THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL CURVES OF ODD GENUS

SHOUHEI MA

ABSTRACT. The moduli spaces of trigonal curves of odd genus $g \ge 5$ are proven to be rational.

1. INTRODUCTION

The object of this article is to prove the following.

Theorem 1.1. The moduli space T_g of trigonal curves of genus g = 2n + 1 with $n \ge 2$ is rational.

By a *trigonal curve* we mean an irreducible smooth projective curve which admits a degree 3 morphism to \mathbb{P}^1 . A trigonal curve of genus $g \ge 5$ has a unique g_3^1 , so that the space \mathcal{T}_g to be studied is regarded as a sublocus of \mathcal{M}_g , the moduli space of curves of genus g. Shepherd-Barron [5] proved the rationality of \mathcal{T}_g for g = 4n + 2 with $n \ge 1$. Hence the space \mathcal{T}_g is rational possibly except when the genus g is divisible by 4. For the one lower gonality, Katsylo and Bogomolov [4], [1] established the rationality of the moduli spaces of hyperelliptic curves.

The proof of Theorem 1.1 is based on the classical relation between trigonal curves and the Hirzebruch surfaces $\mathbb{F}_N = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(N))$. Recall that a canonically embedded trigonal curve $C \subset \mathbb{P}^{g-1}$ of genus $g \geq 5$ lies on a unique rational normal scroll *S*. The scroll *S* may obtained either as the intersection of quadrics containing *C*, or as the scroll swept out by the lines spanned by the fibers of the trigonal map. The surface *S* is the image of a Hirzebruch surface \mathbb{F}_N by a linear system $|\mathcal{O}_{\pi}(1) \otimes \pi^* \mathcal{O}_{\mathbb{P}^1}(a)|$, a > 0, where $\pi : \mathbb{F}_N \to \mathbb{P}^1$ is the natural projection. The trigonal map of *C* is the restriction of π . When *C* is general in the moduli \mathcal{T}_g , we have N = 0 or 1 depending on whether *g* is even or odd. Thus, if $L_{3,b}$ denotes the line bundle $\mathcal{O}_{\pi}(3) \otimes \pi^* \mathcal{O}_{\mathbb{P}^1}(b)$ on \mathbb{F}_1 with g = 2b + 1, we have the birational equivalence

(1.1) $\mathcal{T}_g \sim |L_{3,b}|/\operatorname{Aut}(\mathbb{F}_1).$

²⁰⁰⁰ *Mathematics Subject Classification*. Primary 14H10, Secondary 14H45. *Key words and phrases*. trigonal curve, rationality of moduli.

Here $|L_{3,b}|/\operatorname{Aut}(\mathbb{F}_1)$ stands for a rational quotient of the linear system $|L_{3,b}|$ by the algebraic group $\operatorname{Aut}(\mathbb{F}_1)$. Then Theorem 1.1 is equivalent to the following assertion in invariant theory.

Theorem 1.2. For the line bundle $L_{3,b}$ on the Hirzebruch surface \mathbb{F}_1 the quotient $|L_{3,b}|/\operatorname{Aut}(\mathbb{F}_1)$ is rational for $b \ge 2$.

The rest of this article is devoted to the proof of this theorem. In Section 2 we construct an Aut(\mathbb{F}_1)-equivariant map from $|L_{3,b}|$ to $S^b\mathbb{F}_1$, the symmetric product of \mathbb{F}_1 , which plays crucial role in the proof. In Section 3 the rationality for $g \ge 9$ is established by using the rational normal curves. In Section 4 the rationality of \mathcal{T}_7 and \mathcal{T}_5 is proved,

Throughout this article we work over the field of complex numbers. We denote by $\pi : \mathbb{F}_1 \to \mathbb{P}^1$ the natural projection. The (-1)-curve on \mathbb{F}_1 is denoted by Σ . The line bundle $O_{\pi}(a) \otimes \pi^* O_{\mathbb{P}^1}(b)$ on \mathbb{F}_1 will be written as $L_{a,b}$. The bundle $O_{\pi}(1)$ is the pullback of $O_{\mathbb{P}^2}(1)$ by the blow-down $\mathbb{F}_1 \to \mathbb{P}^2$.

2. Symmetric product of the Hirzebruch surface

Let $\mathbb{P}\mathcal{E}$ be the projective space bundle $\mathbb{P}\pi_*O_{\pi}(2)$ on \mathbb{P}^1 . The variety $\mathbb{P}\mathcal{E}$ parametrizes unordered pairs $q_+ + q_-$ of two points of \mathbb{F}_1 which lie on the same π -fiber. We have a rational map

(2.1)
$$\varphi_1: |L_{3,b}| \longrightarrow S^b(\mathbb{P}\mathcal{E}), \quad C \mapsto \sum_{i=1}^b (q_{i+} + q_{i-})$$

defined as follows. If $C|_{\Sigma} = p_1 + \cdots + p_b$ and F_i is the π -fiber passing p_i , we set $q_{i+} + q_{i-} = C|_{F_i} - p_i$. The map φ_1 is clearly Aut(\mathbb{F}_1)-equivariant. Next we define a rational map

(2.2)
$$\varphi_2: S^b(\mathbb{P}\mathcal{E}) \dashrightarrow S^b\mathbb{F}_1, \quad \sum_{i=1}^b (q_{i+}+q_{i-}) \mapsto \sum_{i=1}^b q_i$$

as follows. If F_i is the π -fiber passing $\{q_{i+}, q_{i-}\}$ and $p_i = F_i \cap \Sigma$, there exists a unique involution ι_i of $F_i \simeq \mathbb{P}^1$ which fixes p_i and interchanges q_{i+} and q_{i-} . Then we let $q_i \in F_i$ be the fixed point of ι_i other than p_i . By the uniqueness of ι_i the map φ_2 is Aut(\mathbb{F}_1)-equivariant. We study the composition map

(2.3)
$$\varphi = \varphi_2 \circ \varphi_1 : |L_{3,b}| \dashrightarrow S^b \mathbb{F}_1.$$

Lemma 2.1. The map φ is dominant with a general fiber being an open set of a linear subspace of $|L_{3,b}|$.

Proof. For a general point $q_1 + \cdots + q_b \in S^b \mathbb{F}_1$ let F_i be the π -fiber passing q_i and let $p_i = F_i \cap \Sigma$. We take an inhomogeneous coordinate x_i of $F_i \simeq \mathbb{P}^1$ in which p_i is $\{x_i = 0\}$ and q_i is $\{x_i = \infty\}$. The involution of F_i fixing p_i and q_i is given by $x_i \mapsto -x_i$. A smooth curve $C \in |L_{3,b}|$ is contained in

2

 $\varphi^{-1}(q_1 + \dots + q_b)$ if and only if $C|_{F_i}$ has the equation $x_i(\alpha_i x_i^2 + \beta_i) = 0$ for each $i = 1, \dots, b$. Since these are 2*b* linear conditions on $|L_{3,b}|$, namely the vanishing of the coefficient of x_i^2 and the constant term for $C|_{F_i}$, the second assertion is proved. The dominancy of φ is a consequence of the dimension counting dim $|L_{3,b}| = 4b + 9 > 2b$.

Lemma 2.2. The group $\operatorname{Aut}(\mathbb{F}_1)$ acts on $S^b\mathbb{F}_1$ almost freely if $b \ge 4$.

Proof. First we treat the case $b \ge 5$. If a general point $p_1 + \cdots + p_b \in S^b \mathbb{F}_1$ is fixed by a $g \in Aut(\mathbb{F}_1)$, then g stabilizes a general $b \ge 5$ point set of the (-1)-curve Σ so that g acts trivially on Σ . Hence g fixes each p_i . As $Aut(\mathbb{F}_1)$ acts almost freely on $(\mathbb{F}_1)^b$, it follows that g = id.

Next we study the case b = 4. Let $f : \mathbb{F}_1 \to \mathbb{P}^2$ be the blow-down. For a general $p_1 + \cdots + p_4 \in S^4 \mathbb{F}_1$ there exists a unique smooth conic Q passing $f(\Sigma)$ and $f(p_1), \cdots, f(p_4)$. Any $g \in \operatorname{Aut}(\mathbb{F}_1)$ fixing $p_1 + \cdots + p_4$, regarded as an element of PGL₃, preserves Q and the five point set $f(\Sigma), f(p_1), \cdots, f(p_4)$ on it. Hence g acts trivially on Q, which implies that $g = \operatorname{id}$.

We shall apply the no-name lemma (see [3], and also [2] for non-reductive groups) to the map φ when $b \ge 4$. For that we note the following.

Lemma 2.3. *Every line bundle on* \mathbb{F}_1 *admits an* Aut(\mathbb{F}_1)*-linearization.*

Proof. We have canonical Aut(\mathbb{F}_1)-linearizations on the bundles $K_{\mathbb{F}_1} = L_{-2,-1}$, $\pi^* K_{\mathbb{P}^1} = L_{0,-2}$, and $f^* K_{\mathbb{P}^2} = L_{-3,0}$ where $f : \mathbb{F}_1 \to \mathbb{P}^2$ is the blowdown of Σ . These induce Aut(\mathbb{F}_1)-linearizations on $L_{1,0}$ and $L_{0,1}$. Since Pic(\mathbb{F}_1) is freely generated by $L_{1,0}$ and $L_{0,1}$, the lemma is proved. \Box

By Lemma 2.3 the Aut(\mathbb{F}_1)-action on $|L_{3,b}|$ is induced by an Aut(\mathbb{F}_1)representation on $H^0(L_{3,b})$. Then Lemma 2.1 shows that $|L_{3,b}|$ is Aut(\mathbb{F}_1)birational to the projectivization of an Aut(\mathbb{F}_1)-linearized vector bundle on an open set of $S^b\mathbb{F}_1$. By Lemma 2.2 we may apply the no-name lemma to see the

Proposition 2.4. For $b \ge 4$ we have a birational equivalence

(2.4)
$$|L_{3,b}|/\operatorname{Aut}(\mathbb{F}_1) \sim \mathbb{P}^{2b+9} \times (S^b \mathbb{F}_1/\operatorname{Aut}(\mathbb{F}_1)).$$

Thus the rationality of $|L_{3,b}|/\operatorname{Aut}(\mathbb{F}_1)$ for $b \ge 4$ is reduced to a stable rationality of $S^{b}\mathbb{F}_1/\operatorname{Aut}(\mathbb{F}_1)$.

3. PROJECTION OF RATIONAL NORMAL CURVE

In this section we prove a stable rationality of the quotient $S^{b}\mathbb{F}_{1}/\operatorname{Aut}(\mathbb{F}_{1})$ to derive Theorem 1.2 for $b \geq 4$. For an integer $d \geq 0$ we consider the universal curve $f : \mathcal{H}_{d} \to |L_{1,d}|$ over the linear system $|L_{1,d}|$. The variety \mathcal{H}_{d}

is defined as a divisor on $\mathbb{F}_1 \times |L_{1,d}|$, and f is the restriction of the second projection $\mathbb{F}_1 \times |L_{1,d}| \to |L_{1,d}|$. The bundle $L_{0,1}$ on \mathbb{F}_1 induces a relative hyperplane bundle for f which we denote by $O_f(1)$. Let

(3.1)
$$\mathcal{H}_{d,b} = \mathbb{P}f_*O_f(b).$$

An open set of $\mathcal{H}_{d,b}$ parametrizes pairs $(H, q_1 + \cdots + q_b)$ where $H \in |L_{1,d}|$ is smooth and q_1, \cdots, q_b are *b* points on *H*. Note that a smooth $H \in |L_{1,d}|$ is a section of π .

Lemma 3.1. For $4 \le b \le 2d + 2$ we have a birational equivalence

(3.2)
$$\mathcal{H}_{d,b}/\operatorname{Aut}(\mathbb{F}_1) \sim \mathbb{P}^{2d+2-b} \times (S^b \mathbb{F}_1/\operatorname{Aut}(\mathbb{F}_1))$$

Proof. Consider the evaluation map

(3.3)
$$\psi: \mathcal{H}_{d,b} \dashrightarrow S^{b}\mathbb{F}_{1}, \quad (H, q_{1} + \dots + q_{b}) \mapsto q_{1} + \dots + q_{b}.$$

The fiber $\psi^{-1}(q_1 + \cdots + q_b)$ over a general $q_1 + \cdots + q_b$ is an open set of the sub linear system of $|L_{1,d}|$ of curves passing q_1, \cdots, q_b . Since dim $|L_{1,d}| = 2d + 2 \ge b$, $\psi^{-1}(q_1 + \cdots + q_b)$ is non-empty and of dimension 2d + 2 - b. In particular, ψ is dominant. Then we may apply the no-name lemma for ψ as like the proof of Proposition 2.4 to deduce the equivalence (3.2).

By a comparison of Proposition 2.4 and Lemma 3.1, it suffices for the proof of Theorem 1.2 for $b \ge 4$ to show the rationality of $\mathcal{H}_{d,b}/\operatorname{Aut}(\mathbb{F}_1)$ for *one d* in the range $b \le 2d + 2 \le 3b + 9$. We begin with the

Lemma 3.2. For $d \ge 5$ we have a birational equivalence

(3.4)
$$\mathcal{H}_{d,b}/\operatorname{Aut}(\mathbb{F}_1) \sim \mathbb{P}^b \times (|L_{1,d}|/\operatorname{Aut}(\mathbb{F}_1)))$$

Proof. This lemma is an application of the no-name method for the fibration $\mathcal{H}_{d,b} \to |L_{1,d}|$. Since the bundle $L_{0,1}$ on \mathbb{F}_1 admits an Aut(\mathbb{F}_1)-linearization, so is the bundle $O_f(1)$ on the universal curve \mathcal{H}_d . Hence the sheaf $f_*O_f(b)$ on $|L_{1,d}|$ is Aut(\mathbb{F}_1)-linearized. It remains to check the almost freeness of the Aut(\mathbb{F}_1)-action on $|L_{1,d}|$ for $d \ge 5$. For a general $H \in |L_{1,d}|$ the intersection $H \cap \Sigma$ is a general d point set of $H \simeq \mathbb{P}^1$. If a $g \in \operatorname{Aut}(\mathbb{F}_1)$ stabilizes H, then we have $g(H \cap \Sigma) = H \cap \Sigma$ so that g acts trivially on H. This is enough for concluding that $g = \operatorname{id}$.

Blowing-down \mathbb{F}_1 to \mathbb{P}^2 , we see that the quotient $|L_{1,d}|/\operatorname{Aut}(\mathbb{F}_1)$ is birational to the PGL₃-quotient of the space X_d of rational plane curves of degree d+1 having an ordinary d-fold point. Let \widetilde{X}_d be the space of morphisms $\phi : \mathbb{P}^1 \to \mathbb{P}^2$ such that $\phi^* O_{\mathbb{P}^2}(1) \simeq O_{\mathbb{P}^1}(d+1)$ and $\phi(\mathbb{P}^1) \in X_d$. We have

$$(3.5) |L_{1,d}|/\operatorname{Aut}(\mathbb{F}_1) \sim \operatorname{PGL}_2 \backslash \mathcal{X}_d/\operatorname{PGL}_3.$$

Let $\mathbb{P}V_{d+1} = |\mathcal{O}_{\mathbb{P}^1}(d+1)|^{\vee}$ and $\Gamma_{d+1} \subset \mathbb{P}V_{d+1}$ be the rational normal curve $\phi_0(\mathbb{P}^1)$ where ϕ_0 is the embedding associated to $\mathcal{O}_{\mathbb{P}^1}(d+1)$. Recall that every

morphism $\phi : \mathbb{P}^1 \to \mathbb{P}^2$ with $\phi^* O_{\mathbb{P}^2}(1) \simeq O_{\mathbb{P}^1}(d+1)$ is the composition of (1) the isomorphism $\phi_0 : \mathbb{P}^1 \to \Gamma_{d+1}$, (2) the projection $\Gamma_{d+1} \to \mathbb{P}(V_{d+1}/W)$ from a (d-2)-plane $\mathbb{P}W \subset \mathbb{P}V_{d+1}$ which is disjoint from Γ_{d+1} , and (3) an isomorphism $\mathbb{P}(V_{d+1}/W) \to \mathbb{P}^2$. The group PGL₃ acts on \widetilde{X}_d by transformation of an isomorphism $\mathbb{P}(V_{d+1}/W) \to \mathbb{P}^2$. Hence the quotient $\widetilde{X}_d/\text{PGL}_3$ is naturally birational to the locus \mathcal{Y}_d in the Grassmannian $\mathbf{G}(d-2, \mathbb{P}V_{d+1})$ consisting of (d-2)-planes $\mathbb{P}W$ such that (i) $\mathbb{P}W \cap \Gamma_{d+1} = \emptyset$ and (ii) there exists a (d-1)-plane $\mathbb{P}U$ containing $\mathbb{P}W$ with $\mathbb{P}U \cap \Gamma_{d+1}$ being a d point set. For such a $\mathbb{P}W$, the (d-1)-plane $\mathbb{P}U$ is spanned by the point set $\mathbb{P}U \cap \Gamma_{d+1}$ because of the fact that any distinct d points on a rational normal curve in \mathbb{P}^{d+1} are linearly independent. Also $\mathbb{P}U$ is uniquely determined by $\mathbb{P}W$ for an irreducible plane curve of degree d + 1 has at most one singularity of multiplicity d. These two facts imply that \mathcal{Y}_d is identified with an open set of the locus

(3.6)
$$\mathcal{Z}_d \subset \mathbf{G}(d-2, \mathbb{P}V_{d+1}) \times |\mathcal{O}_{\mathbb{P}^1}(d)|$$

of pairs ($\mathbb{P}W$, **p**) such that $\mathbf{p} = p_1 + \cdots + p_d$ is a distinct d point set on \mathbb{P}^1 and $\mathbb{P}W$ is a hyperplane of the (d-1)-plane $\mathbb{P}U_{\mathbf{p}} = \langle \phi_0(p_1), \cdots, \phi_0(p_d) \rangle$. We arrived at the birational equivalence

$$(3.7) X_d/PGL_3 \sim Z_d/PGL_2.$$

Now we prove the

Proposition 3.3. If $d \ge 5$ is odd, the PGL₂-quotient of \mathbb{Z}_d is rational. Hence $|L_{1,d}|/\operatorname{Aut}(\mathbb{F}_1)$ is rational too.

Proof. The morphism

(3.8)
$$\mathcal{Z}_d \to |\mathcal{O}_{\mathbb{P}^1}(d)|, \quad (\mathbb{P}W, \mathbf{p}) \mapsto \mathbf{p}$$

is dominant with the fiber over a general **p** being $\mathbb{P}U_{\mathbf{p}}^{\vee}$. The vector space $U_{\mathbf{p}}$ is a subspace of $V_{d+1} = H^0(\mathcal{O}_{\mathbb{P}^1}(d+1))^{\vee}$. Since d+1 is even, the bundle $\mathcal{O}_{\mathbb{P}^1}(d+1)$ is PGL₂-linearized so that the PGL₂-action on $\mathbb{P}V_{d+1}$ is induced by a PGL₂-representation on V_{d+1} . Therefore \mathbb{Z}_d is PGL₂-isomorphic to the projectivization of a PGL₂-linearized vector bundle on an open set of $|\mathcal{O}_{\mathbb{P}^1}(d)|$. As PGL₂ acts almost freely on $|\mathcal{O}_{\mathbb{P}^1}(d)|$, the no-name method applied to the fibration (3.8) shows that

(3.9)
$$\mathcal{Z}_d/\mathrm{PGL}_2 \sim \mathbb{P}^{d-1} \times (|\mathcal{O}_{\mathbb{P}^1}(d)|/\mathrm{PGL}_2).$$

The quotient $|\mathcal{O}_{\mathbb{P}^1}(d)|/\text{PGL}_2$ is rational by Katsylo [4].

Proof of Theorem 1.2 for b \geq 4. We may take an odd *d* \geq 5 in the range *b* \leq 2*d* + 2 \leq 3*b* + 9. By Proposition 2.4, Lemma 3.1, and Lemma 3.2 we have

(3.10)
$$|L_{3,b}|/\operatorname{Aut}(\mathbb{F}_1) \sim \mathbb{P}^{4b+7-2d} \times (|L_{1,d}|/\operatorname{Aut}(\mathbb{F}_1))$$

Then $|L_{1,d}|$ /Aut(\mathbb{F}_1) is rational by Proposition 3.3.

4. The case
$$g \leq 7$$

4.1. The rationality of \mathcal{T}_7 . We consider the Aut(\mathbb{F}_1)-equivariant map φ : $|L_{3,3}| \rightarrow S^3 \mathbb{F}_1$ defined in (2.3). The group Aut(\mathbb{F}_1) acts almost transitively on $S^3 \mathbb{F}_1$, with the stabilizer *G* of a general point $q_1 + q_2 + q_3$ being isomorphic to \mathfrak{S}_3 by the permutation action on the set $\{q_1, q_2, q_3\}$. As proved in Lemma 2.1, the fiber $\varphi^{-1}(q_1+q_2+q_3)$ is an open set of a sub linear system $\mathbb{P}V \subset |L_{3,3}|$. Then by the slice method (see [3]) we have the birational equivalence

$$(4.1) |L_{3,3}|/\operatorname{Aut}(\mathbb{F}_1) \sim \mathbb{P}V/G$$

The *G*-action on $\mathbb{P}V$ is induced by a *G*-representation on *V* because the bundle $L_{3,3}$ admits an Aut(\mathbb{F}_1)-linearization. It is well-known that for any linear representation *V'* of \mathfrak{S}_3 the quotient $\mathbb{P}V'/\mathfrak{S}_3$ is rational (apply the noname method for the irreducible decomposition). Hence the quotient $\mathbb{P}V/G$ is rational, and Theorem 1.2 is proved for b = 3.

4.2. The rationality of \mathcal{T}_5 . We consider the Aut(\mathbb{F}_1)-equivariant map φ_1 : $|L_{3,2}| \dashrightarrow S^2(\mathbb{P}\mathcal{E})$ defined in (2.1).

Lemma 4.1. The group $\operatorname{Aut}(\mathbb{F}_1)$ acts almost transitively on $S^2(\mathbb{P}\mathcal{E})$ with the stabilizer *G* of a general point $\mathbf{q} = (q_{1+}+q_{1-})+(q_{2+}+q_{2-})$ being isomorphic to $\mathfrak{S}_2 \ltimes (\mathfrak{S}_2 \times \mathfrak{S}_2)$.

Proof. Since Aut(\mathbb{F}_1) and $S^2(\mathbb{P}\mathcal{E})$ have the same dimention, it suffices to calculate the stabilizer *G*. If $p_{i\pm} \in \mathbb{P}^2$ is the image of $q_{i\pm}$ by the blow-down $\mathbb{F}_1 \to \mathbb{P}^2$, the group *G* is identified with the group of those $g \in \text{PGL}_3$ such that for each i = 1, 2 we have $g(\{p_{i+}, p_{i-}\}) = \{p_{j+}, p_{j-}\}$ for some $1 \le j \le 2$.

Let F_i be the π -fiber passing $q_{i\pm}$ and let $p_i = F_i \cap \Sigma$. The fiber $\varphi_1^{-1}(\mathbf{q})$ is an open set of the sub linear system $\mathbb{P}V \subset |L_{3,2}|$ of curves passing q_{1+}, \cdots, q_{2-} and p_1, p_2 . Similarly as Section 4.1, the slice method applied to the map φ_1 implies that

$$(4.2) |L_{3,2}|/\operatorname{Aut}(\mathbb{F}_1) \sim \mathbb{P}V/G,$$

where the *G*-action on $\mathbb{P}V$ is induced by a *G*-representation on *V*. Let $\mathbb{P}W \subset \mathbb{P}V$ be the sub linear system defined by

(4.3)
$$\mathbb{P}W = 2F_1 + 2F_2 + 2\Sigma + |L_{1,0}|.$$

Since the group *G* preserves the curves $F_1 + F_2$ and Σ , the subspace $\mathbb{P}W$ is invariant under the *G*-action. Since *G* is finite, we have a *G*-decomposition $V = W \oplus W^{\perp}$ where W^{\perp} is a *G*-invariant subspace. The group *G* acts almost

freely on the linear system $|L_{1,0}|$. Hence we may apply the no-name lemma for the projection $\mathbb{P}V \dashrightarrow \mathbb{P}W$ from $\mathbb{P}W^{\perp}$ to see that

$$(4.4) \qquad \qquad \mathbb{P}V/G \sim \mathbb{C}^9 \times (\mathbb{P}W/G).$$

The quotient $\mathbb{P}W/G$, being of dimension 2, is rational by Castelnuovo's theorem. This completes the proof of rationality of \mathcal{T}_5 .

References

- Bogomolov, F. A.; Katsylo, P. I. Rationality of some quotient varieties. Mat. Sb. (N.S.) 126(168) (1985), 584–589.
- [2] Chernousov, V.; Gille, P.; Reichstein, Z. *Resolving G-torsors by abelian base extensions*. J. Algebra **296** (2006), 561–581.
- [3] Dolgachev, I. V. Rationality of fields of invariants. Algebraic geometry, Bowdoin, 1985, 3–16, Proc. Symp. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, 1987.
- [4] Katsylo, P. I. *Rationality of the moduli spaces of hyperelliptic curves*. Izv. Akad. Nauk SSSR. 48 (1984), 705–710.
- [5] Shepherd-Barron, N. I. *The rationality of certain spaces associated to trigonal curves*. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 165–171, Proc. Symp. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

E-mail address: sma@ms.u-tokyo.ac.jp