Prime end rotation numbers of invariant separating continua of annular homeomorphisms

Shigenori Matsumoto

Abstract

Let f be a homeomorphism of the closed annulus A isotopic to the identity, and let $X \subset \operatorname{Int} A$ be an f-invariant continuum which separates A into two domains, the upper domain U_{+}and the lower domain U_{-}. Fixing a lift of f to the universal cover of A, one defines the rotation set $\tilde{\rho}(X)$ of X by means of the invariant probabilities on X, as well as the prime end rotation number $\check{\rho}_{ \pm}$of $U_{ \pm}$. The purpose of this paper is to show that $\check{\rho}_{ \pm}$belongs to $\tilde{\rho}(X)$ for any separating invariant continuum X.

1. Introduction

Let f be a homeomorphism of the closed annulus $A=S^{1} \times[-1,1]$, isotopic to the identity, i. e. f preserves the orientation and each of the boundary components $\partial_{ \pm} A=S^{1} \times\{ \pm 1\}$. Suppose there is an f-invariant partition of $A ; A=U_{-} \cup X \cup U_{+}$, where $U_{ \pm}$is a connected open set containing the boundary component $\partial_{ \pm} A$ and X is a connected compact set. Let

$$
\pi: \tilde{A}=\mathbb{R} \times[-1,1] \rightarrow S^{1} \times[-1,1]
$$

be the universal covering map and $T: \tilde{A} \rightarrow \tilde{A}$ a generator of the covering transformation group; $T(\xi, \eta)=(\xi+1, \eta)$. Denote by $p: \tilde{A} \rightarrow \mathbb{R}$ the projection onto the first factor.

Fix once and for all a lift $\tilde{f}: \tilde{A} \rightarrow \tilde{A}$ of f. Then the function $p \circ \tilde{f}-p$ is T-invariant and can be looked upon as a function on the annulus A. Define the rotation set $\tilde{\rho}(X)$ as the set of values $\mu(p \circ \tilde{f}-p)$, where μ ranges over the f-invariant probability measures supported on X. The rotation set is a compact interval (maybe one point) in \mathbb{R}, which depends upon the choice of the lift \tilde{f} of f.

The first example of an invariant continuum X such that the frontiers of $U_{ \pm}$ satisfy $\operatorname{Fr}\left(U_{+}\right)=\operatorname{Fr}\left(U_{-}\right)=X$ and that the rotation set $\tilde{\rho}(X)$ is not a singleton is constructed by G. D. Birkhoff in his 1932 year paper $[\mathbf{B}$, and is refered to as a Birkhoff attractor. It turns out that the Birkhoff attractor is an indecomposable continuum ($[\mathbf{C}, \mathbf{L 2}])$. Furthermore it is shown by P. Le Calvez ($\overline{\mathbf{L} 1})$ that for

[^0]any rational number between the two prime end rotation numbers is realized by a correspoding periodic point of \tilde{f}.

Let $\hat{U}_{ \pm}=U_{ \pm} \cup \partial_{\infty} U_{ \pm}$be the prime end compactification of $U_{ \pm}$, where $\partial_{\infty} U_{ \pm}$is the space of the prime ends $(\mathbf{E}, \mathbf{M}, \mathbf{M} \mathbf{N}])$. The space $\partial_{\infty} U_{ \pm}$is homeomorphic to the circle and $\hat{U}_{ \pm}$to the closed annulus. As is well known, the homeomorphism f restricted to $U_{ \pm}$extends to a homeomorphism $\hat{f}_{ \pm}: \hat{U}_{ \pm} \rightarrow \hat{U}_{ \pm}$. Denoting $I_{+}=[0,1]$ and $I_{-}=[-1,0]$, define a homeomorphism

$$
\Psi_{ \pm}: \hat{U}_{ \pm} \rightarrow S^{1} \times I_{ \pm}
$$

such that $\Psi_{ \pm}\left(\partial_{\infty} U_{ \pm}\right)=S^{1} \times 0$. By some abuse of notations denote by $\pi: \check{U}_{ \pm} \rightarrow \hat{U}_{ \pm}$ the universal covering map. Thus $\pi^{-1}\left(U_{ \pm}\right)$is considered to be a subspace of both \tilde{A} and $\check{U}_{ \pm}$. Let $\check{f}_{ \pm}: \check{U}_{ \pm} \rightarrow \check{U}_{ \pm}$be the lift of $\hat{f}_{ \pm}$such that $\check{f}_{ \pm}=\tilde{f}$ on $\pi^{-1}\left(U_{ \pm}\right)$. The rotation number of the restriction of $\check{f}_{ \pm}$to $\pi^{-1}\left(\partial_{\infty} U_{ \pm}\right)$, denoted by $\check{\rho}_{ \pm}$, is called the prime end rotation number of $U_{ \pm}$.

The purpose of this paper is to show the following.
Theorem 1. The prime end rotation number $\check{\rho}_{ \pm}$belongs to $\tilde{\rho}(X)$.
This result is already known for $X=\operatorname{Fr}\left(U_{-}\right)=\operatorname{Fr}\left(U_{+}\right)([\mathbf{B G})$, and for any X if the homeomorphism f is area preserving (Lemma 5.4, [FL).

It is shown in Theorem 2.2 of \mathbf{F} that any rational number in $\tilde{\rho}(X)$ is realized by a periodic point if X consists of nonwandering points. Notice that then X, consisting of chain recurrent points, is chain transitive since it is connected, and thus satisfies the condition of Theorem 2.2. As a corollary we have

Corollary 2. If X consists of nonwandering points and if p / q lies in the closed interval bounded by $\check{\rho}_{-}$and $\check{\rho}_{+}$, then there is a point $x \in \pi^{-1}(X)$ such that $\tilde{f}^{q}(x)=$ $T^{p}(x)$.

In what follows we also use the following notation. Let

$$
\check{\Psi}_{ \pm}: \check{U}_{ \pm} \rightarrow \mathbb{R} \times I_{ \pm}
$$

be a lift of $\Psi_{ \pm}$, and define $\check{p}_{ \pm}: \check{U}_{ \pm} \rightarrow \mathbb{R}$ by $\check{p}_{ \pm}=p \circ \check{\Psi}_{ \pm}$. The projection $\check{p}_{ \pm}$is within a bounded error of p on $\pi^{-1}(C)$ for a compact domain C of $U_{ \pm}$. But they may be quite different on the whole $\pi^{-1}\left(U_{ \pm}\right)$.

2. Proof

First of all let us state a deep and quite useful theorem of P. Le Calvez ($\mathbf{L \mathbf { L } 3}$) which plays a key role in the proof. A fixed point free and orientation preserving homeomorphism F of the plane \mathbb{R}^{2} is called a Brouwer homeomorphism. A proper oriented simple curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is called a Brouwer line for F if $F(\gamma) \subset R(\gamma)$ and $F^{-1}(\gamma) \subset L(\gamma)$, where $R(\gamma)$ (resp. $\left.L(\gamma)\right)$ is the right (resp. left) side complementary domain of γ, which is decided by the orientation of γ.

Theorem 2.1. Let F be a Brouwer homeomorphism commuting with the elements of a group Γ which acts on \mathbb{R}^{2} freely and properly discontinuously. Then there is $a \Gamma$-invariant oriented topological foliation of \mathbb{R}^{2} whose leaves are Brouwer lines of F.

The proof of Theorem 1 is by absurdity. Assume in way of contradiction that $\check{\rho}_{-}<p / q<\inf \tilde{\rho}(X)$. Considerng $\tilde{f}^{q} T^{-p}$ instead of \tilde{f}, it suffices to deduce a contradiction under the following assumption.

Assumption 2.2. $\check{\rho}_{-}<0<\inf \tilde{\rho}(X)$.
Since $\inf \tilde{\rho}(X)>0$, the map \tilde{f} does not admit a fixed point in $\pi^{-1}(X)$. The overall strategy of the proof is to modify the homeomorphism f away from X to a new one g without creating fixed points in A such that the restrictions of \tilde{g} to the lifts of the both boundary circles $\pi^{-1}\left(\partial_{ \pm} A\right)$ are nontrivial rigid translations by the same translation number. Then by glueing the two boundary circles we obtain a torus T^{2} and a homeomorphism on T^{2}. Now we can apply Theorem 2.1 to the lift of the homeomorphism to the universal covering space. This yields a topological foliation on T^{2}, which has long been well understood. The proof will be done by analyzing the foliation. We first prepare a lemma which is necessary for the desired modification. We do not presume Assumption 2.2 in the following.

Lemma 2.3. Assume \tilde{f} does not admit a fixed point in $\pi^{-1}(X)$. Then the prime end rotation number $\check{\rho}_{ \pm}$is nonzero.

Proof: Consider the mapping \tilde{f} - Id defined on \tilde{A}. Since it is T-invariant, it yields a mapping from A, still denoted by the same letter. Then since there is no fixed point of \tilde{f} in X, we have $(\tilde{f}-\mathrm{Id})(X) \subset \mathbb{R}^{2} \backslash\{0\}$. Therefore there is an annular open neighbourhood V of X for which we get a mapping

$$
\tilde{f}-\mathrm{Id}: V \rightarrow \mathbb{R}^{2} \backslash\{0\} .
$$

Clearly for any positively oriented essential simple closed curve γ in V, the degree of the map

$$
\tilde{f}-\operatorname{Id}: \gamma \rightarrow \mathbb{R}^{2} \backslash\{0\}
$$

must be the same. If the curve γ is contained in $U_{ \pm}$, then the degree can be studied by considering the map $\check{f}_{ \pm}$defined on the lift $\breve{U}_{ \pm}$of the prime end compactification $\hat{U}_{ \pm}$. If the prime end rotation number $\check{\rho}_{ \pm}$is nonzero, the degree is clearly 0 . Notice that our definition of the degree differs from the usual definition of the index.

To analyze the case $\check{\rho}_{ \pm}=0$, we need the following form of the CartwrightLittlewood theorem [CL].
Theorem 2.4. If $\check{\rho}_{+}=0$ and if $\operatorname{Fix}(\tilde{f}) \cap \pi^{-1}(X)=\emptyset$, then the map \hat{f}_{+}on $\partial_{\infty} U_{+}$ is Morse Smale and the attractors (resp. repellors) of $\left.\hat{f}_{+}\right|_{\partial_{\infty} U_{+}}$are attractors (resp. repellors) of the whole map \hat{f}_{+}.

This is slightly stronger than the usual version in which it is assumed that $\operatorname{Fix}(f) \cap X=\emptyset$. However the proof works as well under the assumption of Theorem 2.4. See e. g. Sect. 3 of $\mathbf{M N}$.

Let us complete the proof of Lemma 2.3. Theorem 2.4 enables us to compute the degree of the curve δ in $U_{ \pm}$when $\check{\rho}_{ \pm}=0$. The degree is n if $\delta \subset U_{-}$and $-n$ if $\delta \subset U_{+}$, where n is the number of the attractors. Since the degree must be the same in U_{-}and U_{+}, the conclusion follows.

Now we have $\check{\rho}_{-}<0$ and $\check{\rho}_{+} \neq 0$ by Assumption 2.2 and Lemma 2.3. Let us start the modification of f.

Lemma 2.5. Under Assumption 2.2, there exists a homeomorphism g of A such that
(1) $g=f$ in some neighbourhood of X,
(2) \tilde{g} does not admit a fixed point in \tilde{A}, where \tilde{g} is the lift of g such that $\tilde{g}=\tilde{f}$ on $\pi^{-1}(X)$,
(3) \tilde{g} is a negative rigid translation by the same translation number on $\pi^{-1}\left(\partial_{ \pm} A\right)$, and
(4) $\check{p}_{-} \circ \check{g}_{-}-\check{p}_{-} \leq-c$ on \hat{U}_{-}for some positive number c.

Proof: The modification in U_{-}will be done in the following way. We identify \hat{U}_{-}with $S^{1} \times[-1,0]$ by the homeomorphism Ψ_{-}and the universal covering space \check{U}_{-}with $\mathbb{R} \times[-1,0]$. Thus \check{p}_{-}is just the projection onto the first factor; $\check{p}_{-}(\xi, \eta)=\xi$. Since $\check{\rho}_{-}<0$, the lift

$$
\check{f}_{-}: \mathbb{R} \times[-1,0] \rightarrow \mathbb{R} \times[-1,0]
$$

of \hat{f}_{-}satisfies that $\check{p}_{-} \circ \check{f}_{-}(\xi, 0)<\xi-2 c$ for some $c>0$. Therefore changing the coordinates of $[-1,0]$ if necessary, one may assume that $\check{p}_{-} \circ \check{f}_{-}(\xi, \eta) \leq \xi-c$ if $(\xi, \eta) \in \mathbb{R} \times[-1 / 2,0]$. Define a homeomorphism h of $S^{1} \times[-1,0]$ by

$$
h(\xi, \eta)=(\xi+\varphi(\eta) \bmod 1, \eta)
$$

where $\varphi:[-1,0] \rightarrow(-\infty, 0]$ is a continuous function such that $\varphi([-1 / 2,0])=0$ and

$$
\varphi(\eta) \leq-\sup \left\{\left(\check{p}_{-} \circ \check{f}_{-}-\check{p}_{-}\right)(\xi, \eta) \mid \xi \in S^{1}\right\}-c .
$$

Define $g=f \circ h$. Then its lift \check{g}_{-}satisfies

$$
\check{p}_{-} \circ \check{g}_{-}-\check{p}_{-} \leq-c
$$

on $\check{U}_{-}=\mathbb{R} \times[-1,0]$. Clearly condition (3) for $\pi^{-1}\left(\partial_{-} A\right)$ can be established by a further obvious modification.

Now to modify f in U_{+}, we do the same thing as in U_{-}. If the prime end rotation number $\check{\rho}_{+}$is negative, then with an auxiliary modification we are done. If it is positive insert a time one map of the Reeb flow.

Consider the torus T^{2} which is obtained from A by glueing the two boundary curves $\partial_{-} A$ and $\partial_{+} A$. Then the condition (3) above shows that g induces a homeomorphism of T^{2}, again denoted by g. The universal cover of T^{2} is \mathbb{R}^{2} and $\tilde{A}=\mathbb{R} \times[-1,1]$ is a subset of \mathbb{R}^{2}. The lift $\tilde{g}: \tilde{A} \rightarrow \tilde{A}$ can be extended uniquely to a lift $\tilde{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of $g: T^{2} \rightarrow T^{2}$. The covering transformation group Γ is isomorphic to \mathbb{Z}^{2}, generated by the horizontal translation T and the vertical translation by 2 , denoted by S. Since \tilde{g} is a Brouwer homeomorphism which commutes with Γ, there is a Γ-invariant oriented foliation on \mathbb{R}^{2} whose leaves are Brouwer lines for \tilde{g}. This yields an oriented foliation \mathcal{F} on the torus T^{2}. The proof is divided into several cases according to the topological type of the foliation \mathcal{F}. We are going to deduce a contradiction in each case. But before going into detail we need another lemma.

Lemma 2.6. For any $C>0$ there is $n>0$ such that $p \circ \tilde{g}^{n}-p \geq C$ on X.
Proof: If not, there would be a point $x_{n} \in X$ for any $n>0$ such that

$$
\left(p \circ \tilde{g}^{n}-p\right)\left(x_{n}\right)=\sum_{j=0}^{n-1}(p \circ \tilde{g}-p)\left(g^{j}\left(x_{n}\right)\right)<C
$$

for some $C>0$, and the averages of Dirac masses

$$
\mu_{n}=\frac{1}{n} \sum_{j=0}^{n-1} g_{*}^{j} \delta_{x_{n}}
$$

would satisfy $\mu_{n}(p \circ \tilde{g}-p)<C / n$. Therefore an accumulation point μ of μ_{n} would have the property that $\mu(p \circ \tilde{g}-p) \leq 0$, contradicting the assumption inf $\tilde{\rho}(X)>$ 0 .

Case 1. The foliation \mathcal{F} does not admit a compact leaf. Then \mathcal{F} is conjugate either to a linear foliation or to a Denjoy foliation, both of irrational slope. The lift $\tilde{\mathcal{F}}$ of \mathcal{F} to the open annulus $\mathbb{R}^{2} /\langle T\rangle$ is conjugate to a foliation by vertical lines. The space of leaves of $\tilde{\mathcal{F}}$ is homeomorphic to S^{1} and there is a projection from $\mathbb{R}^{2} /\langle T\rangle$ to S^{1} along the leaves of the foliation. This lifts to a projection $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Now q restricted to \tilde{A} is within a bounded error of the first factor projection $p: \tilde{A} \rightarrow \mathbb{R}$ that we have used for the definition of the rotation set $\tilde{\rho}(X)$. In fact both p and q are lifts of degree one maps from $\mathbb{R}^{2} /\langle T\rangle$ to S^{1} and their difference is bounded on the preimage $\tilde{A}=\pi^{-1}(A)$ of a compact subset A. Thus Lemma 2.6 shows that $q \circ \tilde{g}^{n}(x) \rightarrow \infty(n \rightarrow \infty)$ for $x \in \pi^{-1}(X)$. That is, the foliation $\tilde{\mathcal{F}}$ is oriented upward. But this shows that $q \circ \tilde{g}(x)>q(x)$ even for a point $x \in \pi^{-1}\left(\partial_{-} A\right)$. On the other hand by condition (3) of Lemma [2.5, \tilde{g} is a negative translation on $\pi^{-1}\left(\partial_{-} A\right)$. A contradiction.

Case 2.1. The foliation \mathcal{F} admits a compact leaf L of nonzero slope and does not admit a Reeb component. In this case the lifted foliation $\tilde{\mathcal{F}}$ is also conjugate to the vertical foliation and the argument of Case 1 applies.

Case 2.2. The foliation \mathcal{F} admits a Reeb component R of nonzero slope. The Brouwer property of leaves implies that $g(R) \subset \operatorname{Int}(R)$ or $g^{-1}(R) \subset \operatorname{Int}(R)$. That is, a point of the boundary of R is wandering under g. Therefore $\partial_{-} A$, consisting of nonwandering points of g according to (3) of Lemma 2.5, cannot intersect the boundary of R, which is however impossible since the slope of R is nonzero.

Case 2.3. The foliation \mathcal{F} admits a compact leaf of slope 0 . Hereafter we only consider the dynamics and the foliation on the open annulus $\mathbb{R}^{2} /\langle T\rangle$. Recall that A is a subset of $\mathbb{R}^{2} /\langle T\rangle$, and the homeomorphism g on A is extended to the whole $\mathbb{R}^{2} /\langle T\rangle$, again denoted by g, in such a way that g commutes with the vertical translation S, while the foliation is denoted by $\tilde{\mathcal{F}}$ as before.

Now the foliation $\tilde{\mathcal{F}}$ yields a partition \mathcal{P} of the open annulus $\mathbb{R}^{2} /\langle T\rangle$ into compact leaves, interiors of Reeb components and foliated I-bundles. The set \mathcal{P} is totally ordered by the height. The minimal element which intersects X cannot be a compact leaf by the Brouwer line property. Let R be the closure of the minimal element. Thus R is either a Reeb component or a foliated I-bundle such that $\operatorname{Int}(R) \cap X \neq \emptyset$ and $\partial_{-} R \cap X=\emptyset$, where $\partial_{-} R$ is the lower boundary curve of R.

Assume for a while that $\partial_{-} R$ is oriented from the right to the left. Thus the homeomorphism g carries $\partial_{-} R$ into the upper complement of $\partial_{-} R$.

CASE 2.3.1 R is a Reeb component. First notice that $g(R) \subset \operatorname{Int} R$ and that the interior leaves of R are oriented upwards by the assumption inf $\tilde{\rho}(X)>0$ and the fact that $g(X \cap R) \subset X \cap R$. Choose a simple arc

$$
\alpha:[0,1] \rightarrow \pi^{-1}(R)
$$

such that $\alpha(0) \in \pi^{-1}\left(\partial_{-} R\right), \alpha(1)=\tilde{g}(\alpha(0))$, and $\alpha((0,1)) \subset \operatorname{Int}\left(\pi^{-1}(R)\right) \backslash$ $\tilde{g}\left(\pi^{-1}(R)\right)$. Since $g^{-1}(\pi(\alpha))$ is below $\operatorname{Int} R, \tilde{g}^{-1}(\alpha)$, and hence α, is contained in $\pi^{-1}\left(U_{-}\right)$.

Concatenating nonnegative iterates of α, we obtain a simple path $\gamma:[0, \infty) \rightarrow$ $\pi^{-1}\left(R \cap U_{-}\right)$such that $\tilde{g} \circ \gamma(t)=\gamma(t+1)$ for any $t \geq 0$. Let $q: \pi^{-1}(\operatorname{Int}(R)) \rightarrow \mathbb{R}$
be the lift of the projection along the leaves. Since $\gamma([1, \infty))$ is contained in the lift of a compact subset $\tilde{g}(R) \subset \operatorname{Int}(R)$ and the leaves in $\operatorname{Int}(R)$ is oriented upward, we have $q \circ \gamma(t) \rightarrow \infty$ as $t \rightarrow \infty$. We also have $p \circ \gamma(t) \rightarrow \infty$ because q is within bounded error of p on $\gamma([1, \infty))$.

On the other hand by condition (4) of Lemma 2.5] we have $\check{p} \circ \gamma(t) \rightarrow-\infty$ as $t \rightarrow \infty$. In particular the curve γ is proper both in \tilde{A} and in \check{U}_{-}pointing toward the opposite direction. By joining the point $\gamma(0)$ to an appropriate point in $\pi^{-1}\left(\partial_{-} A\right)$, we obtain a simple curve δ in $\pi^{-1}\left(U_{-}\right)$starting at a point on $\pi^{-1}\left(\partial_{-} A\right)$ which extends γ.

Notice that there is a point of $\pi^{-1}(X)$ on the left of a proper oriented curve δ in \tilde{A}, because the map p is bounded from below on δ and a high iterate of T^{-1} carries a point in $\pi^{-1}(X)$ beyond that bound. (There might be a point of $\pi^{-1}(X)$ on the right of δ however.)

Let x be a point in $\pi^{-1}\left(\partial_{-} A\right)$ left to the initial point of δ. Then there is a simple path $\beta:[0, \infty) \rightarrow \pi^{-1}\left(U_{-}\right)$such that $\beta(0)=x, \lim _{t \rightarrow \infty} \beta(t) \in \pi^{-1}(X)$, and β is disjoint from δ. The path β, extendable in $\pi^{-1}(A)$ is also extendable in \check{U}_{-}, the lift of the prime end compactification. (See e. g. Lemma 2.5 of MN.) This implies that β defines a simple path in \check{U}_{-}joining x to a prime end in $\pi^{-1}\left(\partial_{\infty} U_{-}\right)$ without intersecting δ, which is impossible since $\pi^{-1}\left(\partial_{\infty} U_{-}\right)$is contained in the right side of the proper path δ in \check{U}_{-}since $\check{p}_{-} \delta(t) \rightarrow-\infty$, while x is on the left side. A contradiction.

CASE 2.3.2 R is a foliated I-bundle. Thus the upper boundary curve $\partial_{+} R$ of R is also oriented from the right to the left, and its image by g lies on the upper complement of R. The interior leaves of R are oriented upward.

Recall that the boundary component $\partial_{-} A$ consisting of nonwandering points cannot intersect a compact leaf. Moreover $\partial_{-} A$ lies in a Reeb component or a foliated I-bundle whose interior leaves are oriented downward since $p \tilde{g}^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$ for $x \in \pi^{-1}\left(\partial_{-} A\right)$. Let C be the annulus in $\mathbb{R}^{2} /\langle T\rangle$ bounded by $\partial_{-} A$ and $\partial_{+} R$, the upper boundary curve of R. Notice that $\operatorname{Int}(C)$ contains $\partial_{-} R$.

CASE 2.3.2.1 The intersection $X \cap C$ has a component which separates $\partial_{-} A$ from $\partial_{+} A$. One can derive a contradiction by the same argument as in Case 2.3.1, since the like defined path γ cannot evade R.

Case 2.3.2.2 There is a simple path in U_{-}joining a point in $\partial_{-} A$ with a point in $\partial_{+} R$. Notice first of all that $g^{-1}(C) \subset C$. Let \mathcal{Y} be the family of the connected components of $\pi^{-1}(X \cap C)$. Then any element $Y \in \mathcal{Y}$ is compact, and intersects $\pi^{-1}\left(\partial_{+} R\right)$ since otherwise Y would be a connected component of $\pi^{-1}(X)$ itself.

Choose a simple curve $\gamma:[0,1] \rightarrow \pi^{-1}(C)$ such that
(1) $\gamma(0) \in \pi^{-1}\left(\partial_{-} A\right)$,
(2) $\gamma(1) \in \pi^{-1}(X \cap C)$, and
(3) $\gamma([0,1)) \subset \pi^{-1}\left(U_{-} \cap C\right)$.

Let Y be an element of \mathcal{Y} which contains $\gamma(1)$. Then there are two unbounded connected components of the complement $\pi^{-1}(C) \backslash(Y \cup \gamma)$, one $L(Y \cup \gamma)$ on the left, and the other $R(Y \cup \gamma)$ on the right.

Notice that for any $n>0, \tilde{g}^{-n} \gamma$ is a path in C, and that $p \tilde{g}^{-n}(\gamma(1)) \rightarrow-\infty$ and $p \tilde{g}^{-n}(\gamma(0)) \rightarrow \infty$ as $n \rightarrow \infty$. That is, for any large $n, \tilde{g}^{-n}(\gamma(1)) \in L(Y \cup \gamma)$ and $\tilde{g}^{-n}(\gamma(0)) \in R(Y \cup \gamma)$, showing that $\tilde{g}^{-n}(\gamma)$ intersects γ. On the other hand in \breve{U}_{-}, γ defines a curve from a point in $\pi^{-1}\left(\partial_{-} A\right)$ to a prime end in $\pi^{-1}\left(\partial_{\infty} U_{-}\right)$.

But by condition (4) of Lemma 2.5, γ cannot intersect $\tilde{g}^{-n}(\gamma)$ for any large n. A contradiction.

Finally the case where $\partial_{-} R$ is oriented from the left to the right can be dealt with similarly by reversing the time. This completes the proof of Theorem 1

References

[B] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60(1932) 1-26; also in Collected Mathematical Papers of G. D. Birkhof, vol. II, pp. 444-461
[BG] M. Barge and R. M. Gillete, Rotation and periodicity in plane separating continua, Ergod. Th. Dyn. Sys. 11(1991) 619-631.
[C] M. Charpentier, Sur quelques propriétés des courbes de M. Birkhoff, Bull. Soc. Math. France 62 (1934) 193-224.
[CL] M. L. Cartwright and J. E. Littlewood, Some fixed point theorems, Ann. Math. 54(1951) 1-37.
[E] D. B. A. Epstein, Prime ends, Proc. London Math. Soc. 42 (1981) 385-414.
[F] J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergod. Th. Dyn. Sys. 8(1988) 99-107.
[FL] J. Franks and P. Le Calvez, Regions of instability for non-twist maps, Ergod. Th. Dyn. Sys. 23(2003), 111-141.
[L1] P. Le Calvez, Existence d'orbits quasi-periodiques dans les attracteurs de Birkhoff, Commun. Math. Phys. 106(1986) 383-39.
[L2] P. Le Calvez, Propriétés des attracteurs de Birkhoff, Ergod. Th. Dyn. Sys. 8(1987) 241-310
[L3] P. Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. I. H. E. S. $102(2005) 1-98$.
[M] J. Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, In: Th. M. Rassias, G. M. Rassias, eds., Selected Studies, North-Holland, (1982) 225-255.
[MN] S. Matsumoto and H. Nakayama, Continua as minimal sets of homeomorphisms of S^{2}, Preprints in Arxiv.

Department of Mathematics, College of Science and Technology, Nihon UniverSity, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan

E-mail address: matsumo@math.cst.nihon-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 37E30, secondary 37E45.
 Key words and phrases. continuum, rotation set, prime end rotation number, Brouwer line, foliations.

 The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 20540096.

