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THE RATIONALITY OF THE MODULI SPACES OF TRIGONAL
CURVES OF ODD GENUS

SHOUHEI MA

Abstract. The moduli spaces of trigonal curves of odd genusg ≥ 5 are
proven to be rational.

1. Introduction

The object of this article is to prove the following.

Theorem 1.1. The moduli spaceTg of trigonal curves of genus g= 2n+ 1
with n≥ 2 is rational.

By a trigonal curve we mean an irreducible smooth projective curve
which admits a degree 3 morphism toP1. A trigonal curve of genusg ≥ 5
has a uniqueg1

3, so that the spaceTg to be studied is regarded as a sublocus
ofMg, the moduli space of curves of genusg. Shepherd-Barron [5] proved
the rationality ofTg for g = 4n + 2 with n ≥ 1. Hence the spaceTg is ra-
tional possibly except when the genusg is divisible by 4. For the one lower
gonality, Katsylo and Bogomolov [4], [1] established the rationality of the
moduli spaces of hyperelliptic curves.

The proof of Theorem 1.1 is based on the classical relation between trig-
onal curves and the Hirzebruch surfacesFN = P(OP1 ⊕ OP1(N)). Recall that
a canonically embedded trigonal curveC ⊂ Pg−1 of genusg ≥ 5 lies on a
unique rational normal scrollS. The scrollS may obtained either as the
intersection of quadrics containingC, or as the scroll swept out by the lines
spanned by the fibers of the trigonal map. The surfaceS is the image of a
Hirzebruch surfaceFN by a linear system|Oπ(1)⊗ π∗OP1(a)|, a > 0, where
π : FN → P

1 is the natural projection. The trigonal map ofC is the re-
striction of π. WhenC is general in the moduliTg, we haveN = 0 or 1
depending on whetherg is even or odd. Thus, ifL3,b denotes the line bundle
Oπ(3)⊗ π∗OP1(b) onF1 with g = 2b+ 1, we have the birational equivalence

(1.1) Tg ∼ |L3,b|/Aut(F1).
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Here |L3,b|/Aut(F1) stands for a rational quotient of the linear system|L3,b|

by the algebraic group Aut(F1). Then Theorem 1.1 is equivalent to the
following assertion in invariant theory.

Theorem 1.2. For the line bundle L3,b on the Hirzebruch surfaceF1 the
quotient|L3,b|/Aut(F1) is rational for b≥ 2.

The rest of this article is devoted to the proof of this theorem. In Section
2 we construct an Aut(F1)-equivariant map from|L3,b| to Sb

F1, the symmet-
ric product ofF1, which plays crucial role in the proof. In Section 3 the
rationality forg ≥ 9 is established by using the rational normal curves. In
Section 4 the rationality ofT7 andT5 is proved,

Throughout this article we work over the field of complex numbers. We
denote byπ : F1 → P

1 the natural projection. The (−1)-curve onF1 is
denoted byΣ. The line bundleOπ(a)⊗π∗OP1(b) onF1 will be written asLa,b.
The bundleOπ(1) is the pullback ofOP2(1) by the blow-downF1→ P

2.

2. Symmetric product of the Hirzebruch surface

Let PE be the projective space bundlePπ∗Oπ(2) onP1. The varietyPE
parametrizes unordered pairsq+ + q− of two points ofF1 which lie on the
sameπ-fiber. We have a rational map

(2.1) ϕ1 : |L3,b|d Sb(PE), C 7→
b∑

i=1

(qi+ + qi−)

defined as follows. IfC|Σ = p1+ · · ·+ pb andFi is theπ-fiber passingpi, we
setqi+ + qi− = C|Fi − pi. The mapϕ1 is clearly Aut(F1)-equivariant. Next
we define a rational map

(2.2) ϕ2 : Sb(PE) d Sb
F1,

b∑

i=1

(qi+ + qi−) 7→
b∑

i=1

qi

as follows. IfFi is theπ-fiber passing{qi+, qi−} andpi = Fi ∩ Σ, there exists
a unique involutionιi of Fi ≃ P

1 which fixespi and interchangesqi+ andqi−.
Then we letqi ∈ Fi be the fixed point ofιi other thanpi. By the uniqueness
of ιi the mapϕ2 is Aut(F1)-equivariant. We study the composition map

(2.3) ϕ = ϕ2 ◦ ϕ1 : |L3,b|d Sb
F1.

Lemma 2.1. The mapϕ is dominant with a general fiber being an open set
of a linear subspace of|L3,b|.

Proof. For a general pointq1 + · · · + qb ∈ Sb
F1 let Fi be theπ-fiber passing

qi and letpi = Fi ∩ Σ. We take an inhomogeneous coordinatexi of Fi ≃ P
1

in which pi is {xi = 0} andqi is {xi = ∞}. The involution ofFi fixing pi

andqi is given byxi 7→ −xi . A smooth curveC ∈ |L3,b| is contained in
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ϕ−1(q1 + · · · + qb) if and only if C|Fi has the equationxi(αi x2
i + βi) = 0 for

eachi = 1, · · · , b. Since these are 2b linear conditions on|L3,b|, namely the
vanishing of the coefficient of x2

i and the constant term forC|Fi , the second
assertion is proved. The dominancy ofϕ is a consequence of the dimension
counting dim|L3,b| = 4b+ 9 > 2b. �

Lemma 2.2. The groupAut(F1) acts on Sb
F1 almost freely if b≥ 4.

Proof. First we treat the caseb ≥ 5. If a general pointp1 + · · · + pb ∈ Sb
F1

is fixed by ag ∈ Aut(F1), theng stabilizes a generalb ≥ 5 point set of the
(−1)-curveΣ so thatg acts trivially onΣ. Henceg fixes eachpi. As Aut(F1)
acts almost freely on (F1)b, it follows thatg = id.

Next we study the caseb = 4. Let f : F1 → P
2 be the blow-down.

For a generalp1 + · · · + p4 ∈ S4
F1 there exists a unique smooth conic

Q passingf (Σ) and f (p1), · · · , f (p4). Any g ∈ Aut(F1) fixing p1 + · · · +

p4, regarded as an element of PGL3, preservesQ and the five point set
f (Σ), f (p1), · · · , f (p4) on it. Henceg acts trivially onQ, which implies that
g = id. �

We shall apply the no-name lemma (see [3], and also [2] for non-
reductive groups) to the mapϕ whenb ≥ 4. For that we note the following.

Lemma 2.3. Every line bundle onF1 admits anAut(F1)-linearization.

Proof. We have canonical Aut(F1)-linearizations on the bundlesKF1 =

L−2,−1, π∗KP1 = L0,−2, and f ∗KP2 = L−3,0 where f : F1 → P
2 is the blow-

down of Σ. These induce Aut(F1)-linearizations onL1,0 and L0,1. Since
Pic(F1) is freely generated byL1,0 andL0,1, the lemma is proved. �

By Lemma 2.3 the Aut(F1)-action on|L3,b| is induced by an Aut(F1)-
representation onH0(L3,b). Then Lemma 2.1 shows that|L3,b| is Aut(F1)-
birational to the projectivization of an Aut(F1)-linearized vector bundle on
an open set ofSb

F1. By Lemma 2.2 we may apply the no-name lemma to
see the

Proposition 2.4. For b ≥ 4 we have a birational equivalence

(2.4) |L3,b|/Aut(F1) ∼ P
2b+9 × (Sb

F1/Aut(F1)).

Thus the rationality of|L3,b|/Aut(F1) for b ≥ 4 is reduced to a stable
rationality ofSb

F1/Aut(F1).

3. Projection of rational normal curve

In this section we prove a stable rationality of the quotientSb
F1/Aut(F1)

to derive Theorem 1.2 forb ≥ 4. For an integerd ≥ 0 we consider the
universal curvef : Hd → |L1,d| over the linear system|L1,d|. The varietyHd
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is defined as a divisor onF1 × |L1,d|, and f is the restriction of the second
projectionF1 × |L1,d| → |L1,d|. The bundleL0,1 on F1 induces a relative
hyperplane bundle forf which we denote byO f (1). Let

(3.1) Hd,b = P f∗O f (b).

An open set ofHd,b parametrizes pairs (H, q1 + · · · + qb) whereH ∈ |L1,d| is
smooth andq1, · · · , qb areb points onH. Note that a smoothH ∈ |L1,d| is a
section ofπ.

Lemma 3.1. For 4 ≤ b ≤ 2d+ 2 we have a birational equivalence

(3.2) Hd,b/Aut(F1) ∼ P
2d+2−b × (Sb

F1/Aut(F1)).

Proof. Consider the evaluation map

(3.3) ψ : Hd,bd Sb
F1, (H, q1 + · · · + qb) 7→ q1 + · · · + qb.

The fiberψ−1(q1 + · · ·+ qb) over a generalq1 + · · ·+ qb is an open set of the
sub linear system of|L1,d| of curves passingq1, · · · , qb. Since dim|L1,d| =

2d+ 2 ≥ b, ψ−1(q1 + · · ·+ qb) is non-empty and of dimension 2d+ 2− b. In
particular,ψ is dominant. Then we may apply the no-name lemma forψ as
like the proof of Proposition 2.4 to deduce the equivalence (3.2). �

By a comparison of Proposition 2.4 and Lemma 3.1, it suffices for the
proof of Theorem 1.2 forb ≥ 4 to show the rationality ofHd,b/Aut(F1) for
one din the rangeb ≤ 2d+ 2 ≤ 3b+ 9. We begin with the

Lemma 3.2. For d ≥ 5 we have a birational equivalence

(3.4) Hd,b/Aut(F1) ∼ P
b × (|L1,d|/Aut(F1)).

Proof. This lemma is an application of the no-name method for the fibration
Hd,b → |L1,d|. Since the bundleL0,1 onF1 admits an Aut(F1)-linearization,
so is the bundleO f (1) on the universal curveHd. Hence the sheaff∗O f (b)
on |L1,d| is Aut(F1)-linearized. It remains to check the almost freeness of the
Aut(F1)-action on|L1,d| for d ≥ 5. For a generalH ∈ |L1,d| the intersection
H ∩ Σ is a generald point set ofH ≃ P1. If a g ∈ Aut(F1) stabilizesH, then
we haveg(H ∩ Σ) = H ∩ Σ so thatg acts trivially onH. This is enough for
concluding thatg = id. �

Blowing-downF1 to P2, we see that the quotient|L1,d|/Aut(F1) is bira-
tional to the PGL3-quotient of the spaceXd of rational plane curves of de-
greed+1 having an ordinaryd-fold point. LetX̃d be the space of morphisms
φ : P1 → P2 such thatφ∗OP2(1) ≃ OP1(d+ 1) andφ(P1) ∈ Xd. We have

(3.5) |L1,d|/Aut(F1) ∼ PGL2\X̃d/PGL3.

Let PVd+1 = |OP1(d + 1)|∨ andΓd+1 ⊂ PVd+1 be the rational normal curve
φ0(P1) whereφ0 is the embedding associated toOP1(d+1). Recall that every
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morphismφ : P1 → P2 with φ∗OP2(1) ≃ OP1(d + 1) is the composition of
(1) the isomorphismφ0 : P1 → Γd+1, (2) the projectionΓd+1 → P(Vd+1/W)
from a (d − 2)-planePW ⊂ PVd+1 which is disjoint fromΓd+1, and (3) an
isomorphismP(Vd+1/W) → P2. The group PGL3 acts onX̃d by transfor-
mation of an isomorphismP(Vd+1/W) → P2. Hence the quotient̃Xd/PGL3

is naturally birational to the locusYd in the GrassmannianG(d − 2, PVd+1)
consisting of (d − 2)-planesPW such that (i)PW ∩ Γd+1 = ∅ and (ii) there
exists a (d−1)-planePU containingPW with PU ∩Γd+1 being ad point set.
For such aPW, the (d − 1)-planePU is spanned by the point setPU ∩ Γd+1

because of the fact that any distinctd points on a rational normal curve in
P

d+1 are linearly independent. AlsoPU is uniquely determined byPW for
an irreducible plane curve of degreed + 1 has at most one singularity of
multiplicity d. These two facts imply thatYd is identified with an open set
of the locus

(3.6) Zd ⊂ G(d− 2, PVd+1) × |OP1(d)|

of pairs (PW, p) such thatp = p1+ · · ·+ pd is a distinctd point set onP1 and
PW is a hyperplane of the (d − 1)-planePUp = 〈φ0(p1), · · · , φ0(pd)〉. We
arrived at the birational equivalence

(3.7) Xd/PGL3 ∼ Zd/PGL2.

Now we prove the

Proposition 3.3. If d ≥ 5 is odd, thePGL2-quotient ofZd is rational.
Hence|L1,d|/Aut(F1) is rational too.

Proof. The morphism

(3.8) Zd → |OP1(d)|, (PW, p) 7→ p

is dominant with the fiber over a generalp beingPU∨p . The vector spaceUp

is a subspace ofVd+1 = H0(OP1(d + 1))∨. Sinced + 1 is even, the bundle
OP1(d + 1) is PGL2-linearized so that the PGL2-action onPVd+1 is induced
by a PGL2-representation onVd+1. ThereforeZd is PGL2-isomorphic to
the projectivization of a PGL2-linearized vector bundle on an open set of
|OP1(d)|. As PGL2 acts almost freely on|OP1(d)|, the no-name method ap-
plied to the fibration (3.8) shows that

(3.9) Zd/PGL2 ∼ P
d−1 × (|OP1(d)|/PGL2).

The quotient|OP1(d)|/PGL2 is rational by Katsylo [4]. �

Proof of Theorem 1.2 for b≥ 4. We may take an oddd ≥ 5 in the range
b ≤ 2d + 2 ≤ 3b+ 9. By Proposition 2.4, Lemma 3.1, and Lemma 3.2 we
have

(3.10) |L3,b|/Aut(F1) ∼ P
4b+7−2d × (|L1,d|/Aut(F1)).
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Then|L1,d|/Aut(F1) is rational by Proposition 3.3. �

4. The case g ≤ 7

4.1. The rationality of T7. We consider the Aut(F1)-equivariant mapϕ :
|L3,3|d S3

F1 defined in (2.3). The group Aut(F1) acts almost transitively on
S3
F1, with the stabilizerG of a general pointq1 + q2 + q3 being isomorphic

toS3 by the permutation action on the set{q1, q2, q3}. As proved in Lemma
2.1, the fiberϕ−1(q1+q2+q3) is an open set of a sub linear systemPV ⊂ |L3,3|.
Then by the slice method (see [3]) we have the birational equivalence

(4.1) |L3,3|/Aut(F1) ∼ PV/G.

The G-action onPV is induced by aG-representation onV because the
bundleL3,3 admits an Aut(F1)-linearization. It is well-known that for any
linear representationV′ ofS3 the quotientPV′/S3 is rational (apply the no-
name method for the irreducible decomposition). Hence the quotientPV/G
is rational, and Theorem 1.2 is proved forb = 3.

4.2. The rationality of T5. We consider the Aut(F1)-equivariant mapϕ1 :
|L3,2|d S2(PE) defined in (2.1).

Lemma 4.1. The groupAut(F1) acts almost transitively on S2(PE) with the
stabilizer G of a general pointq = (q1++q1−)+(q2++q2−) being isomorphic
toS2 ⋉ (S2 ×S2).

Proof. Since Aut(F1) and S2(PE) have the same dimention, it suffices to
calculate the stabilizerG. If pi± ∈ P

2 is the image ofqi± by the blow-down
F1 → P

2, the groupG is identified with the group of thoseg ∈ PGL3 such
that for eachi = 1, 2 we haveg({pi+, pi−}) = {p j+, p j−} for some 1≤ j ≤
2. �

Let Fi be theπ-fiber passingqi± and letpi = Fi∩Σ. The fiberϕ−1
1 (q) is an

open set of the sub linear systemPV ⊂ |L3,2| of curves passingq1+, · · · , q2−

andp1, p2. Similarly as Section 4.1, the slice method applied to the map ϕ1

implies that

(4.2) |L3,2|/Aut(F1) ∼ PV/G,

where theG-action onPV is induced by aG-representation onV. LetPW ⊂
PV be the sub linear system defined by

(4.3) PW = 2F1 + 2F2 + 2Σ + |L1,0|.

Since the groupG preserves the curvesF1 + F2 andΣ, the subspacePW is
invariant under theG-action. SinceG is finite, we have aG-decomposition
V =W⊕W⊥ whereW⊥ is aG-invariant subspace. The groupG acts almost
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freely on the linear system|L1,0|. Hence we may apply the no-name lemma
for the projectionPV d PW from PW⊥ to see that

(4.4) PV/G ∼ C9 × (PW/G).

The quotientPW/G, being of dimension 2, is rational by Castelnuovo’s the-
orem. This completes the proof of rationality ofT5.
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