Prime end rotation numbers of invariant separating continua of annular homeomorphisms

Shigenori Matsumoto

ABSTRACT. Let f be a homeomorphism of the closed annulus A isotopic to the identity, and let $X \subset \text{Int}A$ be an f-invariant continuum which separates Ainto two domains, the upper domain U_+ and the lower domain U_- . Fixing a lift of f to the universal cover of A, one defines the rotation set $\tilde{\rho}(X)$ of X by means of the invariant probabilities on X, as well as the prime end rotation number $\check{\rho}_{\pm}$ of U_{\pm} . The purpose of this paper is to show that $\check{\rho}_{\pm}$ belongs to $\tilde{\rho}(X)$ for any separating invariant continuum X.

1. Introduction

Let f be a homeomorphism of the closed annulus $A = S^1 \times [-1, 1]$, isotopic to the identity, i. e. f preserves the orientation and each of the boundary components $\partial_{\pm}A = S^1 \times \{\pm 1\}$. Suppose there is an f-invariant partition of A; $A = U_- \cup X \cup U_+$, where U_{\pm} is a connected open set containing the boundary component $\partial_{\pm}A$ and Xis a connected compact set. Let

$$\pi: \tilde{A} = \mathbb{R} \times [-1, 1] \to S^1 \times [-1, 1]$$

be the universal covering map and $T: \tilde{A} \to \tilde{A}$ a generator of the covering transformation group; $T(\xi, \eta) = (\xi + 1, \eta)$. Denote by $p: \tilde{A} \to \mathbb{R}$ the projection onto the first factor.

Fix once and for all a lift $\tilde{f} : \tilde{A} \to \tilde{A}$ of f. Then the function $p \circ \tilde{f} - p$ is *T*-invariant and can be looked upon as a function on the annulus A. Define the *rotation set* $\tilde{\rho}(X)$ as the set of values $\mu(p \circ \tilde{f} - p)$, where μ ranges over the f-invariant probability measures supported on X. The rotation set is a compact interval (maybe one point) in \mathbb{R} , which depends upon the choice of the lift \tilde{f} of f.

The first example of an invariant continuum X such that the frontiers of U_{\pm} satisfy $\operatorname{Fr}(U_{+}) = \operatorname{Fr}(U_{-}) = X$ and that the rotation set $\tilde{\rho}(X)$ is not a singleton is constructed by G. D. Birkhoff in his 1932 year paper [**B**], and is referred to as a *Birkhoff attractor*. It turns out that the Birkhoff attractor is an indecomposable continuum ([**C**, **L2**]). Furthermore it is shown by P. Le Calvez ([**L1**]) that for

¹⁹⁹¹ Mathematics Subject Classification. Primary 37E30, secondary 37E45.

Key words and phrases. continuum, rotation set, prime end rotation number, Brouwer line, foliations.

The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 20540096.

any rational number between the two prime end rotation numbers is realized by a corresponding periodic point of \tilde{f} .

Let $\hat{U}_{\pm} = U_{\pm} \cup \partial_{\infty} U_{\pm}$ be the prime end compactification of U_{\pm} , where $\partial_{\infty} U_{\pm}$ is the space of the prime ends ([**E**, **M**, **MN**]). The space $\partial_{\infty} U_{\pm}$ is homeomorphic to the circle and \hat{U}_{\pm} to the closed annulus. As is well known, the homeomorphism frestricted to U_{\pm} extends to a homeomorphism $\hat{f}_{\pm} : \hat{U}_{\pm} \to \hat{U}_{\pm}$. Denoting $I_{+} = [0, 1]$ and $I_{-} = [-1, 0]$, define a homeomorphism

$$\Psi_{\pm}: \hat{U}_{\pm} \to S^1 \times I_{\pm}$$

such that $\Psi_{\pm}(\partial_{\infty}U_{\pm}) = S^1 \times 0$. By some abuse of notations denote by $\pi : \check{U}_{\pm} \to \hat{U}_{\pm}$ the universal covering map. Thus $\pi^{-1}(U_{\pm})$ is considered to be a subspace of both \tilde{A} and \check{U}_{\pm} . Let $\check{f}_{\pm} : \check{U}_{\pm} \to \check{U}_{\pm}$ be the lift of \hat{f}_{\pm} such that $\check{f}_{\pm} = \tilde{f}$ on $\pi^{-1}(U_{\pm})$. The rotation number of the restriction of \check{f}_{\pm} to $\pi^{-1}(\partial_{\infty}U_{\pm})$, denoted by $\check{\rho}_{\pm}$, is called the *prime end rotation number* of U_{\pm} .

The purpose of this paper is to show the following.

Theorem 1. The prime end rotation number $\check{\rho}_{\pm}$ belongs to $\tilde{\rho}(X)$.

This result is already known for $X = Fr(U_{-}) = Fr(U_{+})$ ([**BG**]), and for any X if the homeomorphism f is area preserving (Lemma 5.4, [**FL**]).

It is shown in Theorem 2.2 of $[\mathbf{F}]$ that any rational number in $\tilde{\rho}(X)$ is realized by a periodic point if X consists of nonwandering points. Notice that then X, consisting of chain recurrent points, is chain transitive since it is connected, and thus satisfies the condition of Theorem 2.2. As a corollary we have

Corollary 2. If X consists of nonwandering points and if p/q lies in the closed interval bounded by $\check{\rho}_{-}$ and $\check{\rho}_{+}$, then there is a point $x \in \pi^{-1}(X)$ such that $\tilde{f}^{q}(x) = T^{p}(x)$.

In what follows we also use the following notation. Let

$$\check{\Psi}_{\pm}: \check{U}_{\pm} \to \mathbb{R} \times I_{\pm}$$

be a lift of Ψ_{\pm} , and define $\check{p}_{\pm} : \check{U}_{\pm} \to \mathbb{R}$ by $\check{p}_{\pm} = p \circ \check{\Psi}_{\pm}$. The projection \check{p}_{\pm} is within a bounded error of p on $\pi^{-1}(C)$ for a compact domain C of U_{\pm} . But they may be quite different on the whole $\pi^{-1}(U_{\pm})$.

2. Proof

First of all let us state a deep and quite useful theorem of P. Le Calvez (**[L3**]) which plays a key role in the proof. A fixed point free and orientation preserving homeomorphism F of the plane \mathbb{R}^2 is called a *Brouwer homeomorphism*. A proper oriented simple curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ is called a *Brouwer line* for F if $F(\gamma) \subset R(\gamma)$ and $F^{-1}(\gamma) \subset L(\gamma)$, where $R(\gamma)$ (resp. $L(\gamma)$) is the right (resp. left) side complementary domain of γ , which is decided by the orientation of γ .

Theorem 2.1. Let F be a Brouwer homeomorphism commuting with the elements of a group Γ which acts on \mathbb{R}^2 freely and properly discontinuously. Then there is a Γ -invariant oriented topological foliation of \mathbb{R}^2 whose leaves are Brouwer lines of F.

The proof of Theorem 1 is by absurdity. Assume in way of contradiction that $\check{\rho}_{-} < p/q < \inf{\tilde{\rho}(X)}$. Considering $\tilde{f}^{q}T^{-p}$ instead of \tilde{f} , it suffices to deduce a contradiction under the following assumption.

Assumption 2.2. $\check{\rho}_{-} < 0 < \inf \tilde{\rho}(X)$.

Since $\inf \tilde{\rho}(X) > 0$, the map \tilde{f} does not admit a fixed point in $\pi^{-1}(X)$. The overall strategy of the proof is to modify the homeomorphism f away from X to a new one g without creating fixed points in A such that the restrictions of \tilde{g} to the lifts of the both boundary circles $\pi^{-1}(\partial_{\pm}A)$ are nontrivial rigid translations by the same translation number. Then by glueing the two boundary circles we obtain a torus T^2 and a homeomorphism on T^2 . Now we can apply Theorem 2.1 to the lift of the homeomorphism to the universal covering space. This yields a topological foliation on T^2 , which has long been well understood. The proof will be done by analyzing the foliation. We first prepare a lemma which is necessary for the desired modification. We do not presume Assumption 2.2 in the following.

Lemma 2.3. Assume \tilde{f} does not admit a fixed point in $\pi^{-1}(X)$. Then the prime end rotation number $\check{\rho}_{\pm}$ is nonzero.

PROOF: Consider the mapping \tilde{f} – Id defined on \tilde{A} . Since it is *T*-invariant, it yields a mapping from A, still denoted by the same letter. Then since there is no fixed point of \tilde{f} in X, we have $(\tilde{f} - \mathrm{Id})(X) \subset \mathbb{R}^2 \setminus \{0\}$. Therefore there is an annular open neighbourhood V of X for which we get a mapping

$$\tilde{f} - \mathrm{Id} : V \to \mathbb{R}^2 \setminus \{0\}.$$

Clearly for any positively oriented essential simple closed curve γ in V, the degree of the map

$$\tilde{f} - \mathrm{Id} : \gamma \to \mathbb{R}^2 \setminus \{0\}$$

must be the same. If the curve γ is contained in U_{\pm} , then the degree can be studied by considering the map \check{f}_{\pm} defined on the lift \check{U}_{\pm} of the prime end compactification \hat{U}_{\pm} . If the prime end rotation number $\check{\rho}_{\pm}$ is nonzero, the degree is clearly 0. Notice that our definition of the degree differs from the usual definition of the index.

To analyze the case $\check{\rho}_{\pm} = 0$, we need the following form of the Cartwright-Littlewood theorem [**CL**].

Theorem 2.4. If $\check{\rho}_+ = 0$ and if $\operatorname{Fix}(\tilde{f}) \cap \pi^{-1}(X) = \emptyset$, then the map \hat{f}_+ on $\partial_{\infty}U_+$ is Morse Smale and the attractors (resp. repellors) of $\hat{f}_+|_{\partial_{\infty}U_+}$ are attractors (resp. repellors) of the whole map \hat{f}_+ .

This is slightly stronger than the usual version in which it is assumed that $Fix(f) \cap X = \emptyset$. However the proof works as well under the assumption of Theorem 2.4. See e. g. Sect. 3 of [**MN**].

Let us complete the proof of Lemma 2.3. Theorem 2.4 enables us to compute the degree of the curve δ in U_{\pm} when $\check{\rho}_{\pm} = 0$. The degree is n if $\delta \subset U_{-}$ and -nif $\delta \subset U_{+}$, where n is the number of the attractors. Since the degree must be the same in U_{-} and U_{+} , the conclusion follows.

Now we have $\check{\rho}_- < 0$ and $\check{\rho}_+ \neq 0$ by Assumption 2.2 and Lemma 2.3. Let us start the modification of f.

Lemma 2.5. Under Assumption 2.2, there exists a homeomorphism g of A such that

(1) g = f in some neighbourhood of X,

(2) \tilde{g} does not admit a fixed point in \tilde{A} , where \tilde{g} is the lift of g such that $\tilde{g} = \tilde{f}$ on $\pi^{-1}(X)$,

(3) \tilde{g} is a negative rigid translation by the same translation number on $\pi^{-1}(\partial_{\pm}A)$, and

(4) $\check{p}_{-} \circ \check{g}_{-} - \check{p}_{-} \leq -c \text{ on } \hat{U}_{-} \text{ for some positive number } c.$

PROOF: The modification in U_{-} will be done in the following way. We identify \hat{U}_{-} with $S^{1} \times [-1,0]$ by the homeomorphism Ψ_{-} and the universal covering space \check{U}_{-} with $\mathbb{R} \times [-1,0]$. Thus \check{p}_{-} is just the projection onto the first factor; $\check{p}_{-}(\xi,\eta) = \xi$. Since $\check{\rho}_{-} < 0$, the lift

$$\check{f}_{-}: \mathbb{R} \times [-1, 0] \to \mathbb{R} \times [-1, 0]$$

of \tilde{f}_{-} satisfies that $\check{p}_{-} \circ \check{f}_{-}(\xi, 0) < \xi - 2c$ for some c > 0. Therefore changing the coordinates of [-1,0] if necessary, one may assume that $\check{p}_{-} \circ \check{f}_{-}(\xi,\eta) \leq \xi - c$ if $(\xi,\eta) \in \mathbb{R} \times [-1/2,0]$. Define a homeomorphism h of $S^1 \times [-1,0]$ by

$$h(\xi,\eta) = (\xi + \varphi(\eta) \mod 1, \eta),$$

where $\varphi : [-1,0] \to (-\infty,0]$ is a continuous function such that $\varphi([-1/2,0]) = 0$ and

$$\varphi(\eta) \leq -\sup\{(\check{p}_- \circ \check{f}_- - \check{p}_-)(\xi, \eta) \mid \xi \in S^1\} - c.$$

Define $g = f \circ h$. Then its lift \check{g}_{-} satisfies

$$\check{p}_{-}\circ\check{g}_{-}-\check{p}_{-}\leq -c$$

on $\check{U}_{-} = \mathbb{R} \times [-1, 0]$. Clearly condition (3) for $\pi^{-1}(\partial_{-}A)$ can be established by a further obvious modification.

Now to modify f in U_+ , we do the same thing as in U_- . If the prime end rotation number $\check{\rho}_+$ is negative, then with an auxiliary modification we are done. If it is positive insert a time one map of the Reeb flow.

Consider the torus T^2 which is obtained from A by glueing the two boundary curves $\partial_- A$ and $\partial_+ A$. Then the condition (3) above shows that g induces a homeomorphism of T^2 , again denoted by g. The universal cover of T^2 is \mathbb{R}^2 and $\tilde{A} = \mathbb{R} \times [-1, 1]$ is a subset of \mathbb{R}^2 . The lift $\tilde{g} : \tilde{A} \to \tilde{A}$ can be extended uniquely to a lift $\tilde{g} : \mathbb{R}^2 \to \mathbb{R}^2$ of $g : T^2 \to T^2$. The covering transformation group Γ is isomorphic to \mathbb{Z}^2 , generated by the horizontal translation T and the vertical translation by 2, denoted by S. Since \tilde{g} is a Brouwer homeomorphism which commutes with Γ , there is a Γ -invariant oriented foliation on \mathbb{R}^2 whose leaves are Brouwer lines for \tilde{g} . This yields an oriented foliation \mathcal{F} on the torus T^2 . The proof is divided into several cases according to the topological type of the foliation \mathcal{F} . We are going to deduce a contradiction in each case. But before going into detail we need another lemma.

Lemma 2.6. For any C > 0 there is n > 0 such that $p \circ \tilde{g}^n - p \ge C$ on X.

PROOF: If not, there would be a point $x_n \in X$ for any n > 0 such that

$$(p \circ \tilde{g}^n - p)(x_n) = \sum_{j=0}^{n-1} (p \circ \tilde{g} - p)(g^j(x_n)) < C$$

for some C > 0, and the averages of Dirac masses

$$\mu_n = \frac{1}{n} \sum_{j=0}^{n-1} g_*^j \delta_{x_n}$$

would satisfy $\mu_n(p \circ \tilde{g} - p) < C/n$. Therefore an accumulation point μ of μ_n would have the property that $\mu(p \circ \tilde{g} - p) \leq 0$, contradicting the assumption $\inf \tilde{\rho}(X) > 0$.

CASE 1. The foliation \mathcal{F} does not admit a compact leaf. Then \mathcal{F} is conjugate either to a linear foliation or to a Denjoy foliation, both of irrational slope. The lift $\tilde{\mathcal{F}}$ of \mathcal{F} to the open annulus $\mathbb{R}^2/\langle T \rangle$ is conjugate to a foliation by vertical lines. The space of leaves of $\tilde{\mathcal{F}}$ is homeomorphic to S^1 and there is a projection from $\mathbb{R}^2/\langle T \rangle$ to S^1 along the leaves of the foliation. This lifts to a projection $q: \mathbb{R}^2 \to \mathbb{R}$.

Now q restricted to \tilde{A} is within a bounded error of the first factor projection $p: \tilde{A} \to \mathbb{R}$ that we have used for the definition of the rotation set $\tilde{\rho}(X)$. In fact both p and q are lifts of degree one maps from $\mathbb{R}^2/\langle T \rangle$ to S^1 and their difference is bounded on the preimage $\tilde{A} = \pi^{-1}(A)$ of a compact subset A. Thus Lemma 2.6 shows that $q \circ \tilde{g}^n(x) \to \infty$ $(n \to \infty)$ for $x \in \pi^{-1}(X)$. That is, the foliation $\tilde{\mathcal{F}}$ is oriented upward. But this shows that $q \circ \tilde{g}(x) > q(x)$ even for a point $x \in \pi^{-1}(\partial_- A)$. On the other hand by condition (3) of Lemma 2.5, \tilde{g} is a negative translation on $\pi^{-1}(\partial_- A)$. A contradiction.

CASE 2.1. The foliation \mathcal{F} admits a compact leaf L of nonzero slope and does not admit a Reeb component. In this case the lifted foliation $\tilde{\mathcal{F}}$ is also conjugate to the vertical foliation and the argument of Case 1 applies.

CASE 2.2. The foliation \mathcal{F} admits a Reeb component R of nonzero slope. The Brouwer property of leaves implies that $g(R) \subset \operatorname{Int}(R)$ or $g^{-1}(R) \subset \operatorname{Int}(R)$. That is, a point of the boundary of R is wandering under g. Therefore $\partial_{-}A$, consisting of nonwandering points of g according to (3) of Lemma 2.5, cannot intersect the boundary of R, which is however impossible since the slope of R is nonzero.

CASE 2.3. The foliation \mathcal{F} admits a compact leaf of slope 0. Hereafter we only consider the dynamics and the foliation on the open annulus $\mathbb{R}^2/\langle T \rangle$. Recall that A is a subset of $\mathbb{R}^2/\langle T \rangle$, and the homeomorphism g on A is extended to the whole $\mathbb{R}^2/\langle T \rangle$, again denoted by g, in such a way that g commutes with the vertical translation S, while the foliation is denoted by $\tilde{\mathcal{F}}$ as before.

Now the foliation $\tilde{\mathcal{F}}$ yields a partition \mathcal{P} of the open annulus $\mathbb{R}^2/\langle T \rangle$ into compact leaves, interiors of Reeb components and foliated *I*-bundles. The set \mathcal{P} is totally ordered by the height. The minimal element which intersects X cannot be a compact leaf by the Brouwer line property. Let R be the closure of the minimal element. Thus R is either a Reeb component or a foliated *I*-bundle such that $\operatorname{Int}(R) \cap X \neq \emptyset$ and $\partial_- R \cap X = \emptyset$, where $\partial_- R$ is the lower boundary curve of R.

Assume for a while that $\partial_{-}R$ is oriented from the right to the left. Thus the homeomorphism g carries $\partial_{-}R$ into the upper complement of $\partial_{-}R$.

CASE 2.3.1 R is a Reeb component. First notice that $g(R) \subset \text{Int}R$ and that the interior leaves of R are oriented upwards by the assumption $\inf \tilde{\rho}(X) > 0$ and the fact that $g(X \cap R) \subset X \cap R$. Choose a simple arc

$$\alpha : [0,1] \to \pi^{-1}(R)$$

such that $\alpha(0) \in \pi^{-1}(\partial_{-}R)$, $\alpha(1) = \tilde{g}(\alpha(0))$, and $\alpha((0,1)) \subset \operatorname{Int}(\pi^{-1}(R)) \setminus \tilde{g}(\pi^{-1}(R))$. Since $g^{-1}(\pi(\alpha))$ is below $\operatorname{Int} R$, $\tilde{g}^{-1}(\alpha)$, and hence α , is contained in $\pi^{-1}(U_{-})$.

Concatenating nonnegative iterates of α , we obtain a simple path $\gamma : [0, \infty) \to \pi^{-1}(R \cap U_{-})$ such that $\tilde{g} \circ \gamma(t) = \gamma(t+1)$ for any $t \geq 0$. Let $q : \pi^{-1}(\operatorname{Int}(R)) \to \mathbb{R}$

be the lift of the projection along the leaves. Since $\gamma([1,\infty))$ is contained in the lift of a compact subset $\tilde{g}(R) \subset \operatorname{Int}(R)$ and the leaves in $\operatorname{Int}(R)$ is oriented upward, we have $q \circ \gamma(t) \to \infty$ as $t \to \infty$. We also have $p \circ \gamma(t) \to \infty$ because q is within bounded error of p on $\gamma([1,\infty))$.

On the other hand by condition (4) of Lemma 2.5, we have $\check{p} \circ \gamma(t) \to -\infty$ as $t \to \infty$. In particular the curve γ is proper both in \tilde{A} and in \check{U}_{-} pointing toward the opposite direction. By joining the point $\gamma(0)$ to an appropriate point in $\pi^{-1}(\partial_{-}A)$, we obtain a simple curve δ in $\pi^{-1}(U_{-})$ starting at a point on $\pi^{-1}(\partial_{-}A)$ which extends γ .

Notice that there is a point of $\pi^{-1}(X)$ on the left of a proper oriented curve δ in \tilde{A} , because the map p is bounded from below on δ and a high iterate of T^{-1} carries a point in $\pi^{-1}(X)$ beyond that bound. (There might be a point of $\pi^{-1}(X)$ on the right of δ however.)

Let x be a point in $\pi^{-1}(\partial_{-}A)$ left to the initial point of δ . Then there is a simple path $\beta : [0, \infty) \to \pi^{-1}(U_{-})$ such that $\beta(0) = x$, $\lim_{t\to\infty} \beta(t) \in \pi^{-1}(X)$, and β is disjoint from δ . The path β , extendable in $\pi^{-1}(A)$ is also extendable in \check{U}_{-} , the lift of the prime end compactification. (See e. g. Lemma 2.5 of [**MN**].) This implies that β defines a simple path in \check{U}_{-} joining x to a prime end in $\pi^{-1}(\partial_{\infty}U_{-})$ without intersecting δ , which is impossible since $\pi^{-1}(\partial_{\infty}U_{-})$ is contained in the right side of the proper path δ in \check{U}_{-} since $\check{p}_{-}\delta(t) \to -\infty$, while x is on the left side. A contradiction.

CASE 2.3.2 R is a foliated I-bundle. Thus the upper boundary curve $\partial_+ R$ of R is also oriented from the right to the left, and its image by g lies on the upper complement of R. The interior leaves of R are oriented upward.

Recall that the boundary component $\partial_{-}A$ consisting of nonwandering points cannot intersect a compact leaf. Moreover $\partial_{-}A$ lies in a Reeb component or a foliated *I*-bundle whose interior leaves are oriented downward since $p\tilde{g}^{n}(x) \to -\infty$ as $n \to \infty$ for $x \in \pi^{-1}(\partial_{-}A)$. Let *C* be the annulus in $\mathbb{R}^{2}/\langle T \rangle$ bounded by $\partial_{-}A$ and $\partial_{+}R$, the upper boundary curve of *R*. Notice that Int(C) contains $\partial_{-}R$.

CASE 2.3.2.1 The intersection $X \cap C$ has a component which separates $\partial_{-}A$ from $\partial_{+}A$. One can derive a contradiction by the same argument as in Case 2.3.1, since the like defined path γ cannot evade R.

CASE 2.3.2.2 There is a simple path in U_{-} joining a point in $\partial_{-}A$ with a point in $\partial_{+}R$. Notice first of all that $g^{-1}(C) \subset C$. Let \mathcal{Y} be the family of the connected components of $\pi^{-1}(X \cap C)$. Then any element $Y \in \mathcal{Y}$ is compact, and intersects $\pi^{-1}(\partial_{+}R)$ since otherwise Y would be a connected component of $\pi^{-1}(X)$ itself.

Choose a simple curve $\gamma: [0,1] \to \pi^{-1}(C)$ such that

(1) $\gamma(0) \in \pi^{-1}(\partial_{-}A),$

(2) $\gamma(1) \in \pi^{-1}(X \cap C)$, and

(3) $\gamma([0,1)) \subset \pi^{-1}(U_{-} \cap C).$

Let Y be an element of \mathcal{Y} which contains $\gamma(1)$. Then there are two unbounded connected components of the complement $\pi^{-1}(C) \setminus (Y \cup \gamma)$, one $L(Y \cup \gamma)$ on the left, and the other $R(Y \cup \gamma)$ on the right.

Notice that for any n > 0, $\tilde{g}^{-n}\gamma$ is a path in C, and that $p\tilde{g}^{-n}(\gamma(1)) \to -\infty$ and $p\tilde{g}^{-n}(\gamma(0)) \to \infty$ as $n \to \infty$. That is, for any large n, $\tilde{g}^{-n}(\gamma(1)) \in L(Y \cup \gamma)$ and $\tilde{g}^{-n}(\gamma(0)) \in R(Y \cup \gamma)$, showing that $\tilde{g}^{-n}(\gamma)$ intersects γ . On the other hand in \check{U}_{-} , γ defines a curve from a point in $\pi^{-1}(\partial_{-}A)$ to a prime end in $\pi^{-1}(\partial_{\infty}U_{-})$.

7

But by condition (4) of Lemma 2.5, γ cannot intersect $\tilde{g}^{-n}(\gamma)$ for any large *n*. A contradiction.

Finally the case where $\partial_{-}R$ is oriented from the left to the right can be dealt with similarly by reversing the time. This completes the proof of Theorem 1.

References

- [B] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60(1932)
 1-26; also in Collected Mathematical Papers of G. D. Birkhof, vol. II, pp. 444-461
- [BG] M. Barge and R. M. Gillete, Rotation and periodicity in plane separating continua, Ergod. Th. Dyn. Sys. 11(1991) 619-631.
- [C] M. Charpentier, Sur quelques propriétés des courbes de M. Birkhoff, Bull. Soc. Math. France 62(1934) 193-224.
- [CL] M. L. Cartwright and J. E. Littlewood, Some fixed point theorems, Ann. Math. 54(1951) 1-37.
- [E] D. B. A. Epstein, Prime ends, Proc. London Math. Soc. 42(1981) 385-414.
- [F] J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergod. Th. Dyn. Sys. 8(1988) 99-107.
- [FL] J. Franks and P. Le Calvez, Regions of instability for non-twist maps, Ergod. Th. Dyn. Sys. 23(2003), 111–141.
- [L1] P. Le Calvez, Existence d'orbits quasi-periodiques dans les attracteurs de Birkhoff, Commun. Math. Phys. 106(1986) 383-39.
- [L2] P. Le Calvez, Propriétés des attracteurs de Birkhoff, Ergod. Th. Dyn. Sys. 8(1987) 241-310
- [L3] P. Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. I. H. E. S. 102(2005) 1–98.
- [M] J. Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, In: Th. M. Rassias, G. M. Rassias, eds., Selected Studies, North-Holland, (1982) 225–255.
- [MN] S. Matsumoto and H. Nakayama, Continua as minimal sets of homeomorphisms of S^2 , Preprints in Arxiv.

Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan

E-mail address: matsumo@math.cst.nihon-u.ac.jp