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1. Introduction

In [18], Hugo Herbelin showed that, by extending the praofit calculus of in-
tuitionistic predicate logic with a restricted form of saleddelimited control opera-
tors, one can obtain a logical system which is able to derive aipagetiogic version
of Markov'’s Principle ~—3xA(X) = AxA(X), for A(x) a{=, ¥}-free formula, while re-
maining essentially intuitionistic — satisfying the disgtion and existence properties.
He also observed that with the full power of delimited cohtqeerators one can derive
the Double-negation Shift schemé&—-A(X) = —=¥YXA(X), for A(X) arbitrary.

With this article, we extend [18], by building a logical sgst that can indeed derive
Double-negation Shift, while also remaining essentiallyitionistic, that is, possess-
ing the disjunction and existence properties.

Delimited control operators have appeared in Theoretioat@uter Science, in Se-
mantics of Programming Languages, as a powerful abstraittiaccount for so-called
computational gects While being pervasive in the practise of writing computey-p
grams (for, they include facilities as basic as reading feord writing into memory,
stopping the execution of the program, or parallel companytgiving a good mathe-
matical explanation offéects is still one of the major research topics in Semantics.

An important step in that direction was a result of Filinskd][ 11], who showed
that every monadic computationdfect can be operationally simulated by the delim-
ited control operatorshiffreset introduced previously by himself and Danvy [7, 8].
However, the logical status of shieset themselves remained to be discovered, some-
thing that we hope to being contributing to with this article

We introduce briefly, by example, shiftset by adding them to-calculus extended
with natural numbers and the plus operation. Delimited@doiperators consist of two
components, delimiter (# — “reset”) and an operatoS(— “shift”). The delimiter is
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used as a special kind of brackets insidetarm, so that theperator, which can only
appear inside such “brackets”, is able to gain control o$itsounding context, up to
the delimiter. For example, in the followingterm reduction,

1+#2+8k4d4 — 1+#4{(la#2+a)/k} = 1+#4 —> 1+4->5

reset is used to delimit the sub-term+ 8k.4. Shift is then a binder, lika-abstraction,
that names the abstracted surroundings,(2, of shift by k, and replaces in its sub-
expression, 4, all occurrenceslolby the abstracted surroundings. In this c&se,not
used inside shift — this corresponds to the so-called “etkmeg’ effect that Herbelin
found out to be the computational contents behind Markovisdiple. In the next
examplek is used; the sub-term inside shift uses its surroundingecohice:

1+#2+ Skk4 + k8
-1+ #(1a#2+ a)d + (la#2+ a)8
—*1 + #(#6)+ (#10)
—T1+#6+ 10
—*17

From the logical perspective, considering natural dedadibrmalisms which can
be isomorphically presented by proafterms, we see delimited control, when added
to the syntax of such proof terms, as means of being able &saaaertain partof
the surroundings of a proof term from inside the proof terselff] The part of the
surrounding that we want to be able to access will be defineal ‘psire evaluation
context” in Sectiol R; logically, it is the surroundings opeoof term for a{=, ¥}-
free formuldd which is the predicate logic equivalent of arithmeX@:—formulae, for
which we know that classical and intuitionistic provalyildoincide. In other words,
we propose a proof-term calculus for a logic which is esséiptintuitionistic, except
that at the fragmentz‘f” we are allowed to use classical reasoning to obtain more
succinct proofs.

The paper is organised as follows. In the next Sediion 2, wednce our sys-
tem MQC'. The acronym comes from Troelstra: IQC is intuitionistiegicate logic,
MQC is minimal predicate logic (IQC without theg rule), and CQC is classical pred-
icate logic. In Sectiohl3, we characterise the relationbeipveen MQC, MQC, and
CQC; in particular, we show that an extensioptedicatdogic of Glivenko’s Theorem
holds for our system, unlike for MQC. In Sectibh 4, concegrtine reduction relation
on proof terms, we prove that: reducing a proof term does Imange its logical mean-
ing (Subject Reduction); if a proof term is not in normal forinwill further reduce

1This is to be contrasted to what happens with the (undelithitentrol operatorall/cc, which is better
known in Logic for its role in the development of classicahligability [17,/25) 26| 27] — caltc amounts
computationally to aborting the entire computation andgsiits éfect is not delimited, one has no hope of
getting a natural computational interpretation from dizgealisability: a realiser of an existential statement
needs not be a program which computes a witness for the etatquantifier.

2Following Berger|[B], we call th¢=, V}-free formulae Z-formulae, and denote them I8 T, U, while
general formulae are denoted AyB, C.
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Table 1: Natural deduction system of MQC

(Progress); and that every reduction sequence of prookteriinite and ends with a
normal form (Normalisation), thus obtaining the disjunatiand existence properties
for MQC". In the final Sectiofl5, we discuss related works and somedutork.

2. The system MQC

The natural deduction system of MQ@ shown in TablE]l. It consists of the proof
rules of minimal intuitionistic predicate logic MQC, plusd new ones, “shift”§) and
“reset” (#).

The turnstile symbol#” can carry an annotation =&formulaT — which is neither
used nor changed by the intuitionistic rules. We use the-edidl symbok for this
purpose, to mean that there either is an annotating forimuta there is none. In the
proof rules where the wild-card appears both above and btievine, it means that
either there is the same annotation both above and belohabtttere is no annotation
above and no annotation below.



The rule (#) can only be applied when the conclusionisfarmulaT. It acts as a
delimiter in the proof tree, (re-)initialising the annatat with the formular ; from that
point upwards in the tree, classical reasoning is allowedt-dnly so because we are
ultimately proving a-formula. The rule §) can then be used, inside a sub-tree with
(#) at its root, as a kind of{(-g) rule. Its role is to “escape” to the nearest enclosing
delimiter once an intuitionistic witness for tReformula from the annotation has been
found.

However, note that, although there can be arbitrarily masssiof the (#) andS)
rules in a derivation tre@nly oneformulaT is allowed to appear in annotations, glob-
ally, of a derivation tree. Were we in IQC, a natural choicetfe globalT would be
1.

As examples, we give the derivations for (generalisatidyihe minimal-predicate-
logic version§ of Markov’s Principle,

(T=S)=({(S=T)=>T)=S, (MP7)
and Double-negation Shift,
VXA =>T)=T)= (VXA =T)=>T, (DNSy)

where, according to the already set conventibandS areX-formulae, whileA(x) is
a general one.

- .5rss
Ax "',Sl—sT =,
ks (S=2T)=>T - Fs ST
Ax =
..-}—STﬂs ""’ST e
T=S(G=T)5TrsS
T=S(S=T)=>T+S
T=>SHr({S=>T)=>T)=>S
FT=>9=>G=>N=>1>5
(AR = T) = 1) VXA = T.AK) 5 T T e andA
YX((AX) = T) = T),YXAX) = T 1 AX) o etresh

— AX YX((AX) = T) = T),VXAX) = T 1 VYXA(X)
YX(AX) = T)=>T),YXAX) =T T
YX(AX) = T)=>T),YXAX)=>TrT
YX(AX) = T)=>T)FHW¥XAX)=>T)=>T
FYX(A)=2T)=T) = (VXA =>T)=>T

E

3The distinguished formul@ plays the role of. and the hypothesi = S plays the role of theLg rule.



We now define a calculus of proof-term annotations for themteduction sys-
tem of MQC", a version of simply typed-calculus with constants for handling all
logical connectives and the delimited control operatonsl #nen a reduction system
for proof terms; the idea is that reducing a proof term déssihe process of normal-
ising a natural deduction derivation.

The definitions are based on standard treatments of Logiecadculus (see, for
example,|[32]), and standard treatmentiedalculus with shiftreset from Semantics
of Programming Languages (for example, [1]). What is nevaésdombination of the
two approaches into one, something already present, fisiatesl delimited control, in
[18].

2.1 Definition. The set ofproof termsis defined by the following inductive definition,

p,a.r :=aluplewplcase pof (adglb.r) | (p,g)[miplmp|iaplpql
AX.plpt](t,p)|dest pas (x.a) inq|#p|Sk.p

wherea, b, k, | denote hypothesis variablesy, zdenote quantifier variables, ahd, v
denote quantifier terms (individuals); henga,p is a constructor forimplication, while
Ax.pis a constructor for universal quantificatiom; €)) is a constructor for conjunction
while (t, p) is a constructor for existential quantification, apd is a destructor for
implication whilept is a destructor for universal quantification.

2.2 Remark.TheS in Sk.pis a binder, it bind& in p just asd bindsain gqin a lambda
abstractioma.g. Following standard terminology, we sometimes &alcontinuation
variable.

2.3 Definition. The subset of proof terms known ealuesis defined by:
Vi=aluVI ieVI(V,V)| V)| ap|axp

2.4 Definition. The set ofpure evaluation contexts subset of all proof terms with
one placeholder or “hole”, is defined by:

P::=[]|case Pof (a;.pillaz.p2) | 71P | m2P | dest Pas (x.a) in p|
Pql (1ag)P|Pt|uP|wP| (P p) [ (V,P)|(t,P)

The association of proof terms to natural deduction deédwmatis given in Tablg]2.
P[p] denotes the proof term obtained frdPby replacing its placeholder [ ] with the
proof termp.

In order to define a reduction relation on proof terms we aksednthe notion of
(non-pure) evaluation context.

2.5 Definition. The set ofvaluation contextis given by the following inductive defi-
nition:

E ::=[] | case E of (a;.pillaz.p2) | 71 E | m2E | dest E as (x.a) in p|
Eq|(Aaq)E|Et|uE|E|(E,p) | (VE)| (L. E)|#E
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Table 2: Proof term annotation for the natural deduction system oftViQ




The set of evaluation contexts is larger than the set of puatation contexts,
because it includes #. As beforg[p] denotes the proof term obtained fromby
replacing its placeholder [ ] with the proof terqm

2.6 Definition. The reduction relation on proof termss” is defined by the following
rewrite rules:

(Aa.p)V — pi{Vv/a} case iV of (a1.pilla.p2) — pi{V/ai}

(AX.p)t — pit/x} dest (t,V) as (x.a) in p— p{t/x}{V/a}
mi(Ve, Vo) -V, #P[Sk.p] — #p{(1a.#P[a]) /k}
#H -V E[p] — E[p']whenp — p’

The last rule is known as the “congruent closure” of the pdetgrules. The rule foS
applies only when the evaluation conté&xis pure. The reduction strategy determined
by the rules is standard call-by-value reduction! [31]

2.7 Example.The following are the proof terms corresponding to the dgidn trees
for MPt and DNS from pagé 4.

Ae.da#e(a(Ab.Sk.b))

Aa.ab#b(Ax.Sk.axk)

Remark that the proof term for MPdoes not make use of the continuation variable
k, but only uses thé& operator to pass back the valbeonce it has been found in the
course of the computation, back to the control delimiter #.

3. Relationship to MQC and CQC

To connect provability in MQ@with provability in MQC and CQC, we use the
following double-negation translation.

3.1 Definition. The superscripttranslationA” of a formulaA with respect to &-
formulaT is defined via theubscripttranslationAr, which is in turn defined by recur-
sion on the structure dk:

AT =(Ar=>T)=>T

Ar :=A if Ais atomic
(AOB)t :=Ar0OBr ford0=V, A
(A= B)r :=Ar = B'
@A)t :=3A7
(VAT :=VAT

We writeI't for the translation<)t applied to each formula of the contdxindividu-
ally.



This translation is the standard call-by-value CPS trdiusieof types [31], and
is similar to the Kuroda translation [34], thefigirence being that we add a double
negation, not only afte¥, but also after=. Interestingly, when interpreting, using
DNS, the negative translation of the Axiom of Countable €A, a transformation
from the Kuroda translation of ACinto our form, with—— after =, appears to be
needed|[21, p. 200]. Also, Avigad has remarkedLin [2] thatKlneoda translation
makes essential use of the rule.

We will denote derivation in MQCby “+*", derivation in MQC by +™, and the
one in CQC by £¢". When we say CQC, we have in mind a standard natural deductio
calculus, but where_ is replaced by a distinguished formula— which one, will be
clear from context — and correspondingly, the rule says thal = A.The following
theorem is not surprising, since, after all, our system islsgstem of classical logic,
but we give it for the sake of completeness, since this versfdKuroda’s translation
does not use theg rule in the target system.

3.2 Theorem(Equiconsistency with MQC)Given a derivation of +* A, which uses
S and# for theZ-formula T, we can build a derivation ®f +™ AT.

Proof. By induction on the derivation, using the proof terms lidetow. A line above
a sub-term marks the place where the induction hypotheajgdked.

a=1kka
Aa.p = Akk(1a.1K .p(b.Kb))
0 = Ak p(1f.q(1a fa(ib.kb)))
(P.9) = kP (1aq(lbk(a b))
71p = AKP (Ac.K (m1C))
p = Akp(lak(ua)

case pof (a1.01/laz.q2) = Ak.p(Ac. case c of (a;.qrkllaz.gzk))
AX.p = Ak K (Ax.AK .p(Ab.K b))
pt=Akp(af.ftk)
(t, p) = Ak P(Lak(, a)
dest pas (x.@) ingq= Ak p(Ac. dest cas (x.a) in k)
#ap = Ak k (p(1a.a))
Sl.p = Ak. (p(1a.a)) { 1a.K K (ka)/ 1}

O

In order to characterise MQ@rovability of certain forms of formulae with their
probability in MQC and CQC, we need the following version bétDNS schema,
which is extended with a clause handling implication, sdrimgf that is not needed
when one has theg rule. We denote byt A the formulaA = T; when it is clear
from the context, we omit the annotatidrfrom —.



3.3 Definition. The Double Negation Shift for TDNSy) is the following generalisa-
tion of the minimal-predicate-logic version of the usual ®Schema, extended with a
clause handling implication:

VX.—|T—|TA(X) = 7T (VXA(X)) (DNS\F)
(A— =7=7B) = —1-7 (A—> B) (DNS?)

The following proposition is given for IQC as Exercise 2.8f334], we give the
proof here to emphasise the role of DRI®/hen_Lg is not present.

3.4 Proposition. DNS; ™ =1-71A & AT,
Proof. Induction on the complexity oh. WhenA is atomic, AT = ——A.
(A) Both directions are via the proof term
Ac.AkIHA (K .c (Ad.K (7r1d))
(1alHg (1K .c(2d.K (m2d))) (1b.k(a, b)))).

(V) Both directions are via the proof term

Aa.dk.a(ac.

case cof (az.IHA (1l.1a1) (Ab.K (12b)) llaz.IHg (Al.1a2) (Ab.k (:2b))))
(3) Analogous to casev.

(=) From left to right via the proof term

AC.AKIHY (AK K (1a.1K” K a))
(AalH5 (AK.c(Af.K (fa))) (Abk(1a’.b))).

From right to left, had we had the ex-falso rule, we could hgiven the proof

term

Ac.AkIH (AK k(1a.abortk’a)))
(dalHZ (K .c(Af.K (fa))) (Ab.k(1&'.h))),

where ‘abort’ is a proof term foLg.
But, since we are in minimal logic, we need to use QNS

Ac.AkIH, (AK.DNST (1a.Ak” .K'a) k)
(AalHg (K .c(Af.k (fa))) (Ab.k(1a'.b))).
(V) We have:

(YXAG))T = (YXAT () & —~=(¥x=—AX))

DNS¥
Cd —lﬂ—lﬂvXA(X) g ﬁﬂvXA(X)



3.5 Lemma. I' ¢ Aif and only if[ +™ AT,

Proof. The direction right-to-left follows from the previous lenambecause DNS is
a classical theorem. The other direction is by inductiontenderivation ofl" +¢ A.
Actually, we can use the translation table of the proof ofdree{3.2 to treat all cases,
except for the-—g rule which was not covered by the translation. To show Eyat™
AT follows fromI't ™ (--A)T, we use the fact that" -—(T7) & T:

(=A = (A=T)=T)" = -~((Ar = --T) = =-T)

(=1 ﬂ—|((AT = T) = T) = ﬂ—|ﬂ—|AT (=3 —lﬂAT = AT_
o

We proved the following relationships for the provabilifiyam arbitrary formulaA
in MQC*, MQC, and CQC:

A 52 Hm AT

l[ﬂ
t* ==-A<——DNSr FM—-A

B3 _ . cp

3.6 Corollary. For any formula A, we have the following diagram:

8.2 8.5

Al s ym AT 2 e

! =

DNSr +™ ==A <—— DNS +M ====A
In particular, the statement” -—A «— +° A represents an extension of Glivenko’s
theorem|[13| 35, 36] to predicate logic.
4. Properties

In this section we will prove that MQChas the Normalisation, Disjunction, and
Existence Properties, by proving properties of the redaatelation on proof terms.

4.1 Lemma(Annotation Weakening)If I' + p: A, thenl +1 p: Aforany T.
Proof. A simple induction on the derivation. O

4.2 Lemma(Substitutions) The following hold:

1. IfT,a: A+, p: Bandl'+, q: A, thenl +, p{g/a}: B.
2. If T+, p: B(X), where x is fresh, and t is a closed term, thern, p{t/x} : B(t).

10



Proof. The proof is standard, by induction on the derivation (seesf@ample [32]).
The new rulesS and # pose no problems, since we can use the identit@éo@a} =
#(p{a/a}) and Sk.p){g/a} = Sk.(p{a/a}) whenk is fresh. O

4.3 Lemma (Decomposition) If T +r P[Sk.p] : B, then there is a formula A and
derivationsl,k: A= T +r p: T andl',a: A+t P[a] : B.

Proof. The proof is by induction on the derivation. We only need tosider the

rules that can generate a pure evaluation context of thareshform. Of the rules

that we consider, for the intuitionistic rules, the proo$isiply by using the induction
hypothesis, as shown below for the rule; and the only non-intuitionistic rule to
consider isS, because # does not generate a pure evaluation context.

e For A, there are two cases to consider, depending on whether taepaluation

context is P[Sk.p], q) or (V, P[Sk.p]), but the proofs are analogous. Let the last
rule in the derivation be:

'y P[Skp] 1 B1 F'rrq: B2
I (P[Sk p],C]) :B1AB2

The induction hypothesis gives us a formi@aand two derivationd;, k : A; =

Trr p: TandlLa: Ay +r P[a] : By, from which the goal follows by choosing
A=A

e For S, the pure evaluation context must be the empty one, so thedas rule
is:

ILk:B=Trrp:T
[+r [Skp]: B

If we setA := B, the goal follows from the premise of the rule above and, for
ILa:Atrr[a]: A fromthe A rule.

O
4.4 Lemma(Annotation Strengtheningl +sV: T —T+V: T

Proof. The proof is by induction on the derivation and very simples ¥vly need to
consider the intuitionistic rules that introduce a valud #rat prove &-formula, that
is, the rules A, A, Vi, V2, and3,. S and # do not introduce a value. O

4.5 Theorem(Subject Reduction)lIf T+, p: Aand p— g, thenl'+, q: A.

Proof. The proof is by induction on the derivation and is standaeg (®r example
[32]), by using Substitutions Lemnia 4.2 and Decompositiemma4.B. Below, we
consider the new rules and, for illustration, one of theitiduaistic rules.

11



(#) We havel” +, #p and # — g for someq. We look at three possible cases,
because there are three rules for rewriting a term of fopm i q = #q' and
the reduction was by the congruence rule, we have> ¢’; now use IH and
the # rule to finish the proof. Ipis a value andy = p, thenT +r q : T;
now use Strengthening Lemimal4.4 to concllideq : T. The third case is when
p = P[Sk.p'] andq = #p'{(1a.#P[a]) /k}, and the proofis by combining Lemmas
4.2 and4B.

(S) This case is impossible, since there are no rules for redwucterm of formSk.p
on its own, and the set of evaluation contexts does not irdudause fosSk.[].

(ALt) We havel' +, p: AAB, T+, mp: A andrip — q. If the reduction was by
the congruence rule, thenp= 71 for someq’, and we can use IH. Otherwise,
p = (V1,Vz) andq = Vq, andl’ +, p : AA B must have been proved by the
rule, which is enough.

O

While the last theorem shows that reducing a proof term doeshange its logical
specification, the next one shows that a proof term which idmoormal form does
not get “stuck”.

4.6 Theorem(Progress) If -, p : A, pis not a value, and p is not of fornf&k.p’],
then p reduces in one step to some proof term r.

Proof. By induction on the derivation. The cases,A=)), and {,) introduce a value,
while the case&) introduces aSk.p term, so they are impossible.

(A1) We have that, (p,q) : AA Band (o, g) is neither a value nor of forr@[Sk. p'].
Then also none op, g is of form P[Sk.p’]. If pis not a value, by IH, for some
r, (p,q) — (r,q). If pis avalue, thelg must be a non-value, and then we use IH

ong.

(/\é) We have that, m1p : A and thatrp, hencep itself, is not of formP[Sk.p’].
If pis avalue, then it must be a paWy V,), sor1(Vi, Vo) — V1. If pis nota
value, we can use IH to obtainp — m1r for somer.

(Vi) Fromr, t1p: AV Bandi;p a non-value and not of form[Sk.p’], we have that
p is not a value and not of that form, so we use IH to obtain sunch thatp — r,
hence p — wur.

(VE) We haver, case p of (a;.pillaz.p2) : C. If pis a value, then it is of forngV,
thereforecase iV of (a;.pillaz.p2) — pi{V/a}. If pis of form P[Sk.p’], then
so iscase p of (a;.pillag.p2). Otherwise, we use IH to obtain ansuch that
case p of (a;.pillaz.p2) — case r of (az.pillaz.p2).

(=e) We haver, pqg: B. If either p or g is of form P[Sk.p’], then so ispg. If pis a
value, then it is of formia.r; if qis a value, theriE[(1ar)q] — E[r{g/a}]; if q
is not a value, by IHE[(Aa.r)g] — E[(1a.r)q] for someq’. Otherwise, by IH,
p — r for somer, sopq — rq.

12



(Ve) We have-, pt: A(t). If pis of form P[Sk.p’], then so ispt. If pis a value, then
it is of form Ax.r, hence {x.r)t — r{t/x}. Otherwise, by IHp — r for somer,
sopt — rt.

(31) Fromk, (t,p) : A(t) and ¢, p) a non-value and not of forrR[Sk.p’], we have
that p is not a value and not of that form, so we use IH to obtaim anch that

(t.p) = (t.1).

(Je) We haver, dest pas (x.a) inq: C. If pis a value, then it is of formt(V),
thereforedest (t,V) as (x.a) in g — qf{t/x}{V/a}. If pis of form P[Sk.p'],
then so isdest p as (x.@) in g. Otherwise, we use IH to obtain arsuch that
dest pas (x.a@) inq— destr as (x.a) inq.

(#) We haver, #p : T. If pis a value, then g — p. If p = P[Sk.p’], then

#p — #p'{1a#P[a]/k}. If pis neither a value nor of fornP[Sk.p’], by IH,
p— p,so#H — #p'.

O

4.7 Corollary (Normalisation) For every closed proof termgpsuch that-* pg : A,
there is a finite reduction pathop— p1 — ... — pn ending with a value p

Proof. This is a consequence of Subject Reduction and Progressf=a derivation
treer* po : A, with no annotations at the root, can not reduce to the fBfSk. p].

It is clear that the reduction path must have finite length¢esithis is an extension of
reduction of simply typed-calculus with orthogonal rewrite rules for shift and reset
reducing # removes a reset, while reducinBpSk. p] removes a shift. O

4.8 Corollary (Disjunction and Existence Properties) +* Av B, thenr* A or+* B.
If +* AXA(X), then there exists a closed term t such thia#(t).

Proof. Let +* p : AV B. By Normalisation and Subject Reduction, for somg
p—---— Vandt* V: AV B. SinceV is a valueV must be of formV’ or V',
therefore either* V' : Aor+* V' : B. The case for3” is analogous. O

5. Related and future work

5.1. Double-negation Shift
The first use of a schema equivalent to DNS appears to be inlhogita by Barcan
[4,13,[12], who introduced what is today known as Barcan'sifaia,
YXOA(X) — OVXA(X),
or, equivalently,
QAXA(X) — JOA(X).

Veldman kindly pointed to us that DNS is also known as Kursddnjecture [28].
In [24], Kripke showed that Kuroda’s Conjecture and MarlgRtinciple are underiv-
able in intuitionistic logic. (however, see also|[22] foitimism of Kripke's argument)
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In [23, Section 2.11], Kreisel used the principle
=YnA(n) = dn-A(n), (GMP)

for A(n) an arbitrary formula, to deal with implication while giyra translation of
formulae of Analysis into functionals of finite type. In [3@liva calls this principle
the Generalised Markov Principle (GMP) and remarks that' HADNS < —--GMP.
Kreisel does not give a justification of GMP in his paper.
The term “double negation shift” appears for the first timd3g] to denote the

formula

Vnﬂ—|A(n) = ﬂ—|VnA(n). (DNS)
There, Spector builds upon previous works of Godel [14/1H§, namely he realises
DNS by adding the schema of bar recursion to Godel's systerh& name “bar recur-

sion” comes from the Bar Principle of Brouwer which is usefuistifying it. However,
Spector attaches no particular interest to the DNS scheslg ihe writes:

The schema [DNS] is chosen not because we believe it is dfioristic
significance, but to provide a formal system in which clessimalysis is
easily interpreted, and whose logical basis is intuitibig33]

We treat DNS at the level of predicate logic, not of arithmetind we plan to
investigate in the future the status of this change.

5.2. Negative translation of Countable Choice
The Axiom of Countable Choice,

VO A(X, y) = FOPYXCA(X, (X)), (ACo)

is a formula schema of HA Heyting Arithmetic in all finite types. The type 0 stands
for the set of natural numben§, the type 1= 0 — 0 stands for the function§ — N,
2 stands for the functionals (8 0) — 0, and so onp is a type variable.

Spector showed that the Kuroda [21, p.163] negative tréaosla-—(ACy*), of
AC,

VxXO-—FyP A" (x, y) = FF0PYx0--A% (X, £(X)), (ACY)

is provable from DNS and the intuitionistic AC Since AG is realisable in HA,
and DNS is realisable by bar recursion, so is{}‘AG:—Hs approach was extended to the
Axiom of Dependent Choice (DC) by Luckhardt[29] and Howak£l][ In recentyears,
Kohlenbach, Berger, and Oliva gave their own versions ofrbaunrsion (see [5] for a
comparison).

Since we treat DNS at the level of logic, we are only able tegnopenproof
term deriving the negative translation of AC

VXO=7 -1V AT(X Y) = ~1-rIFOPYCrr Ar(x, F(X). (ACor)

Given a variables to denote a proof of the intuitionistic ACwe can use a proof
term similar to the one of DNSfor deriving the above schema:

Aa. Ak #k(c(Ax.SK .ax(2d.K (vd)))),
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wherey is a proof term foAyAr (x,y) = JyAT(x,y).

The proof term being open means that we can not immediateljt fisr computa-
tion. We would have to either develop a realisability intetption for MQC, or add
delimited control operators to an intuitionistic systenthngtrong existential quanti-
fiers, like Martin-Lof’s type theory, which can derive AC

5.3. Herbelin’s calculus for Markov Principle

In [18], Herbelin presented 1Q&p, an intuitionistic predicate logic that can derive
Markov'’s Principle. Our MQC has been developed starting from his calculus. There
are two important dferences between the two.

First, derivations of IQ§p are annotated by eontextof X-formulae, not just one
formula. This permits to have a derivation which uses midtgnd diferent instances
of Markov’s Principle. Had we had context-annotations a#i,vitewould have been
possible to have the following characterisation of proliglaf X-formulaesS:

g B2, BE

T

MP "i S<—|-i -=S

¢S

by def. of ()*

Proving the normalisation of such a context-annotatedwef MQC' remains future
work.

Second, the typing and the reduction rules for delimitedraboperators of IQp
are a restriction of those for MQC Consider the typing rules:

Chogtap: T Frap:T (@:T)eA
CarcH THROW

I'kpcatch,p: T I ka throw,p @ A

While catch is just #, the proof ternthrow p is a particular case &$k.p that does
not use the continuation variatkénsidep, something already seen with the proofterm
deriving MP of Exampl€ 2]7.

5.4. Final remarks

We were led to the investigations on the logical meaning bfrdted control oper-
ators through our studies of constructive completenessfpreomething described in
the author’s thesis [20].

The related works section of Chapter 4 |of|[20] contains ma@ekhround on the
Computer Science aspects of delimited control operators.
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