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Prime end rotation numbers of invariant separating continua

of annular homeomorphisms

Shigenori Matsumoto

Abstract. Let f be a homeomorphism of the closed annulus A isotopic to
the identity, and let X ⊂ IntA be an f -invariant continuum which separates A

into two domains, the upper domain U+ and the lower domain U−. Fixing a
lift of f to the universal cover of A, one defines the rotation set ρ̃(X) of X by
means of the invariant probabilities on X, as well as the prime end rotation
number ρ̌± of U±. The purpose of this paper is to show that ρ̌± belongs to
ρ̃(X) for any separating invariant continuum X.

1. Introduction

Let f be a homeomorphism of the closed annulus A = S1 × [−1, 1], isotopic to
the identity, i. e. f preserves the orientation and each of the boundary components
∂±A = S1×{±1}. Suppose there is an f -invariant partition of A; A = U−∪X∪U+,
where U± is a connected open set containing the boundary component ∂±A and X
is a connected compact set. Let

π : Ã = R× [−1, 1] → S1 × [−1, 1]

be the universal covering map and T : Ã → Ã a generator of the covering transfor-
mation group; T (ξ, η) = (ξ + 1, η). Denote by p : Ã → R the projection onto the
first factor.

Fix once and for all a lift f̃ : Ã → Ã of f . Then the function p ◦ f̃ − p
is T -invariant and can be looked upon as a function on the annulus A. Define
the rotation set ρ̃(X) as the set of values µ(p ◦ f̃ − p), where µ ranges over the
f -invariant probability measures supported on X . The rotation set is a compact
interval (maybe one point) in R, which depends upon the choice of the lift f̃ of f .

The first example of an invariant continuum X such that the frontiers of U±

satisfy Fr(U+) = Fr(U−) = X and that the rotation set ρ̃(X) is not a singleton is
constructed by G. D. Birkhoff in his 1932 year paper [B], and is refered to as a
Birkhoff attractor. It turns out that the Birkhoff attractor is an indecomposable
continuum ([C, L2]). Furthermore it is shown by P. Le Calvez ([L1]) that for
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any rational number between the two prime end rotation numbers is realized by a
correspoding periodic point of f̃ .

Let Û± = U±∪∂∞U± be the prime end compactification of U±, where ∂∞U± is
the space of the prime ends ([E, M, MN]). The space ∂∞U± is homeomorphic to

the circle and Û± to the closed annulus. As is well known, the homeomorphism f

restricted to U± extends to a homeomorphism f̂± : Û± → Û±. Denoting I+ = [0, 1]
and I− = [−1, 0], define a homeomorphism

Ψ± : Û± → S1 × I±

such that Ψ±(∂∞U±) = S1×0. By some abuse of notations denote by π : Ǔ± → Û±

the universal covering map. Thus π−1(U±) is considered to be a subspace of both

Ã and Ǔ±. Let f̌± : Ǔ± → Ǔ± be the lift of f̂± such that f̌± = f̃ on π−1(U±). The
rotation number of the restriction of f̌± to π−1(∂∞U±), denoted by ρ̌±, is called
the prime end rotation number of U±.

The purpose of this paper is to show the following.

Theorem 1. The prime end rotation number ρ̌± belongs to ρ̃(X).

This result is already known for X = Fr(U−) = Fr(U+) ([BG]), and for any X
if the homeomorphism f is area preserving (Lemma 5.4, [FL]).

It is shown in Theorem 2.2 of [F] that any rational number in ρ̃(X) is realized
by a periodic point if X consists of nonwandering points. Notice that then X ,
consisting of chain recurrent points, is chain transitive since it is connected, and
thus satisfies the condition of Theorem 2.2. As a corollary we have

Corollary 2. If X consists of nonwandering points and if p/q lies in the closed

interval bounded by ρ̌− and ρ̌+, then there is a point x ∈ π−1(X) such that f̃ q(x) =
T p(x).

In what follows we also use the following notation. Let

Ψ̌± : Ǔ± → R× I±

be a lift of Ψ±, and define p̌± : Ǔ± → R by p̌± = p ◦ Ψ̌±. The projection p̌± is
within a bounded error of p on π−1(C) for a compact domain C of U±. But they
may be quite different on the whole π−1(U±).

2. Proof

First of all let us state a deep and quite useful theorem of P. Le Calvez ([L3])
which plays a key role in the proof. A fixed point free and orientation preserving
homeomorphism F of the plane R

2 is called a Brouwer homeomorphism. A proper
oriented simple curve γ : R → R

2 is called a Brouwer line for F if F (γ) ⊂ R(γ) and
F−1(γ) ⊂ L(γ), where R(γ) (resp. L(γ)) is the right (resp. left) side complementary
domain of γ, which is decided by the orientation of γ.

Theorem 2.1. Let F be a Brouwer homeomorphism commuting with the elements
of a group Γ which acts on R

2 freely and properly discontinuously. Then there is
a Γ-invariant oriented topological foliation of R2 whose leaves are Brouwer lines of
F .

The proof of Theorem 1 is by absurdity. Assume in way of contradiction that
ρ̌− < p/q < inf ρ̃(X). Considerng f̃ qT−p instead of f̃ , it suffices to deduce a
contradiction under the following assumption.
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Assumption 2.2. ρ̌− < 0 < inf ρ̃(X).

Since inf ρ̃(X) > 0, the map f̃ does not admit a fixed point in π−1(X). The
overall strategy of the proof is to modify the homeomorphism f away from X to a
new one g without creating fixed points in A such that the restrictions of g̃ to the
lifts of the both boundary circles π−1(∂±A) are nontrivial rigid translations by the
same translation number. Then by glueing the two boundary circles we obtain a
torus T 2 and a homeomorphism on T 2. Now we can apply Theorem 2.1 to the lift
of the homeomorphism to the universal covering space. This yields a topological
foliation on T 2, which has long been well understood. The proof will be done by
analyzing the foliation. We first prepare a lemma which is necessary for the desired
modification. We do not presume Assumption 2.2 in the following.

Lemma 2.3. Assume f̃ does not admit a fixed point in π−1(X). Then the prime
end rotation number ρ̌± is nonzero.

Proof: Consider the mapping f̃ − Id defined on Ã. Since it is T -invariant,
it yields a mapping from A, still denoted by the same letter. Then since there is
no fixed point of f̃ in X , we have (f̃ − Id)(X) ⊂ R

2 \ {0}. Therefore there is an
annular open neighbourhood V of X for which we get a mapping

f̃ − Id : V → R
2 \ {0}.

Clearly for any positively oriented essential simple closed curve γ in V , the degree
of the map

f̃ − Id : γ → R
2 \ {0}

must be the same. If the curve γ is contained in U±, then the degree can be studied
by considering the map f̌± defined on the lift Ǔ± of the prime end compactification

Û±. If the prime end rotation number ρ̌± is nonzero, the degree is clearly 0. Notice
that our definition of the degree differs from the usual definition of the index.

To analyze the case ρ̌± = 0, we need the following form of the Cartwright-
Littlewood theorem [CL].

Theorem 2.4. If ρ̌+ = 0 and if Fix(f̃) ∩ π−1(X) = ∅, then the map f̂+ on ∂∞U+

is Morse Smale and the attractors (resp. repellors) of f̂+|∂∞U+
are attractors (resp.

repellors) of the whole map f̂+.

This is slightly stronger than the usual version in which it is assumed that
Fix(f)∩X = ∅. However the proof works as well under the assumption of Theorem
2.4. See e. g. Sect. 3 of [MN].

Let us complete the proof of Lemma 2.3. Theorem 2.4 enables us to compute
the degree of the curve δ in U± when ρ̌± = 0. The degree is n if δ ⊂ U− and −n
if δ ⊂ U+, where n is the number of the attractors. Since the degree must be the
same in U− and U+, the conclusion follows. �

Now we have ρ̌− < 0 and ρ̌+ 6= 0 by Assumption 2.2 and Lemma 2.3. Let us
start the modification of f .

Lemma 2.5. Under Assumption 2.2, there exists a homeomorphism g of A such
that
(1) g = f in some neighbourhood of X,

(2) g̃ does not admit a fixed point in Ã, where g̃ is the lift of g such that g̃ = f̃ on
π−1(X),
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(3) g̃ is a negative rigid translation by the same translation number on π−1(∂±A),
and
(4) p̌− ◦ ǧ− − p̌− ≤ −c on Û− for some positive number c.

Proof: The modification in U− will be done in the following way. We identify

Û− with S1 × [−1, 0] by the homeomorphism Ψ− and the universal covering space
Ǔ− with R×[−1, 0]. Thus p̌− is just the projection onto the first factor; p̌−(ξ, η) = ξ.
Since ρ̌− < 0, the lift

f̌− : R× [−1, 0] → R× [−1, 0]

of f̂− satisfies that p̌− ◦ f̌−(ξ, 0) < ξ − 2c for some c > 0. Therefore changing the
coordinates of [−1, 0] if necessary, one may assume that p̌− ◦ f̌−(ξ, η) ≤ ξ − c if
(ξ, η) ∈ R× [−1/2, 0]. Define a homeomorphism h of S1 × [−1, 0] by

h(ξ, η) = (ξ + ϕ(η)mod1, η),

where ϕ : [−1, 0] → (−∞, 0] is a continuous function such that ϕ([−1/2, 0]) = 0
and

ϕ(η) ≤ − sup{(p̌− ◦ f̌− − p̌−)(ξ, η) | ξ ∈ S1} − c.

Define g = f ◦ h. Then its lift ǧ− satisfies

p̌− ◦ ǧ− − p̌− ≤ −c

on Ǔ− = R × [−1, 0]. Clearly condition (3) for π−1(∂−A) can be established by a
further obvious modification.

Now to modify f in U+, we do the same thing as in U−. If the prime end
rotation number ρ̌+ is negative, then with an auxiliary modification we are done.
If it is positive insert a time one map of the Reeb flow. �

Consider the torus T 2 which is obtained from A by glueing the two bound-
ary curves ∂−A and ∂+A. Then the condition (3) above shows that g induces a
homeomorphism of T 2, again denoted by g. The universal cover of T 2 is R

2 and
Ã = R× [−1, 1] is a subset of R2. The lift g̃ : Ã → Ã can be extended uniquely to a
lift g̃ : R2 → R

2 of g : T 2 → T 2. The covering transformation group Γ is isomorphic
to Z

2, generated by the horizontal translation T and the vertical translation by 2,
denoted by S. Since g̃ is a Brouwer homeomorphism which commutes with Γ, there
is a Γ-invariant oriented foliation on R

2 whose leaves are Brouwer lines for g̃. This
yields an oriented foliation F on the torus T 2. The proof is divided into several
cases according to the topological type of the foliation F . We are going to deduce
a contradiction in each case. But before going into detail we need another lemma.

Lemma 2.6. For any C > 0 there is n > 0 such that p ◦ g̃n − p ≥ C on X.

Proof: If not, there would be a point xn ∈ X for any n > 0 such that

(p ◦ g̃n − p)(xn) =

n−1∑

j=0

(p ◦ g̃ − p)(gj(xn)) < C

for some C > 0, and the averages of Dirac masses

µn =
1

n

n−1∑

j=0

gj∗δxn
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would satisfy µn(p ◦ g̃− p) < C/n. Therefore an accumulation point µ of µn would
have the property that µ(p ◦ g̃ − p) ≤ 0, contradicting the assumption inf ρ̃(X) >
0. �

Case 1. The foliation F does not admit a compact leaf. Then F is conjugate
either to a linear foliation or to a Denjoy foliation, both of irrational slope. The lift
F̃ of F to the open annulus R2/〈T 〉 is conjugate to a foliation by vertical lines. The

space of leaves of F̃ is homeomorphic to S1 and there is a projection from R
2/〈T 〉

to S1 along the leaves of the foliation. This lifts to a projection q : R2 → R.
Now q restricted to Ã is within a bounded error of the first factor projection

p : Ã → R that we have used for the definition of the rotation set ρ̃(X). In fact
both p and q are lifts of degree one maps from R

2/〈T 〉 to S1 and their difference

is bounded on the preimage Ã = π−1(A) of a compact subset A. Thus Lemma 2.6

shows that q ◦ g̃n(x) → ∞ (n → ∞) for x ∈ π−1(X). That is, the foliation F̃ is
oriented upward. But this shows that q◦g̃(x) > q(x) even for a point x ∈ π−1(∂−A).
On the other hand by condition (3) of Lemma 2.5, g̃ is a negative translation on
π−1(∂−A). A contradiction.

Case 2.1. The foliation F admits a compact leaf L of nonzero slope and does
not admit a Reeb component. In this case the lifted foliation F̃ is also conjugate to
the vertical foliation and the argument of Case 1 applies.

Case 2.2. The foliation F admits a Reeb component R of nonzero slope. The
Brouwer property of leaves implies that g(R) ⊂ Int(R) or g−1(R) ⊂ Int(R). That
is, a point of the boundary of R is wandering under g. Therefore ∂−A, consisting
of nonwandering points of g according to (3) of Lemma 2.5, cannot intersect the
boundary of R, which is however impossible since the slope of R is nonzero.

Case 2.3. The foliation F admits a compact leaf of slope 0. Hereafter we
only consider the dynamics and the foliation on the open annulus R

2/〈T 〉. Recall
that A is a subset of R2/〈T 〉, and the homeomorphism g on A is extended to the
whole R2/〈T 〉, again denoted by g, in such a way that g commutes with the vertical

translation S, while the foliation is denoted by F̃ as before.
Now the foliation F̃ yields a partition P of the open annulus R

2/〈T 〉 into
compact leaves, interiors of Reeb components and foliated I-bundles. The set P is
totally ordered by the height. The minimal element which intersects X cannot be
a compact leaf by the Brouwer line property. Let R be the closure of the minimal
element. Thus R is either a Reeb component or a foliated I-bundle such that
Int(R) ∩X 6= ∅ and ∂−R ∩X = ∅, where ∂−R is the lower boundary curve of R.

Assume for a while that ∂−R is oriented from the right to the left. Thus the
homeomorphism g carries ∂−R into the upper complement of ∂−R.

Case 2.3.1 R is a Reeb component. First notice that g(R) ⊂ IntR and that
the interior leaves of R are oriented upwards by the assumption inf ρ̃(X) > 0 and
the fact that g(X ∩R) ⊂ X ∩R. Choose a simple arc

α : [0, 1] → π−1(R)

such that α(0) ∈ π−1(∂−R), α(1) = g̃(α(0)), and α((0, 1)) ⊂ Int(π−1(R)) \
g̃(π−1(R)). Since g−1(π(α)) is below IntR, g̃−1(α), and hence α, is contained
in π−1(U−).

Concatenating nonnegative iterates of α, we obtain a simple path γ : [0,∞) →
π−1(R ∩ U−) such that g̃ ◦ γ(t) = γ(t+ 1) for any t ≥ 0. Let q : π−1(Int(R)) → R
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be the lift of the projection along the leaves. Since γ([1,∞)) is contained in the
lift of a compact subset g̃(R) ⊂ Int(R) and the leaves in Int(R) is oriented upward,
we have q ◦ γ(t) → ∞ as t → ∞. We also have p ◦ γ(t) → ∞ because q is within
bounded error of p on γ([1,∞)).

On the other hand by condition (4) of Lemma 2.5, we have p̌ ◦ γ(t) → −∞ as

t → ∞. In particular the curve γ is proper both in Ã and in Ǔ− pointing toward the
opposite direction. By joining the point γ(0) to an appropriate point in π−1(∂−A),
we obtain a simple curve δ in π−1(U−) starting at a point on π−1(∂−A) which
extends γ.

Notice that there is a point of π−1(X) on the left of a proper oriented curve

δ in Ã, because the map p is bounded from below on δ and a high iterate of T−1

carries a point in π−1(X) beyond that bound. (There might be a point of π−1(X)
on the right of δ however.)

Let x be a point in π−1(∂−A) left to the initial point of δ. Then there is a
simple path β : [0,∞) → π−1(U−) such that β(0) = x, limt→∞ β(t) ∈ π−1(X), and
β is disjoint from δ. The path β, extendable in π−1(A) is also extendable in Ǔ−,
the lift of the prime end compactification. (See e. g. Lemma 2.5 of [MN].) This
implies that β defines a simple path in Ǔ− joining x to a prime end in π−1(∂∞U−)
without intersecting δ, which is impossible since π−1(∂∞U−) is contained in the
right side of the proper path δ in Ǔ− since p̌−δ(t) → −∞, while x is on the left
side. A contradiction.

Case 2.3.2 R is a foliated I-bundle. Thus the upper boundary curve ∂+R of
R is also oriented from the right to the left, and its image by g lies on the upper
complement of R. The interior leaves of R are oriented upward.

Recall that the boundary component ∂−A consisting of nonwandering points
cannot intersect a compact leaf. Moreover ∂−A lies in a Reeb component or a
foliated I-bundle whose interior leaves are oriented downward since pg̃n(x) → −∞
as n → ∞ for x ∈ π−1(∂−A). Let C be the annulus in R

2/〈T 〉 bounded by ∂−A
and ∂+R, the upper boundary curve of R. Notice that Int(C) contains ∂−R.

Case 2.3.2.1 The intersection X ∩ C has a component which separates ∂−A
from ∂+A. One can derive a contradiction by the same argument as in Case 2.3.1,
since the like defined path γ cannot evade R.

Case 2.3.2.2 There is a simple path in U− joining a point in ∂−A with a point
in ∂+R. Notice first of all that g−1(C) ⊂ C. Let Y be the family of the connected
components of π−1(X ∩ C). Then any element Y ∈ Y is compact, and intersects
π−1(∂+R) since otherwise Y would be a connected component of π−1(X) itself.

Choose a simple curve γ : [0, 1] → π−1(C) such that
(1) γ(0) ∈ π−1(∂−A),
(2) γ(1) ∈ π−1(X ∩ C), and
(3) γ([0, 1)) ⊂ π−1(U− ∩ C).

Let Y be an element of Y which contains γ(1). Then there are two unbounded
connected components of the complement π−1(C) \ (Y ∪ γ), one L(Y ∪ γ) on the
left, and the other R(Y ∪ γ) on the right.

Notice that for any n > 0, g̃−nγ is a path in C, and that pg̃−n(γ(1)) → −∞
and pg̃−n(γ(0)) → ∞ as n → ∞. That is, for any large n, g̃−n(γ(1)) ∈ L(Y ∪ γ)
and g̃−n(γ(0)) ∈ R(Y ∪ γ), showing that g̃−n(γ) intersects γ. On the other hand
in Ǔ−, γ defines a curve from a point in π−1(∂−A) to a prime end in π−1(∂∞U−).
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But by condition (4) of Lemma 2.5, γ cannot intersect g̃−n(γ) for any large n. A
contradiction.

Finally the case where ∂−R is oriented from the left to the right can be dealt
with similarly by reversing the time. This completes the proof of Theorem 1.
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