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Abstract

Let A be a connected commutative C-algebra with derivation D,
G a finite linear automorphism group of A which preserves D, and
R = A% the fixed point subalgebra of A under the action of G. We
show that if A is generated by a single element as an R-algebra and
is a Galois extension over R in the sense of M. Auslander and O.
Goldman, then every finite-dimensional vertex algebra R-module has
a structure of twisted vertex algebra A-module.

Keywords: vertex algebra; Galois extension; commutative algebra

1 Introduction

Vertex algebras and modules over a vertex algebra were introduced by Borcherds
in [4]. As an example, every commutative ring A with an arbitrary deriva-
tion D has a structure of vertex algebra, and every ring A-module naturally
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becomes a vertex algebra A-module. However, this does not imply that ring
A-modules and vertex algebra A-modules are same. In fact, a vertex alge-
bra Z[z, z7']-module which is not a ring Z[z, 2~ !]-module was given in [4],
Section 8], where Z[z, 27'] is the ring of Laurent polynomials over Z. This
tells us that in general these two kind of A-modules are certainly different.
From now on, for a commutative C-algebra A with derivation D, we shall
call a vertex algebra A-module a vertex algebra (A, D)-module to distinguish
it from ring A-modules. It is a natural first step to investigate vertex al-
gebra (A, D)-modules to understand modules over general vertex algebras.
In [19, 20] for the polynomial ring C[s] and the field of rational functions
C(s), the finite-dimensional vertex algebra modules which are not C-algebra
modules are classified.

Let A be a commutative C-algebra with derivation D, G a finite linear
automorphism group of A which preserves D, and R = A% the fixed point
subalgebra of A under the action of G. In this paper, we shall investigate
a relation between vertex algebra (R, D)-modules and twisted vertex alge-
bra (A, D)-modules. In Theorem [I], I shall show that if A is a connected
commutative C-algebra generated by a single element as an R-algebra and
is a finite Galois extension over R in the sense of [3, p.396], then every
finite-dimensional indecomposable vertex algebra (R, D)-module becomes a
g-twisted vertex algebra (A, D)-module for some g € G. This is a generaliza-
tion of [20, Theorem 1] and is related the following open conjecture on vertex
operator algebras: let V' be a vertex operator algebra and H a finite auto-
morphism group of V. It is conjectured that under some conditions on V,
every irreducible module over the fixed point vertex operator subalgebra V#
is contained in some irreducible h-twisted V-module for some h € H (cf.[7]).
The conjecture is confirmed for some examples in [I], 8 10, 111, 12} 2] 22].
However A is not a vertex operator algebra except in the case that D = 0
and dimc A < oo, Theorem [l implies that the conjecture holds for all finite-
dimensional vertex algebra R-modules in a stronger sense.

This paper is organized as follows: In Section 2 we recall some notation
and properties of Galois extensions of rings, vertex algebras and their mod-
ules. In Section 3 we show that every finite-dimensional indecomposable ver-
tex algebra R-module becomes a g-twisted vertex algebra (A, D)-module for
some g € GG. In Section 4 we give the classification of the finite-dimensional
vertex algebra C[s, s™!]-modules which are not C-algebra C[s, s~!]-modules.
In Section 5 for the C-algebra A = C[s, s7!|[t]/(t" — s), which is a Galois ex-
tension over C[s, s71] with Galois group the cyclic group of order n, and for all
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finite-dimensional indecomposable vertex algebra C[s, s~!]-modules (M, Y)
obtained in Section 4, we study twisted vertex algebra (A, D)-module struc-
tures over (M, Yy).

2 Preliminary

We assume that the reader is familiar with the basic knowledge on vertex
algebras as presented in [4, [9] [17].

Throughout this paper all rings and algebras are commutative and asso-
ciative and have identity elements, R denotes a ring, R[Z] denotes the poly-
nomial ring in one variable Z over R , G denotes a finite group, ¢, denotes
a primitive p-th root of unity for a positive integer p, and (V,Y,1) denotes
a vertex algebra. Recall that V' is the underlying vector space, Y'(-, z) is the
linear map from V' to (End V)[[z,z7']], and 1 is the vacuum vector. Let D
be the endomorphism of V' defined by Dv =v_51 forv € V.

First, we recall some results in [3| 5], [6, [I5] for separable algebras over a
ring. A ring R is called connected if R has no idempotent other than 0 and
1. An R-algebra A is called separable if A is a projective A®@gr A-module. An
R-algebra A is called strongly separable if it is finitely generated, projective,
and separable over R. Let us recall the Galois extension of R introduced in
[3, p.396]. The following definition, which is equivalent to that in [3], p.396],
is given in [5, Theorem 1.3].

Definition 1. Let A be a ring extension of R and let G be a finite group of
automorphisms of A. We denote by AY the fixed point subring of A under
the action of G. The ring A is called a Galois extension of R with Galois
group G, if the following three conditions hold:

(1) AG = R.

(2) For each non-zero idempotent e € A and each g # h in G, there is an
element x € A with g(z)e # h(z)e.

(3) A is a separable R-algebra.

Note that if A is connected, then the condition (2) in Definition [dlis always
satisfied. It follows from [5, Theorem 1.3] that if A is a Galois extension of
R, then A is a strongly separable R-algebra.



In [15, p.467], A polynomial P(Z) € R[Z] is called separable in case
P(Z) is monic and the factor ring R[Z]/(P(Z)) is a separable R-algebra.
In this case, R[Z]/(P(Z)) is strongly separable since R[Z]/(P(Z)) is a free
R-module of rank deg P(Z). For an R-algebra A, an element 6 € A is called
a primitive element if A = R[0], namely A is generated by a single element
0 as an R-algebra. It is shown in [I5, Theorem 2.9] that if A is a strongly
separable R-algebra and if A has a primitive element, then there is a separable
polynomial P(Z) such that A = R[Z]/(P(Z)) as R-algebras.

Let R be a connected ring, P(Z) € R[Z] a separable polynomial, and
suppose that the factor ring A = R[Z]/(P(Z)) is connected and is a Galois
extension of R with Galois group G. Set § = Z+ P(Z) € A. Since A = R0,
we have g(0) # 0 for all ¢ € G without the identity element. By [5, Lemma
4.1] and [15, Lemma 2.1], the order of G is equal to deg P(Z). Thus, G
acts regularly on the set of all roots of the polynomial P(Z) in A and hence
P(Z) = [l,eq(Z — g(0)). For an R-linear homomorphism f from A to an
R-algebra B, [15, Lemma 2.1] says that f(g(f)) # f(h(0)) for all g # h in
G. This tells us that if B is an integral domain, f induces a bijection from
{9(0) | g € G} to the set of all roots of f(P(Z)) € B[Z] in B. In particular,
f(P(Z)) has no multiple root.

Next, we recall some results in [4] for a vertex algebra constructed from
a commutative C-algebra with a derivation.

Proposition 1. [4] The following hold:

(1) Let A be a commutative C-algebra with identity element 1 and D a
deriation of A. For a € A, define Y (a,x) € (End A)[[x]] by

=1
CLZZ}' :ZJ

=0
forbe A. Then, (A, Y,1) is a vertex algebra.

(2) Let (V,Y,1) be a vertex algebra such that Y (u,z) € (EndV)[[z]] for
all w € V. Define a multiplication on V by uv = u_iv for u,v € V.
Then, V' is a commutative C-algebra with identity element 1 and D is
a deriwation of V.

Throughout the rest of this section, A is a commutative C-algebra with
identity element 1 and D a derivation of A. Let (A, Y, 1) be the vertex algebra



constructed from A and D in Proposition [l and let (M, Yys) be a vertex
algebra A-module. We call M a vertex algebra (A, D)-module to distinguish
vertex algebra A-modules from C-algebra A-modules as stated in Section 1.

Proposition 2. [4] The following hold:

(1) Let M be a C-algebra A-module. Fora € A, define Ya(a,z) € (Ende M)][x]]
by

=1
a[lf :ZJ

=0
foru e M. Then, (M,Yy) is a vertex algebra (A, D)-module.

(2) Let (M,Y)y) be a vertex algebra (A, D)-module such that Y (a,x) €
(Endc M)[[z]] for all a € A. Define an action of A on M by au = a_ju
forae A and uw € M. Then, M is a C-algebra A-module.

By Proposition 2] if there exists a vertex algebra (A, D)-module (M, Y),)
with Yy (a,z) € (Endc M)[[z]] for some element a in A, then vertex algebra
(A, D)-modules and C-algebra A-modules are different. However, no simple
criterion for the existence of such a module (M, Y),) is known.

For a C-linear automorphism ¢ of V' of finite order p, set V" = {u €
V| gu= Qu},0 <r < p-—1} We recall the definition of g-twisted V-
modules.

Definition 2. A g-twisted V-module M is a vector space equipped with a
linear map

Yu(-,z): Vv Yy(v,z) Z v~ € (Ende )[[xl/p,g:‘l/”]]
i€(1/p)Z

which satisfies the following four conditions:
(1) Yar(u, ) = 3 ic, jpiz Wi YorueVr.
(2) Yar(u, z)w € M((2'/?)) for u € V and w € M.
(3) Yu(1,2) =idyy,.



(4) Forue V' veVs mer/T+7Z, n€s/T+7Z,and l € Z,

i (T) (U140 )i

=0

= Z (z) (—1) (U1+m—ﬂn+i + (—1)l+1vl+n—ium+z’)-
i=0

For a g-twisted vertex algebra (A, D)-module (M, Y),) and a linear au-
tomorphism h of A which preserves D, define (M,Yy) o h = (M o h, Yyon)
by M o h = M as vector spaces and Yyson(a,z) = Yy (ha, x) for all a € A.
Then, (M,Y)y;) o h is a h™'gh-twisted vertex algebra (A, D)-module.

3 Finite-dimensional vertex algebra modules
over fixed point commutative subalgebras

Throughout this section, R is a connected commutative C-algebra, A is a
commutative C-algebra generated by a single element as an R-algebra and is
a Galois extension of R with Galois group G . It follows from [I5, Theorem
2.9] that A = R[Z]/(P(Z)) as R-algebras for some separable polynomial
P(Z) € R[Z]. Let D be a derivation of A which is invariant under the action
of G. For a finite-dimensional vertex algebra (R, D)-module (M,Yy), g € G
of order p, and a linear map Y (-,z) from A to (Ende M)((z'/?)), we call
(M,Yy) a g-twisted vertex algebra (A, D)-module structure over (M,Y)s)
if (M,Yy) is a g-twisted vertex algebra (A, D)-module and if Y (-, )|z =
Y(-,x).

In this section, we shall show that every finite-dimensional indecompos-
able vertex algebra (R, D)-module has a g-twisted vertex algebra (A, D)-
module structure over (M, Y)y,) for some g € G. We use the following nota-
tion in [20, Section 3]. For a commutative ring C, let Mat,,(C) denote the
set of all n X n matrices with entries in C. Let F,, denote the n x n identity
matrix and let E;; denote the matrix whose (i,7) entry is 1 and all other
entries are 0. Define A,(C) = {(x;;) € Mat,(C) | x;; = 0if i+ k # j} for
0 < k < n. Then, for a € Ai(C) and b € A(C), we have ab € A, (C).
For X = (7;;) € Mat,(C) and k = 0,...,n — 1, define the matrix X*) =
Yo Tk Eiin € AR(C). For a upper triangular matrix X, we see that
X =355 xW.



Let A be a commutative C-algebra, D a derivation of A, g a C-linear
automorphism of A of finite order p. For a vector space W over C and a
linear map Yy (-, ) from A to (Ende W)[[z'/?, 271/7]], we denote by A (A)
the subalgebra of Endc W generated by all coefficients of Yy (a,z) where a
ranges over all elements of A. Let M be a finite-dimensional g-twisted vertex
algebra (A, D)-module. Then, A,;(A) is a commutative C-algebra and M is a
finite-dimensional A,/ (A)-module. Note that every Ay (A)-module becomes
g-twisted vertex algebra (A, D)-module. Let Jp(A) denote the Jacobson
radical of Apr(A). Recall that the module top M = M /Ty (A)M is called the
top of M, which is completely reducible (cf. [2, Chapter I]). Since Ay (A) is a
finite-dimensional commutative C-algebra, the Wedderburn—-Malcev theorem
(cf.[18, Section 11.6]) says that Ay (A) = @7, Ce; ® Ty (A) where eq, ..., ep
are primitive orthogonal idempotents of Ap(A). For U € Ay (A)((x)),
we denote by Ul the image of U under the projection Ay (A)((x)) =

i C((2))e: © Tu(A)((2)) = &L, C((x))e; = C((z))®™. We denote by
Y[A, (M, Yy)] the C-algebra homomorphism Yy, (-, 2)[% from A to C((x))®™,
which corresponds to the module top M. Note that Jy(A)"((x)) = 0, where
n = dimc M. Since Ap(A) is commutative, we shall sometimes identify
End¢ M with Mat,,(C) by fixing a basis of M so that all elements of A,;(A)
are upper triangular matrices. Under this identification, for U € Ap(A)((z))
we see that U = U©),

Let M be a finite-dimensional indecomposable vertex algebra (R, D)-
module. Since Ay (R) is local, we see that Ay(R) = Cid®Ty(R). In
this case we shall often identify the subalgebra C((x))id in Ay (A)((x))
with C((x)). Let (M,Yy) be a g-twisted vertex algebra (A, D)-module
structure over (M,Yy). Since Ap(R) is a subalgebra of Ay (A), we see
that M is an indecomposable Ay/(A)-module. Therefore, Ay (A) is local
since Ap(A) is commutative. Thus, Ay (A) = Cid®Jy(A) and hence
Y[A, (M, Ya)]|lr = ¢[R, (M,Yy)]. It follows from Nakayama’s lemma (cf.
[2, Lemma 2.2]) that Jy(A)M # M and hence Jy(A)M = Jy(R)M is a
proper Ay (A)-submodule of M. This tells us that top M = M /7y (R)M has
a g-twisted vertex algebra (A, D)-module structure over (top M, Yiopar). We
conclude that a g-twisted vertex algebra (A, D)-module structure (M,Y),)
over (M,Y),) induces a g-twisted vertex algebra (A, D)-module structure
(top M, }thopM) over (top M, Yiopar)-

Now we state our main theorem.

Theorem 1. Let A be a connected commutative C-algebra which is a Galois



extension of R with Galois group G and let D be a derivation of A which is
wmvariant under the action of G. Suppose A is generated by a single element
as an R-algebra. Then, for every non-zero finite-dimensional indecomposable
vertez algebra (R, D)-module (M,Yyr), we have the following results:

(1) M has a g-twisted vertex algebra (A, D)-module structure over (M, Yy)
for some g € G.

(2) Let g € G. If topM has a g-twisted vertex algebra (A, D)-module
structure over (top M, Yiepar), then M has a unique g-twisted ver-
tex algebra (A, D)-module structure (M,Yy;) over (M,Yy) such that
top M = M/Tu(A)YM as g-twisted vertex algebra (A, D)-modules.

(8) Let g € G and let (M,Yy) be a g-twisted vertex algebra (A, D)-module
structure over (M,Yy). Then, Yy o h,h € G, are all distinct homo-
morphisms from A to (Endc M)((z'/191)).

(4) For each k = 1,2, let g, be an element in G and let (M,Y}) be a
gr-twisted vertex algebra (A, D)-module structure over (M,Yar). Then,
(M,Y},) oh = (M,Y}) for some h € G.

Proof. Set n = dim¢ M and N = |G|. Let the notation be as above.
By [I5, Theorem 2.9], we may assume A = R[Z]/(P(Z)) where P(Z) =
SN, PZ' € R[Z] is a separable polynomial. We denote by R, the im-
age of the homomorphism )[R, (M,Yy)] : R — C((z)), by Q(Ry) the quo-
tient field of Ry in C((z)), by 0 the primitive element Z + (P(Z)) € A, by
P(Z) € (Ay(R)((2)))[Z] the image of P(Z) under the map Yy (-, z), and by
PO(Z) € C((x))[Z] the image of P(Z) under the map ¥[R, (M,Yy)]. We
write P(Z) = Y. Pi(2) Z%, Bi(x) € Au(R)((z)). We use [20, Lemma 4] by
setting B = RU {6}.

It is well known that any finite extension of C((x)) is C((x'/7)) for some
positive integer j and 2 = U;‘;lC((atl/j)) is the algebraic closure of C((x))
(cf. [13, Corollary 13.15]). The field C((z'/7)) becomes a Galois extension of
C((x)) whose Galois group is the cyclic group generated by the automorphism
sending /7 to (;z'/7. Let K, denote the splitting field of PI%(Z) in Q.

(1) Since Ky is a finite extension of Q(Ry) and Q(Ry) is a subfield of C((x)),
we see that KoC((z)) = C((z'/?)) for some positive integer p. It follows
from the isomorphism Gal(C((z/?))/C((z))) = Gal(K,/(K,NC((2))))
that Gal(Ky/(Ko N C((x)))) has an element o of order p. Since K| is
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a field, there is ay € Ky such that cag = (gao with (j,p) = 1. It
follows from af € Ky N C((x)) that ag is a root of the polynomial
7P —al € C((z))[Z]. Thus, ag is an element of 2~"/?C((x)) for some
integer . We have (r,p) = 1 since af, ¢ Ké‘T) foralli=1,...,p— 1.
Let 7,9 be integers with vr 4+ dp = 1. By replacing ag by ag, we have
oag = (Pag and ag € 27 PC((x)). Since (vj,p) = 1, by replacing o
by a suitable power of o, we have cag = (p,ap and ag € 7 /PC((z)).
For all by € Ky with oby = C;bo, we have o(ay'by) = ag'by and hence
bo € z7YPC((x)).

Let T(z)l% € K, be a root of P(Z). We have a C-algebra homo-
morphism p from A = R[Z]/(P(Z)) to K, with p(§) = T(z). Since
o fixes all elements in Q(Ry) C Ko N C((z)), o(T(z)) is a root of
PU(Z). Since A = R[f] and p induces a bijection from {g(0) | g € G}
to the set of all roots of PI%(Z) in K as explained just before Proposi-
tion [l T'(z)[" is a primitive element of Ky over Q(Ry) and there exists
a unique g € G with p(g(0)) = o(T(z)%) = o(p(6)). These results tell
us that pg = op and hence the order of g is equal to p.

Set PU(Z) = P(Z) — P(Z)id € Jy(R)((x))[Z] and P¥(Z) = 0 for
all k > 2. We write PF(Z) = ZﬁioPi(x)[k}Zi,Pi(x)[k} e Tu(R)k((z)),
for all £k > 0.

Since PI%(Z) has no multiple root in €, we see that (dP1% /dZ)(T ()% #
0. For k =1,2,...,n—1 we inductively define T'(x)* € Jy,(R)*((2'/?))



we have

+ Z Z Z Py(x)00l ()0 ()l

k=1 i=0 0<j0,j1,---Ji
Jotiit+ii=k

+3% Y BT .T(x)[ji}>

i=0 jo=00<j1,....ji<k
Jot+ji+-+ji=k

=0.

This result enables us to define a homomorphism Yy (-, ) from A =
R[Z]/(P(Z)) to Ap(R)((x'/?)) sending 6 to T(x). Since Ay (R) is
commutative, the subalgebra Ay (A) of Ende M obtained by Ya(-, z)
1s commutative.

For allb € A with gb = (b, we shall show that Y (b, z) € 2~/P(Ende M)((z)).
Set B(x) = Yy (b,x) and Q(z) = B(z)? € Ay (R)((x)). We identify
End¢ M with Mat, (C) by fixing a basis of M so that all elements of
A (R) are upper triangular matrices. We use the expansion B(z) =

Z;é B(z)® B(x)*® € Ap(Ende M)((x'/?)). Since C;p(b) = p(gb) =
a(p(b)), we have already seen that B(z)® = p(b) € 27/?(Endc M)((x)).
By B(z)? = Q(x), for all k =1,...,n — 1 we have

B(a)®) = —p(B(a) ") 7!
x (Q(z)® + Z B(x)UV) ... B(x)U»)).

0<j1,....Jp<k
Jit++ip=k

It follows by induction on k that B(x)® € x7/P(Endc M)((z)) and
hence B(z) € x~"/?(Endc M)((z)).

It follows from P(6) = 0 that 0 = D(P(#)) = S~ (DP)0'+(dP/dZ)(8)(D8).
Note that (dP(Z)/dZ)(T(z)) is an invertible element in Ay (R)((x'/?))

since (dP(Z)/dZ)(T(x)®) # 0. Since Yy (DP,, z) = dYy (P, x)/dx

for all 4, we have Yy, (D0, z) = dYy (0, z)/dx.
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We conclude that (M, Y),) is a g-twisted vertex algebra (A, D)-module
structure over (M, Yy).

We denote the order of g by p. Let (top M, ﬁop M) be a g-twisted vertex
algebra (A, D)-module structure over (top M, Yiopar). Let us denote by
© the map fftopM(-, x) : A — Q, namely ¢ = ¥[A, (top M, ?topM)]. Note
that ¢|r = ¥[R, (M,Yy)] and ¢(6) is a root of PO(Z) in Q. By the
same argument as in (1), we can construct a root T'(z) € Ay (R)((2/?))
of P(Z) whose semisimple part T'(z)/? is equal to ¢(f). The linear
homomorphism from A to Ay (R)((z'/?)) sending 6 to T'(x) induces a g-
twisted vertex algebra (A, D)-module structure (M, Ya;) over (M, Yy).
Since 6 is a primitive element of A over R, we see that 1[A, (M, Yy)] =
®.

We shall show the uniqueness of the g-twisted vertex algebra (A, D)-
module structure over (M,Y),) which satisfies the conditions. Let
(M, }7]\1/[) be a g-twisted vertex algebra (A, D)-module structure over
(M, Yy) with o[(A, (M, Y)] = ¢. We identify End¢e M with Mat,,(C)
by fixing a basis of M so that all elements of A,/(A) are upper tri-
angular matrices. Set U(z) = ?M(G z) € (Mat,(C))((z/?)). We use
the expansion U( )=S0 U(x)® and Pz ) [ éP(:c)(k where
U(z)®), Bi(2)® € Ap(Ende M)((«'/7)). Set PO(2) = 321, Pi(a) 0 Z".
Under the identification of End(c M with Mat,(C), we have Pl%(Z) =
PO(Z). Note that U(z)® = ¢(f) and we do not assume U(z) €
A (R)((z'/7)). We have

(U(z))
O(U()®)

||
>

n—1

+ Z Z Py(2)50U ()0 ... U ()0

k=1 1=0 0<]0 ,71
Jo+jit-- +]z—k

k=1 i=0 jo=00<j1,...,5:<k
Jo+ji+-+ji=k



and hence

i=0 jo=00<y1,....Ji<k
Jo+jitetii=k
It follows by induction on k that U(z) = S p—) U(x)® is uniquely
determined by ¢(0) and P(Z). We conclude that M has a unique g-

twisted vertex algebra (A, D)-module structure (M, Yar) over (M,Yy)
such that ¥[(A, (M, Yy)] = ¢.

Let h € G with h # 1. Since 6 and h(f) are distinct roots of P(Z)
in A, [15, Lemma 2.1] says that # — k() is an invertible element of
A. Since Yyon(0, ) = Yar(hO, z) # Ya (6, 2), we see that Yason(-, ) is
distinct from Yy, (-, «). This says that Yy, o h,h € G, are all distinct
homomorphisms from A to (Endc M)((x/191)).

For each k = 1,2, let g be an element in G and let (M,Y}) be a
gr-twisted vertex algebra (A, D)-module structure over (M, Yys). We
denote Y[A, (M, }7]\'3[)] by 1 and Y[R, (M, Ya)] by ¢ briefly. Since each
¥y, induces a bijection from {g(f) | ¢ € G} to the set of all roots of

P[O](Z ) in K as explained just before Proposition[I], there is an element
h € G with 1 (h(f)) = ¥»(0). This tells us that (top M, Y, ) o h =
(top M, Y2, ,,) and hence (M,Y}}) o h = (M,Y2) by (2).

O

Finite-dimensional vertex algebra C|[s, s !]-
modules

Let Cl[s,s™'] be the algebra of Laurent polynomials in one variable s over

In this section we shall classify the finite-dimensional vertex algebra

Cl[s, s~ !]-modules. We use the notation introduced in Section 3. It is easy
to see that every non-zero derivation D of C[s,s™!] can be expressed as
D = (p(s)/sN)d/ds so that the polynomials p(s) and s in C[s] are coprime.
The following lemma easily follows from [20, Lemma 4].
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Lemma 3. Let the notation be as above. Let M be a finite-dimensional vec-
tor space and let S(x) = Y., Six' be a non-zero element of (Ende M)((x)).
Then, there exists a vertex algebra (Cls, s™1], D)-module (M, Yyr) with Yy (s, x)
S(x) if and only if the following three conditions hold:

(i) S(z) is an invertible element in (Endc M)((x)).

(ii) For alli,5 € Z, S(,’)S(j) = S(j)S(i).
(iii) S(z)NdS(x)/dx = p(S(x)).

In this case, for u(s) € C[s,s ] we have Yyr(u(s),z) = u(S(x)) and hence
(M, Ynr) is uniquely determined by S(x).

Proof. If (M,Y),) is a vertex algebra (C[s, s7!], D)-module, then [20, Lemma
4] tells us that the conditions (i)-(iii) are clearly hold and Yy, (u(s),z) =
u(S(x)) for all u(s) € C[s,s™'].

Conversely, suppose that (M, Y),) satisfies the conditions (i)—(iii). We use
[20, Lemma 4] by setting B = {s,s™}. For u(s) € Cls], set Yy (u(s),z) =
u(S(x)). Since S(z) is an invertible element in (Endc M)((x)), this induces
a C-algebra homomorphism from Cls, s™!] to (End¢ M)((x)). Since S(z)™*
is a polynomial in S(z), we see that Ay (C[s, s™!]) is commutative. Since

Yi(D(s™),2) = Yau(—(Ds)(s %), 2)
= —Yu(Ds, )Yy (s, )
d

= %(YM(& l’))_l),

we conclude that (M,Y},) is a vertex algebra (Cls, s™!], D)-module. O

Let (M, Yys) be a finite-dimensional indecomposable vertex algebra C|s, s™1]-
module. We identify Endc M with Mat,, (C) by fixing a basis of M so that
all elements of Ay;(C[s,s7!]) are upper triangular matrices. Let J,, denote
the following n x n matrix:

0 1 0 0

I = 0
1

0 0

13



We denote Yi(s, z) by S(z). We use the expansion S(z) = Sr—, S(x)®, S(2)® €
Ag(Endc M)((x)), as in Section 3. Recall that under this identification, the
semisimple part S(z)l% of S(z) is equal to S(z)©.

For all H(xz) = Y i, Hix" € (Endc M)((x)) with Hy # 0, we denote
L by 1d(H(z)) and Hy by lc(H(z)). Note that if 1d(S(x)%) > 0, then
1d((S(z)~H) = 1d((S(x)?)~") < 0. This implies that if 1d(S(z)) #
0, then vertex algebra (Cl[s,s™!], D)-module (M,Y3,) is not a C-algebra
Cls, s7']-module.

Theorem 2. Let a be a non-zero complex number and D = (p(s)/s™Ne)d/ds
a non-zero derivation of C[s, s™'] such that the polynomials p(s) and s™ of
C ime. We writ = SN s’ wh -

[s] are coprime. We write p(s) = Zi:L,, p;s* where pr,, PN, are non-zero
complex numbers. Then, the following results hold:

(1) Every finite-dimensional indecomposable vertex algebra (C[s,s™!], D)-
module M with 1d(S(x)1%) = 0 is a C-algebra A-module.

(2) There exists a non-zero finite-dimensional indecomposable vertez alge-
bra (Cls, s7Y], D)-module M with 1d(S(x)) > 0 and with lc(S(z)!%) =
a if and only if N, = 0 and p(0) = a. Moreover, in this caseld(S(z)!%) =
1.

(8) There exists a non-zero finite-dimensional indecomposable vertez alge-
bra (Cls, s7Y], D)-module M with 1d(S(x)%) < 0 and with lc(S(z)!%) =
a if and only if N, = Ny+ 2 and o = —1/pn,. Moreover, in this case
1d(S(2)0) = —1.

In the case of (2) and (3), for every positive integer n, there exists a unique
n-dimensional indecomposable vertex algebra (Cls, s~'], D)-module which sat-
isfies the conditions up to isomorphism.

Proof. We use Lemmal[3l Let (M, Yy) be a non-zero finite-dimensional inde-
composable vertex algebra (C[s, s7!], D)-module with lc(S(z)!%) = a. Since
M is indecomposable, we see that S(x)®) € C((x))E,. Since S(x) is invert-
ible, we have S(z)©® # 0 and

= S (5@ )Y (@) (1)

14



By Lemma [3] we have

50y 8 (). (1.2
and hence
(5@ BT _ (5o, (4.9

We shall give a formula for S(z)® =", _, S((f)):ci € Ag((Endec M)((x)))
for k =1,2...,n — 1. By standard Jordan canonical form theory, we may
assume S(g) = S((g)) + S((Ol)), that is, S((é)) =0forall j=2,...,n—1. We have
the following expansions of (dS(z)/dz)S(z)* and p(S(x)):

d5(z) o

T S(x)"

S(x
Z a5 S S(a)0) - ()0

0<j1 ..... jng<n—1

(4o) : ,
= E ds(dﬁg(x)(ﬁ) .. .S(x)(mq)
x

0<j0,J150-JNg<n—1

nl (Jo) ) '
= Z Z %5@)01) oo S(z)UNa)

k=0 0<jo,j1,-iNg
jo+ir++ing =k

dS(z)©

= = = (S(x) )"
!t x)*) 2)©
+ Z (%(5@)(0))1\% + Nq%(g(x)w))%—lg(x)(k)
k=1
Y %S(@W N .g(x)qu))

0<J0,j1,--,JNg <k
Jotirtting=k
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and

-1

3

p(S(x)) = p(S(2)"”) + %(S(x)“”)S ()
k=1
NP
+S p Z S(x)(jl)...S(x)(ji))'
=0 0<j1,...,5i<k
Jite+ji=k

By [@2) for k =1,2,..., we have a formula

dS(x)®

dx
0)\—N, dS(x)(O)
= (S(@)®) N (=N, ==

dS(:E)(jO) (41) (Ing)
- Z 75(95) -+ S(x)

(S(@) )Nt 1 225 (2)0)) § () ™)

0<jo,J1,--,JNg <k
Jot-+ing=k

+pri S S 5(@)6). (4.4)

=0 0<j1,...ji<k
ik tgi=k

We write S(z)© =3 S((?))xi, where L = 1d(S(z)©®).

Suppose that L = 0. We shall show that S(z)*) € (Endc M)[[z]] by
induction on k. The case k = 0 follows from L = 0. For k& > 0, suppose that
1d(S(z)*)) < 0. Since (S(z)®)~Na is an element of C[[z]], the lowest degree
of the right-hand side of (@4) is greater than or equal to 1d(S(x)®) by the
induction assumption. This contradicts that 1d(dS(z)® /dx) = 1d(S(z)®)) —
1. Tt follows from (&1)) that S(x) and S(z)~! are elements in (End¢ M)[[x]]
and hence Yys(a, ) € (Endc M)|[[z]] for all a € Cls,s™!]. We conclude that
if L =0 then (M,Y),) is a C-algebra C[s, s~']-module. This completes the
proof of (1).

Suppose that L > 0. In (43]), the term with the lowest degree of the
left-hand side is L(S((g)))Nq“:EL(N‘I“)_l and the term with the lowest degree

of the right-hand side is py, (S((g)))LPxLLP. Comparing these terms, we have
L(L,— N;—1)=—1 and hence L =1 and L, = N,. We have L, = N, =0
since p(s) and sVe are coprime. Comparing coefficients of these terms with
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the lowest degree in (A3]), we have D = p(s)d/ds, S((?)) = a = p(0) # 0,
and S((g)) = 0. For all positive integers n, we shall show the uniqueness
of n-dimensional indecomposable vertex algebra (C[s, s7!], D)-module which
satisfies the conditions in (2). Setting N, = 0 in (4.4]), the same argument

as in the case of L = 0 shows that S(z)* € (Endc M)[[z]] for all k =
0,1,...,n — 1. For all positive integers m, comparing the coefficients of x™

in (A3), we have

(0) (0) (0)
(m+1)Si) = sz D SuhSG- (4.5)
0<j1,mji<m
Jot+ji++ji=m

It follows by induction on m that every S ((22) is uniquely determined by S((f))
By (IHI) for all m > 0, S((fn)) is a polynomial in {S((;)) |0 <j<m-1}U
{S§10<i<k—1,7>0} Since S5 =0foralli=2,...,n—1, it follows
by induction on k£ and m that every S((fn)) is a polynomial in S((é)) and hence
is uniquely determined by S((Ol)). Since S(%)) is the nilpotent part of Sy and
M is indecomposable, S((é)) conjugates to J,. Thus, we have shown that the

uniqueness of n-dimensional indecomposable vertex algebra (Cls,s™!], D)-
module which satisfies the conditions in (2).

Conversely, suppose that a = p(0). Set S((?)) = « and S((?)) = 0 for
all non-positive integers i. By (4.5) we can inductively define S((Sz) for m =
2,3,.... The obtained S(z)@ = >, S((?))xi € C[[z]] satisfies 1d(S(z)®) = 1,
lc(S(2)®) = o, and ([@3). Set S(%)) = J,, S((g)) =0forallk=2,...,n—1,
and S((Z.k)) =0forall k=1,...,n— 1 and all negative integers i. After (L3,
we have seen that every S ((];2) is a polynomial in S ((é)) if it exists. By the same

argument, we can inductively define S ((:2)) € Endec M fork=1,2,...,n—1and

=1,2,.... By the argument to get (4.4 and (4.3]) above, it is easy to see
that the obtalned S(z)=>"" éS(x)(k) € (Endc M)[[z]] satisfies (4.2]). Since
all coefficients of S(x) are polynomials in S((é)) = J,, we see that S;S(;) =
S)Su for all 7,5 € Z. Thus, we have an n-dimensional vertex algebra
(Cl[s, s7!], D)-module M with ld(S( )@) =1 and with lc(S(2)®) = a. This
completes the proof of (2).

Next suppose that L < 0. Set 5 = 1/s. By (@), we have Yy, (5, 2)% =
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(S(2) ) = (S(x))~* and

D = —§hr+2 (1/s)i.

Since S(z)~! is a polynomial in S(z), all coefficients in S(z)~! are commu-
tative. Thus, this case reduces to the case of L > 0. 0

5 Examples

Throughout this section, D is a non-zero derivation of C[s, s~!]. For a positive
integer n, the C-algebra A = Cls, s™!][t]/(t" — s) is a Galois extension of
Cls,s™!] (cf. [14, Lemma 5.1 in Chapter 0]). The Galois group of A over
Cls, s7'] is the cyclic group of order n generated by 7 with 7(t) = (,t. Since
t" — s is an irreducible element in the unique factorization domain Cls, s7!][t],
t" — s is a prime element. Therefore, A is an integral domain and hence is a
connected C-algebra. We can extend D to a unique derivation of A, which
we denote by the same notation D, by setting D(t) = s~ D(s)/n. It is easy
to see that D is invariant under the action of 7.

In Theorem [2I we have classified the finite-dimensional indecomposable
(C[s, s7'], D)-modules (M, Y,;) which are not C-algebra C[s, s~!]-modules.
In this section, we shall investigate twisted vertex algebra (A, D)-module
structures over (M, Yys). We denote Yy (s, z) by S(z) and S(x)% = 3% S 0] x'

(C(( )) with S[O} # 0 as in Section 4. It follows from Theorem [ that
= 1d(S(x)° )—101" —1.

Proposition 4. Let (M,Yy) be a finite-dimensional indecomposable vertex
algebra (C[s, s7], D)-module which is not a C-algebra A-module. Set L =
1d(S(z)). Then, for the C-algebra A = Cls, s [t]/(t" — 5), (M, Yas) has
exactly n 7L -twisted vertex algebra (A, D)-module structure.

Proof. We use the notation in the proof of Theorem [ (1). If 1d(S(x)[) = 1,
then every root of the polynomial Z" — S(x)I% in Q = UX,C((z'/?)) is an
element in 2'/"C((x)) = 2= CY"C((z)). It follows from the argument in
the proof of Theorem [ (1) that (M,Y),) has a 7~ '-twisted vertex algebra
(A, D)-module structure (M,Yy,) with Y (¢, 2) € 2~V (Mate M)((x)).
We conclude by Theorem [ (3) and (4) that (M,Y);) has exactly n 77!-
twisted vertex algebra (A, D)-module structures. The same argument tells

18



us that if 1d(S(x)%)) = —1, then (M,Yy,) has exactly n 7-twisted vertex
algebra (A, D)-module structures. O
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