
ar
X

iv
:1

01
2.

09
29

v1
 [

m
at

h.
LO

]
4

D
ec

 2
01

0

Delimited control operators prove Double-negation Shift

Danko Ilik

Address: bul. Jane Sandanski 43-4/5, 1000 Skopje, Republic of Macedonia
E-mail: dankoilik@gmail.com

Abstract

We propose an extension of minimal intuitionistic predicate logic, based on delimited
control operators, that can derive the predicate-logic version of the Double-negation
Shift schema, while preserving the disjunction and existence properties.

Key words: double negation shift, delimited control operators, intuitionistic logic,
Markov’s principle
2000 MSC:03B20, 03B35, 03B40, 68N18, 03F55, 03F50, 03B55

1. Introduction

In [18], Hugo Herbelin showed that, by extending the proof-term calculus of in-
tuitionistic predicate logic with a restricted form of so-calleddelimited control opera-
tors, one can obtain a logical system which is able to derive a predicate-logic version
of Markov’s Principle,¬¬∃xA(x)⇒ ∃xA(x), for A(x) a {⇒,∀}-free formula, while re-
maining essentially intuitionistic – satisfying the disjunction and existence properties.
He also observed that with the full power of delimited control operators one can derive
the Double-negation Shift schema,∀x¬¬A(x)⇒ ¬¬∀xA(x), for A(x) arbitrary.

With this article, we extend [18], by building a logical system that can indeed derive
Double-negation Shift, while also remaining essentially intuitionistic, that is, possess-
ing the disjunction and existence properties.

Delimited control operators have appeared in Theoretical Computer Science, in Se-
mantics of Programming Languages, as a powerful abstraction to account for so-called
computational effects. While being pervasive in the practise of writing computer pro-
grams (for, they include facilities as basic as reading fromand writing into memory,
stopping the execution of the program, or parallel computation), giving a good mathe-
matical explanation of effects is still one of the major research topics in Semantics.

An important step in that direction was a result of Filinski [10, 11], who showed
that every monadic computational effect can be operationally simulated by the delim-
ited control operatorsshift/reset, introduced previously by himself and Danvy [7, 8].
However, the logical status of shift/reset themselves remained to be discovered, some-
thing that we hope to being contributing to with this article.

We introduce briefly, by example, shift/reset by adding them toλ-calculus extended
with natural numbers and the plus operation. Delimited control operators consist of two
components, adelimiter (# – “reset”) and an operator (S – “shift”). The delimiter is

Preprint submitted to Elsevier December 7, 2010

http://arxiv.org/abs/1012.0929v1

used as a special kind of brackets inside aλ-term, so that theoperator, which can only
appear inside such “brackets”, is able to gain control of itssurrounding context, up to
the delimiter. For example, in the followingλ-term reduction,

1+ #2+ Sk.4 → 1+ #4{ (λa.#2+ a)/ k} = 1+ #4 → 1+ 4→ 5,

reset is used to delimit the sub-term 2+ Sk.4. Shift is then a binder, likeλ-abstraction,
that names the abstracted surroundings, 2+ �, of shift by k, and replaces in its sub-
expression, 4, all occurrences ofk by the abstracted surroundings. In this case,k is not
used inside shift – this corresponds to the so-called “exceptions” effect that Herbelin
found out to be the computational contents behind Markov’s Principle. In the next
example,k is used; the sub-term inside shift uses its surrounding context twice:

1+ #2+ Sk.k4+ k8

→1+ #(λa.#2+ a)4+ (λa.#2+ a)8

→+1+ #(#6)+ (#10)

→+1+ #6+ 10

→+17

From the logical perspective, considering natural deduction formalisms which can
be isomorphically presented by proof-λ-terms, we see delimited control, when added
to the syntax of such proof terms, as means of being able to accessa certain partof
the surroundings of a proof term from inside the proof term itself.1 The part of the
surrounding that we want to be able to access will be defined asa “pure evaluation
context” in Section 2; logically, it is the surroundings of aproof term for a{⇒,∀}-
free formula,2 which is the predicate logic equivalent of arithmeticΣ0

1-formulae, for
which we know that classical and intuitionistic provability coincide. In other words,
we propose a proof-term calculus for a logic which is essentially intuitionistic, except
that at the fragment “Σ0

1” we are allowed to use classical reasoning to obtain more
succinct proofs.

The paper is organised as follows. In the next Section 2, we introduce our sys-
tem MQC+. The acronym comes from Troelstra: IQC is intuitionistic predicate logic,
MQC is minimal predicate logic (IQC without the⊥E rule), and CQC is classical pred-
icate logic. In Section 3, we characterise the relationshipbetween MQC+, MQC, and
CQC; in particular, we show that an extension topredicatelogic of Glivenko’s Theorem
holds for our system, unlike for MQC. In Section 4, concerning the reduction relation
on proof terms, we prove that: reducing a proof term does not change its logical mean-
ing (Subject Reduction); if a proof term is not in normal form, it will further reduce

1This is to be contrasted to what happens with the (undelimited) control operatorcall/cc, which is better
known in Logic for its role in the development of classical realisability [17, 25, 26, 27] – call/cc amounts
computationally to aborting the entire computation and, since its effect is not delimited, one has no hope of
getting a natural computational interpretation from classical realisability: a realiser of an existential statement
needs not be a program which computes a witness for the existential quantifier.

2Following Berger [6], we call the{⇒,∀}-free formulae,Σ-formulae, and denote them byS,T,U, while
general formulae are denoted byA,B,C.

2

A ∈ Γ
Ax

Γ ⊢⋄ A

Γ ⊢⋄ A1 Γ ⊢⋄ A2
∧I

Γ ⊢⋄ A1 ∧ A2

Γ ⊢⋄ A1 ∧ A2
∧i

EΓ ⊢⋄ Ai

Γ ⊢⋄ Ai
∨i

IΓ ⊢⋄ A1 ∨ A2

Γ ⊢⋄ A1 ∨ A2 Γ,A1 ⊢⋄ C Γ,A2 ⊢⋄ C
∨E

Γ ⊢⋄ C

Γ,A1 ⊢⋄ A2 ⇒I
Γ ⊢⋄ A1⇒ A2

Γ ⊢⋄ A1⇒ A2 Γ ⊢⋄ A1 ⇒E
Γ ⊢⋄ A2

Γ ⊢⋄ A(x) x-fresh
∀I

Γ ⊢⋄ ∀xA(x)
Γ ⊢⋄ ∀xA(x)

∀E
Γ ⊢⋄ A(t)

Γ ⊢⋄ A(t)
∃I

Γ ⊢⋄ ∃x.A(x)
Γ ⊢⋄ ∃x.A(x) Γ,A(x) ⊢⋄ C x-fresh

∃E
Γ ⊢⋄ C

Γ ⊢T T
(“reset”)

Γ ⊢⋄ T
Γ,A⇒ T ⊢T T

S (“shift”)
Γ ⊢T A

Table 1: Natural deduction system of MQC+

(Progress); and that every reduction sequence of proof terms is finite and ends with a
normal form (Normalisation), thus obtaining the disjunction and existence properties
for MQC+. In the final Section 5, we discuss related works and some future work.

2. The system MQC+

The natural deduction system of MQC+ is shown in Table 1. It consists of the proof
rules of minimal intuitionistic predicate logic MQC, plus two new ones, “shift” (S) and
“reset” (#).

The turnstile symbol “⊢” can carry an annotation – aΣ-formulaT – which is neither
used nor changed by the intuitionistic rules. We use the wild-card symbol⋄ for this
purpose, to mean that there either is an annotating formulaT, or there is none. In the
proof rules where the wild-card appears both above and belowthe line, it means that
either there is the same annotation both above and below, or that there is no annotation
above and no annotation below.

3

The rule (#) can only be applied when the conclusion is aΣ-formulaT. It acts as a
delimiter in the proof tree, (re-)initialising the annotation with the formulaT; from that
point upwards in the tree, classical reasoning is allowed – but, only so because we are
ultimately proving aΣ-formula. The rule (S) can then be used, inside a sub-tree with
(#) at its root, as a kind of (¬¬E) rule. Its role is to “escape” to the nearest enclosing
delimiter once an intuitionistic witness for theΣ-formula from the annotation has been
found.

However, note that, although there can be arbitrarily many uses of the (#) and (S)
rules in a derivation tree,only oneformulaT is allowed to appear in annotations, glob-
ally, of a derivation tree. Were we in IQC, a natural choice for the globalT would be
⊥.

As examples, we give the derivations for (generalisations of) the minimal-predicate-
logic versions3 of Markov’s Principle,

(T ⇒ S)⇒ ((S⇒ T)⇒ T)⇒ S, (MPT)

and Double-negation Shift,

∀x ((A(x)⇒ T)⇒ T)⇒ (∀xA(x)⇒ T)⇒ T, (DNST)

where, according to the already set convention,T andS areΣ-formulae, whileA(x) is
a general one.

Ax
· · · ⊢S T ⇒ S

Ax
· · · ⊢S (S⇒ T)⇒ T

Ax
· · · ,S ⊢S S

S
· · · ,S ⊢S T

⇒I
· · · ⊢S S⇒ T

⇒E
· · · ⊢S T

⇒E
T ⇒ S, (S⇒ T)⇒ T ⊢S S

#
T ⇒ S, (S⇒ T)⇒ T ⊢ S

⇒I
T ⇒ S ⊢ ((S⇒ T)⇒ T)⇒ S

⇒I
⊢ (T ⇒ S)⇒ ((S⇒ T)⇒ T)⇒ S

Ax· · ·

· · ·
∀E,⇒R, and Ax

∀x ((A(x)⇒ T)⇒ T) ,∀xA(x)⇒ T,A(x)→ T ⊢T T
S

∀x ((A(x)⇒ T)⇒ T) ,∀xA(x)⇒ T ⊢T A(x)
∀I , x-fresh

∀x ((A(x)⇒ T)⇒ T) ,∀xA(x)⇒ T ⊢T ∀xA(x)
⇒E

∀x ((A(x)⇒ T)⇒ T) ,∀xA(x)⇒ T ⊢T T
#

∀x ((A(x)⇒ T)⇒ T) ,∀xA(x)⇒ T ⊢ T
⇒I

∀x ((A(x)⇒ T)⇒ T) ⊢ (∀xA(x)⇒ T)⇒ T
⇒I

⊢ ∀x ((A(x)⇒ T)⇒ T)⇒ (∀xA(x)⇒ T)⇒ T

3The distinguished formulaT plays the role of⊥ and the hypothesisT ⇒ S plays the role of the⊥E rule.

4

We now define a calculus of proof-term annotations for the natural deduction sys-
tem of MQC+, a version of simply typedλ-calculus with constants for handling all
logical connectives and the delimited control operators, and then a reduction system
for proof terms; the idea is that reducing a proof term describes the process of normal-
ising a natural deduction derivation.

The definitions are based on standard treatments of Logic asλ-calculus (see, for
example, [32]), and standard treatment ofλ-calculus with shift/reset from Semantics
of Programming Languages (for example, [1]). What is new is the combination of the
two approaches into one, something already present, for restricted delimited control, in
[18].

2.1 Definition. The set ofproof termsis defined by the following inductive definition,

p, q, r ::= a | ι1p | ι2p | case p of (a.q‖b.r) | (p, q) | π1p | π2p | λa.p | pq |

λx.p | pt | (t, p) | dest p as (x.a) in q | #p | Sk.p

wherea, b, k, l denote hypothesis variables,x, y, zdenote quantifier variables, andt, u, v
denote quantifier terms (individuals); hence,λa.p is a constructor for implication, while
λx.p is a constructor for universal quantification; (p, q) is a constructor for conjunction
while (t, p) is a constructor for existential quantification, andpq is a destructor for
implication whilept is a destructor for universal quantification.

2.2 Remark.TheS in Sk.p is a binder, it bindsk in p just asλ bindsa in q in a lambda
abstractionλa.q. Following standard terminology, we sometimes callk a continuation
variable.

2.3 Definition. The subset of proof terms known asvaluesis defined by:

V ::= a | ι1V | ι2V | (V,V) | (t,V) | λa.p | λx.p

2.4 Definition. The set ofpure evaluation contexts, a subset of all proof terms with
one placeholder or “hole”, is defined by:

P ::= [] | case P of (a1.p1‖a2.p2) | π1P | π2P | dest P as (x.a) in p |

Pq | (λa.q)P | Pt | ι1P | ι2P | (P, p) | (V,P) | (t,P)

The association of proof terms to natural deduction derivations is given in Table 2.
P[p] denotes the proof term obtained fromP by replacing its placeholder [] with the
proof termp.

In order to define a reduction relation on proof terms we also need the notion of
(non-pure) evaluation context.

2.5 Definition. The set ofevaluation contextsis given by the following inductive defi-
nition:

E ::= [] | case E of (a1.p1‖a2.p2) | π1E | π2E | dest E as (x.a) in p |

Eq | (λa.q)E | Et | ι1E | ι2E | (E, p) | (V,E) | (t,E) | #E

5

(a : A) ∈ Γ
Ax

Γ ⊢⋄ a : A

Γ ⊢⋄ p : A1 Γ ⊢⋄ q : A2
∧I

Γ ⊢⋄ (p, q) : A1 ∧ A2

Γ ⊢⋄ p : A1 ∧ A2
∧i

EΓ ⊢⋄ πi p : Ai

Γ ⊢⋄ p : Ai
∨i

IΓ ⊢⋄ ιi p : A1 ∨ A2

Γ ⊢⋄ p : A1 ∨ A2 Γ, a1 : A1 ⊢⋄ q1 : C Γ, a2 : A2 ⊢⋄ q2 : C
∨E

Γ ⊢⋄ case p of (a1.q1‖a2.q2) : C

Γ, a : A1 ⊢⋄ p : A2
⇒I

Γ ⊢⋄ λa.p : A1⇒ A2

Γ ⊢⋄ p : A1⇒ A2 Γ ⊢⋄ q : A1
⇒E

Γ ⊢⋄ pq : A2

Γ ⊢⋄ p : A(x) x-fresh
∀I

Γ ⊢⋄ λx.p : ∀xA(x)
Γ ⊢⋄ p : ∀xA(x)

∀E
Γ ⊢⋄ pt : A(t)

Γ ⊢⋄ p : A(t)
∃I

Γ ⊢⋄ (t, p) : ∃x.A(x)

Γ ⊢⋄ p : ∃x.A(x) Γ, a : A(x) ⊢⋄ q : C x-fresh
∃E

Γ ⊢⋄ dest p as (x.a) in q : C

Γ ⊢T p : T
(“reset”)

Γ ⊢⋄ #p : T
Γ, k : A⇒ T ⊢T p : T

S (“shift”)
Γ ⊢T Sk.p : A

Table 2: Proof term annotation for the natural deduction system of MQC+

6

The set of evaluation contexts is larger than the set of pure evaluation contexts,
because it includes #. As before,E[p] denotes the proof term obtained fromE by
replacing its placeholder [] with the proof termp.

2.6 Definition. The reduction relation on proof terms “→” is defined by the following
rewrite rules:

(λa.p)V→ p{V/a} case ιiV of (a1.p1‖a2.p2)→ pi{V/ai}

(λx.p)t→ p{t/x} dest (t,V) as (x.a) in p→ p{t/x}{V/a}

πi(V1,V2)→ Vi #P[Sk.p] → #p {(λa.#P[a]) /k}

#V → V E[p] → E[p′] when p→ p′

The last rule is known as the “congruent closure” of the preceding rules. The rule forS
applies only when the evaluation contextP is pure. The reduction strategy determined
by the rules is standard call-by-value reduction. [31]

2.7 Example.The following are the proof terms corresponding to the derivation trees
for MPT and DNST from page 4.

λe.λa.#e(a(λb.Sk.b))

λa.λb.#b(λx.Sk.axk)

Remark that the proof term for MPT does not make use of the continuation variable
k, but only uses theS operator to pass back the valueb, once it has been found in the
course of the computation, back to the control delimiter #.

3. Relationship to MQC and CQC

To connect provability in MQC+with provability in MQC and CQC, we use the
following double-negation translation.

3.1 Definition. The superscripttranslationAT of a formulaA with respect to aΣ-
formulaT is defined via thesubscripttranslationAT , which is in turn defined by recur-
sion on the structure ofA:

AT :=(AT ⇒ T)⇒ T

AT :=A if A is atomic

(A�B)T :=AT�BT for � = ∨,∧

(A⇒ B)T :=AT ⇒ BT

(∃A)T :=∃AT

(∀A)T :=∀AT

We writeΓT for the translation (−)T applied to each formula of the contextΓ individu-
ally.

7

This translation is the standard call-by-value CPS translation of types [31], and
is similar to the Kuroda translation [34], the difference being that we add a double
negation, not only after∀, but also after⇒. Interestingly, when interpreting, using
DNS, the negative translation of the Axiom of Countable Choice AC0, a transformation
from the Kuroda translation of AC0 into our form, with¬¬ after⇒, appears to be
needed [21, p. 200]. Also, Avigad has remarked in [2] that theKuroda translation
makes essential use of the⊥E rule.

We will denote derivation in MQC+ by “⊢+”, derivation in MQC by “⊢m”, and the
one in CQC by “⊢c”. When we say CQC, we have in mind a standard natural deduction
calculus, but where⊥ is replaced by a distinguished formulaT – which one, will be
clear from context – and correspondingly, the⊥E rule says thatT ⇒ A.The following
theorem is not surprising, since, after all, our system is a subsystem of classical logic,
but we give it for the sake of completeness, since this version of Kuroda’s translation
does not use the⊥E rule in the target system.

3.2 Theorem(Equiconsistency with MQC). Given a derivation ofΓ ⊢+ A, which uses
S and# for theΣ-formula T, we can build a derivation ofΓT ⊢

m AT .

Proof. By induction on the derivation, using the proof terms listedbelow. A line above
a sub-term marks the place where the induction hypothesis isapplied.

a = λk.ka

λa.p = λk.k
(

λa.λk′.p
(

λb.k′b
))

pq= λk.p (λ f .q (λa. f a (λb.kb)))

(p, q) = λk.p (λa.q(λb.k (a, b)))

π1p = λk.p (λc.k (π1c))

ι1p = λk.p (λa.k (ι1a))

case p of (a1.q1‖a2.q2) = λk.p (λc. case c of (a1.q1k‖a2.q2k))

λx.p = λk.k
(

λx.λk′.p
(

λb.k′b
))

pt = λk.p (λ f . f tk)

(t, p) = λk.p (λa.k(t, a))

dest p as (x.a) in q = λk.p (λc. dest c as (x.a) in qk)

#ap= λk.k (p(λa.a))

Sl.p = λk. (p(λa.a))
{

λa.λk′.k′ (ka)
/

l
}

In order to characterise MQC+-provability of certain forms of formulae with their
probability in MQC and CQC, we need the following version of the DNS schema,
which is extended with a clause handling implication, something that is not needed
when one has the⊥E rule. We denote by¬T A the formulaA ⇒ T; when it is clear
from the context, we omit the annotationT from¬T .

8

3.3 Definition. TheDouble Negation Shift for T(DNST) is the following generalisa-
tion of the minimal-predicate-logic version of the usual DNS schema, extended with a
clause handling implication:

∀x.¬T¬TA(x)⇒ ¬T¬T (∀x.A(x)) (DNS∀T)

(A→ ¬T¬T B)⇒ ¬T¬T (A→ B) (DNS⇒T)

The following proposition is given for IQC as Exercise 2.3.3of [34], we give the
proof here to emphasise the role of DNS⇒T when⊥E is not present.

3.4 Proposition. DNST ⊢
m ¬T¬T A⇔ AT .

Proof. Induction on the complexity ofA. WhenA is atomic,AT = ¬¬A.

(∧) Both directions are via the proof term

λc.λk.IHA
(

λk′.c
(

λd.k′ (π1d)
)

(

λa.IHB
(

λk′.c
(

λd.k′ (π2d)
))

(λb.k (a, b))
))

.

(∨) Both directions are via the proof term

λa.λk.a (λc.

case c of (a1.IHA (λl.la1) (λb.k (ι1b)) ‖a2.IHB (λl.la2) (λb.k (ι2b))))

(∃) Analogous to case (∨).

(⇒) From left to right via the proof term

λc.λk.IH→A
(

λk′.k
(

λa.λk′′.k′a
))

(

λa.IH←B
(

λk′.c
(

λ f .k′ (f a)
)) (

λb.k
(

λa′.b
)))

.

From right to left, had we had the ex-falso rule, we could havegiven the proof
term

λc.λk.IH←A
(

λk′.k
(

λa.abort(k′a)
))

(

λa.IH→B
(

λk′.c
(

λ f .k′ (f a)
)) (

λb.k
(

λa′.b
)))

,

where ‘abort’ is a proof term for⊥E.

But, since we are in minimal logic, we need to use DNS⇒
T :

λc.λk.IH←A
(

λk′.DNS⇒T
(

λa.λk′′.k′a
)

k
)

(

λa.IH→B
(

λk′.c
(

λ f .k′ (f a)
)) (

λb.k
(

λa′.b
)))

.

(∀) We have:

(∀xA(x))T =¬¬(∀xAT(x))
IH
↔ ¬¬(∀x¬¬A(x))

DNS∀T
↔ ¬¬¬¬∀xA(x)↔ ¬¬∀xA(x)

9

3.5 Lemma. Γ ⊢c A if and only ifΓT ⊢
m AT .

Proof. The direction right-to-left follows from the previous lemma, because DNS is
a classical theorem. The other direction is by induction on the derivation ofΓ ⊢c A.
Actually, we can use the translation table of the proof of Theorem 3.2 to treat all cases,
except for the¬¬E rule which was not covered by the translation. To show thatΓT ⊢

m

AT follows fromΓT ⊢
m (¬¬A)T , we use the fact that⊢m ¬¬(TT)↔ T:

(¬¬A)T = ((A⇒ T)⇒ T)T = ¬¬((AT ⇒ ¬¬T)⇒ ¬¬T)

⇔ ¬¬((AT ⇒ T)⇒ T) = ¬¬¬¬AT ⇔ ¬¬AT = AT .

We proved the following relationships for the provability of an arbitrary formulaA
in MQC+, MQC, and CQC:

⊢+ A
3.2 // ⊢m AT

3.4
��

oo 3.5 // ⊢c A

⊢+ ¬¬A DNST ⊢
m ¬¬Aoo

3.6 Corollary. For any formula A, we have the following diagram:

⊢+ ¬¬A
3.2 // ⊢m (¬¬A)T

3.4
��

oo 3.5 // ⊢c A

DNST ⊢
m ¬¬A

OO

DNST ⊢
m ¬¬¬¬Aoo

In particular, the statement⊢+ ¬¬A←→ ⊢c A represents an extension of Glivenko’s
theorem [13, 35, 36] to predicate logic.

4. Properties

In this section we will prove that MQC+ has the Normalisation, Disjunction, and
Existence Properties, by proving properties of the reduction relation on proof terms.

4.1 Lemma(Annotation Weakening). If Γ ⊢ p : A, thenΓ ⊢T p : A for any T.

Proof. A simple induction on the derivation.

4.2 Lemma(Substitutions). The following hold:

1. If Γ, a : A ⊢⋄ p : B andΓ ⊢⋄ q : A, thenΓ ⊢⋄ p{q/a} : B.
2. If Γ ⊢⋄ p : B(x), where x is fresh, and t is a closed term, thenΓ ⊢⋄ p{t/x} : B(t).

10

Proof. The proof is standard, by induction on the derivation (see for example [32]).
The new rulesS and # pose no problems, since we can use the identities (#p){q/a} =
#(p{q/a}) and (Sk.p){q/a} = Sk.(p{q/a}) whenk is fresh.

4.3 Lemma (Decomposition). If Γ ⊢T P[Sk.p] : B, then there is a formula A and
derivationsΓ, k : A⇒ T ⊢T p : T andΓ, a : A ⊢T P[a] : B.

Proof. The proof is by induction on the derivation. We only need to consider the
rules that can generate a pure evaluation context of the required form. Of the rules
that we consider, for the intuitionistic rules, the proof issimply by using the induction
hypothesis, as shown below for the∧I rule; and the only non-intuitionistic rule to
consider isS, because # does not generate a pure evaluation context.

• For∧I , there are two cases to consider, depending on whether the pure evaluation
context is (P[Sk.p], q) or (V,P[Sk.p]), but the proofs are analogous. Let the last
rule in the derivation be:

Γ ⊢T P[Sk.p] : B1 Γ ⊢T q : B2

Γ ⊢T (P[Sk.p], q) : B1 ∧ B2

The induction hypothesis gives us a formulaA1 and two derivations,Γ, k : A1⇒

T ⊢T p : T andΓ, a : A1 ⊢T P[a] : B1, from which the goal follows by choosing
A := A1.

• ForS, the pure evaluation context must be the empty one, so the last used rule
is:

Γ, k : B⇒ T ⊢T p : T
Γ ⊢T [Sk.p] : B

If we setA := B, the goal follows from the premise of the rule above and, for
Γ, a : A ⊢T [a] : A, from the Ax rule.

4.4 Lemma(Annotation Strengthening). Γ ⊢S V : T −→ Γ ⊢ V : T

Proof. The proof is by induction on the derivation and very simple. We only need to
consider the intuitionistic rules that introduce a value and that prove aΣ-formula, that
is, the rules Ax, ∧I , ∨1

I , ∨
2
I , and∃I . S and # do not introduce a value.

4.5 Theorem(Subject Reduction). If Γ ⊢⋄ p : A and p→ q, thenΓ ⊢⋄ q : A.

Proof. The proof is by induction on the derivation and is standard (see for example
[32]), by using Substitutions Lemma 4.2 and Decomposition Lemma 4.3. Below, we
consider the new rules and, for illustration, one of the intuitionistic rules.

11

(#) We haveΓ ⊢⋄ #p and #p → q for someq. We look at three possible cases,
because there are three rules for rewriting a term of form #p. If q ≡ #q′ and
the reduction was by the congruence rule, we havep → q′; now use IH and
the # rule to finish the proof. Ifp is a value andq ≡ p, thenΓ ⊢T q : T;
now use Strengthening Lemma 4.4 to concludeΓ ⊢ q : T. The third case is when
p ≡ P[Sk.p′] andq ≡ #p′{(λa.#P[a])/k}, and the proof is by combining Lemmas
4.2 and 4.3.

(S) This case is impossible, since there are no rules for reducing a term of formSk.p
on its own, and the set of evaluation contexts does not include a clause forSk.[] .

(∧1
E) We haveΓ ⊢⋄ p : A ∧ B, Γ ⊢⋄ π1p : A, andπ1p → q. If the reduction was by

the congruence rule, thenq ≡ π1q′ for someq′, and we can use IH. Otherwise,
p ≡ (V1,V2) andq ≡ V1, andΓ ⊢⋄ p : A ∧ B must have been proved by the∧I

rule, which is enough.

While the last theorem shows that reducing a proof term does not change its logical
specification, the next one shows that a proof term which is not in normal form does
not get “stuck”.

4.6 Theorem(Progress). If ⊢⋄ p : A, p is not a value, and p is not of form P[Sk.p′],
then p reduces in one step to some proof term r.

Proof. By induction on the derivation. The cases Ax, (⇒I), and (∀I) introduce a value,
while the case (S) introduces aSk.p term, so they are impossible.

(∧I) We have that⊢⋄ (p, q) : A∧ B and (p, q) is neither a value nor of formP[Sk.p′].
Then also none ofp, q is of form P[Sk.p′]. If p is not a value, by IH, for some
r, (p, q)→ (r, q). If p is a value, thenq must be a non-value, and then we use IH
onq.

(∧1
E) We have that⊢⋄ π1p : A and thatπ1p, hencep itself, is not of formP[Sk.p′].

If p is a value, then it must be a pair (V1,V2), soπ1(V1,V2) → V1. If p is not a
value, we can use IH to obtainπ1p→ π1r for somer.

(∨I) From⊢⋄ ι1p : A∨ B andι1p a non-value and not of formP[Sk.p′], we have that
p is not a value and not of that form, so we use IH to obtain anr such thatp→ r,
henceι1p→ ι1r.

(∨E) We have⊢⋄ case p of (a1.p1‖a2.p2) : C. If p is a value, then it is of formιiV,
thereforecase ιiV of (a1.p1‖a2.p2) → pi {V/ai}. If p is of form P[Sk.p′], then
so iscase p of (a1.p1‖a2.p2). Otherwise, we use IH to obtain anr such that
case p of (a1.p1‖a2.p2)→ case r of (a1.p1‖a2.p2).

(⇒E) We have⊢⋄ pq : B. If either p or q is of form P[Sk.p′], then so ispq. If p is a
value, then it is of formλa.r; if q is a value, thenE[(λa.r)q] → E[r{q/a}]; if q
is not a value, by IH,E[(λa.r)q] → E[(λa.r)q′] for someq′. Otherwise, by IH,
p→ r for somer, sopq→ rq.

12

(∀E) We have⊢⋄ pt : A(t). If p is of form P[Sk.p′], then so ispt. If p is a value, then
it is of form λx.r, hence (λx.r)t → r{t/x}. Otherwise, by IH,p→ r for somer,
so pt→ rt.

(∃I) From ⊢⋄ (t, p) : A(t) and (t, p) a non-value and not of formP[Sk.p′], we have
that p is not a value and not of that form, so we use IH to obtain anr such that
(t, p)→ (t, r).

(∃E) We have⊢⋄ dest p as (x.a) in q : C. If p is a value, then it is of form (t,V),
thereforedest (t,V) as (x.a) in q → q {t/x} {V/a}. If p is of form P[Sk.p′],
then so isdest p as (x.a) in q. Otherwise, we use IH to obtain anr such that
dest p as (x.a) in q→ dest r as (x.a) in q.

(#) We have⊢⋄ #p : T. If p is a value, then #p → p. If p ≡ P[Sk.p′], then
#p → #p′{λa.#P[a]/k}. If p is neither a value nor of formP[Sk.p′], by IH,
p→ p′, so #p→ #p′.

4.7 Corollary (Normalisation). For every closed proof term p0, such that⊢+ p0 : A,
there is a finite reduction path p0→ p1→ . . .→ pn ending with a value pn.

Proof. This is a consequence of Subject Reduction and Progress, because a derivation
tree⊢+ p0 : A, with no annotations at the root, can not reduce to the formP[Sk.p].
It is clear that the reduction path must have finite length, since this is an extension of
reduction of simply typedλ-calculus with orthogonal rewrite rules for shift and reset:
reducing #V removes a reset, while reducing #P[Sk.p] removes a shift.

4.8 Corollary (Disjunction and Existence Properties). If ⊢+ A∨ B, then⊢+ A or ⊢+ B.
If ⊢+ ∃xA(x), then there exists a closed term t such that⊢+ A(t).

Proof. Let ⊢+ p : A ∨ B. By Normalisation and Subject Reduction, for someV,
p → · · · → V and⊢+ V : A ∨ B. SinceV is a value,V must be of formι1V′ or ι2V′,
therefore either⊢+ V′ : A or ⊢+ V′ : B. The case for “∃” is analogous.

5. Related and future work

5.1. Double-negation Shift

The first use of a schema equivalent to DNS appears to be in modal logic, by Barcan
[4, 3, 12], who introduced what is today known as Barcan’s formula,

∀x�A(x)→ �∀xA(x),

or, equivalently,
♦∃xA(x)→ ∃♦A(x).

Veldman kindly pointed to us that DNS is also known as Kuroda’s Conjecture [28].
In [24], Kripke showed that Kuroda’s Conjecture and Markov’s Principle are underiv-
able in intuitionistic logic. (however, see also [22] for criticism of Kripke’s argument)

13

In [23, Section 2.11], Kreisel used the principle

¬∀nA(n)⇒ ∃n¬A(n), (GMP)

for A(n) an arbitrary formula, to deal with implication while giving a translation of
formulae of Analysis into functionals of finite type. In [30], Oliva calls this principle
the Generalised Markov Principle (GMP) and remarks that HAω ⊢ DNS↔ ¬¬GMP.
Kreisel does not give a justification of GMP in his paper.

The term “double negation shift” appears for the first time in[33] to denote the
formula

∀n¬¬A(n)⇒ ¬¬∀nA(n). (DNS)

There, Spector builds upon previous works of Gödel [14, 15,16], namely he realises
DNS by adding the schema of bar recursion to Gödel’s system T. The name “bar recur-
sion” comes from the Bar Principle of Brouwer which is used injustifying it. However,
Spector attaches no particular interest to the DNS schema itself; he writes:

The schema [DNS] is chosen not because we believe it is of intuitionistic
significance, but to provide a formal system in which classical analysis is
easily interpreted, and whose logical basis is intuitionistic. [33]

We treat DNS at the level of predicate logic, not of arithmetic, and we plan to
investigate in the future the status of this change.

5.2. Negative translation of Countable Choice
The Axiom of Countable Choice,

∀x0∃yρA(x, y)⇒ ∃ f 0→ρ∀x0A(x, f (x)), (AC0)

is a formula schema of HAω, Heyting Arithmetic in all finite types. The type 0 stands
for the set of natural numbersN, the type 1= 0→ 0 stands for the functionsN → N,
2 stands for the functionals (0→ 0)→ 0, and so on;ρ is a type variable.

Spector showed that the Kuroda [21, p.163] negative translation, ¬¬(AC0
∗), of

AC0,

∀x0¬¬∃yρA∗(x, y)⇒ ∃ f 0→ρ∀x0¬¬A∗(x, f (x)), (ACN
0)

is provable from DNS and the intuitionistic AC0. Since AC0 is realisable in HAω,
and DNS is realisable by bar recursion, so is ACN

0 . His approach was extended to the
Axiom of Dependent Choice (DC) by Luckhardt [29] and Howard [19]. In recent years,
Kohlenbach, Berger, and Oliva gave their own versions of barrecursion (see [5] for a
comparison).

Since we treat DNS at the level of logic, we are only able to give anopenproof
term deriving the negative translation of AC0,

∀x0¬T¬T∃yρAT(x, y)⇒ ¬T¬T∃ f 0→ρ∀x0¬T¬T AT(x, f (x)). (AC0T)

Given a variablec to denote a proof of the intuitionistic AC0, we can use a proof
term similar to the one of DNST for deriving the above schema:

λa.λk.#k(c(λx.Sk′.ax(λd.k′(νd)))),

14

whereν is a proof term for∃yAT(x, y)⇒ ∃yAT(x, y).
The proof term being open means that we can not immediately use it for computa-

tion. We would have to either develop a realisability interpretation for MQC+, or add
delimited control operators to an intuitionistic system with strong existential quanti-
fiers, like Martin-Löf’s type theory, which can derive AC0.

5.3. Herbelin’s calculus for Markov Principle

In [18], Herbelin presented IQCMP, an intuitionistic predicate logic that can derive
Markov’s Principle. Our MQC+ has been developed starting from his calculus. There
are two important differences between the two.

First, derivations of IQCMP are annotated by acontextof Σ-formulae, not just one
formula. This permits to have a derivation which uses multiple and different instances
of Markov’s Principle. Had we had context-annotations as well, it would have been
possible to have the following characterisation of provability of Σ-formulaeS:

⊢+ S
3.2 // ⊢i S⊥

by def. of (·)⊥

oo 3.5 // ⊢c S

MP ⊢i S

OO

⊢i ¬¬Soo

Proving the normalisation of such a context-annotated version of MQC+ remains future
work.

Second, the typing and the reduction rules for delimited control operators of IQCMP

are a restriction of those for MQC+. Consider the typing rules:

Γ ⊢α:T,∆ p : T
Catch

Γ ⊢∆ catchαp : T
Γ ⊢∆ p : T (α : T) ∈ ∆

Throw
Γ ⊢∆ throwαp : A

While catch is just #, the proof termthrow p is a particular case ofSk.p that does
not use the continuation variablek insidep, something already seen with the proof term
deriving MP of Example 2.7.

5.4. Final remarks

We were led to the investigations on the logical meaning of delimited control oper-
ators through our studies of constructive completeness proofs, something described in
the author’s thesis [20].

The related works section of Chapter 4 of [20] contains more background on the
Computer Science aspects of delimited control operators.

Acknowledgements

I would like to thank my thesis supervisor Hugo Herbelin for commenting on an
earlier draft of this paper and for many inspiring discussions.

15

References

[1] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations.
In APLAS, pages 239–254, 2007.

[2] Jeremy Avigad. A variant of the double-negation translation. Technical report,
Carnegie Mellon University, 2006. Technical Report CMU-PHIL 179.

[3] Ruth C. Barcan. The deduction theorem in a functional calculus of first order
based on strict implication.The Journal of Symbolic Logic, 11(4):115–118, 1946.

[4] Ruth C. Barcan. A functional calculus of first order basedon strict implication.
The Journal of Symbolic Logic, 11(1):1–16, 1946.

[5] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice.
In M. Baaz, S.D. Friedman, and J. Kraijcek, editors,Logic Colloquium ’01, Pro-
ceedings of the Annual European Summer Meeting of the Association for Sym-
bolic Logic, held in Vienna, Austria, August 6 - 11, 2001, volume 20 ofLecture
Notes in Logic, pages 89–107. Springer, 2005.

[6] Ulrich Berger. A computational interpretation of open induction. In F. Titsworth,
editor,Proceedings of the Ninetenth Annual IEEE Symposium on Logicin Com-
puter Science, pages 326–334. IEEE Computer Society, 2004.

[7] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed con-
texts. Technical report, Computer Science Department, University of Copen-
hagen, 1989. DIKU Rapport 89/12.

[8] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional
Programming, pages 151–160, 1990.

[9] Solomon Feferman, editor.Collected works. Publications 1938–1974, volume II.
The Clarendon Press Oxford University Press, New York, 1990.

[10] Andrzej Filinski. Representing monads. InProceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
446–457, 1994.

[11] Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1996. Technical Report CMU-CS-96-119 (144pp.).

[12] Melvin Fitting. Barcan both ways, 1997.

[13] Valery Ivanovich Glivenko. Sur quelques points de la logique de M. Brouwer. In
Bulletins de la classe des sciences, volume 15 of5, pages 183–188. Academie
Royale de Belgique, 1929.

[14] Kurt Gödel. In what sense is intuitionistic logic constructive, volume III, pages
189–200. The Clarendon Press Oxford University Press, New York, 1941. early
lecture on the Dialectica interpretation.

16

[15] Kurt Gödel. On a hitherto unutilized extension of the finitary standpoint, pages
241–251. Volume II of Feferman [9], 1958.

[16] Kurt Gödel.On an extension of finitary mathematics which has not yet beenused,
pages 271–280. Volume II of Feferman [9], 1972.

[17] Timothy Griffin. A formulae-as-types notion of control. InPOPL, pages 47–58,
1990.

[18] Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. InPro-
ceedings, 25th Annual IEEE Symposium on Logic in Computer Science (LICS
’10), Edinburgh, UK, 11-14 July 2010, page N/A. IEEE Computer Society Press,
2010.

[19] W. A. Howard. Functional interpretation of bar induction by bar recursion.Com-
positio Math., 20:107–124 (1968), 1968.

[20] Danko Ilik. Constructive Completeness Proofs and Delimited Control. PhD the-
sis,École Polytechnique, October 2010.

[21] U. Kohlenbach.Applied proof theory: proof interpretations and their use in math-
ematics. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2008.

[22] G. Kreisel. Review: [Semantical analysis of intuitionistic logic I. by Saul A.
Kripke]. The Journal of Symbolic Logic, 35(2):330–332, 1970.

[23] Georg Kreisel. Interpretation of analysis by means of constructive functionals
of finite types. Studies in Logic and The Foundations of Mathematics, pages
101–127. North-Holland Publishing Company Amsterdam, 1957.

[24] Saul A. Kripke. Semantical analysis of intuitionisticlogic i. In Formal Systems
and Recursive Functions, pages 92–130. North Holland, 1965.

[25] Jean-Louis Krivine. Typed lambda-calculus in classical zermelo-frænkel set the-
ory. Arch. Math. Log., 40(3):189–205, 2001.

[26] Jean-Louis Krivine. Realizability algebras: a program to well order R. CoRR,
abs/1005.2395, 2010.

[27] Jean-Louis Krivine. Realizability algebras II : new models of ZF+ DC. CoRR,
abs/1007.0825, 2010.

[28] Sigekatu Kuroda. Intuitionistische untersuchungen der formalistischen logik.
Nagoya Mathematical Journal, (2):35–47, 1951.

[29] Horst Luckhardt. Extensional Gödel functional interpretation. A consistency
proof of classical analysis. Lecture Notes in Mathematics, Vol. 306. Springer-
Verlag, Berlin, 1973.

17

[30] Paulo Oliva. Understanding and using Spector’s bar recursive interpretation of
classical analysis. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and
John V. Tucker, editors,CiE, volume 3988 ofLecture Notes in Computer Sci-
ence, pages 423–434. Springer, 2006.

[31] G. D. Plotkin. Call-by-name, call-by-value and the [lambda]-calculus.Theoreti-
cal Computer Science, 1(2):125–159, 1975.

[32] Morten Heine Sørensen and Pawel Urzyczyn.Lectures on the Curry-Howard
Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics).
Elsevier Science Inc., New York, NY, USA, 2006.

[33] Clifford Spector. Provably recursive functionals of analysis: aconsistency proof
of analysis by an extension of principles formulated in current intuitionistic math-
ematics. InProc. Sympos. Pure Math., Vol. V, pages 1–27. American Mathemat-
ical Society, Providence, R.I., 1962.

[34] A. S. Troelstra and D. van Dalen.Constructivism in mathematics. Vol. I, volume
121 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 1988. An introduction.

[35] Mark van Atten. The development of intuitionistic logic. In Edward N. Zalta,
editor,The Stanford Encyclopedia of Philosophy. Summer 2009 edition, 2009.

[36] Wikipedia. Glivenko’s theorem — Wikipedia, the free encyclopedia, 2009. [On-
line; accessed 1-July-2010].

18

	1 Introduction
	2 The system MQC+
	3 Relationship to MQC and CQC
	4 Properties
	5 Related and future work
	5.1 Double-negation Shift
	5.2 Negative translation of Countable Choice
	5.3 Herbelin's calculus for Markov Principle
	5.4 Final remarks

