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THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL
CURVES OF ODD GENUS

SHOUHEI MA

AsstrAacT. The moduli spaces of trigonal curves of odd gegus5 are
proven to be rational.

1. INTRODUCTION

The object of this article is to prove the following.

Theorem 1.1. The moduli spac&j of trigonal curves of genus g 2n+ 1
with n > 2 is rational.

By a trigonal curve we mean an irreducible smooth projective curve
which admits a degree 3 morphismRé A trigonal curve of genug > 5
has a uniques, so that the spacg, to be studied is regarded as a sublocus
of Mg, the moduli space of curves of geryisShepherd-Barron [5] proved
the rationality of74 for g = 4n + 2 withn > 1. Hence the spacg; is ra-
tional possibly except when the gemyis divisible by 4. For the one lower
gonality, Katsylo and BogomoloY [4], [1] established th&amality of the
moduli spaces of hyperelliptic curves.

The proof of Theorern 111 is based on the classical relatibmd®n trig-
onal curves and the Hirzebruch surfaggs= P(Op: ® O:(N)). Recall that
a canonically embedded trigonal cur@ec P9! of genusg > 5 lies on a
unique rational normal scro. The scrollS may obtained either as the
intersection of quadrics containii®@ or as the scroll swept out by the lines
spanned by the fibers of the trigonal map. The surfacgethe image of a
Hirzebruch surfac&)y by a linear systen0,(1) ® n*Op:(a)|, a > 0, where
n : Fy — P!is the natural projection. The trigonal map ©fis the re-
striction of 7. WhenC is general in the modulry, we haveN = O or 1
depending on whetheyis even or odd. Thus, if3, denotes the line bundle
0,(3) ® °Op1(b) onF; with g = 2b + 1, we have the birational equivalence

(1.1) Tg ~ |Lapl/Aut(Fy).
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Here|L3p|/Aut(F,;) stands for a rational quotient of the linear systésy)|
by the algebraic group Auf{). Then Theoreni_1l1 is equivalent to the
following assertion in invariant theory.

Theorem 1.2. For the line bundle L, on the Hirzebruch surfacg; the
quotient|Lgp|/Aut(F,) is rational for b> 2.

The rest of this article is devoted to the proof of this themrén Section
[2 we construct an Aufy)-equivariant map fronfl_s| to SPFy, the symmet-
ric product ofF;, which plays crucial role in the proof. In Sectibh 3 the
rationality forg > 9 is established by using the rational normal curves. In
SectiorL 4 the rationality of 7 and7s is proved,

Throughout this article we work over the field of complex nargy We
denote byr : F; — P! the natural projection. The-(Q)-curve onF; is
denoted by. The line bundle), (a) ® 7*Op:(b) onF; will be written asL, .
The bundleD,(1) is the pullback 0©;2(1) by the blow-dowrF; — P2.

2. SYMMETRIC PRODUCT OF THE HIRZEBRUCH SURFACE

Let PE be the projective space bundte,0,(2) onP!. The varietyP&
parametrizes unordered pags + g. of two points ofF; which lie on the
samern-fiber. We have a rational map

b
(2.1) g1 ILspl > S°(PE), Cr > (G +G.)

i=1
defined as follows. IC|s = p; +- - - + pp andF; is then-fiber passing;, we
setqi; + G- = C|lg, — pi. The mapy; is clearly Aut,)-equivariant. Next
we define a rational map

b b
(2.2) g2 S°(BE) > SF1, D (G +G) P Y G
i=1 i=1

as follows. IfF; is then-fiber passingq;,, gi_} andp; = F; N X, there exists
a unique involution; of F; ~ P! which fixesp; and interchanges.. andd_.
Then we letg; € F; be the fixed point of; other thanp;. By the uniqueness
of ; the mapy, is Aut(F,)-equivariant. We study the composition map

(2.3) @ =@y0¢1: |Lapl > S°Fy.

Lemma 2.1. The mapp is dominant with a general fiber being an open set
of a linear subspace Qksy).

Proof. For a general point; + - - - + ¢, € SPF, let F; be then-fiber passing
g and letp; = F; N X. We take an inhomogeneous coordingtef F; ~ P*
in which p; is {x, = 0} andq; is {X = oo}. The involution ofF; fixing p
andq is given byx — —X. A smooth curveC € |Lszp| iS contained in
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@ o + - -+ + gp) if and only if C|g, has the equatio®(aix? + B;) = O for
eachi = 1,---,b. Since these arebdinear conditions offLzp|, namely the
vanishing of the co@cient ofxi2 and the constant term f@|g,, the second
assertion is proved. The dominancyyois a consequence of the dimension
counting dinjLgp| = 4b + 9 > 2b. O

Lemma 2.2. The groupAut(F,) acts on $F; almost freely if b> 4.

Proof. First we treat the cade> 5. If a general poinp; + - - - + pp € SPF;
is fixed by ag € Aut(F,), theng stabilizes a generdd > 5 point set of the
(=1)-curveX so thatg acts trivially onX. Henceg fixes eachp;. As Aut(F;)
acts almost freely orif)®, it follows thatg = id.

Next we study the case = 4. Letf : F; — P? be the blow-down.
For a generalp; + --- + ps € S*F, there exists a unique smooth conic
Q passingf(X) and f(p1),- -, f(ps). Any g € Aut(F,) fixing p; + --- +
P4, regarded as an element of PGlpreservedQ and the five point set
f(X), f(py),---, f(ps) on it. Henceg acts trivially onQ, which implies that
g=id. O

We shall apply the no-name lemma (séé [3], and also [2] for- non
reductive groups) to the mapwhenb > 4. For that we note the following.

Lemma 2.3. Every line bundle oi¥; admits anAut(F,)-linearization.

Proof. We have canonical Aufg)-linearizations on the bundlelsy, =
Lo 1, 7Kpr = Lo_p, and f*Kpz = L_30 Wheref : F; — P? is the blow-
down of . These induce Auf;)-linearizations onL;o andLy;. Since
Pic(F,) is freely generated bl; o andL, 1, the lemma is proved. O

By Lemmal2.8 the Auff;)-action on|Lsp| is induced by an AuK))-
representation of%(Ls,). Then Lemma 211 shows thftsp| is Aut(F,)-
birational to the projectivization of an AlR()-linearized vector bundle on
an open set 08°F;. By Lemma 2.2 we may apply the no-name lemma to
see the

Proposition 2.4. For b > 4 we have a birational equivalence
(2.4) |Lapl/Aut(F,) ~ P x (SPF,/Aut(F,)).
Thus the rationality ofLzp|/Aut(F;) for b > 4 is reduced to a stable
rationality of SPF, /Aut(F,).
3. H{OJECTION OF RATIONAL NORMAL CURVE

In this section we prove a stable rationality of the quot®tit; /Aut(F,)
to derive Theoremh 112 fab > 4. For an integed > O we consider the
universal curve : Hy — |L14| Over the linear systerh, 4|. The varietyHy
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is defined as a divisor oR; x |L; 4/, and f is the restriction of the second
projectionF; X |L14| — |Ligl- The bundleLy; on F; induces a relative
hyperplane bundle fof which we denote by (1). Let

(3.1) Hap = P1,04(b).

An open set ofHy, parametrizes paird{; g, + - - - + qp) whereH € [L 4 IS
smooth andy, - - - , gy areb points onH. Note that a smoothl € [L, 4| IS a
section ofr.

Lemma 3.1. For4 < b < 2d + 2 we have a birational equivalence
(3.2) Hep/Aut(F;) ~ P2+20 5 (SPF, /Aut(Fy)).

Proof. Consider the evaluation map

(83) Y :iHap->SFr, (HOi+-+0p) > G+ + 0

The fibery~1(g; + - - - + Q) Over a generad + - - - + ¢, iS an open set of the
sub linear system dt; 4| of curves passing;, - -- , 0. Since dinflL, 4| =
2d+2> b,y Y(q; + - - - + ) is non-empty and of dimensio2- 2 - b. In
particulary is dominant. Then we may apply the no-name lemmajfas
like the proof of Propositionh 214 to deduce the equivaleBc2)( |

By a comparison of Propositidn 2.4 and Lemimd 3.1, ffises for the
proof of Theoreni 1]2 fob > 4 to show the rationality ofy,/Aut(F;) for
one din the rangéh < 2d + 2 < 3b + 9. We begin with the

Lemma 3.2. For d > 5we have a birational equivalence
(3.4) Hap/ AUL(Fr) ~ P° X (Lydl/AUt(Fy)).

Proof. Thislemma is an application of the no-name method for thatfiitan
Hayp — |L1gl- Since the bundlé&q; onF; admits an Autf,)-linearization,

so is the bundl®¢ (1) on the universal curvéfly. Hence the sheaf O+ (b)
on|Ly 4| is Aut(F,)-linearized. It remains to check the almost freeness of the
Aut(F;)-action on|L, 4| for d > 5. For a generaH € |L, 4| the intersection

H N X is a generatl point set ofH ~ P1. If a g € Aut(F;) stabilizesH, then

we haveg(H N X) = H N X so thatg acts trivially onH. This is enough for
concluding thag = id. m|

Blowing-downF; to P2, we see that the quotiefit; 4|/Aut(F;) is bira-
tional to the PGk-quotient of the spacé of rational plane curves of de-
greed+1 having an ordinarg-fold point. LetXy be the space of morphisms
¢ : Pt — P2 such thatp*Oy2(1) =~ Op:(d + 1) andg(P?) € Xy4. We have
(3.5) |Lyal/Aut(Fy) ~ PGLy\X4/PGLs.

Let PVy,1 = |0Opi(d + 1)|Y andTy,1 € PVy,1 be the rational normal curve
#o(PY) whereg, is the embedding associated?a (d+1). Recall that every



5

morphismg : P! — P2 with ¢*Op2(1) ~ Op(d + 1) is the composition of
(1) the isomorphismg, : Pt — T'y4.1, (2) the projectiod g1 — P(Vgi1/W)
from a d - 2)-planePW c PVg,1 Which is disjoint froml'g.1, and (3) an
isomorphisnP(Vg,1/W) — P2. The group PG} acts onXy by transfor-
mation of an isomorphism(Vy,1/W) — P2. Hence the quotienty/PGLs

is naturally birational to the locu¥y in the Grassmannia@(d — 2, PVy,1)
consisting of  — 2)-planesPW such that (i)PW N T'y,; = 0 and (ii) there
exists a( — 1)-planePU containingPW with PU NTy,, being ad point set.
For such &W, the d — 1)-planePU is spanned by the point st N Ty,
because of the fact that any distintpoints on a rational normal curve in
P41 are linearly independent. AlseU is uniquely determined bW for
an irreducible plane curve of degrde+ 1 has at most one singularity of
multiplicity d. These two facts imply tha¥y is identified with an open set
of the locus

(3.6) Zq € G(d - 2,PVg41) X [Op2(d)l

of pairs PW. p) such thap = p; +-- - + pq is a distinctd point set orP* and
PW is a hyperplane of thed(— 1)-planePU, = (¢o(p1). - - , do(pa)). We
arrived at the birational equivalence

(3.7) Xq/PGLs ~ Z4/PGL.

Now we prove the

Proposition 3.3. If d > 5 is odd, thePGL,-quotient of Z4 is rational.
HencelLy 4|/Aut(F,) is rational too.

Proof. The morphism
(3.8) Zy = 0a(d)l, (PW.p)—p

is dominant with the fiber over a genepabeingPU . The vector spach,

is a subspace 0fy,; = H(Oz(d + 1))". Sinced + 1 is even, the bundle
Orpi(d + 1) is PGLy-linearized so that the PGtaction onPVy,, is induced
by a PGLly-representation oWy,;. ThereforeZy is PGLy-isomorphic to
the projectivization of a PGJ:linearized vector bundle on an open set of
|0p1(d)]. As PGL, acts almost freely ofOp:(d)|, the no-name method ap-
plied to the fibration(318) shows that

(3.9) Z4/PGLz ~ P* x (10:1(d)|/PGLy).
The quotientOp:(d)|/PGL; is rational by Katsylol[4]. O

Proof of Theoremh 112 for k> 4. We may take an odd > 5 in the range
b <2d+2< 3b+9. By Proposition 2J4, Lemnia 3.1, and Lemma 3.2 we
have

(3.10) |Lapl/AUt(Fy) ~ P72 5 (ILy oI/ Aut(Fy)).
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Then|Ly 4//Aut(F,) is rational by Proposition 3.3. O

4. THECASEQ < 7

4.1. Therationality of 77. We consider the Auk;)-equivariant magp :
L33l --> S%F; defined in[(2.B). The group AtH() acts almost transitively on
S3F,, with the stabilizeiG of a general poingj;, + g, + g3 being isomorphic
to S5 by the permutation action on the $6t, gy, gz}. As proved in Lemma
2.1, the fiberp~(g; +0.+0s) is an open set of a sub linear systB¥h c |L33|.
Then by the slice method (see [3]) we have the birationahedemce

(4.2) |Lssl/Aut(F,) ~ PV/G.

The G-action onPV is induced by aG-representation oV because the
bundleLs 3 admits an Auff;)-linearization. It is well-known that for any
linear representatiov’ of S3 the quotienPV’/ S5 is rational (apply the no-
name method for the irreducible decomposition). Hence tiatigntPV/G
is rational, and Theorem 1.2 is proved foe 3.

4.2. Therationality of 75. We consider the Auli{;)-equivariant ma; :
L3l --> S%(PE) defined in[Z.11).

Lemma4.1. The groupAut(F;) acts almost transitively on%P&) with the
stabilizer G of a general poirg = (Qy; +01-) + (024 +2_) being isomorphic
fo S, x (62 X 62)

Proof. Since Autf,) and S%(PE) have the same dimention, it figes to
calculate the stabilize®. If p.. € P? is the image ofy. by the blow-down
F1 — P?, the groupG is identified with the group of thosg e PGL; such
that for each = 1,2 we haveg({pi., pi-}) = {pj+. pj-} for some 1< | <
2. O

Let F; be ther-fiber passingj. and letp; = FinX. The fibery;(q) is an
open set of the sub linear systé&¥ c |L3,| of curves passing., - - - , Oo-
andpy, p2. Similarly as Sectioh 411, the slice method applied to thp ma
implies that

(4.2) |L3ol/Aut(Fy) ~ PV/G,

where theG-action onPV is induced by &-representation o¥. LetPW c
PV be the sub linear system defined by

(43) PW = 2F1 + 2F2 + 22 + |L1,0|.

Since the grouf preserves the curvds, + F, andZ, the subspacBW is
invariant under thé&-action. Sinces is finite, we have &-decomposition
V = We W+ whereW is aG-invariant subspace. The gro@acts almost
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freely on the linear systeih; o|. Hence we may apply the no-name lemma
for the projectiorPV --> PW from PW* to see that

(4.4) PV/G ~ C° x (PW/G).

The quotienPW/G, being of dimension 2, is rational by Castelnuovo’s the-
orem. This completes the proof of rationalityod.
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