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Abstract

Let A be a connected commutative C-algebra with derivation D,

G a finite linear automorphism group of A which preserves D, and

R = AG the fixed point subalgebra of A under the action of G. We

show that if A is generated by a single element as an R-algebra and

is a Galois extension over R in the sense of M. Auslander and O.

Goldman, then every finite-dimensional vertex algebra R-module has

a structure of twisted vertex algebra A-module.

Keywords: vertex algebra; Galois extension; commutative algebra

1 Introduction

Vertex algebras and modules over a vertex algebra were introduced by Borcherds
in [4]. As an example, every commutative ring A with an arbitrary deriva-
tion D has a structure of vertex algebra, and every ring A-module naturally
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becomes a vertex algebra A-module. However, this does not imply that ring
A-modules and vertex algebra A-modules are same. In fact, a vertex alge-
bra Z[z, z−1]-module which is not a ring Z[z, z−1]-module was given in [4,
Section 8], where Z[z, z−1] is the ring of Laurent polynomials over Z. This
tells us that in general these two kind of A-modules are certainly different.
From now on, for a commutative C-algebra A with derivation D, we shall
call a vertex algebra A-module a vertex algebra (A,D)-module to distinguish
it from ring A-modules. It is a natural first step to investigate vertex al-
gebra (A,D)-modules to understand modules over general vertex algebras.
In [19, 20] for the polynomial ring C[s] and the field of rational functions
C(s), the finite-dimensional vertex algebra modules which are not C-algebra
modules are classified.

Let A be a commutative C-algebra with derivation D, G a finite linear
automorphism group of A which preserves D, and R = AG the fixed point
subalgebra of A under the action of G. In this paper, we shall investigate
a relation between vertex algebra (R,D)-modules and twisted vertex alge-
bra (A,D)-modules. In Theorem 1, I shall show that if A is a connected
commutative C-algebra generated by a single element as an R-algebra and
is a finite Galois extension over R in the sense of [3, p.396], then every
finite-dimensional indecomposable vertex algebra (R,D)-module becomes a
g-twisted vertex algebra (A,D)-module for some g ∈ G. This is a generaliza-
tion of [20, Theorem 1] and is related the following open conjecture on vertex
operator algebras: let V be a vertex operator algebra and H a finite auto-
morphism group of V . It is conjectured that under some conditions on V ,
every irreducible module over the fixed point vertex operator subalgebra V H

is contained in some irreducible h-twisted V -module for some h ∈ H (cf.[7]).
The conjecture is confirmed for some examples in [1, 8, 10, 11, 12, 21, 22].
However A is not a vertex operator algebra except in the case that D = 0
and dimCA <∞, Theorem 1 implies that the conjecture holds for all finite-
dimensional vertex algebra R-modules in a stronger sense.

This paper is organized as follows: In Section 2 we recall some notation
and properties of Galois extensions of rings, vertex algebras and their mod-
ules. In Section 3 we show that every finite-dimensional indecomposable ver-
tex algebra R-module becomes a g-twisted vertex algebra (A,D)-module for
some g ∈ G. In Section 4 we give the classification of the finite-dimensional
vertex algebra C[s, s−1]-modules which are not C-algebra C[s, s−1]-modules.
In Section 5 for the C-algebra A = C[s, s−1][t]/(tn − s), which is a Galois ex-
tension over C[s, s−1] with Galois group the cyclic group of order n, and for all
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finite-dimensional indecomposable vertex algebra C[s, s−1]-modules (M,YM)
obtained in Section 4, we study twisted vertex algebra (A,D)-module struc-
tures over (M,YM).

2 Preliminary

We assume that the reader is familiar with the basic knowledge on vertex
algebras as presented in [4, 9, 17].

Throughout this paper all rings and algebras are commutative and asso-
ciative and have identity elements, R denotes a ring, R[Z] denotes the poly-
nomial ring in one variable Z over R , G denotes a finite group, ζp denotes
a primitive p-th root of unity for a positive integer p, and (V, Y, 1) denotes
a vertex algebra. Recall that V is the underlying vector space, Y (·, x) is the
linear map from V to (End V )[[x, x−1]], and 1 is the vacuum vector. Let D
be the endomorphism of V defined by Dv = v−21 for v ∈ V .

First, we recall some results in [3, 5, 6, 15] for separable algebras over a
ring. A ring R is called connected if R has no idempotent other than 0 and
1. An R-algebra A is called separable if A is a projective A⊗RA-module. An
R-algebra A is called strongly separable if it is finitely generated, projective,
and separable over R. Let us recall the Galois extension of R introduced in
[3, p.396]. The following definition, which is equivalent to that in [3, p.396],
is given in [5, Theorem 1.3].

Definition 1. Let A be a ring extension of R and let G be a finite group of
automorphisms of A. We denote by AG the fixed point subring of A under
the action of G. The ring A is called a Galois extension of R with Galois
group G, if the following three conditions hold:

(1) AG = R.

(2) For each non-zero idempotent e ∈ A and each g 6= h in G, there is an
element x ∈ A with g(x)e 6= h(x)e.

(3) A is a separable R-algebra.

Note that if A is connected, then the condition (2) in Definition 1 is always
satisfied. It follows from [5, Theorem 1.3] that if A is a Galois extension of
R, then A is a strongly separable R-algebra.
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In [15, p.467], A polynomial P (Z) ∈ R[Z] is called separable in case
P (Z) is monic and the factor ring R[Z]/(P (Z)) is a separable R-algebra.
In this case, R[Z]/(P (Z)) is strongly separable since R[Z]/(P (Z)) is a free
R-module of rank degP (Z). For an R-algebra A, an element θ ∈ A is called
a primitive element if A = R[θ], namely A is generated by a single element
θ as an R-algebra. It is shown in [15, Theorem 2.9] that if A is a strongly
separable R-algebra and if A has a primitive element, then there is a separable
polynomial P (Z) such that A ∼= R[Z]/(P (Z)) as R-algebras.

Let R be a connected ring, P (Z) ∈ R[Z] a separable polynomial, and
suppose that the factor ring A = R[Z]/(P (Z)) is connected and is a Galois
extension of R with Galois group G. Set θ = Z+P (Z) ∈ A. Since A = R[θ],
we have g(θ) 6= θ for all g ∈ G without the identity element. By [5, Lemma
4.1] and [15, Lemma 2.1], the order of G is equal to deg P (Z). Thus, G
acts regularly on the set of all roots of the polynomial P (Z) in A and hence
P (Z) =

∏

g∈G(Z − g(θ)). For an R-linear homomorphism f from A to an
R-algebra B, [15, Lemma 2.1] says that f(g(θ)) 6= f(h(θ)) for all g 6= h in
G. This tells us that if B is an integral domain, f induces a bijection from
{g(θ) | g ∈ G} to the set of all roots of f(P (Z)) ∈ B[Z] in B. In particular,
f(P (Z)) has no multiple root.

Next, we recall some results in [4] for a vertex algebra constructed from
a commutative C-algebra with a derivation.

Proposition 1. [4] The following hold:

(1) Let A be a commutative C-algebra with identity element 1 and D a
derivation of A. For a ∈ A, define Y (a, x) ∈ (EndA)[[x]] by

Y (a, x)b =

∞
∑

i=0

1

i!
(Dia)bxi

for b ∈ A. Then, (A, Y, 1) is a vertex algebra.

(2) Let (V, Y, 1) be a vertex algebra such that Y (u, x) ∈ (EndV )[[x]] for
all u ∈ V . Define a multiplication on V by uv = u−1v for u, v ∈ V .
Then, V is a commutative C-algebra with identity element 1 and D is
a derivation of V .

Throughout the rest of this section, A is a commutative C-algebra with
identity element 1 andD a derivation of A. Let (A, Y, 1) be the vertex algebra
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constructed from A and D in Proposition 1 and let (M,YM) be a vertex
algebra A-module. We call M a vertex algebra (A,D)-module to distinguish
vertex algebra A-modules from C-algebra A-modules as stated in Section 1.

Proposition 2. [4] The following hold:

(1) LetM be a C-algebra A-module. For a ∈ A, define YM(a, x) ∈ (EndCM)[[x]]
by

Y (a, x)u =
∞
∑

i=0

1

i!
(Dia)uxi

for u ∈M . Then, (M,YM) is a vertex algebra (A,D)-module.

(2) Let (M,YM) be a vertex algebra (A,D)-module such that Y (a, x) ∈
(EndCM)[[x]] for all a ∈ A. Define an action of A on M by au = a−1u
for a ∈ A and u ∈M . Then, M is a C-algebra A-module.

By Proposition 2, if there exists a vertex algebra (A,D)-module (M,YM)
with YM(a, x) 6∈ (EndCM)[[x]] for some element a in A, then vertex algebra
(A,D)-modules and C-algebra A-modules are different. However, no simple
criterion for the existence of such a module (M,YM) is known.

For a C-linear automorphism g of V of finite order p, set V r = {u ∈
V | gu = ζrpu}, 0 ≤ r ≤ p − 1}. We recall the definition of g-twisted V -
modules.

Definition 2. A g-twisted V -module M is a vector space equipped with a
linear map

YM( · , x) : V ∋ v 7→ YM(v, x) =
∑

i∈(1/p)Z

vix
−i−1 ∈ (EndCM)[[x1/p, x−1/p]]

which satisfies the following four conditions:

(1) YM(u, x) =
∑

i∈r/p+Z
uix

−i−1 for u ∈ V r.

(2) YM(u, x)w ∈M((x1/p)) for u ∈ V and w ∈M .

(3) YM(1, x) = idM .
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(4) For u ∈ V r, v ∈ V s, m ∈ r/T + Z, n ∈ s/T + Z, and l ∈ Z,

∞
∑

i=0

(

m

i

)

(ul+iv)m+n−i

=
∞
∑

i=0

(

l

i

)

(−1)i
(

ul+m−ivn+i + (−1)l+1vl+n−ium+i

)

.

For a g-twisted vertex algebra (A,D)-module (M,YM) and a linear au-
tomorphism h of A which preserves D, define (M,YM) ◦ h = (M ◦ h, YM◦h)
by M ◦ h = M as vector spaces and YM◦h(a, x) = YM(ha, x) for all a ∈ A.
Then, (M,YM) ◦ h is a h−1gh-twisted vertex algebra (A,D)-module.

3 Finite-dimensional vertex algebra modules

over fixed point commutative subalgebras

Throughout this section, R is a connected commutative C-algebra, A is a
commutative C-algebra generated by a single element as an R-algebra and is
a Galois extension of R with Galois group G . It follows from [15, Theorem
2.9] that A ∼= R[Z]/(P (Z)) as R-algebras for some separable polynomial
P (Z) ∈ R[Z]. Let D be a derivation of A which is invariant under the action
of G. For a finite-dimensional vertex algebra (R,D)-module (M,YM), g ∈ G
of order p, and a linear map Ỹ (·, x) from A to (EndCM)((x1/p)), we call
(M, ỸM) a g-twisted vertex algebra (A,D)-module structure over (M,YM)
if (M, ỸM) is a g-twisted vertex algebra (A,D)-module and if Ỹ (·, x)|R =
Y (·, x).

In this section, we shall show that every finite-dimensional indecompos-
able vertex algebra (R,D)-module has a g-twisted vertex algebra (A,D)-
module structure over (M,YM) for some g ∈ G. We use the following nota-
tion in [20, Section 3]. For a commutative ring C, let Matn(C) denote the
set of all n× n matrices with entries in C. Let En denote the n× n identity
matrix and let Eij denote the matrix whose (i, j) entry is 1 and all other
entries are 0. Define ∆k(C) = {(xij) ∈ Matn(C) | xij = 0 if i+ k 6= j} for
0 ≤ k ≤ n. Then, for a ∈ ∆k(C) and b ∈ ∆l(C), we have ab ∈ ∆k+l(C).
For X = (xij) ∈ Matn(C) and k = 0, . . . , n − 1, define the matrix X(k) =
∑n

i=1 xi,i+kEi,i+k ∈ ∆k(C). For a upper triangular matrix X , we see that
X =

∑n−1
k=0 X

(k).
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Let A be a commutative C-algebra, D a derivation of A, g a C-linear
automorphism of A of finite order p. For a vector space W over C and a
linear map YW (·, x) from A to (EndCW )[[x1/p, x−1/p]], we denote by AW (A)
the subalgebra of EndCW generated by all coefficients of YW (a, x) where a
ranges over all elements of A. LetM be a finite-dimensional g-twisted vertex
algebra (A,D)-module. Then, AM(A) is a commutative C-algebra andM is a
finite-dimensional AM(A)-module. Note that every AM(A)-module becomes
g-twisted vertex algebra (A,D)-module. Let JM(A) denote the Jacobson
radical of AM(A). Recall that the module topM =M/JM(A)M is called the
top ofM , which is completely reducible (cf. [2, Chapter I]). Since AM(A) is a
finite-dimensional commutative C-algebra, the Wedderburn–Malcev theorem
(cf.[18, Section 11.6]) says that AM(A) = ⊕m

i=1Cei⊕JM(A) where e1, . . . , em
are primitive orthogonal idempotents of AM(A). For U ∈ AM(A)((x)),
we denote by U [0] the image of U under the projection AM(A)((x)) =
⊕m

i=1C((x))ei ⊕ JM(A)((x)) → ⊕m
i=1C((x))ei

∼= C((x))⊕m. We denote by
ψ[A, (M,YM)] the C-algebra homomorphism YM(·, x)[0] from A to C((x))⊕m,
which corresponds to the module topM . Note that JM(A)n((x)) = 0, where
n = dimCM . Since AM(A) is commutative, we shall sometimes identify
EndCM with Matn(C) by fixing a basis of M so that all elements of AM(A)
are upper triangular matrices. Under this identification, for U ∈ AM(A)((x))
we see that U [0] = U (0).

Let M be a finite-dimensional indecomposable vertex algebra (R,D)-
module. Since AM(R) is local, we see that AM(R) = C id⊕JM(R). In
this case we shall often identify the subalgebra C((x)) id in AM(A)((x))
with C((x)). Let (M, ỸM) be a g-twisted vertex algebra (A,D)-module
structure over (M,YM). Since AM(R) is a subalgebra of AM(A), we see
that M is an indecomposable AM(A)-module. Therefore, AM(A) is local
since AM(A) is commutative. Thus, AM(A) = C id⊕JM(A) and hence
ψ[A, (M, ỸM)]|R = ψ[R, (M,YM)]. It follows from Nakayama’s lemma (cf.
[2, Lemma 2.2]) that JM(A)M 6= M and hence JM(A)M = JM(R)M is a
properAM(A)-submodule ofM . This tells us that topM =M/JM(R)M has
a g-twisted vertex algebra (A,D)-module structure over (topM,YtopM). We
conclude that a g-twisted vertex algebra (A,D)-module structure (M, ỸM)
over (M,YM) induces a g-twisted vertex algebra (A,D)-module structure
(topM, ỸtopM) over (topM,YtopM).

Now we state our main theorem.

Theorem 1. Let A be a connected commutative C-algebra which is a Galois
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extension of R with Galois group G and let D be a derivation of A which is
invariant under the action of G. Suppose A is generated by a single element
as an R-algebra. Then, for every non-zero finite-dimensional indecomposable
vertex algebra (R,D)-module (M,YM), we have the following results:

(1) M has a g-twisted vertex algebra (A,D)-module structure over (M,YM)
for some g ∈ G.

(2) Let g ∈ G. If topM has a g-twisted vertex algebra (A,D)-module
structure over (topM,YtopM), then M has a unique g-twisted ver-
tex algebra (A,D)-module structure (M, ỸM) over (M,YM) such that
topM ∼= M/JM(A)M as g-twisted vertex algebra (A,D)-modules.

(3) Let g ∈ G and let (M, ỸM) be a g-twisted vertex algebra (A,D)-module
structure over (M,YM). Then, ỸM ◦ h, h ∈ G, are all distinct homo-
morphisms from A to (EndCM)((x1/|g|)).

(4) For each k = 1, 2, let gk be an element in G and let (M, Ỹ k
M) be a

gk-twisted vertex algebra (A,D)-module structure over (M,YM). Then,
(M, Ỹ 1

M) ◦ h ∼= (M, Ỹ 2
M) for some h ∈ G.

Proof. Set n = dimCM and N = |G|. Let the notation be as above.
By [15, Theorem 2.9], we may assume A = R[Z]/(P (Z)) where P (Z) =
∑N

i=0 PiZ
i ∈ R[Z] is a separable polynomial. We denote by R0 the im-

age of the homomorphism ψ[R, (M,YM)] : R → C((x)), by Q(R0) the quo-
tient field of R0 in C((x)), by θ the primitive element Z + (P (Z)) ∈ A, by
P̂ (Z) ∈ (AM(R)((x)))[Z] the image of P (Z) under the map YM(·, x), and by
P̂ [0](Z) ∈ C((x))[Z] the image of P (Z) under the map ψ[R, (M,YM)]. We
write P̂ (Z) =

∑N
i=0 P̂i(x)Z

i, P̂i(x) ∈ AM(R)((x)). We use [20, Lemma 4] by
setting B = R ∪ {θ}.

It is well known that any finite extension of C((x)) is C((x1/j)) for some
positive integer j and Ω = ∪∞

j=1C((x
1/j)) is the algebraic closure of C((x))

(cf. [13, Corollary 13.15]). The field C((x1/j)) becomes a Galois extension of
C((x)) whose Galois group is the cyclic group generated by the automorphism
sending x1/j to ζjx

1/j . Let K0 denote the splitting field of P̂ [0](Z) in Ω.

(1) SinceK0 is a finite extension ofQ(R0) and Q(R0) is a subfield of C((x)),
we see that K0C((x)) = C((x1/p)) for some positive integer p. It follows
from the isomorphism Gal(C((x1/p))/C((x))) ∼= Gal(K0/(K0∩C((x))))
that Gal(K0/(K0 ∩ C((x)))) has an element σ of order p. Since K0 is
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a field, there is a0 ∈ K0 such that σa0 = ζjpa0 with (j, p) = 1. It
follows from ap0 ∈ K0 ∩ C((x)) that a0 is a root of the polynomial
Zp − ap0 ∈ C((x))[Z]. Thus, a0 is an element of x−r/pC((x)) for some

integer r. We have (r, p) = 1 since ai0 6∈ K
〈σ〉
0 for all i = 1, . . . , p − 1.

Let γ, δ be integers with γr + δp = 1. By replacing a0 by aγ0 , we have
σa0 = ζγjp a0 and a0 ∈ x−1/pC((x)). Since (γj, p) = 1, by replacing σ

by a suitable power of σ, we have σa0 = ζpa0 and a0 ∈ x−1/pC((x)).
For all b0 ∈ K0 with σb0 = ζ ipb0, we have σ(a−i

0 b0) = a−i
0 b0 and hence

b0 ∈ x−i/pC((x)).

Let T (x)[0] ∈ K0 be a root of P̂ [0](Z). We have a C-algebra homo-
morphism ρ from A = R[Z]/(P (Z)) to K0 with ρ(θ) = T (x)[0]. Since
σ fixes all elements in Q(R0) ⊂ K0 ∩ C((x)), σ(T (x)[0]) is a root of
P̂ [0](Z). Since A = R[θ] and ρ induces a bijection from {g(θ) | g ∈ G}
to the set of all roots of P̂ [0](Z) in K0 as explained just before Proposi-
tion 1, T (x)[0] is a primitive element of K0 over Q(R0) and there exists
a unique g ∈ G with ρ(g(θ)) = σ(T (x)[0]) = σ(ρ(θ)). These results tell
us that ρg = σρ and hence the order of g is equal to p.

Set P̂ [1](Z) = P̂ (Z)− P̂ [0](Z) id ∈ JM(R)((x))[Z] and P̂ [k](Z) = 0 for
all k ≥ 2. We write P̂ [k](Z) =

∑N
i=0 P̂i(x)

[k]Z i, P̂i(x)
[k] ∈ JM(R)k((x)),

for all k ≥ 0.

Since P̂ [0](Z) has no multiple root in Ω, we see that (dP̂ [0]/dZ)(T (x)[0]) 6=
0. For k = 1, 2, . . . , n−1 we inductively define T (x)[k] ∈ JM(R)k((x1/p))
by

T (x)[k] = −(
dP̂ [0]

dZ
(T (x)[0]))−1

×

N
∑

i=0

k
∑

j0=0

∑

0≤j1,...,ji<k
j0+j1+···+ji=k

P̂i(x)
[j0]T (x)[j1] · · ·T (x)[ji]. (3.1)

Set T (x) =
∑n−1

k=0 T (x)
[k] ∈ AM(R)((x1/p)). Since JM(R)n((x)) = 0,
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we have

P̂ (T (x)) = P̂ [0](T (x)[0])

+

n−1
∑

k=1

N
∑

i=0

∑

0≤j0,j1,...,ji
j0+j1+···+ji=k

P̂i(x)
[j0]T (x)[j1] · · ·T (x)[ji]

= 0 +
n−1
∑

k=1

(

T (x)[k]
dP̂ [0]

dZ
(T (x)[0])

+
N
∑

i=0

k
∑

j0=0

∑

0≤j1,...,ji<k
j0+j1+···+ji=k

P̂i(x)
[j0]T (x)[j1] · · ·T (x)[ji]

)

= 0.

This result enables us to define a homomorphism ỸM(·, x) from A =
R[Z]/(P (Z)) to AM(R)((x1/p)) sending θ to T (x). Since AM(R) is
commutative, the subalgebra AM(A) of EndCM obtained by ỸM(·, x)
is commutative.

For all b ∈ A with gb = ζ ipb, we shall show that ỸM(b, x) ∈ x−i/p(EndCM)((x)).

Set B(x) = ỸM(b, x) and Q(x) = B(x)p ∈ AM(R)((x)). We identify
EndCM with Matn(C) by fixing a basis of M so that all elements of
AM(R) are upper triangular matrices. We use the expansion B(x) =
∑n−1

k=0 B(x)(k), B(x)(k) ∈ ∆k(EndCM)((x1/p)). Since ζ ipρ(b) = ρ(gb) =

σ(ρ(b)), we have already seen thatB(x)(0) = ρ(b) ∈ x−i/p(EndCM)((x)).
By B(x)p = Q(x), for all k = 1, . . . , n− 1 we have

B(x)(k) = −p−1(B(x)(0))−p+1

× (Q(x)(k) +
∑

0≤j1,...,jp<k
j1+···+jp=k

B(x)(j1) · · ·B(x)(jp)).

It follows by induction on k that B(x)(k) ∈ x−i/p(EndCM)((x)) and
hence B(x) ∈ x−i/p(EndCM)((x)).

It follows from P (θ) = 0 that 0 = D(P (θ)) =
∑N

i=0(DPi)θ
i+(dP/dZ)(θ)(Dθ).

Note that (dP̂ (Z)/dZ)(T (x)) is an invertible element in AM(R)((x1/p))
since (dP̂ [0](Z)/dZ)(T (x)[0]) 6= 0. Since YM(DPi, x) = dYM(Pi, x)/dx
for all i, we have ỸM(Dθ, x) = dỸM(θ, x)/dx.
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We conclude that (M, ỸM) is a g-twisted vertex algebra (A,D)-module
structure over (M,YM).

(2) We denote the order of g by p. Let (topM, ỸtopM) be a g-twisted vertex
algebra (A,D)-module structure over (topM,YtopM). Let us denote by
ϕ the map ỸtopM(·, x) : A→ Ω, namely ϕ = ψ[A, (topM, ỸtopM)]. Note

that ϕ|R = ψ[R, (M,YM)] and ϕ(θ) is a root of P̂ [0](Z) in Ω. By the
same argument as in (1), we can construct a root T (x) ∈ AM(R)((x1/p))
of P̂ (Z) whose semisimple part T (x)[0] is equal to ϕ(θ). The linear
homomorphism fromA toAM(R)((x1/p)) sending θ to T (x) induces a g-
twisted vertex algebra (A,D)-module structure (M, ỸM) over (M,YM).
Since θ is a primitive element of A over R, we see that ψ[A, (M, ỸM)] =
ϕ.

We shall show the uniqueness of the g-twisted vertex algebra (A,D)-
module structure over (M,YM) which satisfies the conditions. Let
(M, Ỹ 1

M) be a g-twisted vertex algebra (A,D)-module structure over
(M,YM) with ψ[(A, (M, Ỹ 1

M)] = ϕ. We identify EndCM with Matn(C)
by fixing a basis of M so that all elements of AM(A) are upper tri-
angular matrices. Set U(x) = Ỹ 1

M(θ, x) ∈ (Matn(C))((x
1/p)). We use

the expansion U(x) =
∑n−1

k=0 U(x)
(k) and P̂i(x) =

∑n−1
k=0 P̂i(x)

(k), where

U(x)(k), P̂i(x)
(k) ∈ ∆k(EndCM)((x1/p)). Set P̂ (0)(Z) =

∑N
i=0 P̂i(x)

(0)Z i.

Under the identification of EndCM with Matn(C), we have P̂ [0](Z) =
P̂ (0)(Z). Note that U(x)(0) = ϕ(θ) and we do not assume U(x) ∈
AM(R)((x1/p)). We have

0 = P̂ (U(x))

= P̂ (0)(U(x)(0))

+

n−1
∑

k=1

N
∑

i=0

∑

0≤j0,j1,...,ji
j0+j1+···+ji=k

P̂i(x)
(j0)U(x)(j1) · · ·U(x)(ji)

= 0 + U(x)(k)
dP̂ (0)

dZ
(U(x)(0))

+
n−1
∑

k=1

N
∑

i=0

k
∑

j0=0

∑

0≤j1,...,ji<k
j0+j1+···+ji=k

P̂i(x)
(j0)U(x)(j1) · · ·U(x)(ji)
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and hence

U(x)(k) = −(
dP̂ [0]

dZ
(ϕ(θ))−1

×

N
∑

i=0

k
∑

j0=0

∑

0≤j1,...,ji<k
j0+j1+···+ji=k

P̂i(x)
(j0)U(x)(j1) · · ·U(x)(ji).

It follows by induction on k that U(x) =
∑n−1

k=0 U(x)
(k) is uniquely

determined by ϕ(θ) and P̂ (Z). We conclude that M has a unique g-
twisted vertex algebra (A,D)-module structure (M, ỸM) over (M,YM)
such that ψ[(A, (M, ỸM)] = ϕ.

(3) Let h ∈ G with h 6= 1. Since θ and h(θ) are distinct roots of P (Z)
in A, [15, Lemma 2.1] says that θ − h(θ) is an invertible element of
A. Since ỸM◦h(θ, x) = ỸM(hθ, x) 6= ỸM(θ, x), we see that ỸM◦h(·, x) is
distinct from ỸM(·, x). This says that ỸM ◦ h, h ∈ G, are all distinct
homomorphisms from A to (EndCM)((x1/|g|)).

(4) For each k = 1, 2, let gk be an element in G and let (M, Ỹ k
M) be a

gk-twisted vertex algebra (A,D)-module structure over (M,YM). We
denote ψ[A, (M, Ỹ k

M)] by ψk and ψ[R, (M,YM)] by ψ briefly. Since each
ψk induces a bijection from {g(θ) | g ∈ G} to the set of all roots of
P̂ [0](Z) inK0 as explained just before Proposition 1, there is an element
h ∈ G with ψ1(h(θ)) = ψ2(θ). This tells us that (topM, Ỹ 1

topM) ◦ h ∼=

(topM, Ỹ 2
topM) and hence (M, Ỹ 1

M) ◦ h ∼= (M, Ỹ 2
M) by (2).

4 Finite-dimensional vertex algebra C[s, s−1]-

modules

Let C[s, s−1] be the algebra of Laurent polynomials in one variable s over
C. In this section we shall classify the finite-dimensional vertex algebra
C[s, s−1]-modules. We use the notation introduced in Section 3. It is easy
to see that every non-zero derivation D of C[s, s−1] can be expressed as
D = (p(s)/sNq)d/ds so that the polynomials p(s) and sNq in C[s] are coprime.

The following lemma easily follows from [20, Lemma 4].
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Lemma 3. Let the notation be as above. Let M be a finite-dimensional vec-
tor space and let S(x) =

∑

i∈Z S(i)x
i be a non-zero element of (EndCM)((x)).

Then, there exists a vertex algebra (C[s, s−1], D)-module (M,YM) with YM(s, x) =
S(x) if and only if the following three conditions hold:

(i) S(x) is an invertible element in (EndCM)((x)).

(ii) For all i, j ∈ Z, S(i)S(j) = S(j)S(i).

(iii) S(x)NqdS(x)/dx = p(S(x)).

In this case, for u(s) ∈ C[s, s−1] we have YM(u(s), x) = u(S(x)) and hence
(M,YM) is uniquely determined by S(x).

Proof. If (M,YM) is a vertex algebra (C[s, s−1], D)-module, then [20, Lemma
4] tells us that the conditions (i)–(iii) are clearly hold and YM(u(s), x) =
u(S(x)) for all u(s) ∈ C[s, s−1].

Conversely, suppose that (M,YM) satisfies the conditions (i)–(iii). We use
[20, Lemma 4] by setting B = {s, s−1}. For u(s) ∈ C[s], set YM(u(s), x) =
u(S(x)). Since S(x) is an invertible element in (EndCM)((x)), this induces
a C-algebra homomorphism from C[s, s−1] to (EndCM)((x)). Since S(x)−1

is a polynomial in S(x), we see that AM(C[s, s−1]) is commutative. Since

YM(D(s−1), x) = YM(−(Ds)(s−2), x)

= −YM(Ds, x)YM(s, x)−2

=
d

dx
(YM(s, x))−1),

we conclude that (M,YM) is a vertex algebra (C[s, s−1], D)-module.

Let (M,YM) be a finite-dimensional indecomposable vertex algebra C[s, s−1]-
module. We identify EndCM with Matn(C) by fixing a basis of M so that
all elements of AM(C[s, s−1]) are upper triangular matrices. Let Jn denote
the following n× n matrix:

Jn =

















0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · · · · 0

















.
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We denote YM(s, x) by S(x). We use the expansion S(x) =
∑n−1

k=0 S(x)
(k), S(x)(k) ∈

∆k(EndCM)((x)), as in Section 3. Recall that under this identification, the
semisimple part S(x)[0] of S(x) is equal to S(x)(0).

For all H(x) =
∑∞

i=LHix
i ∈ (EndCM)((x)) with HL 6= 0, we denote

L by ld(H(x)) and HL by lc(H(x)). Note that if ld(S(x)[0]) > 0, then
ld((S(x)−1)[0]) = ld((S(x)[0])−1) < 0. This implies that if ld(S(x)[0]) 6=
0, then vertex algebra (C[s, s−1], D)-module (M,YM) is not a C-algebra
C[s, s−1]-module.

Theorem 2. Let α be a non-zero complex number and D = (p(s)/sNq)d/ds
a non-zero derivation of C[s, s−1] such that the polynomials p(s) and sNq of

C[s] are coprime. We write p(s) =
∑Np

i=Lp
pis

i where pLp
, pNp

are non-zero
complex numbers. Then, the following results hold:

(1) Every finite-dimensional indecomposable vertex algebra (C[s, s−1], D)-
module M with ld(S(x)[0]) = 0 is a C-algebra A-module.

(2) There exists a non-zero finite-dimensional indecomposable vertex alge-
bra (C[s, s−1], D)-module M with ld(S(x)[0]) > 0 and with lc(S(x)[0]) =
α if and only if Nq = 0 and p(0) = α. Moreover, in this case ld(S(x)[0]) =
1.

(3) There exists a non-zero finite-dimensional indecomposable vertex alge-
bra (C[s, s−1], D)-module M with ld(S(x)[0]) < 0 and with lc(S(x)[0]) =
α if and only if Np = Nq + 2 and α = −1/pNp

. Moreover, in this case
ld(S(x)[0]) = −1.

In the case of (2) and (3), for every positive integer n, there exists a unique
n-dimensional indecomposable vertex algebra (C[s, s−1], D)-module which sat-
isfies the conditions up to isomorphism.

Proof. We use Lemma 3. Let (M,YM) be a non-zero finite-dimensional inde-
composable vertex algebra (C[s, s−1], D)-module with lc(S(x)[0]) = α. Since
M is indecomposable, we see that S(x)(0) ∈ C((x))En. Since S(x) is invert-
ible, we have S(x)(0) 6= 0 and

S(x)−1 = (S(x)(0) +

n−1
∑

k=1

S(x)(k))−1

=

n−1
∑

i=0

(−1)i(S(x)(0))−1−i(

n−1
∑

k=1

S(x)(k))i. (4.1)
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By Lemma 3, we have

S(x)Nq
dS(x)

dx
= p(S(x)). (4.2)

and hence

(S(x)(0))Nq
dS(x)(0)

dx
= p(S(x)(0)). (4.3)

We shall give a formula for S(x)(k) =
∑

i∈Z S
(k)
(i) x

i ∈ ∆k((EndCM)((x)))
for k = 1, 2 . . . , n − 1. By standard Jordan canonical form theory, we may
assume S(0) = S

(0)
(0) + S

(1)
(0) , that is, S

(j)
(0) = 0 for all j = 2, . . . , n− 1. We have

the following expansions of (dS(x)/dx)S(x)Nq and p(S(x)):

dS(x)

dx
S(x)Nq

=

n−1
∑

j0=0

dS(x)(j0)

dx

(

∑

0≤j1,...,jNq≤n−1

S(x)(j1) · · ·S(x)(jNq )
)

=
∑

0≤j0,j1,...,jNq≤n−1

dS(x)(j0)

dx
S(x)(j1) · · ·S(x)(jNq )

=
n−1
∑

k=0

∑

0≤j0,j1,...,jNq

j0+j1+···+jNq=k

dS(x)(j0)

dx
S(x)(j1) · · ·S(x)(jNq )

=
dS(x)(0)

dx
(S(x)(0))Nq

+
n−1
∑

k=1

(dS(x)(k)

dx
(S(x)(0))Nq +Nq

dS(x)(0)

dx
(S(x)(0))Nq−1S(x)(k)

+
∑

0≤j0,j1,...,jNq<k

j0+j1+···+jNq=k

dS(x)(j0)

dx
S(x)(j1) · · ·S(x)(jNq )

)
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and

p(S(x)) = p(S(x)(0)) +
n−1
∑

k=1

(dp

ds
(S(x)(0))S(x)(k)

+

Np
∑

i=0

pi
∑

0≤j1,...,ji<k
j1+···+ji=k

S(x)(j1) · · ·S(x)(ji)
)

.

By (4.2) for k = 1, 2, . . ., we have a formula

dS(x)(k)

dx

= (S(x)(0))−Nq

(

(−Nq
dS(x)(0)

dx
(S(x)(0))Nq−1 +

dp

ds
(S(x)(0))

)

S(x)(k)

−
∑

0≤j0,j1,...,jNq<k

j0+···+jNq=k

dS(x)(j0)

dx
S(x)(j1) · · ·S(x)(jNq )

+

Np
∑

i=0

pi
∑

0≤j1,...,ji<k
j1+···+ji=k

S(x)(j1) · · ·S(x)(ji)
)

. (4.4)

We write S(x)(0) =
∑∞

i=L S
(0)
(i) x

i, where L = ld(S(x)(0)).

Suppose that L = 0. We shall show that S(x)(k) ∈ (EndCM)[[x]] by
induction on k. The case k = 0 follows from L = 0. For k > 0, suppose that
ld(S(x)(k)) < 0. Since (S(x)(0))−Nq is an element of C[[x]], the lowest degree
of the right-hand side of (4.4) is greater than or equal to ld(S(x)(k)) by the
induction assumption. This contradicts that ld(dS(x)(k)/dx) = ld(S(x)(k))−
1. It follows from (4.1) that S(x) and S(x)−1 are elements in (EndCM)[[x]]
and hence YM(a, x) ∈ (EndCM)[[x]] for all a ∈ C[s, s−1]. We conclude that
if L = 0 then (M,YM) is a C-algebra C[s, s−1]-module. This completes the
proof of (1).

Suppose that L > 0. In (4.3), the term with the lowest degree of the

left-hand side is L(S
(0)
(L))

Nq+1xL(Nq+1)−1 and the term with the lowest degree

of the right-hand side is pLp
(S

(0)
(L))

LpxLLp. Comparing these terms, we have

L(Lp −Nq − 1) = −1 and hence L = 1 and Lp = Nq. We have Lp = Nq = 0
since p(s) and sNq are coprime. Comparing coefficients of these terms with
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the lowest degree in (4.3), we have D = p(s)d/ds, S
(0)
(1) = α = p(0) 6= 0,

and S
(0)
(0) = 0. For all positive integers n, we shall show the uniqueness

of n-dimensional indecomposable vertex algebra (C[s, s−1], D)-module which
satisfies the conditions in (2). Setting Nq = 0 in (4.4), the same argument
as in the case of L = 0 shows that S(x)(k) ∈ (EndCM)[[x]] for all k =
0, 1, . . . , n− 1. For all positive integers m, comparing the coefficients of xm

in (4.3), we have

(m+ 1)S
(0)
(m+1) =

Np
∑

i=0

pi
∑

0≤j1,...,ji≤m
j0+j1+···+ji=m

S
(0)
(j1)

· · ·S
(0)
(ji)
. (4.5)

It follows by induction on m that every S
(0)
(m) is uniquely determined by S

(0)
(1) .

By (4.4) for all m > 0, S
(k)
(m) is a polynomial in {S

(k)
(j) | 0 ≤ j ≤ m − 1} ∪

{S
(i)
(j) | 0 ≤ i ≤ k− 1, j ≥ 0}. Since S

(i)
(0) = 0 for all i = 2, . . . , n− 1, it follows

by induction on k and m that every S
(k)
(m) is a polynomial in S

(1)
(0) and hence

is uniquely determined by S
(1)
(0) . Since S

(1)
(0) is the nilpotent part of S(0) and

M is indecomposable, S
(1)
(0) conjugates to Jn. Thus, we have shown that the

uniqueness of n-dimensional indecomposable vertex algebra (C[s, s−1], D)-
module which satisfies the conditions in (2).

Conversely, suppose that α = p(0). Set S
(0)
(1) = α and S

(0)
(i) = 0 for

all non-positive integers i. By (4.5) we can inductively define S
(0)
(m) for m =

2, 3, . . .. The obtained S(x)(0) =
∑∞

i=1 S
(0)
(i) x

i ∈ C[[x]] satisfies ld(S(x)(0)) = 1,

lc(S(x)(0)) = α, and (4.3). Set S
(1)
(0) = Jn, S

(k)
(0) = 0 for all k = 2, . . . , n − 1,

and S
(k)
(i) = 0 for all k = 1, . . . , n− 1 and all negative integers i. After (4.5),

we have seen that every S
(k)
(m) is a polynomial in S

(1)
(0) if it exists. By the same

argument, we can inductively define S
(k)
(m) ∈ EndCM for k = 1, 2, . . . , n−1 and

m = 1, 2, . . .. By the argument to get (4.4) and (4.5) above, it is easy to see
that the obtained S(x) =

∑n−1
k=0 S(x)

(k) ∈ (EndCM)[[x]] satisfies (4.2). Since

all coefficients of S(x) are polynomials in S
(1)
(0) = Jn, we see that S(i)S(j) =

S(j)S(i) for all i, j ∈ Z. Thus, we have an n-dimensional vertex algebra
(C[s, s−1], D)-moduleM with ld(S(x)(0)) = 1 and with lc(S(x)(0)) = α. This
completes the proof of (2).

Next suppose that L < 0. Set s̃ = 1/s. By (4.1), we have YM(s̃, x)[0] =
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(S(x)−1)[0] = (S(x)[0])−1 and

D = −s̃Nq+2p(1/s̃)
d

ds̃
.

Since S(x)−1 is a polynomial in S(x), all coefficients in S(x)−1 are commu-
tative. Thus, this case reduces to the case of L > 0.

5 Examples

Throughout this section, D is a non-zero derivation ofC[s, s−1]. For a positive
integer n, the C-algebra A = C[s, s−1][t]/(tn − s) is a Galois extension of
C[s, s−1] (cf. [14, Lemma 5.1 in Chapter 0]). The Galois group of A over
C[s, s−1] is the cyclic group of order n generated by τ with τ(t) = ζnt. Since
tn−s is an irreducible element in the unique factorization domain C[s, s−1][t],
tn − s is a prime element. Therefore, A is an integral domain and hence is a
connected C-algebra. We can extend D to a unique derivation of A, which
we denote by the same notation D, by setting D(t) = s−1tD(s)/n. It is easy
to see that D is invariant under the action of τ .

In Theorem 2, we have classified the finite-dimensional indecomposable
(C[s, s−1], D)-modules (M,YM) which are not C-algebra C[s, s−1]-modules.
In this section, we shall investigate twisted vertex algebra (A,D)-module

structures over (M,YM). We denote YM(s, x) by S(x) and S(x)[0] =
∑∞

i=L S
[0]
(i)x

i ∈

C((x)) with S
[0]
(L) 6= 0 as in Section 4. It follows from Theorem 2 that

L = ld(S(x)[0]) = 1 or −1.

Proposition 4. Let (M,YM) be a finite-dimensional indecomposable vertex
algebra (C[s, s−1], D)-module which is not a C-algebra A-module. Set L =
ld(S(x)[0]). Then, for the C-algebra A = C[s, s−1][t]/(tn − s), (M,YM) has
exactly n τ−L-twisted vertex algebra (A,D)-module structure.

Proof. We use the notation in the proof of Theorem 1 (1). If ld(S(x)[0]) = 1,
then every root of the polynomial Zn − S(x)[0] in Ω = ∪∞

i=1C((x
1/i)) is an

element in x1/nC((x)) = x−(−1/n)C((x)). It follows from the argument in
the proof of Theorem 1 (1) that (M,YM) has a τ−1-twisted vertex algebra
(A,D)-module structure (M, ỸM) with ỸM(t, x) ∈ x−(−1/n)(MatCM)((x)).
We conclude by Theorem 1 (3) and (4) that (M,YM) has exactly n τ−1-
twisted vertex algebra (A,D)-module structures. The same argument tells
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us that if ld(S(x)[0]) = −1, then (M,YM) has exactly n τ -twisted vertex
algebra (A,D)-module structures.
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