
ar
X

iv
:1

01
2.

09
25

v1
  [

m
at

h.
G

T
] 

 4
 D

ec
 2

01
0

ON INTERSECTION OF TWO EMBEDDED SPHERES IN 3-SPACE 1

A. Rukhovich

Abstract. We find necessary and sufficient conditions on sequences x = x1, x2, . . . , xn, y = y1, y2, ..., yn

of positive integers, for existence of embeddings f, g : S2 → R
3 such that S2 − g−1(S2) is the union of

spheres with x1, x2, . . . , xn holes and S2 − f−1(S2) is the union of a sphere with y1, y2, . . . , yn holes.

We prove the following result, cf. [N, T].

Theorem 1. Let n be a positive integer and x = x1, x2, . . . , xn, y = y1, y2, ...yn be sequences of

positive integers. There exist embeddings f, g : S2 → R
3 such that

• S2 − g−1(S2) is the union of a sphere with x1 holes, a sphere with x2 holes, . . . , a sphere

with xn holes;

• S2 − f−1(S2) is the union of a sphere with y1 holes, a sphere with y2 holes, . . . , a sphere

with yn holes;

if and only if
∑n

i=1
xi =

∑n

i=1
yi = 2n− 2.

The ‘if’ part is essentially known and is essentially proved in [N] (we present elementary proofs,
one of them using the Jordan Curve Theorem and another proof by T. Nowik). The ‘only if’ part
is presumably new.

The Lando Conjecture. Let A be a disjoint union of circles in S2. Analogously let B be a

disjoint union of circles in S2. Then there exist embeddings f, g : S2 → R
3 such that S2−f−1(S2) =

A and S2 − g−1(S2) = B.

Remark. The following numbered analog of the Lando Conjecture is false. Let A1, A2, ..., Ak

be disjoint circles in S2. Analogously, let B1, B2, ..., Bk be disjoint circles in S2. There exist

embeddings f, g : S2 → R
3 such that f(Bs) = g(As) for each s ∈ {1, 2, ..., k} and f(S2), g(S2)

have no other intersection points. A counterexample is obtained for k = 3. Let A1 be a circle of
one radian southern latitude, A2 — an equator of the sphere (i.e., zero radian northern latitude),
A3 — a circle of one radian northern latitude. Let B1 = A2, B2 = A1, B3 = A3.

Proof of the ‘if ’ part. Let us construct a graph G. The vertices of G are the connected
components of S2 − g−1(S2). The vertices and are connected by an edge if the closures of the
corresponding components intersect. Denote by n the number of the vertices. The number of the
edges is equal to the number of the circles in S2−g−1(S2). This number is

∑n

i=1
xi/2. It is obvious

that G is connected. By the Jordan Curve Theorem, G is split by any vertex. So G is a tree. Hence
the number of edges is n− 1 =

∑n

i=1
xi/2. The ’if’ part follows from this. QED

Proof of the ‘if ’ part suggested by T. Nowik. By induction on the number of circles. The
statement is true for one circle (there are only 2 disks on each sphere hence n = 2). Each additional
circle splits one component into two, and adds two boundary circles. QED

Proof of the ‘only if ’ part. Let a be the number of those xi’s that are greater than 1. Define b
analogously with xi replaced by yi. Draw a + 1 circles on the sphere S2 so that these circles split
S2 into 2 disks and a annuli (an annulus is a disk with one hole). We call main circles those a− 1
circles that do not bound a disk. We may assume that xi = 1 for all i > a. For each i from 1 to a
draw xi−2 non-intersecting disks in the i-th annulus from the top. Main circles and the bounding
circles of all these disks split S2 into n surfaces, which are spheres with x1, x2, ...xn holes.

Then number all these n− 1 circles:
• for each i from 1 to a, the i-th main circle from the top we denote Ax1+x2+...+xi

;
• circles in the i-th annulus from the top we denote

Ax1+x2+...+xi+1, Ax1+x2+...+xi+2, ..., Ax1+x2+...+xi+xi+1−1.
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Similarly we draw circles corresponding to y1, . . . , yn and denote them B1, B2, . . . , Bn as above.
It suffices to prove that there exist embeddings

f, g : S2 → R
3 such that S2 ∩ g−1(S2) = ⊔n−1

i=1 Ai and S2 ∩ f−1(S2) = ⊔n−1

i=1 Bi.

We prove this by induction on n. The induction base is n = 2. Take embeddings f, g such that
f(S2) ∩ g(S2) is one circle. They are as required.

Let us prove the induction step. Suppose the Theorem is proved for 1, 2, . . . , n−1. Let us prove
it for n > 2. Since n > 2, we have x1 > 1 and y1 > 1. Without loss of generality, assume that
x1 ≥ y1. Hence

∑n−y1+2

i=2
xi = (

∑n

i=1
xi)− y1 − (y1 − 2) = 2(n− y1 +1)− 2. Then by the induction

hypothesis, there are embeddings f ′, g′ : S2 → R
3 such that the Theorem holds for the sequences

x2, x3, ..., xn−x1+2 and y2, y3, ..., yn−y1+2.

Figure 1

Denote by D the connected component of S2 − B1 that is a disk not containing other circles
Bi. If x1 = y1, then denote by C the connected component of S2−A1 that is a disk not containing
other circles Ai. If x1 > y1, then denote by C the connected component of S2 − f−1(S2) that is
bounded by the circles A1, A2, ..., Ax1−y1 . We modify the embeddings f ′, g′ by joining C and D
by y1 fingers, see Figure 1. Denote the new embeddings by f, g. We have added y1 circles both to
the first family and to the second family of circles. Number the new y1 circles by 1, 2, ..., y1 (in
both families). Each of the other circles will increase its previously assigned number by y1. So the
embeddings f, g are as required.

The induction step is proved. QED
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