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Abstract

In some varieties of algebras one can reduce the question of finding
most general unifiers (mgus) to the problem of the existence of unifiers
that fulfill the additional condition called projectivity. In this paper we
study this problem for Fregean (1-regular and orderable) varieties that
arise from the algebraization of fragments of intuitionistic or intermediate
logics. We investigate properties of Fregean varieties, guaranteeing either
for a given unifiable term or for all unifiable terms, that projective uni-
fiers exist. We indicate the identities which fully characterize congruence
permutable Fregean varieties having projective unifiers. In particular, we
show that for such a variety there exists the largest subvariety that have
projective unifiers.

Key words: unification, projectivity, Fregean varieties, intuitionistic
logic, equivalential algebras

1 Introduction

Equational unification for a variety of algebras is the problem of solving equa-
tions of terms by finding substitutions into their variables, called unifiers, that
make terms equivalent with respect to the variety, see e.g. [3, 4]. In particular,
the problem of the existence of a most general unifier (an mgu), i.e. such that
any other unifier is an instance of it, is one of the central issues of the unification
theory. For certain varieties the question of searching mgus can be reduced to
the problem of looking for unifiers that obey additional restrictions, namely,
the so called projective unifiers introduced by Ghilardi [10] (see also [27]), but
in fact known earlier in the unification theory under the name of reproductive
solutions, see e.g. [2]. If every unifiable term has an mgu, we called a variety
unitary. In this paper we investigate the special class of unitary varieties, where
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every unifiable pair of terms has a projective unifier and we call them varieties
with projective unifiers.

The equational unification has been studied for many varieties related to
logic, see e.g. [8, 9, 10, 11, 26, 27, 28]. In the present paper we analyze the
problem of unification, and, in particular, the question of the existence of pro-
jective unifiers, for a wide class of such structures - the congruence permutable
(CP) Fregean varieties. The name Fregean comes from the Frege’s idea that
sentences with the same logical values have the same denotation. This idea
was formalized by Suszko in [24] and was an inspiration for Pigozzi [21], who
transferred the distinction between Fregean and non-Fregean to the field of uni-
versal algebra, see also [6]. Namely, a variety V of algebras with a distinguished
constant 1 is called Fregean if it is 1-regular, i.e. congruences of its algebras are
uniquely determined by their 1-cosets, and congruence orderable, i.e. for every
A ∈ V the relation defined on A by putting a ≤ b iff ΘA (1, b) ⊂ ΘA (1, a) for
a, b ∈ A is a partial order.

Many natural examples of Fregean varieties come from the algebraization
of fragments of classical, intuitionistic, or intermediate logics: Boolean algebras
(CPC), Heyting algebras and all its subvarieties (IPC, intermediate logics),
Brouwerian semilattices (IPC, →, ∧), equivalential algebras (IPC, ↔), Boolean
groups (CPC, ↔) or Hilbert algebras (IPC, →). Fregean varieties being
1-regular are congruence modular, but not necessarily congruence distributive,
which makes studying these classes of algebras more difficult. On the other
hand, the structure of CP Fregean varieties is quite well understood. In par-
ticular, it was proved in [13] that every CP Fregean variety consists of algebras
that are expansions of equivalential algebras, i.e. algebras that form an alge-
braization of the purely equivalential fragment of the intuitionistic propositional
logic.

Subtractive Fregean varieties, that is a Fregean varieties endowed with a
special binary term s fulfilling s(x, x) ≈ 1 and s(1, x) ≈ x, form a larger class
than CP Fregean varieties, including e.g. Hilbert algebras. It is not difficult
to show that for such varieties with projective unifiers the unification problems
for many equations {si = ti : i = 1, . . . , k} become equivalent to the matching
problem for single equations of the form {p = 1} (Proposition 3.7). In other
words we are looking for a substitution that makes p equivalent to 1 in a given
variety. Accordingly, we will restrict our attention here to such problems and
we will say about unifiable or projective terms if such a substitution exists or
is projective, respectively. We will consider the elementary unification, which
means that the terms in question contain only symbols of the signature of the
variety.

Our main results are the following. For a CP Fregean variety we prove a
sufficient condition for a unifiable term to be projective (Theorem 4.2). Using
this result we give a twofold characterization of CP Fregean varieties with pro-
jective unifiers (Theorem 4.6). Firstly, we show that this class can be described
by a set of identities. Secondly, we characterize varieties with projective unifiers
by properties of their subdirectly irreducible algebras. As a consequence, we
deduce that for each CP Fregean variety there exists the largest subvariety that
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has projective unifiers (e.g., for the variety of Heyting algebras, it is the subva-
riety of Gödel-Dummett algebras). Moreover, under the additional assumption
of finite signature, we can characterize all unifiable terms in the variety with
projective unifiers (Proposition 4.10).

The method presented here gives us new proofs of unitarity for several known
cases, as well as it leads to some new results. For instance, it follows from The-
orem 4.6 that the variety of equivalential algebras with 0, being the algebraic
counterpart of the equivalence-negation fragment of the intuitionistic proposi-
tional calculus (IPC,↔,¬), is unitary. All these results can be partially gen-
eralized to subtractive Fregean varieties (Proposition 5.1, Theorem 5.2) and so
cover such different algebraic structures as Brouwerian semilattices, Hilbert al-
gebras or equivalential algebras. However, while in the first two cases one can
use a term defining principal filters to get a projective unifier, in the general case
it is impossible: for example, there is no non-trivial subvariety of equivalential
algebras which has equationally definable principle filters and the only one with
definable principle filters is the variety of Boolean groups [14].

2 Unification and projectivity

Let V be a non-trivial variety of algebras of signature F . Let us consider the
term algebra TF(n), where n ∈ N is the cardinality of a finite set of variables
{x1, . . . , xn}, and the quotient term algebra Fn := TF(n)/ ≈V , which is a free

algebra in V with the set of free generators {xi : i = 1, . . . , n}. Given t ∈ TF(n)
and A ∈ V , we adopt the convention of writing tA : An → A for n-ary operation
on A determined by t and using the bold symbol t to denote the corresponding
element t/ ≈V = tFn (x1, . . . ,xn) ∈ Fn if no confusion arises. In particular, we
write c := cFn for c ∈ TF(0).

If A ∈ V and a, b ∈ A, we denote by ΘA (a, b) the congruence generated
by (a, b) in A. When there is no ambiguity we drop the dependence on A and
write just Θ(a, b).

Definition 2.1 An algebra A from a variety V is called projective in V if for
every algebras B,C ∈ V, any epimorphism (onto homomorphism) β : B → C,
and any homomorphism γ : A → C, there exists a homomorphism α : A → B

such that γ = β ◦ α.

It is well known that an algebra is projective iff it is a retract of some free
algebra. Moreover, we have the following simple characterization of projective
quotient algebras of a projective algebra.

Proposition 2.2 Let A be a projective algebra in V and ϕ ∈ Con (A). The
following conditions are equivalent:

(1) A/ϕ is a projective algebra in V;

(2) there exists an endomorphism τ : A→ A such that ϕ = ker τ and τ2 = τ ;
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(3) there exists an endomorphism τ : A → A such that ϕ ⊂ ker τ and
τ (a) ≡ϕ a for every a ∈ A.

Proof. (1) ⇒ (2). Let πϕ be a natural epimorphism from A to A/ϕ. Then
there exists a section s : A/ϕ→ A such that πϕ ◦ s = idA/ϕ. Hence τ := s ◦ πϕ
is a required homomorphism.

(2) ⇒ (3). Let a ∈ A. Then τ (τ (a)) = τ (a), so (τ (a) , a) ∈ ker τ = ϕ, as
desired.

(3) ⇒ (1). For B,C ∈ V , an epimorphism β : B → C and a homomorphism
γ : A/ϕ → C, the projectivity of A implies that there exists a homomorphism
α : A → B such that γ ◦πϕ = β ◦α. Put α (a/ϕ) := α (τ (a)). Then α : A/ϕ→
B is well-defined and β (α (a/ϕ)) = β (α (τ (a))) = γ (πϕ (τ (a))) = γ (πϕ (a)) =
γ (a/ϕ) for a ∈ A, as required.

There are various ways to introduce unifiers for the problem {s = t} in V .
We can treat them either as substitutions from the set of variables to the term
algebra, or to define them as follows:

Definition 2.3 Let s, t ∈ TF(n) and σ ∈ Hom(Fn,Fm), n,m ∈ N. We say
that σ is a V-unifier for (s, t) iff σ (s) = σ (t). We say that (s, t) is V-unifiable

iff there exists a V-unifier for (s, t).

Studying the unification problem for Heyting algebras, Ghilardi [10] consid-
ered a special class of unifiers with ‘good’ properties and called them projective.

Definition 2.4 For s, t ∈ TF(n), τ ∈ Hom(Fn,Fn) we say that τ is a V-

projective unifier for (s, t) iff τ (s) = τ (t) and τ (xi) ≡Θ(s,t) xi for every i =
1, . . . , n. We say that (s, t) is V-projective iff there exists a V-projective unifier
for (s, t).1

Using Proposition 2.2 we find a simple relation between projective problems
and projective algebras.

Proposition 2.5 If s, t ∈ TF(n), then (s, t) is V-projective iff Fn/Θ(s, t) is a
projective algebra.

For a substitution ψ : {x1, . . . , xn} → TF(m), m ∈ N, which one can identify
with the homomorphism from TF(n) to TF(m), we denote by ψ the correspond-
ing homomorphism from Fn to Fm defined by ψ (xi) := pi if ψ (xi) = pi for
i = 1, . . . , n. It is not difficult to show that ψ is a V-projective unifier if and
only if ψ is a reproductive solution in the sense of Boolean unification, see [2],
or a transparent unifier introduced by Wroński [27]:

Proposition 2.6 Let s, t ∈ TF(n) and ψ : {x1, . . . , xn} → TF(n) be a substitu-
tion. Then the following three conditions are equivalent:

1Clearly, if s, t ∈ TF (n), then s, t ∈ TF (k) for k ≥ n. However, it is easy to show that the

definitions of V-unifiability and V-projectivity do not depend on the choice of k.
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(1) ψ : Fn → Fn is a V-projective unifier for (s, t);

(2) for every A ∈ V, a = (a1, . . . , an) ∈ An

(a) sA (ψ (a)) = tA (ψ (a));

(b) sA (a) = tA (a) implies ψ (a) = a,

where ψ (a) ∈ An is given by (ψ (a))i := (ψ (xi))
A
(a) for i = 1, . . . , n;

(3) V � ψ (s) ≈ ψ (t),

V � s ≈ t →
∧n
i=1 (ψ (xi) ≈ xi).

Proof. (1) ⇒ (2). Consider the homomorphism π : Fn → A given by

π (xi) := ai. Then (ψ (a))i = (ψ (xi))
A
(π (x1) , . . . , π (xn)) = π (ψ (xi)) for

i = 1, . . . , n. Hence we get sA (ψ (a)) = sA (π (ψ (x1)) , . . . , π (ψ (xn))) =
π
(

sFn (ψ (x1) , . . . ,ψ (xn))
)

= π (ψ (s)), and analogously tA (ψ (a)) = π (ψ (t)).
Then sA (ψ (a)) = π (ψ (s)) = π (ψ (t)) = tA (ψ (a)). Assume now that sA (a) =
tA (a), which implies π (s) = π (t). For i = 1, . . . , n we have (ψ (xi) ,xi) ∈
Θ(s, t) ⊂ kerπ, and hence ai = π (xi) = π (ψ (xi)) = (ψ (a))i.

(2) ⇒ (1). Put A := Fn and ai := xi for i = 1, . . . , n. Then we get from (a)
ψ (t) = tA (ψ (x1) , . . . ,ψ (xn)) = tA (ψ (x1, . . . ,xn)) = sA (ψ (x1, . . . ,xn)) =
sA (ψ (x1) , . . . ,ψ (xn)) = ψ (s), and so ψ is a V-unifier for (s, t). To show that
ψ is projective put, this time, A := Fn/Θ(s, t) and ai := xi/Θ(s, t) for i =
1, . . . , n. Then sA (a) = sFn/Θ(s,t) (xi/Θ(s, t), . . . ,xn/Θ(s, t)) = s/Θ(s, t) =
t/Θ(s, t) = tFn/Θ(s,t) (xi/Θ(s, t), . . . ,xn/Θ(s, t)) = tA (a), and so, using (b), we

obtain ψ (xi) /Θ(s, t) = (ψ (xi))
Fn/Θ(s,t)

(xi/Θ(s, t), . . . ,xn/Θ(s, t)) =
(ψ (a))i = ai = xi/Θ(s, t) for i = 1, . . . , n, as desired.

(2) ⇔ (3). Is obvious.

One of the main problems of the unification theory is the existence of most
general unifiers, that is such unifiers that all other unifiers are their instances.
Namely, τ ∈ Hom(Fn,Fm), m ∈ N, is a most general V-unifier (mgu for short)
for (s, t) iff τ is a unifier for (s, t) and, for every σ ∈ Hom(Fn,Fk), k ∈ N, if σ is
a V-unifier for (s, t), then there is ϕ ∈ Hom(Fm,Fk) such that ϕ ◦ τ = σ. The
importance of projective unifiers follows also from the fact that they are special
mgus, where n = m and one can put ϕ = σ, i.e. σ ◦ τ = σ. (Unifiers fulfilling
this condition are called reproductive, see [2].) Namely, we have the following:

Proposition 2.7 If s, t ∈ TF(n) and τ ∈ Hom(Fn,Fn) is a V-projective unifier
for (s, t), then τ is an mgu for (s, t).

Proof. Let σ ∈ Hom(Fn,Fk), k ∈ N be such that σ (s) = σ (t). It means
that (s, t) ∈ kerσ, and so Θ(s, t) ⊂ kerσ. Hence (τ (xi) ,xi) ∈ kerσ and, in
consequence, σ (τ (xi)) = σ (xi) for every i = 1, . . . , n, as desired.

Definition 2.8 If every V-unifiable pair of terms has a V-projective unifier, we
say that V has projective unifiers. Clearly, such V is unitary, i.e. all V-unifiable
pairs of terms have mgus.
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Let us assume that there is a distinguished constant (denoted by 1) in the
signature of V . Then one can consider matching problems {s = 1} and introduce
accordingly the notion of V-unifiable and V-projective terms.

Definition 2.9 Let V be variety with a distinguished constant 1. We say that
a term s is V-unifiable (resp. V-projective) iff (s, 1) is V-unifiable (resp. V-
projective).

We will apply in the sequel the following technical lemma connecting pro-
jectivity of all unifiable terms with projectivity of some quotient algebras.

Lemma 2.10 Let V be variety with a distinguished constant 1. Then the fol-
lowing two conditions are equivalent:

(1) every V-unifiable term is V-projective;

(2) for every n ∈ N, ϕ ∈ Con (Fn) such that:

(a) ϕ =
∨k
j=1 Θ(pj ,1) for some p1, . . . , pk ∈ TF(n), and

(b) if (s,1) ∈ ϕ, then s is V-unifiable for every s ∈ TF(n),

Fn/ϕ is a projective algebra.

Proof of Lemma. From Proposition 2.5 we get (2) ⇒ (1). We shall
prove the reverse implication (1) ⇒ (2) by induction on k. We may assume

that k > 1, as the case k = 1 is obvious. Let ϕ =
∨k
j=1 Θ(pj ,1), where

p1, . . . , pk ∈ TF(n), fulfills (2b). Put ψ :=
∨k−1
j=1 Θ(pj ,1). Then ψ fulfills (2),

and so, by induction, Fn/ψ is projective. From Proposition 2.2 we deduce
that there exists an endomorphism σ : Fn → Fn such that ψ ⊂ kerσ and
σ (xi) ≡ψ xi for every i = 1, . . . , n. Hence we get immediately σ (pk) ≡ψ
pk, and consequently (σ (pk) ,1) ∈ ϕ. From (2b) it follows that σ (pk) is V-
unifiable, and so, by (1), there exists τ : Fn → Fn such that τ (σ (pk)) = 1 and
τ (xi) ≡Θ(σ(pk),1) xi for every i = 1, . . . , n. Then ϕ = ψ∨Θ(pk,1) ⊂ ker (τ ◦ σ)
and τ (σ (xi)) ≡Θ(σ(pk),1) σ (xi) ≡ψ xi that implies (τ ◦ σ) (xi) ≡ϕ xi for every
i = 1, . . . , n. Thus, using Proposition 2.2 again, we get that Fn/ϕ is projective,
as desired.

3 Fregean varieties and equivalential algebras

To make this paper self-contained we provide in this section all the necessary
information about Fregean varieties. For more details, we refer the reader to
[23, 13].

A variety V of algebras with a distinguished constant 1 is called Fregean if
every A ∈ V is:

• 1-regular, i.e. 1/α = 1/β implies α = β for all α, β ∈ Con(A), and
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• congruence orderable, i.e. ΘA (1, a) = ΘA (1, b) implies a = b for all
a, b ∈ A.

Congruence orderability allows us to introduce a natural partial order on the
universe of every A ∈ V by putting

a ≤ b iff ΘA(1, b) ⊆ ΘA(1, a) for a, b ∈ A.

Moreover, it follows from 1-regularity, that the congruences in A are uniquely
determined by their 1–cosets traditionally called filters. The lattice of all filters
Φ (A) := {1/α : α ∈ Con(A)} is isomorphic to Con(A). For ϕ ∈ Φ (A) we
denote by ≡ϕ the congruence corresponding to ϕ, and, for a ∈ A, by [a) :=
1/ΘA (1, a) = {b ∈ A : b ≥ a} the filter generated by a.

The following characterization of subdirectly irreducible and simple algebras
in Fregean varieties can be easily deduced from [13, Lemma 2.1]. Let A be an
algebra from a Fregean variety V .

Proposition 3.1

1. A is subdirectly irreducible iff there is the largest non-unit element ∗ in
A. Then, the monolith µ ∈ Φ (A) has the form µ = {∗, 1} and all other
cosets with respect to ≡µ are one element;

2. A is simple (i.e. |Con (A)| = 2) iff |A| = 2.

Let Fm (A) denote the set of all completely meet irreducible filters in A. For
each element η of Fm (A) there is a unique filter η+ ∈ Φ (A) such that α ≥ η+

whenever α > η for α ∈ Φ (A). The following result is a simple consequence of
Proposition 3.1 and standard facts from universal algebra.

Proposition 3.2

1. If η of Fm (A), then A/η is the subdirectly irreducible algebra with the
monolith η+/η = {∗η, 1/η}, where ∗η := a/η for any a ∈ η+\η. Moreover
b/η = b/η+ for b /∈ η+;

2. If a ∈ A\ {1}, then there exists η of Fm (A) such that a/η = ∗η.

Many natural examples of Fregean varieties come from the algebraization
of fragments of intuitionistic or intermediate logics. Among them, equivalential
algebras E play a special role. By an equivalential algebra we mean a grupoid
A = (A,↔, 1) that is the subreduct of a Heyting algebra with the operation
↔ given by x ↔ y = (x→ y) ∧ (y → x). (We adopt further the convention
of associating to the left and ignoring the symbol of equivalence operation.)
This notion was introduced by Kabziński and Wroński in [15] as the algebraic
counterpart of the equivalential fragment of intuitionistic propositional logic.
The variety of equivalential algebras is also definable by the following identities:
xxy = y; xyzz = xz(yz), xy(xzz)(xzz) = xy and xx = 1. Supplementing these
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axioms by the identity x = xyy (or by the associativity law) we obtain the
smallest non-trivial subvariety of E , which coincides with the class of Boolean
groups and gives the algebraic semantics for equivalential fragment of classical
logic. For a fuller treatment of equivalential algebras, see [22, 23, 13].

Equivalential algebras form a paradigm for congruence permutable Fregean
varieties, as the following result (see [13, Theorem 3.8, Corollary 3.9]) shows:

Theorem 3.3 Let V be a congruence permutable Fregean variety. Then there
exists a binary term ↔ such that for every A ∈ V:

1. (A,↔, 1) is an equivalential algebra;

2. ↔ is a principal congruence term of A, i.e. a ≡ϕ b iff ab ∈ ϕ for every
ϕ ∈ Φ (A).

From Proposition 3.1.1 and Theorem 3.3 we can easily deduce the following
useful fact:

Proposition 3.4 Let A be a subdirectly irreducible algebra from a congruence
permutable Fregean variety V with the monolith µ = {∗, 1}. Then

1. a∗ = a for a ∈ A\ {∗, 1};

2. A\ {∗} is closed under the equivalence operation.

Proof. (1) Let a ∈ A\ {∗, 1}. Then ΘA (1, ∗) ⊂ ΘA (1, a), and so ΘA (∗, a) ⊂
ΘA (1, a). Moreover, ΘA (1, ∗) ⊂ ΘA (∗, a), and in consequence ΘA (1, a) ⊂
ΘA (∗, a). Hence ΘA (1, a∗) = ΘA (∗, a) = ΘA (1, a), as desired.

(2) Assume for contradiction that ∗ = ab for some a, b ∈ A\ {∗, 1}. Then
from (1) 1 = ∗aa = abaa = ab, a contradiction.

Applying Theorem 3.3 we can define in every algebra A from a congruence
permutable Fregean variety V a family of purely equivalential unary polynomials
given by the formula:

χa(x) := xaa for x, a ∈ A,

with the following properties for a, b ∈ A:

• χa is an idempotent equivalential endomorphism,

• χa ◦ χb = χb ◦ χa = χa ◦ χab.

Note that the polynomial χa(x) can be expressed in the language of Heyting
algebra as (x→ a) → x. For some congruence permutable Fregean varieties
(e.g. equivalential algebras, Brouwerian semilattices) these polynomials are en-
domorphisms, whereas for others (e.g. Heyting algebras) they are not. These
distinction is crucial for our purposes.

A variety V with the signature F and a distinguished constant 1 is called
subtractive iff there is a subtractive term s ∈ TF(2), i.e. a binary term such
that the identities s(x, x) ≈ 1 and s(1, x) ≈ x are fulfilled in V . This notion
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was introduced in [12], see also [25]. Clearly, the class of all subtractive Fregean
varieties is larger than the class of congruence permutable Fregean varieties,
where the equivalence ↔ serves as the subtractive term. To be more precise,
the existence of a subtractive term in V is equivalent to a special case of con-
gruences permutability, namely, if α and β are congruences of A ∈ V , then
(1, c) ∈ α ◦ β iff (1, c) ∈ α ∨ β for c ∈ A. This class was studied by Agliano
[1], who proved that a subtractive Fregean variety has equationally definable
principal congruences iff it is term equivalent to a variety of Hilbert algebras
with additional compatible operations. In the sequel, we will need the following
simple property of subtractive Fregean varieties:

Proposition 3.5 Let A be an algebra from a subtractive Fregean variety V and
let a, b ∈ A. Then Θ(a, b) = Θ (s(a, b), 1)∨Θ(s(b, a), 1), where s is a subtractive
term in V.

Proof. Put ϕ := Θ (s(a, b), 1) ∨ Θ(s(b, a), 1). Clearly, s(a, b), s(b, a) ≡Θ(a,b)

s(b, b) = 1, and, in consequence, ϕ ⊂ Θ(a, b). Moreover, a = s(1, a) =
s(s(s(b, a), s(b, a)), a) ≡ϕ s(s(1, s(b, a)), a) ≡Θ(b,1) s(s(1, s(1, a)), a) = 1. Hence
Θ(a, 1) ⊂ Θ(b, 1)∨ϕ, and analogouslyΘ(b, 1) ⊂ Θ(a, 1)∨ϕ. Thus Θ(a, 1)∨ϕ =
Θ(b, 1) ∨ ϕ. It means that ΘA/ϕ (a/ϕ, 1/ϕ) = ΘA/ϕ (b/ϕ, 1/ϕ). Since A/ϕ is
congruence orderable, we get a/ϕ = b/ϕ, and so Θ(a, b) ⊂ ϕ, as desired.

In the next sections we will study the problem of the existence of projec-
tive unifiers for congruence permutable and subtractive Fregean varieties. It
follows from Theorem 3.3 that for congruence permutable Fregean variety the
unification problem in V for an arbitrary equation of the form {s = t}, where
s, t ∈ TF(n) for some n ∈ N can be easily reduced to the matching problem
for the equation {st = 1}. It is not true for a subtractive Fregean variety, how-
ever the problem of having projective unifiers for single equations, or even for
finite sets of equations, for such a variety can also be reduced to the matching
problems, as the next proposition shows.

Definition 3.6 We say that the set of equations {si = ti : i = 1, . . . , k}, where
si, ti ∈ TF(n) for some n ∈ N is:

V-unifiable iff there exists σ ∈ Hom(Fn,Fm), m ∈ N such that σ (si) =
σ (ti) for i = 1, . . . , k;

V-projective iff there exists τ ∈ Hom(Fn,Fn) such that τ (si) = τ (ti) and
τ (xi) ≡∨

k
j=1

Θ(si,ti)
xi for i = 1, . . . , k.

Proposition 3.7 Let V be a subtractive Fregean variety. Then the following
conditions are equivalent:

(1) every V-unifiable term is V-projective;

(2) V has projective unifiers;

(3) every finite and V-unifiable set of equations is V-projective.
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Proof of Theorem. It is obvious that (3) ⇒ (2) ⇒ (1). To show
(1) ⇒ (3) take si, ti ∈ TF(n) for some n ∈ N and i = 1, . . . , k such that

{si = ti : i = 1, . . . , k} is V-unifiable. Put ϕ :=
∨k
j=1 Θ(sj, tj). It follows from

Proposition 3.5 that ϕ =
∨k
j=1 Θ(s(sj , tj),1) ∨

∨k
j=1 Θ(s(tj , sj),1). Applying

Lemma 2.10 we deduce that the finitely presented algebra Fn/ϕ is projective.
Now, it follows from Proposition 2.2 that {si = ti : i = 1, . . . , k} is V-projective,
which completes the proof.

The conclusion of the above Proposition is rather obvious for any arithmeti-
cal (i.e. congruence permutable and congruence distributive) Fregean variety,
because such a variety must be term equivalent to a variety of Brouwerian semi-
lattices with some compatible operations, see [21] and [13, Corollary 4.1]. It is
rather surprising that the result can be extended to non-arithmetical Fregean
varieties, such as, e.g. equivalential algebras.

4 Congruence permutable Fregean varieties

We start from the result that is in fact a simple generalization of the well-
known theorem of Diego, who proved that finitely generated Hilbert algebras
are finite [7]. This result has been later extended to other varieties that come
from the algebraization of some fragments of intuitionistic logic, like Brouwerian
semilattices or equivalential algebras.

Theorem 4.1 Let V be a Fregean variety with the finite signature F . If for
every A subdirectly irreducible in V and such that |A| > 2 the set A\ {∗} is a
subuniverse of A, then V is locally finite.

Proof. We will prove by induction on n that |Fn| <∞. From the finiteness
of the signature F it is enough to show that for every n ∈ N there exists a
common finite upper bound for the cardinality of subdirectly irreducible homo-
morphic images of Fn. Then there exists only a finite number of non-isomorphic
subdirectly irreducible homomorphic images of Fn, and so Fn is finite as a
finitely generated member of a variety generated by a finite number of finite
algebras.

Let n = 0. Observe that if F0 is non-trivial, then every algebra A that is a
subdirectly irreducible homomorphic image of F0 has two elements. Otherwise,
A\ {∗} is a subuniverse of A, which is impossible, since F0 has no proper sub-
algebras. Assume now that |Fn| <∞. For µ ∈ Fm (Fn+1), either |Fn+1/µ| = 2
or |Fn+1/µ| > 2. In the latter case (Fn+1/µ) \ {∗} is a subuniverse of Fn+1/µ,
and consequently, there is i = 1, . . . , n+ 1 such that xi/µ = ∗. Hence and from
Proposition 3.2 we deduce that Fn+1/µ

+ ≃ (Fn+1/µ) / (µ
+/µ) has at most n

generators and |Fn+1/µ| = 1+ |Fn+1/µ
+|. Thus |Fn+1/µ| ≤ 1+ |Fn|, and now

the assertion follows from the induction hypothesis.

The next theorem gives two equivalent sufficient conditions for a unifiable
term t in a congruence permutable Fregean variety V to be projective. The first
has the form of identity in V . This identity expresses the fact that for every
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algebra A in V and a ∈ A, the unary polynomial χa : A → A, defined by
χa(x) = axx, for x ∈ A, preserves the operation tA. The second says that for
every non-simple subdirectly irreducible algebra A in V the universe of A with
the largest non-unit element removed is closed under the operation tA.

Theorem 4.2 Let V be a congruence permutable Fregean variety and t ∈ TF(n).
Then the following conditions are equivalent:

(1) V |= t (x1yy, . . . , xnyy) ≈ t (x1, . . . , xn) yy ;

(2) for every subdirectly irreducible A in V such that |A| > 2, and for all
a1, . . . , an ∈ A

(

tA (a1, . . . , an) = ∗
)

⇒ (∃i = 1, . . . , n : ai = ∗) .

Moreover, if t fulfills (1) or (2), then

(3) if t is V-unifiable, then t is V-projective.

Before we begin the proof of the theorem we need the following lemma:

Lemma 4.3 Let A be subdirectly irreducible in V with |A| > 2. Then for all
a1, . . . , an ∈ A\ {∗} there exists p ∈ A\ {∗, 1} such that aipp = ai for every
i = 1, . . . , n.

Proof of Lemma. The proof is by induction on n. For n = 1 we put p = a1
if a1 6= 1 and p = c, where c ∈ A\ {∗, 1} if a1 = 1. Assume that n > 1. Take
q ∈ A\ {∗, 1} such that aiqq = ai for every i = 1, . . . , n − 1. It is enough to
consider the case anqq 6= an. Put p = anqqan 6= 1. From Proposition 3.4.2 we
deduce that p 6= ∗. For i = 1, . . . , n−1 we have aipp = aiqq (anqqan) (anqqan) =
ai (anqqan) (anqqan) qq = (aiqq) ((anqqan) qq) ((anqqan) qq) = aiqq = ai. More-
over, anpp = an (anqqan) (anqqan) = (anqqanan) (anqqan) = (anqq) (anqqan) =
an (anqq) (anqq) = an.

Proof of Theorem. (1) ⇒ (2). On the contrary, assume that there ex-
ists A subdirectly irreducible in V , |A| > 2 and a1, . . . , an ∈ A\ {∗} such that
tA (a1, . . . , an) = ∗. From Lemma there exists a p ∈ A\ {∗, 1} such that aipp =
ai for every i = 1, . . . , n. Hence ∗ = tA (a1, . . . , an) = tA (a1pp, . . . , anpp) =
tA (a1, . . . , an) pp. On the other hand, from Proposition 3.4.1 we get
tA (a1, . . . , an) pp = ∗pp = 1, a contradiction.

(2) ⇒ (1). Assume to the contrary that there exists C ∈ V such that
the identity in (1) is not fulfilled. Then we find an algebra A in V being the
subdirectly irreducible homomorphic image of C and a1, . . . , an, b ∈ A such
that

(

tA (a1bb, . . . , anbb) , t
A (a1, . . . , an) bb

)

generates the monolith of A. It

follows from Proposition 3.1.1 that
{

tA (a1bb, . . . , anbb) , t
A (a1, . . . , an) bb

}

=
{∗, 1}. Hence and from Proposition 3.4.1 we deduce that b /∈ {∗, 1}, and so
|A| > 2. Moreover, applying again Proposition 3.4 and the fact that b /∈ {∗, 1}
we get ubb 6= ∗ for every u ∈ A. In consequence, tA (a1, . . . , an) bb = 1,
tA (a1bb, . . . , anbb) = ∗ and aibb 6= ∗ for i = 1, . . . , n, which contradicts (2).
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(1) ⇒ (3). Since t is unifiable, we can find an endomorphism f : Fn → Fn
such that f (t) = 1. We can assume that n > 0, since otherwise t = 1 and we
are done.

We divide Fm (Fn) into following sets:

WC := {µ ∈ Fm (Fn) : |Fn/µ| = 2 and C = {i = 1, . . . , n : xi/µ 6= f (xi) /µ}}

∪ {µ ∈ Fm (Fn) : |Fn/µ| > 2 and C = {i = 1, . . . , n : xi/µ = ∗µ}} .

for C ⊂ {1, . . . , n}.
For p ∈ TF (n) define

N (p) := {µ ∈ Fm (Fn) : p/µ = ∗µ}

and
k (p) := |{C :WC ∩N (p) 6= ∅}| .

Consider the family

P := {p ∈ TF (n) : V |= p (x1yy, . . . , xnyy) ≈ p (x1, . . . , xn) yy and f (p) = 1}

Since t ∈ P , it is enough to prove that p is V-projective for every p ∈ P . We
proceed by induction on k(p).

I. k(p) = 0. Then N (p) = ∅, as
⋃

{WC : C ⊂ {1, . . . , n}} = Fm (Fn), and
so, by Proposition 3.2.2, p = 1.

II. k(p) ≥ 1. Let C ⊂ {1, . . . , n} be such that WC ∩ N (p) 6= ∅. Define a
substitution gC : {x1, . . . , xn} → TF(n) by

gC (xi) :=

{

xip for i ∈ C
xipp for i /∈ C

.

We show that gC (p) ∈ P and k (gC (p)) < k(p).
Note that for the endomorphism gC : Fn → Fn corresponding to gC we

have gC (xi) ≡[p) xi for i = 1, . . . , n, and so gC (p) ≡[p) p. Hence gC (p) ∈
[p) ⊂ ker f . To show that gC (p) fulfills the identity from (1) take A ∈ V and
a1, . . . , an, b ∈ A. Put p := pA (a1, . . . , an). We know that pA (a1bb, . . . , anbb) =

pbb. Then (gC (p))
A
(a1bb, . . . , anbb) = pA (c1, . . . , cn), where ci := aibb (pbb) =

aipbb for i ∈ C and ci := aibb (pbb) (pbb) = aippbb for i /∈ C. Hence

(gC (p))
A
(a1bb, . . . , anbb) = (gC (p))

A
(a1, . . . , an) bb. This proves that gC (p) ∈

P .
To prove that k (gC (p)) < k(p) we start from the observation that

gC (p)pp = gC (p). From the definition of gC we immediately obtain that
gC (xi)pp = gC (xi) for every i = 1, . . . , n. Hence and from the fact that p ∈ P
we have

gC (p)pp =
(

gC
(

pFn (x1, . . . ,xn)
))

pp

=
(

pFn (gC (x1) , . . . ,gC (xn))
)

pp

= pFn (gC (x1)pp, . . . ,gC (xn)pp)

= pFn (gC (x1) , . . . ,gC (xn))

= gC (p) .
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Now we show thatN (gC (p)) ⊂ N(p). Let µ ∈ N (gC (p)). Then gC (p) /µ =
∗µ and, since gC (p) ∈ [p), we get p /∈ µ. On the other hand

(gC (p) /µ) (p/µ) (p/µ) = (gC (p)pp) /µ = gC (p) /µ = ∗µ,

and from Proposition 3.4.1 we get p/µ = ∗µ, as required. Thus k (gC (p)) ≤
k(p).

To prove that this inequality is sharp, it suffices to show thatWC∩N (gC (p)) =
∅. To get a contradiction, suppose that there exists µ ∈WC such that gC (p) /µ =
∗µ, and so, as we have just proved, p/µ = ∗µ. We consider two cases: |Fn/µ| = 2
and |Fn/µ| > 2.

In the first case C = {i = 1, . . . , n : xi/µ 6= f (xi) /µ}. Then gC (xi) /µ =
f (xi) /µ for i = 1, . . . , n, since it is easily seen that gC (xi) /µ = (xi/µ) (p/µ) =
f (xi) /µ for i ∈ C and gC (xi) /µ = (xi/µ) (p/µ) (p/µ) = xi/µ = f (xi) /µ for
i /∈ C. Hence we get

gC (p) /µ = pFn (gC (x1) , . . . ,gC (xn)) /µ

= pFn/µ (gC (x1) /µ, . . . ,gC (xn) /µ)

= pFn/µ (f (x1) /µ, . . . , f (x1) /µ)

= pFn (f (x1) , . . . , f (xn)) /µ

= f (p) /µ

= 1/µ,

a contradiction.
In the second case C = {i = 1, . . . , n : xi/µ = ∗µ}. Then gC (xi) /µ 6= ∗µ for

i = 1, . . . , n, because gC (xi) /µ = (xi/µ) (p/µ) = 1/µ 6= ∗µ for i ∈ C and, by
Proposition 3.4.1, gC (xi) /µ = (xi/µ) (p/µ) (p/µ) = xi/µ 6= ∗µ for i /∈ C. On
the other hand, since |Fn/µ| > 2 and

∗µ = gC (p) /µ = pFn/µ (gC (x1) /µ, . . . ,gC (xn) /µ) ,

we deduce from (2) that there is i = 1, . . . , n such that gC (xi) /µ = ∗µ, a
contradiction.

Hence k (gC (p)) < k(p). Applying induction assumption to gC (p) we get
that gC (p) is V-projective. So we find σ ∈ Hom(Fn,Fn) such that σ (gC (p)) =
1, σ (xi) ≡[gC(p)) xi, and so σ (gC (xi)) ≡[gC(p)) gC (xi) for every i = 1, . . . , n.
Put τ := σ ◦ gC . Then τ (p) = 1 and τ (xi) = σ (gC (xi)) ≡[gC(p)) gC (xi) ≡[p)

xi for i = 1, . . . , n. Since [gC (p)) ⊂ [p), we get τ (xi) ≡[p) xi for i = 1, . . . , n,
which means that τ is a V-projective unifier for p, as desired.

Remark 4.4 In general, the reverse implication (3) ; (1) ⇔ (2) does not hold.
Let H be the variety of Heyting algebras. Then t (x1, x2) := x2 (x1 ∨ (x10))
is H-projective (consider τ ∈ Hom(F2,F2) given by τ (x1) := x1, τ (x2) :=
x1 ∨ (x10)), but does not fulfil (1). To show this, take the subdirectly irre-
ducible 5-element nonlinear Heyting algebra H := 22 ⊕ 1 with the universe
H = {0, a, a0, a ∨ (a0) , 1}. Then tH (a00, 100) = tH (a, 1) = a ∨ (a0) 6= 1,
whereas tH (a, 1) 00 = 1.
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It follows from Proposition 3.7 and Theorem 4.2 that for a congruence per-
mutable Fregean variety V the sufficient condition for having projective unifiers
is that for every algebra A in V and a ∈ A, the unary polynomial χa is an
endomorphism. The next theorem shows that this condition is also necessary.
This provides a full characterization of congruence permutable Fregean varieties
with projective unifiers. In the proof of the theorem we will use the following
computational lemma.

Lemma 4.5 Let A be a subdirectly irreducible algebra in a Fregean variety V,
n ∈ N, a1, . . . , an ∈ A, and let t ∈ TF(n) be a V-projective term such that
tA (a1, . . . , an) = ∗. Then ai = ∗ or ai = 1 for some i ∈ {1, . . . , n}.

Proof. Suppose to the contrary that a1, . . . , an ∈ A\ {∗, 1}. Since t is pro-
jective there exists an endomorphism τ : Fn → Fn such that τ (xi) ≡[t) xi

and τ (t) = 1. Put B := SgA (a1, . . . , an) for the subalgebra of A generated
by {a1, . . . , an}. As ∗ ∈ B, we get ΘB (∗, 1) ⊂ ΘA (∗, 1) |B. On the other
hand, by Proposition 3.1.1, we get ΘA (∗, 1) = idA ∪{(∗, 1) , (1, ∗)}. Hence
ΘB (∗, 1) = idB ∪{(∗, 1) , (1, ∗)}. Let us consider the only epimorphism f :
Fn → B such that f (xi) = ai for i = 1, . . . , n. Since f (t) = ∗, we get
(t,1) ∈ f−1 (ΘB (∗, 1)) ∈ Con (Fn). Hence ΘFn

(t,1) ⊂ f−1 (ΘB (∗, 1)). Let
i = 1, . . . , n. Then (xi, τ (xi)) ∈ f−1 (ΘB (∗, 1)), and therefore (ai, f (τ (xi))) =
(f (xi) , f (τ (xi))) ∈ ΘB (∗, 1). Hence, and since ai /∈ {∗, 1}, we get ai =
f (τ (xi)). Finally, we have 1 = f (τ (t)) = f

(

tFn (τ (x1) , . . . , τ (xn))
)

=
tA (f (τ (x1)) , . . . , f (τ (xn))) = tA (a1, . . . , an) = ∗, a contradiction.

Theorem 4.6 Let V be a congruence permutable Fregean variety with signature
F . Then the following conditions are equivalent:

(1) for every f ∈ F

V |= f (x1yy, . . . , xkyy) ≈ f (x1, . . . , xk) yy

where k is the arity of f ;

(2) for every subdirectly irreducible A in V, if |A| > 2, then A\ {∗} is a
subuniverse of A;

(3) V has projective unifiers.

Proof. Clearly, it follows from Theorem 4.2 and Proposition 3.7 that it
suffices to show that (3) ⇒ (2). On the contrary assume that there is a subdi-
rectly irreducible A ∈ V such that |A| > 2 and there exist t ∈ TF(n), n ∈ N,
a1, . . . , an ∈ A\ {∗} with the property tA (a1, . . . , an) = ∗. Without loss of gen-
erality we can assume that {i : ai 6= 1} = {1, . . . ,m}, where 0 ≤ m ≤ n. Put
s ∈ TF(m+ 1) by

s (x1, . . . , xm+1) := t (x1, . . . , xm, 1, . . . , 1)xm+1xm+1t (x1, . . . , xm, 1, . . . , 1) .
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Note that s is unifiable, since for the substitution σ ∈ Hom(Fm+1,Fm+1) given
by σ (xi) := xi for i = 1, . . . ,m and σ (xm+1) := 1, we have σ (s) = 1. Hence,
by (3), s is projective. Let b ∈ A\ {∗.1}. Then

sA (a1, . . . , am, b) = tA (a1, . . . , am, 1, . . . , 1) bbt
A (a1, . . . , am, 1, . . . , 1)

= tA (a1, . . . , an) bbt
A (a1, . . . , an)

= ∗bb∗ = ∗.

On the other hand, it follows from Lemma 4.5 that {a1, . . . , am, b} ∩ {∗.1} 6= ∅,
a contradiction.

Corollary 4.7 For each congruence permutable Fregean variety V there exists
the largest subvariety that has projective unifiers. Namely, it is enough to put

W :=

{

A ∈ V : A |= f (x1yy, . . . , xkyy) ≈ f (x1, . . . , xk) yy
for every f ∈ F , where k is the arity of f

}

.

Remark 4.8 In particular, for the variety of Heyting algebras H, the largest
subvariety that has projective unifiers is

{A ∈ H : A |= x1yy ∨ x2yy ≈ (x1 ∨ x2) yy} = LC,

where LC denotes the variety of linear Heyting algebras (or Gödel-Dummett
algebras) usually axiomatized by (x→ y)∨ (y → x) ≈ 1 (This fact was obtained
by straightforward calculation in H by Wroński, see [28]).

Corollary 4.9 From Theorem 4.6, using condition (1) or (2), we can immedi-
ately deduce some well known results. Namely, we get that

• Boolean algebras (CPC) ([5],[17], [18]);

• Brouwerian semilattices (IPC, →, ∧) ( [16], see also [19], [9]);

• equivalential algebras (IPC, ↔) ([27]);

• Brouwerian semilattices with 0 (bounded) (IPC, →, ∧, ¬) ([27])

have projective unifiers.

The same is true for some other classes of algebras related to logic, e.g. for
equivalential algebras with 0, i.e. the variety of algebras (A,↔, 1, 0) denoted by
E0, and being the algebraic counterpart of the (↔, ¬) fragment of IPC, in such
a sense that for every n ∈ N and ϕ ∈ T(↔,1,0) (n) we have E0 |= ϕ ≈ 1 iff
⊢IPC ϕ. Since we have here the identity 0xx ≈ 0, the condition (1) of Theorem
4.6 is fulfilled and so the variety has projective unifiers.

Under the additional assumption of finite signature, we can characterize
unifiable terms in the variety with projective unifiers.
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Proposition 4.10 Let V be a congruence permutable Fregean variety with finite
signature F such that for every f ∈ F

V |= f (x1yy, . . . , xkyy) ≈ f (x1, . . . , xk) yy (*)

where k is the arity of f , and let t ∈ TF(n). Then the following conditions are
equivalent:

(1) t is V-unifiable;

(2) t is V-projective;

(3) for every A in V, if |A| = 2, then 1A ∈ Im tA;

(4) [t) ∩
{

cFn : c ∈ TF (0)
}

= {1}.

Proof. (1) ⇒ (2). The implication follows from Theorem 4.6.
(2) ⇒ (3). Let A ∈ V and let τ ∈ Hom(Fn,Fn) be a V-unifier for t.

Take any homomorphism ι : Fn → A. Then tA (ι (τ (x1)) , . . . , ι (τ (xn))) =
ι
(

tFn (τ (x1) , . . . , τ (xn))
)

= ι (τ (t)) = ι (1) = 1A.
(3) ⇒ (4). Let c ∈ TF (0) fulfill c :=cFn ∈ [t). Suppose that c 6= 1. Then,

by Proposition 3.2.2, there is µ ∈ Fm (Fn) such that c/µ = ∗µ. Observe that
|Fn/µ| = 2, since otherwise we would find y /∈ µ+ and, from Proposition 3.4.1
and (*), we would get c/µ = (c/µ) (y/µ) (y/µ) = 1/µ, a contradiction.

Put A := Fn/µ. It follows from (3) that there exist a1, . . . , an ∈ A with
tA (a1, . . . , an) = 1A. Define a homomorphism π : Fn → A putting π (xi) = ai
for i = 1, . . . , n. Then π (t) = π

(

tFn (x1, . . . ,xn)
)

= 1A and so c ∈ [t) ⊂ kerπ.
Thus 1/µ = 1A = π (c) = cA = c/µ = ∗µ, contrary to our claim.

(4) ⇒ (1). From Theorems 4.1 and 4.6 we deduce that V is locally fi-
nite. Then Φ (Fn) is a finite modular lattice, which allows us to proceed
by induction on d ([t)), where d ([t)) denotes the height of [t) in Φ (Fn). If
d ([t)) = 0, t is unifiable as t = 1. Let d ([t)) > 1. Clearly, we can assume
that tFn (1, . . . ,1) 6= 1, since otherwise t is unifiable. From (4) we know that
tFn (1, . . . ,1) /∈ [t). Thus we find a maximal µ ∈ Φ (Fn) such that [t) ⊂ µ
and tFn (1, . . . ,1) /∈ µ. By standard argument we get that Fn/µ is subdi-
rectly irreducible and tFn (1, . . . ,1) ∈ µ+\µ. From Proposition 3.2.1 we obtain
∗µ = tFn (1, . . . ,1) /µ = tFn/µ (1/µ, . . . ,1/µ). From Theorem 4.6 we get imme-
diately that |Fn/µ| = 2. On the other hand, 1/µ = t/µ = tFn (x1, . . . ,xn) /µ =
tFn/µ (x1/µ, . . . ,xn/µ), and so {i : xi/µ = ∗µ} 6= ∅. Without loss of generality
we can assume that {i : xi/µ = ∗µ} = {1, . . . ,m} for some 1 ≤ m ≤ n. Define
g : {x1, . . . , xn} → TF (n) by

g (xi) :=

{

xit for i = 1, . . . ,m
xi for i = m+ 1, . . . , n.

.

Then for the endomorphism g : Fn → Fn corresponding to g we have xi ≡[t)

g (xi) for i = 1, . . . , n. Hence t ≡[t) g (t), and finally g (t) ∈ [t). Now we
show that g (t) 6= t. In this aim, consider a homomorphism ψ : Fn → Fn/µ
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such that ψ (xi) := 1/µ, for i = 1, . . . , n. Then ψ (t) = ψ
(

tFn (x1, . . . ,xn)
)

=

tFn/µ (1/µ, . . . ,1/µ) = ∗µ. On the other hand

ψ (g (t)) = ψ
(

g
(

tFn (x1, . . . ,xn)
))

= ψ
(

tFn (x1t, . . . ,xmt,xm+1, . . . ,xn)
)

= tFn/µ (∗µ, . . . , ∗µ,1/µ, . . . ,1/µ)

= tFn/µ (x1/µ, . . . ,xn/µ)

= tFn (x1, . . . ,xn) /µ

= t/µ = 1 .

Hence g (t) ∈ kerψ, whereas t /∈ kerψ. Thus t < g (t), and so d ([g (t))) <
d ([t)). Moreover, [g (t)) ∩

{

cFn : c ∈ TF (0)
}

= {1}, and from the induction
hypothesis we know that g (t) is unifiable, i.e. there is σ : Fn → Fm, m ∈ N, a
V-unifier for g (t). Then σ ◦ g is a V-unifier for t, which completes the proof.

As a corollary we get another sufficient and necessary condition for a congru-
ence permutable Fregean variety to have projective unifiers, which guarantees
that in such a variety every finitely generated algebra for which any two con-
stants are not glued together is projective.

Corollary 4.11 Let V be a congruence permutable Fregean variety with finite
signature F . Then V has projective unifiers iff for every n ∈ N and ϕ ∈ Φ (Fn)

(

ϕ ∩
{

cFn : c ∈ TF(0)
}

= {1}
)

⇒ (Fn/ϕ is projective) .

Proof. ⇒) Let ϕ ∈ Φ (Fn) satisfies the condition ϕ ∩
{

cFn : c ∈ TF(0)
}

=
{1}. It follows for Theorems 4.1 and 4.6 that V is locally finite. Hence ϕ =
∨k
j=1 [pj) for some p1, . . . , pk ∈ TF(n). For every s ∈ ϕ we have

[s) ∩
{

cFn : c ∈ TF(0)
}

= {1}, and so, from Theorem 4.6 and Proposition 4.10,
we deduce that s is V-unifiable. Now, from Lemma 2.10 we get the assertion.

⇐) Let t ∈ TF(n) be unifiable. Then we can find σ ∈ Hom(Fn,Fn) such
that [t) ⊂ kerσ. For cFn ∈ [t) we have cFn = σ

(

cFn
)

= 1 for c ∈ TF(0), and so
cFn = 1. Thus Fn/ [t) is projective and the assertion follows from Proposition
2.5.

It follows from Theorem 4.6 that as long as a congruence permutation
Fregean variety V has projective unifiers, every constant term c must be reg-
ular, that is V |= c ≈ cyy. In particular, we can use our results to solve the
equational unification problem with constants in V such that V |= x ≈ xyy, i.e.
the equivalential reducts of algebras in V are Boolean groups. It is for instance
the case for the variety of Boolean algebras.

5 Subtractive Fregean varieties

Congruence permutability in Theorem 4.6 cannot be replaced by subtractivity.
To show this, consider the variety HI0 of bounded Hilbert algebras, being the al-
gebraic semantics of (→,¬)-reduct of IPC, which is Fregean and subtractive but
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not congruence permutable. Clearly, HI0 fulfills condition (2) from Theorem
4.6, but though the term t (x, y) := x→ (y → 0) ∈ T(→,0)(2) is unifiable in HI0,
yet it has no mgus and, in consequence, it has no projective unifiers, see [26].
Nevertheless, one can prove weaker versions of Theorems 4.2, 4.6 and Corollary
4.11 valid for subtractive varieties. Let us start from the following proposi-
tion, being an analogue of Theorems 4.2, that gives the sufficient condition for
V-projectivity.

Proposition 5.1 If V is a locally finite subtractive Fregean variety and
t ∈ TF(n) fulfills the following two conditions:

• for every subdirectly irreducible A in V with |A| > 2, and for all
a1, . . . , an ∈ A

(

tA (a1, . . . , an) = ∗
)

⇒ (∃i = 1, . . . , n : ai = ∗) ;

• t is V-unifiable with the special V-unifier τ ∈ Hom(Fn,Fn) given by
τ (xi) := 1 for i = 1, . . . , n (i.e. V |= t (1, . . . , 1) ≈ 1),

then t is V-projective.

Proof. Since V is locally finite, we can prove the assertion by induction on
d ([t)), where d ([t)) denotes the height of [t) in a finite modular lattice Φ (Fn).
If d ([t)) = 0, then t = 1, and so t is V-projective. Let d ([t)) = k ≥ 1. Then
t 6= 1 and, by Proposition 3.2.2, we can find µ ∈ Fm (Fn) such that t/µ = ∗µ.
Put S := {i = 1, . . . , n : xi/µ = ∗µ}. Define g : {x1, . . . , xn} → TF(n) with aid
of the subtractive term s by

g (xi) =

{

xi for i /∈ S
s(t, xi) for i ∈ S

.

Then s
Fn(t,xi) ≡[t) s

Fn(1,xi) = xi, and so for the endomorphism g : Fn → Fn
corresponding to g we have g (xi) ≡[t) xi for i = 1, . . . , n. Hence g (t) ≡[t) t,
and, in consequence, g (t) ∈ [t) or, in other words, t ≤ g (t). We prove that
t < g (t).

Note that g (xi) /µ = s
Fn(t,xi)/µ = s

Fn/µ(t/µ,xi/µ) = s
Fn/µ(∗µ, ∗µ) =

1/µ for i ∈ S. Hence g (xi) /µ 6= ∗µ for i = 1, . . . , n. From our assump-
tions one can easily deduce that for every subdirectly irreducible A in V , if
a1, . . . , an ∈ A\ {∗}, then tA (a1, . . . , an) 6= ∗. Thus g (t) /µ =
tFn/µ (g (x1) /µ, . . . ,g (xn) /µ) 6= ∗µ, which means that g (t) 6= t since t/µ =
∗µ. Therefore d ([g (t))) < d ([t)). Applying the induction hypothesis we know
that g (t) is V-projective. Hence there exists an endomorphism τ : Fn → Fn such
that τ (xi) ≡[g(t)) xi for i = 1, . . . , n, and τ (g (t)) = 1. To complete the proof
take an endomorphism τ ◦ g : Fn → Fn. Then τ (g (xi)) ≡[g(t)) g (xi) ≡[t) xi,
which implies τ (g (xi)) ≡[t) xi for i = 1, . . . , n, and so τ ◦ g is a V-projective
unifier for t, as required.

The final theorem presented below characterizes those subtractive Fregean
varieties with finite signature for which all terms (and hence all finite sets of
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equations) are projective. As a corollary, we deduce that each such variety is
primitive, i.e. every its subquasivariety is a variety.

Theorem 5.2 Let V be a subtractive Fregean variety with the finite signature
F . Then the following conditions are equivalent:

(1) all terms in TF(ω) are V-projective;

(2) for every subdirectly irreducible A in V the subset A\ {∗} is a subuniverse
of A;

(3) every finitely generated algebra in V is projective;

(4) every finite set of equations in TF(ω) is V-projective.

Proof. (1) ⇒ (2). To obtain the contradiction, assume that there is a
subdirectly irreducible A ∈ V and t ∈ TF(n), n ∈ N, a1, . . . , an ∈ A\ {∗}
such that tA (a1, . . . , an) = ∗. Without loss of generality we can assume that
{i : ai 6= 1} = {1, . . . , k}, where 0 ≤ k ≤ n. Put p ∈ TF(k) by p (x1, . . . , xk) :=
t (x1, . . . , xk, 1, . . . , 1). Then p is V-projective and p (a1, . . . , ak) = ∗. It follows
from Lemma 4.5 that there is i = 1, . . . , k such that ai ∈ {∗, 1}, a contradiction.

(2) ⇒ (1). It follows from Theorems 4.1 that V is locally finite. Let t ∈
TF(n). By Proposition 5.1 it is enough to show that tFn (1, . . . ,1) = 1. On the
contrary assume that tFn (1, . . . ,1) 6= 1. Then, using Proposition 3.2.2, we find
µ ∈ Fm (Fn) such that tFn (1, . . . ,1) /µ = ∗µ. Hence tFn/µ (1/µ, . . . ,1/µ) =
tFn (1, . . . ,1) /µ = ∗µ, a contradiction.

(1) and (2) ⇒ (3). It is enough to show that Fn/ϕ is projective for every
n ∈ N and ϕ ∈ Φ (Fn). It follows from (2) and Theorem 4.1 that V is locally

finite. Hence ϕ =
∨k
j=1 [pj) for some p1, . . . , pk ∈ TF(n). From (1) and Lemma

2.10 we obtain the assertion.
(3) ⇒ (4). Consider a set of equations {si = ti : i = 1, . . . , k}, where si, ti ∈

TF(n), i = 1, . . . , k, for some n ∈ N. Put ϕ :=
∨k
j=1 Θ(sj , tj). As Fn/ϕ

is finitely generated, it follows from (3) that Fn/ϕ is projective. Now, from
Proposition 2.2 we get that {si = ti : i = 1, . . . , k} is V-projective, as desired.

(4) ⇒ (1). The implication is obvious.

Corollary 5.3 If V is a subtractive Fregean variety with the finite signature
F that satisfies one of the equivalent conditions of Theorem 5.2, then V is a
primitive variety.

Proof. The proof is similar to one given in [22, Corollary 4.7] for E , see also
[20]. As usual, by H , S and PU we denote the operations of the formation of
homomorphic images, subalgebras and ultraproducts, respectively. Let Q be a
subvariety of V . It suffices to show that H (Q) ⊂ Q. Let A ∈ Q, B ∈ H (A) and
π : A → B be an epimorphism. It is well known that B can be embedded into an
ultraproduct of its finitely generated subalgebras. On the other hand, it follows
from condition (3) of Theorem 5.2 that each such subalgebra C is projective,
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and so there exist a homomorphism ι : C → A such that π ◦ ι = idC . Clearly,
ι is a monomorphism and so C ∈ S (A). Since quasivarieties are closed under
the formation of subalgebras and ultraproducts, we get B ∈ SPUS (A) ⊂ Q, as
desired.
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