2.23, κ = 1

2(κ̂−φ∗κ̂) is
also a symplectic form which is compatible with i, and is therefore Kähler. Since
[κ] = [κ̂] = ρ, κ is our desired form. �

We now give the proof of Theorem 4.4.

Proof of 4.4. By Proposition 4.8, given k generic points of L for k ≤ 8, if M̃ =

M̃I is the blow-up of (CP 2,RP 2) at these points, then M̃I is good and generic.
By Theorem 4.11, if ρ is a cohomology class on a complex surface M , then it
is represented by a Kähler form compatible with the real structure φ iff φ∗ρ =

−ρ, ρ2 > 0, and 〈ρ, [C]〉 > 0 for all complex exceptional curves C and on the
anticanonical divisor.

Therefore, given a cohomology class ρ = α −∑λ2
i ei ∈ H2(M ;R), where

φ∗α = −α, φ∗ei = −ei we wish to show that ρ(C) > 0 on exceptional divisors
and on the anti-canonical divisor. In particular, we have to verify the following:

(1) 〈ρ, [C]〉 > 0 for every rational exceptional curve C on M̃I

(2) ρ · ρ > 0

(3) ρ · c1 > 0, where c1 = 3a−∑k
q=1 eq is the first Chern class of M̃I .

The first two inequalities are just reformulations of the hypotheses of the theo-
rem. To see the third, note first that the maximum of the function f(x1, ..., xk) =

(
∑
xi)

2 on the region {x|∑x2
i ≤ 1} is obtained when the xi’s are all equal. Let



66 ANTONIO RIESER

λmax be this value of x. Therefore(
k∑
i=1

λ2
i

)2

≤
(

k∑
i=1

λ2
max

)2

= (kλ2
max)2 = k

k∑
i=1

λ4
max ≤ k · 1,

where the last inequality follows from the assumption that ρ · ρ = 1−∑λ4
i > 0.

We now remark that

ρ · c1 = 3−
k∑
i=1

λ2
i > 0 ⇐⇒ 9 >

(
k∑
i=1

λ2
i

)2

.

Therefore, since 9 > k ≥ (
∑k

i=1 λ
2
i )

2, the third inequality is satisfied. Further-
more, when the ei are the Poincaré duals of Ei, the classes of a real blow up,
then φ∗ei = −ei, and we have φ∗ρ = φ∗α −∑i λ

2
iφ
∗ei = −ρ. Therefore ρ is

represented by a Kähler form with real structure φ, as desired.
We have the packing by balls of radii λ1, ..., λk by Corollary 4.2, blowing down

the curves which represent the classes Ei with respect to this new Kähler form
ρ. �

Remark 4.12. As mentioned in the introduction, a similar result extending the re-
sults in Biran [3] to the real case for k ≥ 9 balls also holds, and will be included in
a future article.
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