Finite-dimensional vertex algebra modules over fixed point commutative subalgebras

Kenichiro Tanabe*
Department of Mathematics
Hokkaido University
Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810
Japan
ktanabe@math.sci.hokudai.ac.jp

Abstract

Let A be a connected commutative \mathbb{C}-algebra with derivation D, G a finite linear automorphism group of A which preserves D, and $R=A^{G}$ the fixed point subalgebra of A under the action of G. We show that if A is generated by a single element as an R-algebra and is a Galois extension over R in the sense of M. Auslander and O . Goldman, then every finite-dimensional vertex algebra R-module has a structure of twisted vertex algebra A-module.

Keywords: vertex algebra; Galois extension; commutative algebra

1 Introduction

Vertex algebras and modules over a vertex algebra were introduced by Borcherds in [4]. As an example, every commutative ring A with an arbitrary derivation D has a structure of vertex algebra, and every ring A-module naturally

[^0]becomes a vertex algebra A-module. However, this does not imply that ring A-modules and vertex algebra A-modules are same. In fact, a vertex algebra $\mathbb{Z}\left[z, z^{-1}\right]$-module which is not a ring $\mathbb{Z}\left[z, z^{-1}\right]$-module was given in [4, Section 8], where $\mathbb{Z}\left[z, z^{-1}\right]$ is the ring of Laurent polynomials over \mathbb{Z}. This tells us that in general these two kind of A-modules are certainly different. From now on, for a commutative \mathbb{C}-algebra A with derivation D, we shall call a vertex algebra A-module a vertex algebra (A, D)-module to distinguish it from ring A-modules. It is a natural first step to investigate vertex algebra (A, D)-modules to understand modules over general vertex algebras. In [19, 20] for the polynomial ring $\mathbb{C}[s]$ and the field of rational functions $\mathbb{C}(s)$, the finite-dimensional vertex algebra modules which are not \mathbb{C}-algebra modules are classified.

Let A be a commutative \mathbb{C}-algebra with derivation D, G a finite linear automorphism group of A which preserves D, and $R=A^{G}$ the fixed point subalgebra of A under the action of G. In this paper, we shall investigate a relation between vertex algebra (R, D)-modules and twisted vertex algebra (A, D)-modules. In Theorem [1, I shall show that if A is a connected commutative \mathbb{C}-algebra generated by a single element as an R-algebra and is a finite Galois extension over R in the sense of [3, p.396], then every finite-dimensional indecomposable vertex algebra (R, D)-module becomes a g-twisted vertex algebra (A, D)-module for some $g \in G$. This is a generalization of [20, Theorem 1] and is related the following open conjecture on vertex operator algebras: let V be a vertex operator algebra and H a finite automorphism group of V. It is conjectured that under some conditions on V, every irreducible module over the fixed point vertex operator subalgebra V^{H} is contained in some irreducible h-twisted V-module for some $h \in H$ (cf.[7]). The conjecture is confirmed for some examples in [1, 8, 10, 11, 12, 21, 22]. However A is not a vertex operator algebra except in the case that $D=0$ and $\operatorname{dim}_{\mathbb{C}} A<\infty$, Theorem 1 implies that the conjecture holds for all finitedimensional vertex algebra R-modules in a stronger sense.

This paper is organized as follows: In Section 2 we recall some notation and properties of Galois extensions of rings, vertex algebras and their modules. In Section 3 we show that every finite-dimensional indecomposable vertex algebra R-module becomes a g-twisted vertex algebra (A, D)-module for some $g \in G$. In Section 4 we give the classification of the finite-dimensional vertex algebra $\mathbb{C}\left[s, s^{-1}\right]$-modules which are not \mathbb{C}-algebra $\mathbb{C}\left[s, s^{-1}\right]$-modules. In Section 5 for the \mathbb{C}-algebra $A=\mathbb{C}\left[s, s^{-1}\right][t] /\left(t^{n}-s\right)$, which is a Galois extension over $\mathbb{C}\left[s, s^{-1}\right]$ with Galois group the cyclic group of order n, and for all
finite-dimensional indecomposable vertex algebra $\mathbb{C}\left[s, s^{-1}\right]$-modules $\left(M, Y_{M}\right)$ obtained in Section 4, we study twisted vertex algebra (A, D)-module structures over $\left(M, Y_{M}\right)$.

2 Preliminary

We assume that the reader is familiar with the basic knowledge on vertex algebras as presented in [4, 9, 17].

Throughout this paper all rings and algebras are commutative and associative and have identity elements, R denotes a ring, $R[Z]$ denotes the polynomial ring in one variable Z over R, G denotes a finite group, ζ_{p} denotes a primitive p-th root of unity for a positive integer p, and $(V, Y, \mathbf{1})$ denotes a vertex algebra. Recall that V is the underlying vector space, $Y(\cdot, x)$ is the linear map from V to (End $V)\left[\left[x, x^{-1}\right]\right]$, and $\mathbf{1}$ is the vacuum vector. Let \mathcal{D} be the endomorphism of V defined by $\mathcal{D} v=v_{-2} 1$ for $v \in V$.

First, we recall some results in [3, 5, 6, 15] for separable algebras over a ring. A ring R is called connected if R has no idempotent other than 0 and 1. An R-algebra A is called separable if A is a projective $A \otimes_{R} A$-module. An R-algebra A is called strongly separable if it is finitely generated, projective, and separable over R. Let us recall the Galois extension of R introduced in [3, p.396]. The following definition, which is equivalent to that in [3, p.396], is given in [5, Theorem 1.3].

Definition 1. Let A be a ring extension of R and let G be a finite group of automorphisms of A. We denote by A^{G} the fixed point subring of A under the action of G. The ring A is called a Galois extension of R with Galois group G, if the following three conditions hold:
(1) $A^{G}=R$.
(2) For each non-zero idempotent $e \in A$ and each $g \neq h$ in G, there is an element $x \in A$ with $g(x) e \neq h(x) e$.
(3) A is a separable R-algebra.

Note that if A is connected, then the condition (2) in Definition 1 is always satisfied. It follows from [5, Theorem 1.3] that if A is a Galois extension of R, then A is a strongly separable R-algebra.

In [15, p.467], A polynomial $P(Z) \in R[Z]$ is called separable in case $P(Z)$ is monic and the factor ring $R[Z] /(P(Z))$ is a separable R-algebra. In this case, $R[Z] /(P(Z))$ is strongly separable since $R[Z] /(P(Z))$ is a free R-module of rank $\operatorname{deg} P(Z)$. For an R-algebra A, an element $\theta \in A$ is called a primitive element if $A=R[\theta]$, namely A is generated by a single element θ as an R-algebra. It is shown in [15, Theorem 2.9] that if A is a strongly separable R-algebra and if A has a primitive element, then there is a separable polynomial $P(Z)$ such that $A \cong R[Z] /(P(Z))$ as R-algebras.

Let R be a connected ring, $P(Z) \in R[Z]$ a separable polynomial, and suppose that the factor ring $A=R[Z] /(P(Z))$ is connected and is a Galois extension of R with Galois group G. Set $\theta=Z+P(Z) \in A$. Since $A=R[\theta]$, we have $g(\theta) \neq \theta$ for all $g \in G$ without the identity element. By [5, Lemma 4.1] and [15, Lemma 2.1], the order of G is equal to $\operatorname{deg} P(Z)$. Thus, G acts regularly on the set of all roots of the polynomial $P(Z)$ in A and hence $P(Z)=\prod_{g \in G}(Z-g(\theta))$. For an R-linear homomorphism f from A to an R-algebra B, [15, Lemma 2.1] says that $f(g(\theta)) \neq f(h(\theta))$ for all $g \neq h$ in G. This tells us that if B is an integral domain, f induces a bijection from $\{g(\theta) \mid g \in G\}$ to the set of all roots of $f(P(Z)) \in B[Z]$ in B. In particular, $f(P(Z))$ has no multiple root.

Next, we recall some results in [4] for a vertex algebra constructed from a commutative \mathbb{C}-algebra with a derivation.

Proposition 1. 4] The following hold:
(1) Let A be a commutative \mathbb{C}-algebra with identity element 1 and D a derivation of A. For $a \in A$, define $Y(a, x) \in(\operatorname{End} A)[[x]]$ by

$$
Y(a, x) b=\sum_{i=0}^{\infty} \frac{1}{i!}\left(D^{i} a\right) b x^{i}
$$

for $b \in A$. Then, $(A, Y, 1)$ is a vertex algebra.
(2) Let $(V, Y, \mathbf{1})$ be a vertex algebra such that $Y(u, x) \in($ End $V)[[x]]$ for all $u \in V$. Define a multiplication on V by $u v=u_{-1} v$ for $u, v \in V$. Then, V is a commutative \mathbb{C}-algebra with identity element $\mathbf{1}$ and \mathcal{D} is a derivation of V.

Throughout the rest of this section, A is a commutative \mathbb{C}-algebra with identity element 1 and D a derivation of A. Let $(A, Y, 1)$ be the vertex algebra
constructed from A and D in Proposition 1 and let $\left(M, Y_{M}\right)$ be a vertex algebra A-module. We call M a vertex algebra (A, D)-module to distinguish vertex algebra A-modules from \mathbb{C}-algebra A-modules as stated in Section 1 .

Proposition 2. 4] The following hold:
(1) Let M be $a \mathbb{C}$-algebra A-module. For $a \in A$, define $Y_{M}(a, x) \in\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ by

$$
Y(a, x) u=\sum_{i=0}^{\infty} \frac{1}{i!}\left(D^{i} a\right) u x^{i}
$$

for $u \in M$. Then, $\left(M, Y_{M}\right)$ is a vertex algebra (A, D)-module.
(2) Let $\left(M, Y_{M}\right)$ be a vertex algebra (A, D)-module such that $Y(a, x) \in$ $\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ for all $a \in A$. Define an action of A on M by $a u=a_{-1} u$ for $a \in A$ and $u \in M$. Then, M is $a \mathbb{C}$-algebra A-module.

By Proposition 2, if there exists a vertex algebra (A, D)-module $\left(M, Y_{M}\right)$ with $Y_{M}(a, x) \notin\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ for some element a in A, then vertex algebra (A, D)-modules and \mathbb{C}-algebra A-modules are different. However, no simple criterion for the existence of such a module $\left(M, Y_{M}\right)$ is known.

For a \mathbb{C}-linear automorphism g of V of finite order p, set $V^{r}=\{u \in$ $\left.\left.V \mid g u=\zeta_{p}^{r} u\right\}, 0 \leq r \leq p-1\right\}$. We recall the definition of g-twisted V modules.

Definition 2. A g-twisted V-module M is a vector space equipped with a linear map

$$
Y_{M}(\cdot, x): V \ni v \mapsto Y_{M}(v, x)=\sum_{i \in(1 / p) \mathbb{Z}} v_{i} x^{-i-1} \in\left(\operatorname{End}_{\mathbb{C}} M\right)\left[\left[x^{1 / p}, x^{-1 / p}\right]\right]
$$

which satisfies the following four conditions:
(1) $Y_{M}(u, x)=\sum_{i \in r / p+\mathbb{Z}} u_{i} x^{-i-1}$ for $u \in V^{r}$.
(2) $Y_{M}(u, x) w \in M\left(\left(x^{1 / p}\right)\right)$ for $u \in V$ and $w \in M$.
(3) $Y_{M}(\mathbf{1}, x)=\operatorname{id}_{M}$.
(4) For $u \in V^{r}, v \in V^{s}, m \in r / T+\mathbb{Z}, n \in s / T+\mathbb{Z}$, and $l \in \mathbb{Z}$,

$$
\begin{aligned}
& \sum_{i=0}^{\infty}\binom{m}{i}\left(u_{l+i} v\right)_{m+n-i} \\
& =\sum_{i=0}^{\infty}\binom{l}{i}(-1)^{i}\left(u_{l+m-i} v_{n+i}+(-1)^{l+1} v_{l+n-i} u_{m+i}\right)
\end{aligned}
$$

For a g-twisted vertex algebra (A, D)-module $\left(M, Y_{M}\right)$ and a linear automorphism h of A which preserves D, define $\left(M, Y_{M}\right) \circ h=\left(M \circ h, Y_{M \circ h}\right)$ by $M \circ h=M$ as vector spaces and $Y_{M \circ h}(a, x)=Y_{M}(h a, x)$ for all $a \in A$. Then, $\left(M, Y_{M}\right) \circ h$ is a $h^{-1} g h$-twisted vertex algebra (A, D)-module.

3 Finite-dimensional vertex algebra modules over fixed point commutative subalgebras

Throughout this section, R is a connected commutative \mathbb{C}-algebra, A is a commutative \mathbb{C}-algebra generated by a single element as an R-algebra and is a Galois extension of R with Galois group G. It follows from 15, Theorem 2.9] that $A \cong R[Z] /(P(Z))$ as R-algebras for some separable polynomial $P(Z) \in R[Z]$. Let D be a derivation of A which is invariant under the action of G. For a finite-dimensional vertex algebra (R, D)-module $\left(M, Y_{M}\right), g \in G$ of order p, and a linear map $\tilde{Y}(\cdot, x)$ from A to $\left(\operatorname{End}_{\mathbb{C}} M\right)\left(\left(x^{1 / p}\right)\right)$, we call $\left(M, \tilde{Y}_{M}\right)$ a g-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$ if $\left(M, \tilde{Y}_{M}\right)$ is a g-twisted vertex algebra (A, D)-module and if $\left.\tilde{Y}(\cdot, x)\right|_{R}=$ $Y(\cdot, x)$.

In this section, we shall show that every finite-dimensional indecomposable vertex algebra (R, D)-module has a g-twisted vertex algebra (A, D) module structure over $\left(M, Y_{M}\right)$ for some $g \in G$. We use the following notation in [20, Section 3]. For a commutative ring C, let $\operatorname{Mat}_{n}(C)$ denote the set of all $n \times n$ matrices with entries in C. Let E_{n} denote the $n \times n$ identity matrix and let $E_{i j}$ denote the matrix whose (i, j) entry is 1 and all other entries are 0. Define $\Delta_{k}(C)=\left\{\left(x_{i j}\right) \in \operatorname{Mat}_{n}(C) \mid x_{i j}=0\right.$ if $\left.i+k \neq j\right\}$ for $0 \leq k \leq n$. Then, for $a \in \Delta_{k}(C)$ and $b \in \Delta_{l}(C)$, we have $a b \in \Delta_{k+l}(C)$. For $X=\left(x_{i j}\right) \in \operatorname{Mat}_{n}(C)$ and $k=0, \ldots, n-1$, define the matrix $X^{(k)}=$ $\sum_{i=1}^{n} x_{i, i+k} E_{i, i+k} \in \Delta_{k}(C)$. For a upper triangular matrix X, we see that $X=\sum_{k=0}^{n-1} X^{(k)}$.

Let A be a commutative \mathbb{C}-algebra, D a derivation of A, g a \mathbb{C}-linear automorphism of A of finite order p. For a vector space W over \mathbb{C} and a linear map $Y_{W}(\cdot, x)$ from A to $\left(\operatorname{End}_{\mathbb{C}} W\right)\left[\left[x^{1 / p}, x^{-1 / p}\right]\right]$, we denote by $\mathcal{A}_{W}(A)$ the subalgebra of $E n d_{\mathbb{C}} W$ generated by all coefficients of $Y_{W}(a, x)$ where a ranges over all elements of A. Let M be a finite-dimensional g-twisted vertex algebra (A, D)-module. Then, $\mathcal{A}_{M}(A)$ is a commutative \mathbb{C}-algebra and M is a finite-dimensional $\mathcal{A}_{M}(A)$-module. Note that every $\mathcal{A}_{M}(A)$-module becomes g-twisted vertex algebra (A, D)-module. Let $\mathcal{J}_{M}(A)$ denote the Jacobson radical of $\mathcal{A}_{M}(A)$. Recall that the module top $M=M / \mathcal{J}_{M}(A) M$ is called the top of M, which is completely reducible (cf. [2, Chapter I]). Since $\mathcal{A}_{M}(A)$ is a finite-dimensional commutative \mathbb{C}-algebra, the Wedderburn-Malcev theorem (cf.[18, Section 11.6]) says that $\mathcal{A}_{M}(A)=\oplus_{i=1}^{m} \mathbb{C} e_{i} \oplus \mathcal{J}_{M}(A)$ where e_{1}, \ldots, e_{m} are primitive orthogonal idempotents of $\mathcal{A}_{M}(A)$. For $U \in \mathcal{A}_{M}(A)((x))$, we denote by $U^{[0]}$ the image of U under the projection $\mathcal{A}_{M}(A)((x))=$ $\oplus_{i=1}^{m} \mathbb{C}((x)) e_{i} \oplus \mathcal{J}_{M}(A)((x)) \rightarrow \oplus_{i=1}^{m} \mathbb{C}((x)) e_{i} \cong \mathbb{C}((x))^{\oplus m}$. We denote by $\psi\left[A,\left(M, Y_{M}\right)\right]$ the \mathbb{C}-algebra homomorphism $Y_{M}(\cdot, x)^{[0]}$ from A to $\mathbb{C}((x))^{\oplus m}$, which corresponds to the module top M. Note that $\mathcal{J}_{M}(A)^{n}((x))=0$, where $n=\operatorname{dim}_{\mathbb{C}} M$. Since $\mathcal{A}_{M}(A)$ is commutative, we shall sometimes identify $\operatorname{End}_{\mathbb{C}} M$ with $\operatorname{Mat}_{n}(\mathbb{C})$ by fixing a basis of M so that all elements of $\mathcal{A}_{M}(A)$ are upper triangular matrices. Under this identification, for $U \in \mathcal{A}_{M}(A)((x))$ we see that $U^{[0]}=U^{(0)}$.

Let M be a finite-dimensional indecomposable vertex algebra (R, D) module. Since $\mathcal{A}_{M}(R)$ is local, we see that $\mathcal{A}_{M}(R)=\mathbb{C}$ id $\oplus \mathcal{J}_{M}(R)$. In this case we shall often identify the subalgebra $\mathbb{C}((x))$ id in $\mathcal{A}_{M}(A)((x))$ with $\mathbb{C}((x))$. Let $\left(M, \tilde{Y}_{M}\right)$ be a g-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$. Since $\mathcal{A}_{M}(R)$ is a subalgebra of $\mathcal{A}_{M}(A)$, we see that M is an indecomposable $\mathcal{A}_{M}(A)$-module. Therefore, $\mathcal{A}_{M}(A)$ is local since $\mathcal{A}_{M}(A)$ is commutative. Thus, $\mathcal{A}_{M}(A)=\mathbb{C} \operatorname{id} \oplus \mathcal{J}_{M}(A)$ and hence $\left.\psi\left[A,\left(M, Y_{M}\right)\right]\right|_{R}=\psi\left[R,\left(M, Y_{M}\right)\right]$. It follows from Nakayama's lemma (cf. [2, Lemma 2.2]) that $\mathcal{J}_{M}(A) M \neq M$ and hence $\mathcal{J}_{M}(A) M=\mathcal{J}_{M}(R) M$ is a proper $\mathcal{A}_{M}(A)$-submodule of M. This tells us that top $M=M / \mathcal{J}_{M}(R) M$ has a g-twisted vertex algebra (A, D)-module structure over $\left(\operatorname{top} M, Y_{\operatorname{top} M}\right)$. We conclude that a g-twisted vertex algebra (A, D)-module structure $\left(M, \tilde{Y}_{M}\right)$ over $\left(M, Y_{M}\right)$ induces a g-twisted vertex algebra (A, D)-module structure $\left(\operatorname{top} M, \tilde{Y}_{\text {top } M}\right)$ over $\left(\operatorname{top} M, Y_{\operatorname{top} M}\right)$.

Now we state our main theorem.
Theorem 1. Let A be a connected commutative \mathbb{C}-algebra which is a Galois
extension of R with Galois group G and let D be a derivation of A which is invariant under the action of G. Suppose A is generated by a single element as an R-algebra. Then, for every non-zero finite-dimensional indecomposable vertex algebra (R, D)-module $\left(M, Y_{M}\right)$, we have the following results:
(1) M has a g-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$ for some $g \in G$.
(2) Let $g \in G$. If top M has a g-twisted vertex algebra (A, D)-module structure over $\left(\operatorname{top} M, Y_{\operatorname{top} M}\right)$, then M has a unique g-twisted vertex algebra (A, D)-module structure $\left(M, \tilde{Y}_{M}\right)$ over $\left(M, Y_{M}\right)$ such that top $M \cong M / \mathcal{J}_{M}(A) M$ as g-twisted vertex algebra (A, D)-modules.
(3) Let $g \in G$ and let $\left(M, \tilde{Y}_{M}\right)$ be a g-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$. Then, $\tilde{Y}_{M} \circ h, h \in G$, are all distinct homomorphisms from A to $\left(\operatorname{End}_{\mathbb{C}} M\right)\left(\left(x^{1 /|g|}\right)\right)$.
(4) For each $k=1,2$, let g_{k} be an element in G and let $\left(M, \tilde{Y}_{M}^{k}\right)$ be a g_{k}-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$. Then, $\left(M, \tilde{Y}_{M}^{1}\right) \circ h \cong\left(M, \tilde{Y}_{M}^{2}\right)$ for some $h \in G$.

Proof. Set $n=\operatorname{dim}_{\mathbb{C}} M$ and $N=|G|$. Let the notation be as above. By [15, Theorem 2.9], we may assume $A=R[Z] /(P(Z))$ where $P(Z)=$ $\sum_{i=0}^{N} P_{i} Z^{i} \in R[Z]$ is a separable polynomial. We denote by R_{0} the image of the homomorphism $\psi\left[R,\left(M, Y_{M}\right)\right]: R \rightarrow \mathbb{C}((x))$, by $Q\left(R_{0}\right)$ the quotient field of R_{0} in $\mathbb{C}((x))$, by θ the primitive element $Z+(P(Z)) \in A$, by $\hat{P}(Z) \in\left(\mathcal{A}_{M}(R)((x))\right)[Z]$ the image of $P(Z)$ under the map $Y_{M}(\cdot, x)$, and by $\hat{P}^{[0]}(Z) \in \mathbb{C}((x))[Z]$ the image of $P(Z)$ under the map $\psi\left[R,\left(M, Y_{M}\right)\right]$. We write $\hat{P}(Z)=\sum_{i=0}^{N} \hat{P}_{i}(x) Z^{i}, \hat{P}_{i}(x) \in \mathcal{A}_{M}(R)((x))$. We use [20, Lemma 4] by setting $\mathcal{B}=R \cup\{\theta\}$.

It is well known that any finite extension of $\mathbb{C}((x))$ is $\mathbb{C}\left(\left(x^{1 / j}\right)\right)$ for some positive integer j and $\Omega=\cup_{j=1}^{\infty} \mathbb{C}\left(\left(x^{1 / j}\right)\right)$ is the algebraic closure of $\mathbb{C}((x))$ (cf. [13, Corollary 13.15]). The field $\mathbb{C}\left(\left(x^{1 / j}\right)\right)$ becomes a Galois extension of $\mathbb{C}((x))$ whose Galois group is the cyclic group generated by the automorphism sending $x^{1 / j}$ to $\zeta_{j} x^{1 / j}$. Let K_{0} denote the splitting field of $\hat{P}^{[0]}(Z)$ in Ω.
(1) Since K_{0} is a finite extension of $Q\left(R_{0}\right)$ and $Q\left(R_{0}\right)$ is a subfield of $\mathbb{C}((x))$, we see that $K_{0} \mathbb{C}((x))=\mathbb{C}\left(\left(x^{1 / p}\right)\right)$ for some positive integer p. It follows from the isomorphism $\operatorname{Gal}\left(\mathbb{C}\left(\left(x^{1 / p}\right)\right) / \mathbb{C}((x))\right) \cong \operatorname{Gal}\left(K_{0} /\left(K_{0} \cap \mathbb{C}((x))\right)\right)$ that $\operatorname{Gal}\left(K_{0} /\left(K_{0} \cap \mathbb{C}((x))\right)\right)$ has an element σ of order p. Since K_{0} is
a field, there is $a_{0} \in K_{0}$ such that $\sigma a_{0}=\zeta_{p}^{j} a_{0}$ with $(j, p)=1$. It follows from $a_{0}^{p} \in K_{0} \cap \mathbb{C}((x))$ that a_{0} is a root of the polynomial $Z^{p}-a_{0}^{p} \in \mathbb{C}((x))[Z]$. Thus, a_{0} is an element of $x^{-r / p} \mathbb{C}((x))$ for some integer r. We have $(r, p)=1$ since $a_{0}^{i} \notin K_{0}^{\langle\sigma\rangle}$ for all $i=1, \ldots, p-1$. Let γ, δ be integers with $\gamma r+\delta p=1$. By replacing a_{0} by a_{0}^{γ}, we have $\sigma a_{0}=\zeta_{p}^{\gamma j} a_{0}$ and $a_{0} \in x^{-1 / p} \mathbb{C}((x))$. Since $(\gamma j, p)=1$, by replacing σ by a suitable power of σ, we have $\sigma a_{0}=\zeta_{p} a_{0}$ and $a_{0} \in x^{-1 / p} \mathbb{C}((x))$. For all $b_{0} \in K_{0}$ with $\sigma b_{0}=\zeta_{p}^{i} b_{0}$, we have $\sigma\left(a_{0}^{-i} b_{0}\right)=a_{0}^{-i} b_{0}$ and hence $b_{0} \in x^{-i / p} \mathbb{C}((x))$.
Let $T(x)^{[0]} \in K_{0}$ be a root of $\hat{P}^{[0]}(Z)$. We have a \mathbb{C}-algebra homomorphism ρ from $A=R[Z] /(P(Z))$ to K_{0} with $\rho(\theta)=T(x)^{[0]}$. Since σ fixes all elements in $Q\left(R_{0}\right) \subset K_{0} \cap \mathbb{C}((x)), \sigma\left(T(x)^{[0]}\right)$ is a root of $\hat{P}^{[0]}(Z)$. Since $A=R[\theta]$ and ρ induces a bijection from $\{g(\theta) \mid g \in G\}$ to the set of all roots of $\hat{P}^{[0]}(Z)$ in K_{0} as explained just before Proposition 1, $T(x)^{[0]}$ is a primitive element of K_{0} over $Q\left(R_{0}\right)$ and there exists a unique $g \in G$ with $\rho(g(\theta))=\sigma\left(T(x)^{[0]}\right)=\sigma(\rho(\theta))$. These results tell us that $\rho g=\sigma \rho$ and hence the order of g is equal to p.
Set $\hat{P}^{[1]}(Z)=\hat{P}(Z)-\hat{P}^{[0]}(Z)$ id $\in \mathcal{J}_{M}(R)((x))[Z]$ and $\hat{P}^{[k]}(Z)=0$ for all $k \geq 2$. We write $\hat{P}^{[k]}(Z)=\sum_{i=0}^{N} \hat{P}_{i}(x)^{[k]} Z^{i}, \hat{P}_{i}(x)^{[k]} \in \mathcal{J}_{M}(R)^{k}((x))$, for all $k \geq 0$.
Since $\hat{P}^{[0]}(Z)$ has no multiple root in Ω, we see that $\left(d \hat{P}^{[0]} / d Z\right)\left(T(x)^{[0]}\right) \neq$ 0 . For $k=1,2, \ldots, n-1$ we inductively define $T(x)^{[k]} \in \mathcal{J}_{M}(R)^{k}\left(\left(x^{1 / p}\right)\right)$ by

$$
\begin{align*}
T(x)^{[k]}= & -\left(\frac{d \hat{P}^{[0]}}{d Z}\left(T(x)^{[0]}\right)\right)^{-1} \\
& \times \sum_{i=0}^{N} \sum_{j_{0}=0}^{k} \sum_{\substack{0 \leq j_{1}, \ldots, j_{i}<k \\
j_{0}+j_{1}+\cdots+j_{i}=k}} \hat{P}_{i}(x)^{\left[j_{0}\right]} T(x)^{\left[j_{1}\right]} \cdots T(x)^{\left[j_{i}\right]} . \tag{3.1}
\end{align*}
$$

Set $T(x)=\sum_{k=0}^{n-1} T(x)^{[k]} \in \mathcal{A}_{M}(R)\left(\left(x^{1 / p}\right)\right) . \quad$ Since $\mathcal{J}_{M}(R)^{n}((x))=0$,
we have

$$
\begin{aligned}
\hat{P}(T(x))= & \hat{P}^{[0]}\left(T(x)^{[0]}\right) \\
& +\sum_{k=1}^{n-1} \sum_{i=0}^{N} \sum_{\substack{0 \leq j_{0}, j_{1}, \ldots, j_{i} \\
j_{0}+j_{1}+\cdots+j_{i}=k}} \hat{P}_{i}(x)^{\left[j_{j}\right]} T(x)^{\left[j_{1}\right]} \cdots T(x)^{\left[j_{i}\right]} \\
= & 0+\sum_{k=1}^{n-1}\left(T(x)^{[k]} \frac{d \hat{P}^{[0]}}{d Z}\left(T(x)^{[0]}\right)\right. \\
& \left.+\sum_{i=0}^{N} \sum_{\substack{j_{0}=0}}^{k} \sum_{\substack{0 \leq j_{1}, \ldots, j_{i}<k \\
j_{0}+j_{1}+\cdots+j_{i}=k}} \hat{P}_{i}(x)^{\left[j_{j}\right]} T(x)^{\left[j_{1}\right]} \cdots T(x)^{\left[j_{i}\right]}\right) \\
= & 0 .
\end{aligned}
$$

This result enables us to define a homomorphism $\tilde{Y}_{M}(\cdot, x)$ from $A=$ $R[Z] /(P(Z))$ to $\mathcal{A}_{M}(R)\left(\left(x^{1 / p}\right)\right)$ sending θ to $T(x)$. Since $\mathcal{A}_{M}(R)$ is commutative, the subalgebra $\mathcal{A}_{M}(A)$ of $\operatorname{End}_{\mathbb{C}} M$ obtained by $\tilde{Y}_{M}(\cdot, x)$ is commutative.
For all $b \in A$ with $g b=\zeta_{p}^{i} b$, we shall show that $\tilde{Y}_{M}(b, x) \in x^{-i / p}\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$.
Set $B(x)=\tilde{Y}_{M}(b, x)$ and $Q(x)=B(x)^{p} \in \mathcal{A}_{M}(R)((x))$. We identify $\operatorname{End}_{\mathbb{C}} M$ with $\operatorname{Mat}_{n}(\mathbb{C})$ by fixing a basis of M so that all elements of $\mathcal{A}_{M}(R)$ are upper triangular matrices. We use the expansion $B(x)=$ $\sum_{k=0}^{n-1} B(x)^{(k)}, B(x)^{(k)} \in \Delta_{k}\left(\operatorname{End}_{\mathbb{C}} M\right)\left(\left(x^{1 / p}\right)\right)$. Since $\zeta_{p}^{i} \rho(b)=\rho(g b)=$ $\sigma(\rho(b))$, we have already seen that $B(x)^{(0)}=\rho(b) \in x^{-i / p}\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$. By $B(x)^{p}=Q(x)$, for all $k=1, \ldots, n-1$ we have

$$
\begin{aligned}
B(x)^{(k)}= & -p^{-1}\left(B(x)^{(0)}\right)^{-p+1} \\
& \times\left(Q(x)^{(k)}+\sum_{\substack{0 \leq j_{1}, \ldots, j_{p}<k \\
j_{1}+\cdots+j_{p}=k}} B(x)^{\left(j_{1}\right)} \cdots B(x)^{\left(j_{p}\right)}\right) .
\end{aligned}
$$

It follows by induction on k that $B(x)^{(k)} \in x^{-i / p}\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$ and hence $B(x) \in x^{-i / p}\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$.
It follows from $P(\theta)=0$ that $0=D(P(\theta))=\sum_{i=0}^{N}\left(D P_{i}\right) \theta^{i}+(d P / d Z)(\theta)(D \theta)$. Note that $(d \hat{P}(Z) / d Z)(T(x))$ is an invertible element in $\mathcal{A}_{M}(R)\left(\left(x^{1 / p}\right)\right)$ since $\left(d \hat{P}^{[0]}(Z) / d Z\right)\left(T(x)^{[0]}\right) \neq 0$. Since $Y_{M}\left(D P_{i}, x\right)=d Y_{M}\left(P_{i}, x\right) / d x$ for all i, we have $\tilde{Y}_{M}(D \theta, x)=d \tilde{Y}_{M}(\theta, x) / d x$.

We conclude that $\left(M, \tilde{Y}_{M}\right)$ is a g-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$.
(2) We denote the order of g by p. Let $\left(\operatorname{top} M, \tilde{Y}_{\text {top } M}\right)$ be a g-twisted vertex algebra (A, D)-module structure over $\left(\operatorname{top} M, Y_{\text {top } M}\right)$. Let us denote by φ the $\operatorname{map} \tilde{Y}_{\text {top } M}(\cdot, x): A \rightarrow \Omega$, namely $\varphi=\psi\left[A,\left(\operatorname{top} M, \tilde{Y}_{\text {top } M}\right)\right]$. Note that $\left.\varphi\right|_{R}=\psi\left[R,\left(M, Y_{M}\right)\right]$ and $\varphi(\theta)$ is a root of $\hat{P}^{[0]}(Z)$ in Ω. By the same argument as in (1), we can construct a root $T(x) \in \mathcal{A}_{M}(R)\left(\left(x^{1 / p}\right)\right)$ of $\hat{P}(Z)$ whose semisimple part $T(x)^{[0]}$ is equal to $\varphi(\theta)$. The linear homomorphism from A to $\mathcal{A}_{M}(R)\left(\left(x^{1 / p}\right)\right)$ sending θ to $T(x)$ induces a g twisted vertex algebra (A, D)-module structure $\left(M, \tilde{Y}_{M}\right)$ over $\left(M, Y_{M}\right)$. Since θ is a primitive element of A over R, we see that $\psi\left[A,\left(M, \tilde{Y}_{M}\right)\right]=$ φ.
We shall show the uniqueness of the g-twisted vertex algebra (A, D) module structure over $\left(M, Y_{M}\right)$ which satisfies the conditions. Let $\left(M, \tilde{Y}_{M}^{1}\right)$ be a g-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$ with $\psi\left[\left(A,\left(M, \tilde{Y}_{M}^{1}\right)\right]=\varphi\right.$. We identify $\operatorname{End}_{\mathbb{C}} M$ with $\operatorname{Mat}_{n}(\mathbb{C})$ by fixing a basis of M so that all elements of $\mathcal{A}_{M}(A)$ are upper triangular matrices. Set $U(x)=\tilde{Y}_{M}^{1}(\theta, x) \in\left(\operatorname{Mat}_{n}(\mathbb{C})\right)\left(\left(x^{1 / p}\right)\right)$. We use the expansion $U(x)=\sum_{k=0}^{n-1} U(x)^{(k)}$ and $\hat{P}_{i}(x)=\sum_{k=0}^{n-1} \hat{P}_{i}(x)^{(k)}$, where $U(x)^{(k)}, \hat{P}_{i}(x)^{(k)} \in \Delta_{k}\left(\operatorname{End}_{\mathbb{C}} M\right)\left(\left(x^{1 / p}\right)\right)$. Set $\hat{P}^{(0)}(Z)=\sum_{i=0}^{N} \hat{P}_{i}(x)^{(0)} Z^{i}$. Under the identification of $\operatorname{End}_{\mathbb{C}} M$ with $\operatorname{Mat}_{n}(\mathbb{C})$, we have $\hat{P}^{[0]}(Z)=$ $\hat{P}^{(0)}(Z)$. Note that $U(x)^{(0)}=\varphi(\theta)$ and we do not assume $U(x) \in$ $\mathcal{A}_{M}(R)\left(\left(x^{1 / p}\right)\right)$. We have

$$
\begin{aligned}
0= & \hat{P}(U(x)) \\
= & \hat{P}^{(0)}\left(U(x)^{(0)}\right) \\
& +\sum_{k=1}^{n-1} \sum_{i=0}^{N} \sum_{\substack{0 \leq j_{0}, j_{1}, \ldots, j_{i} \\
j_{0}+j_{1}+\cdots+j_{i}=k}} \hat{P}_{i}(x)^{\left(j_{0}\right)} U(x)^{\left(j_{1}\right)} \cdots U(x)^{\left(j_{i}\right)} \\
= & 0+U(x)^{(k)} \frac{d \hat{P}^{(0)}}{d Z}\left(U(x)^{(0)}\right) \\
& +\sum_{k=1}^{n-1} \sum_{i=0}^{N} \sum_{\substack{j_{0}=0}}^{k} \sum_{\substack{0 \leq j_{1}, \ldots, j_{i}<k \\
j_{0}+j_{1}+\cdots+j_{i}=k}} \hat{P}_{i}(x)^{\left(j_{0}\right)} U(x)^{\left(j_{1}\right)} \cdots U(x)^{\left(j_{i}\right)}
\end{aligned}
$$

and hence

$$
\begin{aligned}
U(x)^{(k)}= & -\left(\frac{d \hat{P}^{[0]}}{d Z}(\varphi(\theta))^{-1}\right. \\
& \times \sum_{i=0}^{N} \sum_{\substack{j_{0}=0 \\
k}} \sum_{\substack{0 \leq j_{1}, \ldots, j_{i}<k \\
j_{0}+j_{1}+\cdots+j_{i}=k}} \hat{P}_{i}(x)^{\left(j_{0}\right)} U(x)^{\left(j_{1}\right)} \cdots U(x)^{\left(j_{i}\right)} .
\end{aligned}
$$

It follows by induction on k that $U(x)=\sum_{k=0}^{n-1} U(x)^{(k)}$ is uniquely determined by $\varphi(\theta)$ and $\hat{P}(Z)$. We conclude that M has a unique g twisted vertex algebra (A, D)-module structure $\left(M, \tilde{Y}_{M}\right)$ over $\left(M, Y_{M}\right)$ such that $\psi\left[\left(A,\left(M, \tilde{Y}_{M}\right)\right]=\varphi\right.$.
(3) Let $h \in G$ with $h \neq 1$. Since θ and $h(\theta)$ are distinct roots of $P(Z)$ in A, 15, Lemma 2.1] says that $\theta-h(\theta)$ is an invertible element of A. Since $\tilde{Y}_{M \circ h}(\theta, x)=\tilde{Y}_{M}(h \theta, x) \neq \tilde{Y}_{M}(\theta, x)$, we see that $\tilde{Y}_{M \circ h}(\cdot, x)$ is distinct from $\tilde{Y}_{M}(\cdot, x)$. This says that $\tilde{Y}_{M} \circ h, h \in G$, are all distinct homomorphisms from A to $\left(\operatorname{End}_{\mathbb{C}} M\right)\left(\left(x^{1 /|g|}\right)\right)$.
(4) For each $k=1,2$, let g_{k} be an element in G and let $\left(M, \tilde{Y}_{M}^{k}\right)$ be a g_{k}-twisted vertex algebra (A, D)-module structure over $\left(M, Y_{M}\right)$. We denote $\psi\left[A,\left(M, \tilde{Y}_{M}^{k}\right)\right]$ by ψ_{k} and $\psi\left[R,\left(M, Y_{M}\right)\right]$ by ψ briefly. Since each ψ_{k} induces a bijection from $\{g(\theta) \mid g \in G\}$ to the set of all roots of $\hat{P}^{[0]}(Z)$ in K_{0} as explained just before Proposition 1, there is an element $h \in G$ with $\psi_{1}(h(\theta))=\psi_{2}(\theta)$. This tells us that $\left(\operatorname{top} M, \tilde{Y}_{\text {top } M}^{1}\right) \circ h \cong$ (top $\left.M, \tilde{Y}_{\operatorname{top} M}^{2}\right)$ and hence $\left(M, \tilde{Y}_{M}^{1}\right) \circ h \cong\left(M, \tilde{Y}_{M}^{2}\right)$ by (2).

4 Finite-dimensional vertex algebra $\mathbb{C}\left[s, s^{-1}\right]$ modules

Let $\mathbb{C}\left[s, s^{-1}\right]$ be the algebra of Laurent polynomials in one variable s over \mathbb{C}. In this section we shall classify the finite-dimensional vertex algebra $\mathbb{C}\left[s, s^{-1}\right]$-modules. We use the notation introduced in Section 3. It is easy to see that every non-zero derivation D of $\mathbb{C}\left[s, s^{-1}\right]$ can be expressed as $D=\left(p(s) / s^{N_{q}}\right) d / d s$ so that the polynomials $p(s)$ and $s^{N_{q}}$ in $\mathbb{C}[s]$ are coprime.

The following lemma easily follows from [20, Lemma 4].

Lemma 3. Let the notation be as above. Let M be a finite-dimensional vector space and let $S(x)=\sum_{i \in \mathbb{Z}} S_{(i)} x^{i}$ be a non-zero element of $\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$. Then, there exists a vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module $\left(M, Y_{M}\right)$ with $Y_{M}(s, x)=$ $S(x)$ if and only if the following three conditions hold:
(i) $S(x)$ is an invertible element in $\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$.
(ii) For all $i, j \in \mathbb{Z}, S_{(i)} S_{(j)}=S_{(j)} S_{(i)}$.
(iii) $S(x)^{N_{q}} d S(x) / d x=p(S(x))$.

In this case, for $u(s) \in \mathbb{C}\left[s, s^{-1}\right]$ we have $Y_{M}(u(s), x)=u(S(x))$ and hence $\left(M, Y_{M}\right)$ is uniquely determined by $S(x)$.

Proof. If $\left(M, Y_{M}\right)$ is a vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module, then [20, Lemma 4] tells us that the conditions (i)-(iii) are clearly hold and $Y_{M}(u(s), x)=$ $u(S(x))$ for all $u(s) \in \mathbb{C}\left[s, s^{-1}\right]$.

Conversely, suppose that (M, Y_{M}) satisfies the conditions (i)-(iii). We use [20, Lemma 4] by setting $\mathcal{B}=\left\{s, s^{-1}\right\}$. For $u(s) \in \mathbb{C}[s]$, set $Y_{M}(u(s), x)=$ $u(S(x))$. Since $S(x)$ is an invertible element in $\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$, this induces a \mathbb{C}-algebra homomorphism from $\mathbb{C}\left[s, s^{-1}\right]$ to $\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$. Since $S(x)^{-1}$ is a polynomial in $S(x)$, we see that $\mathcal{A}_{M}\left(\mathbb{C}\left[s, s^{-1}\right]\right)$ is commutative. Since

$$
\begin{aligned}
Y_{M}\left(D\left(s^{-1}\right), x\right) & =Y_{M}\left(-(D s)\left(s^{-2}\right), x\right) \\
& =-Y_{M}(D s, x) Y_{M}(s, x)^{-2} \\
& \left.=\frac{d}{d x}\left(Y_{M}(s, x)\right)^{-1}\right),
\end{aligned}
$$

we conclude that $\left(M, Y_{M}\right)$ is a vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module.
Let $\left(M, Y_{M}\right)$ be a finite-dimensional indecomposable vertex algebra $\mathbb{C}\left[s, s^{-1}\right]$ module. We identify $\operatorname{End}_{\mathbb{C}} M$ with $\operatorname{Mat}_{n}(\mathbb{C})$ by fixing a basis of M so that all elements of $\mathcal{A}_{M}\left(\mathbb{C}\left[s, s^{-1}\right]\right)$ are upper triangular matrices. Let J_{n} denote the following $n \times n$ matrix:

$$
J_{n}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \ddots & 1 \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

We denote $Y_{M}(s, x)$ by $S(x)$. We use the expansion $S(x)=\sum_{k=0}^{n-1} S(x)^{(k)}, S(x)^{(k)} \in$ $\Delta_{k}\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$, as in Section 3. Recall that under this identification, the semisimple part $S(x)^{[0]}$ of $S(x)$ is equal to $S(x)^{(0)}$.

For all $H(x)=\sum_{i=L}^{\infty} H_{i} x^{i} \in\left(\operatorname{End}_{\mathbb{C}} M\right)((x))$ with $H_{L} \neq 0$, we denote L by $\operatorname{ld}(H(x))$ and H_{L} by $\operatorname{lc}(H(x))$. Note that if $\operatorname{ld}\left(S(x)^{[0]}\right)>0$, then $\operatorname{ld}\left(\left(S(x)^{-1}\right)^{[0]}\right)=\operatorname{ld}\left(\left(S(x)^{[0]}\right)^{-1}\right)<0$. This implies that if $\operatorname{ld}\left(S(x)^{[0]}\right) \neq$ 0 , then vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module $\left(M, Y_{M}\right)$ is not a \mathbb{C}-algebra $\mathbb{C}\left[s, s^{-1}\right]$-module.
Theorem 2. Let α be a non-zero complex number and $D=\left(p(s) / s^{N_{q}}\right) d / d s$ a non-zero derivation of $\mathbb{C}\left[s, s^{-1}\right]$ such that the polynomials $p(s)$ and $s^{N_{q}}$ of $\mathbb{C}[s]$ are coprime. We write $p(s)=\sum_{i=L_{p}}^{N_{p}} p_{i} s^{i}$ where $p_{L_{p}}, p_{N_{p}}$ are non-zero complex numbers. Then, the following results hold:
(1) Every finite-dimensional indecomposable vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$ module M with $\operatorname{ld}\left(S(x)^{[0]}\right)=0$ is a \mathbb{C}-algebra A-module.
(2) There exists a non-zero finite-dimensional indecomposable vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module M with $\operatorname{ld}\left(S(x)^{[0]}\right)>0$ and with $\operatorname{lc}\left(S(x)^{[0]}\right)=$ α if and only if $N_{q}=0$ and $p(0)=\alpha$. Moreover, in this case $\operatorname{ld}\left(S(x)^{[0]}\right)=$ 1.
(3) There exists a non-zero finite-dimensional indecomposable vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module M with $\operatorname{ld}\left(S(x)^{[0]}\right)<0$ and with $\operatorname{lc}\left(S(x)^{[0]}\right)=$ α if and only if $N_{p}=N_{q}+2$ and $\alpha=-1 / p_{N_{p}}$. Moreover, in this case $\operatorname{ld}\left(S(x)^{[0]}\right)=-1$.

In the case of (2) and (3), for every positive integer n, there exists a unique n-dimensional indecomposable vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module which satisfies the conditions up to isomorphism.

Proof. We use Lemma3, Let $\left(M, Y_{M}\right)$ be a non-zero finite-dimensional indecomposable vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module with $\operatorname{lc}\left(S(x)^{[0]}\right)=\alpha$. Since M is indecomposable, we see that $S(x)^{(0)} \in \mathbb{C}((x)) E_{n}$. Since $S(x)$ is invertible, we have $S(x)^{(0)} \neq 0$ and

$$
\begin{align*}
S(x)^{-1} & =\left(S(x)^{(0)}+\sum_{k=1}^{n-1} S(x)^{(k)}\right)^{-1} \\
& =\sum_{i=0}^{n-1}(-1)^{i}\left(S(x)^{(0)}\right)^{-1-i}\left(\sum_{k=1}^{n-1} S(x)^{(k)}\right)^{i} . \tag{4.1}
\end{align*}
$$

By Lemma 3, we have

$$
\begin{equation*}
S(x)^{N_{q}} \frac{d S(x)}{d x}=p(S(x)) \tag{4.2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(S(x)^{(0)}\right)^{N_{q}} \frac{d S(x)^{(0)}}{d x}=p\left(S(x)^{(0)}\right) \tag{4.3}
\end{equation*}
$$

We shall give a formula for $S(x)^{(k)}=\sum_{i \in \mathbb{Z}} S_{(i)}^{(k)} x^{i} \in \Delta_{k}\left(\left(\operatorname{End}_{\mathbb{C}} M\right)((x))\right)$ for $k=1,2 \ldots, n-1$. By standard Jordan canonical form theory, we may assume $S_{(0)}=S_{(0)}^{(0)}+S_{(0)}^{(1)}$, that is, $S_{(0)}^{(j)}=0$ for all $j=2, \ldots, n-1$. We have the following expansions of $(d S(x) / d x) S(x)^{N_{q}}$ and $p(S(x))$:

$$
\begin{aligned}
& \frac{d S(x)}{d x} S(x)^{N_{q}} \\
& =\sum_{j_{0}=0}^{n-1} \frac{d S(x)^{\left(j_{0}\right)}}{d x}\left(\sum_{0 \leq j_{1}, \ldots, j_{N_{q}} \leq n-1} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{N_{q}}\right)}\right) \\
& =\sum_{0 \leq j_{0}, j_{1}, \ldots, j_{N_{q}} \leq n-1} \frac{d S(x)^{\left(j_{0}\right)}}{d x} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{N_{q}}\right)} \\
& =\sum_{k=0}^{n-1} \sum_{\substack{0 \leq j_{0}, j_{1}, \ldots, j_{N_{q}} \\
j_{0}+j_{1}+\ldots+j_{N_{q}}=k}} \frac{d S(x)^{\left(j_{0}\right)}}{d x} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{\left.N_{q}\right)}\right)} \\
& =\frac{d S(x)^{(0)}}{d x}\left(S(x)^{(0)}\right)^{N_{q}} \\
& \quad+\sum_{k=1}^{n-1}\left(\frac{d S(x)^{(k)}}{d x}\left(S(x)^{(0)}\right)^{N_{q}}+N_{q} \frac{d S(x)^{(0)}}{d x}\left(S(x)^{(0)}\right)^{N_{q}-1} S(x)^{(k)}\right. \\
& \left.\quad+\sum_{\substack{0 \leq j_{0}, j_{1}, \ldots, j_{N_{q}}<k \\
j_{0}+j_{1}+\cdots+j_{N_{q}}=k}} \frac{d S(x)^{\left(j_{0}\right)}}{d x} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{N_{q}}\right)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
p(S(x))= & p\left(S(x)^{(0)}\right)+\sum_{k=1}^{n-1}\left(\frac{d p}{d s}\left(S(x)^{(0)}\right) S(x)^{(k)}\right. \\
& \left.+\sum_{i=0}^{N_{p}} p_{i} \sum_{\substack{0 \leq j_{1}, \ldots, j_{i}<k \\
j_{1}+\cdots+j_{i}=k}} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{i}\right)}\right)
\end{aligned}
$$

By (4.2) for $k=1,2, \ldots$, we have a formula

$$
\begin{align*}
& \frac{d S(x)^{(k)}}{d x} \\
& =\left(S(x)^{(0)}\right)^{-N_{q}}\left(\left(-N_{q} \frac{d S(x)^{(0)}}{d x}\left(S(x)^{(0)}\right)^{N_{q}-1}+\frac{d p}{d s}\left(S(x)^{(0)}\right)\right) S(x)^{(k)}\right. \\
& \quad-\sum_{\substack{0 \leq j_{0}, j_{1}, \ldots, j_{N_{q}}<k \\
j_{0}+\cdots+j_{N_{q}}=k}} \frac{d S(x)^{\left(j_{0}\right)}}{d x} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{N_{q}}\right)} \\
& \left.\quad+\sum_{i=0}^{N_{p}} p_{i} \sum_{\substack{0 \leq j_{1}, \ldots, j_{i}<k \\
j_{1}+\cdots+j_{i}=k}} S(x)^{\left(j_{1}\right)} \cdots S(x)^{\left(j_{i}\right)}\right) . \tag{4.4}
\end{align*}
$$

We write $S(x)^{(0)}=\sum_{i=L}^{\infty} S_{(i)}^{(0)} x^{i}$, where $L=\operatorname{ld}\left(S(x)^{(0)}\right)$.
Suppose that $L=0$. We shall show that $S(x)^{(k)} \in\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ by induction on k. The case $k=0$ follows from $L=0$. For $k>0$, suppose that $\operatorname{ld}\left(S(x)^{(k)}\right)<0$. Since $\left(S(x)^{(0)}\right)^{-N_{q}}$ is an element of $\mathbb{C}[[x]]$, the lowest degree of the right-hand side of (4.4) is greater than or equal to $\operatorname{ld}\left(S(x)^{(k)}\right)$ by the induction assumption. This contradicts that $\operatorname{ld}\left(d S(x)^{(k)} / d x\right)=\operatorname{ld}\left(S(x)^{(k)}\right)-$ 1. It follows from (4.1) that $S(x)$ and $S(x)^{-1}$ are elements in $\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ and hence $Y_{M}(a, x) \in\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ for all $a \in \mathbb{C}\left[s, s^{-1}\right]$. We conclude that if $L=0$ then $\left(M, Y_{M}\right)$ is a \mathbb{C}-algebra $\mathbb{C}\left[s, s^{-1}\right]$-module. This completes the proof of (1).

Suppose that $L>0$. In (4.3), the term with the lowest degree of the left-hand side is $L\left(S_{(L)}^{(0)}\right)^{N_{q}+1} x^{L\left(N_{q}+1\right)-1}$ and the term with the lowest degree of the right-hand side is $p_{L_{p}}\left(S_{(L)}^{(0)}\right)^{L_{p}} x^{L L_{p}}$. Comparing these terms, we have $L\left(L_{p}-N_{q}-1\right)=-1$ and hence $L=1$ and $L_{p}=N_{q}$. We have $L_{p}=N_{q}=0$ since $p(s)$ and $s^{N_{q}}$ are coprime. Comparing coefficients of these terms with
the lowest degree in (4.3), we have $D=p(s) d / d s, S_{(1)}^{(0)}=\alpha=p(0) \neq 0$, and $S_{(0)}^{(0)}=0$. For all positive integers n, we shall show the uniqueness of n-dimensional indecomposable vertex algebra ($\mathbb{C}\left[s, s^{-1}\right], D$)-module which satisfies the conditions in (2). Setting $N_{q}=0$ in (4.4), the same argument as in the case of $L=0$ shows that $S(x)^{(k)} \in\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ for all $k=$ $0,1, \ldots, n-1$. For all positive integers m, comparing the coefficients of x^{m} in (4.3), we have

$$
\begin{equation*}
(m+1) S_{(m+1)}^{(0)}=\sum_{i=0}^{N_{p}} p_{i} \sum_{\substack{0 \leq j_{1}, \ldots, j_{j} \leq m \\ j_{0}+j_{1}+\cdots+j_{i}=m}} S_{\left(j_{1}\right)}^{(0)} \cdots S_{\left(j_{i}\right)}^{(0)} . \tag{4.5}
\end{equation*}
$$

It follows by induction on m that every $S_{(m)}^{(0)}$ is uniquely determined by $S_{(1)}^{(0)}$. By (4.4) for all $m>0, S_{(m)}^{(k)}$ is a polynomial in $\left\{S_{(j)}^{(k)} \mid 0 \leq j \leq m-1\right\} \cup$ $\left\{S_{(j)}^{(i)} \mid 0 \leq i \leq k-1, j \geq 0\right\}$. Since $S_{(0)}^{(i)}=0$ for all $i=2, \ldots, n-1$, it follows by induction on k and m that every $S_{(m)}^{(k)}$ is a polynomial in $S_{(0)}^{(1)}$ and hence is uniquely determined by $S_{(0)}^{(1)}$. Since $S_{(0)}^{(1)}$ is the nilpotent part of $S_{(0)}$ and M is indecomposable, $S_{(0)}^{(1)}$ conjugates to J_{n}. Thus, we have shown that the uniqueness of n-dimensional indecomposable vertex algebra ($\mathbb{C}\left[s, s^{-1}\right], D$)module which satisfies the conditions in (2).

Conversely, suppose that $\alpha=p(0)$. Set $S_{(1)}^{(0)}=\alpha$ and $S_{(i)}^{(0)}=0$ for all non-positive integers i. By (4.5) we can inductively define $S_{(m)}^{(0)}$ for $m=$ $2,3, \ldots$ The obtained $S(x)^{(0)}=\sum_{i=1}^{\infty} S_{(i)}^{(0)} x^{i} \in \mathbb{C}[[x]]$ satisfies $\operatorname{ld}\left(S(x)^{(0)}\right)=1$, $\operatorname{lc}\left(S(x)^{(0)}\right)=\alpha$, and (4.3). Set $S_{(0)}^{(1)}=J_{n}, S_{(0)}^{(k)}=0$ for all $k=2, \ldots, n-1$, and $S_{(i)}^{(k)}=0$ for all $k=1, \ldots, n-1$ and all negative integers i. After (4.5), we have seen that every $S_{(m)}^{(k)}$ is a polynomial in $S_{(0)}^{(1)}$ if it exists. By the same argument, we can inductively define $S_{(m)}^{(k)} \in \operatorname{End}_{\mathbb{C}} M$ for $k=1,2, \ldots, n-1$ and $m=1,2, \ldots$. By the argument to get (4.4) and (4.5) above, it is easy to see that the obtained $S(x)=\sum_{k=0}^{n-1} S(x)^{(k)} \in\left(\operatorname{End}_{\mathbb{C}} M\right)[[x]]$ satisfies (4.2). Since all coefficients of $S(x)$ are polynomials in $S_{(0)}^{(1)}=J_{n}$, we see that $S_{(i)} S_{(j)}=$ $S_{(j)} S_{(i)}$ for all $i, j \in \mathbb{Z}$. Thus, we have an n-dimensional vertex algebra ($\mathbb{C}\left[s, s^{-1}\right], D$-module M with $\operatorname{ld}\left(S(x)^{(0)}\right)=1$ and with $\operatorname{lc}\left(S(x)^{(0)}\right)=\alpha$. This completes the proof of (2).

Next suppose that $L<0$. Set $\tilde{s}=1 / s$. By (4.1), we have $Y_{M}(\tilde{s}, x)^{[0]}=$

$$
\left(S(x)^{-1}\right)^{[0]}=\left(S(x)^{[0]}\right)^{-1} \text { and }
$$

$$
D=-\tilde{s}^{N_{q}+2} p(1 / \tilde{s}) \frac{d}{d \tilde{s}} .
$$

Since $S(x)^{-1}$ is a polynomial in $S(x)$, all coefficients in $S(x)^{-1}$ are commutative. Thus, this case reduces to the case of $L>0$.

5 Examples

Throughout this section, D is a non-zero derivation of $\mathbb{C}\left[s, s^{-1}\right]$. For a positive integer n, the \mathbb{C}-algebra $A=\mathbb{C}\left[s, s^{-1}\right][t] /\left(t^{n}-s\right)$ is a Galois extension of $\mathbb{C}\left[s, s^{-1}\right]$ (cf. [14, Lemma 5.1 in Chapter 0]). The Galois group of A over $\mathbb{C}\left[s, s^{-1}\right]$ is the cyclic group of order n generated by τ with $\tau(t)=\zeta_{n} t$. Since $t^{n}-s$ is an irreducible element in the unique factorization domain $\mathbb{C}\left[s, s^{-1}\right][t]$, $t^{n}-s$ is a prime element. Therefore, A is an integral domain and hence is a connected \mathbb{C}-algebra. We can extend D to a unique derivation of A, which we denote by the same notation D, by setting $D(t)=s^{-1} t D(s) / n$. It is easy to see that D is invariant under the action of τ.

In Theorem 2, we have classified the finite-dimensional indecomposable $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-modules $\left(M, Y_{M}\right)$ which are not \mathbb{C}-algebra $\mathbb{C}\left[s, s^{-1}\right]$-modules. In this section, we shall investigate twisted vertex algebra (A, D)-module structures over $\left(M, Y_{M}\right)$. We denote $Y_{M}(s, x)$ by $S(x)$ and $S(x)^{[0]}=\sum_{i=L}^{\infty} S_{(i)}^{[0]} x^{i} \in$ $\mathbb{C}((x))$ with $S_{(L)}^{[0]} \neq 0$ as in Section 4. It follows from Theorem 2 that $L=\operatorname{ld}\left(S(x)^{[0]}\right)=1$ or -1 .

Proposition 4. Let $\left(M, Y_{M}\right)$ be a finite-dimensional indecomposable vertex algebra $\left(\mathbb{C}\left[s, s^{-1}\right], D\right)$-module which is not a \mathbb{C}-algebra A-module. Set $L=$ $\operatorname{ld}\left(S(x){ }^{[0]}\right)$. Then, for the \mathbb{C}-algebra $A=\mathbb{C}\left[s, s^{-1}\right][t] /\left(t^{n}-s\right),\left(M, Y_{M}\right)$ has exactly $n \tau^{-L}$-twisted vertex algebra (A, D)-module structure.

Proof. We use the notation in the proof of Theorem (1). If $\operatorname{ld}\left(S(x)^{[0]}\right)=1$, then every root of the polynomial $Z^{n}-S(x)^{[0]}$ in $\Omega=\cup_{i=1}^{\infty} \mathbb{C}\left(\left(x^{1 / i}\right)\right)$ is an element in $x^{1 / n} \mathbb{C}((x))=x^{-(-1 / n)} \mathbb{C}((x))$. It follows from the argument in the proof of Theorem 1 (1) that $\left(M, Y_{M}\right)$ has a τ^{-1}-twisted vertex algebra (A, D)-module structure $\left(M, \tilde{Y}_{M}\right)$ with $\tilde{Y}_{M}(t, x) \in x^{-(-1 / n)}\left(\operatorname{Mat}_{\mathbb{C}} M\right)((x))$. We conclude by Theorem 1 (3) and (4) that $\left(M, Y_{M}\right)$ has exactly $n \tau^{-1}$ twisted vertex algebra (A, D)-module structures. The same argument tells
us that if $\operatorname{ld}\left(S(x)^{[0]}\right)=-1$, then $\left(M, Y_{M}\right)$ has exactly $n \tau$-twisted vertex algebra (A, D)-module structures.

References

[1] T. Abe and C. Dong, Classification of irreducible modules for the vertex operator algebra V_{L}^{+}: general case, J. Algebra 273 (2004), 657-685.
[2] I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006.
[3] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
[4] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068-3071.
[5] S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15-33.
[6] F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, 181, Springer-Verlag, 1971.
[7] R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), 485-526.
[8] C. Dong, C.H. Lam, K. Tanabe, H. Yamada and K. Yokoyama, \mathbb{Z}_{3} symmetry and W_{3} algebra in lattice vertex operator algebras, Pacific J. Math. 215 (2004), 245-296.
[9] C. Dong, H.S. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), 571-600.
[10] C. Dong and K. Nagatomo, Representations of vertex operator algebra V_{L}^{+}for rank one lattice L, Comm. Math. Phys. 202 (1999), 169-195.
[11] C. Dong and K. Nagatomo, Classification of irreducible modules for the vertex operator algebra $M(1)^{+}$, J. Algebra 216 (1999), 384-404.
[12] C. Dong and K. Nagatomo, Classification of Irreducible Modules for the Vertex Operator Algebra $M(1)^{+}$: II. Higher rank, J. Algebra 240 (2001), 289-325.
[13] D. Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
[14] C. Greither, Cyclic Galois Extensions of Commutative Rings, Lecture Notes in Mathematics, 1534, Springer-Verlag, 1992.
[15] G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461-479.
[16] V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, 10, Amer. Math. Soc., 1997.
[17] J. Lepowsky and H. S. Li, Introduction to Vertex Operator Algebras and their Representations, Progress in Mathematics, 227, Birkhauser Boston, Inc., Boston, MA, 2004.
[18] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, 88, Springer-Verlag, 1982.
[19] K. Tanabe, Finite-dimensional modules for the polynomial ring in one variable as a vertex algebra, J. Algebra, 320 (2008), 1261-1274.
[20] K. Tanabe, Finite-dimensional vertex algebra modules over fixed point differential subfields, preprint, arXiv:math.QA/09110216.
[21] K. Tanabe and H. Yamada, The fixed point subalgebra of a lattice vertex operator algebra by an automorphism of order three, Pacific J. Math. 230 (2007), 469-510.
[22] K. Tanabe and H. Yamada, Representations of a fixed point subalgebra of a class of lattice vertex operator algebras by an automorphism of order three, European J. of Combin. 30 (2009), 725-735.

[^0]: *Partially supported by JSPS Grant-in-Aid for Scientific Research No. 20740002.

