TRANSITIVITY AND ROTATION SETS WITH NONEMPTY INTERIOR FOR HOMEOMORPHISMS OF THE 2-TORUS

FÁBIO ARMANDO TAL

Abstract

We show that, if f is a homeomorphism of the 2 -torus isotopic to the identity, and its lift \widetilde{f} is transitive, or even if it is transitive outside of the lift of the elliptic islands, then $(0,0)$ is in the interior of the rotation set of \widetilde{f}. This proves a particular case of Boylands conjecture.

1. Introduction

In this work we study homeomorphisms of the 2 torus isotopic to the identity. Let f be such a homeomorphism, and let \tilde{f} be a fixed lift of f to the plane, a homeomorphism of \mathbf{R}^{2} that satisfies

$$
\widetilde{f}(x+1, y+1)=\widetilde{f}(x, y)+(1,1)
$$

and $\pi(\tilde{f}(x))=f(\pi(x))$, where $\pi: \mathbf{R}^{2} \rightarrow T^{2}$ is the covering map.
Given f and \widetilde{f} we define, following [9] and [6], the rotation set of \widetilde{f} as the set of accumulation points of the subset of \mathbf{R}^{2}

$$
\left\{\left.\frac{\widetilde{f}^{n}(x)-x}{n} \right\rvert\, x \in \mathbf{R}^{2}, n \in \mathbb{Z}^{+}\right\}
$$

which is a compact convex set (see [9]).
One important question is to characterize for which homeomorphisms of the torus the rotation set of its lifts has non-empty interior. There are several consequences associated with this property. In [8], it is shown that if a lift of f has a rotation set with non-empty interior, then f has positive topological entropy. In [9] it is shown that if a point $\left(\frac{p_{1}}{q}, \frac{p_{2}}{q}\right) \in Q^{2}$ is in the interior of $\rho(\tilde{f})$, then there exists a point x in the plane such that $\tilde{f}^{q}(x)=x+\left(p_{1}, p_{2}\right)$, while the results from [7] and [10] show that, if α is a point in the interior of $\rho(\widetilde{f})$, with both coordinates irrational, then there exists a minimal set K_{α} such that the restriction of f to K_{α} is regularly semi-conjugate to the translation by α.

While the dynamics tied to the interior of the rotation set is somewhat well understood, a description of the dynamics implied by the extremal points of the rotation set when it has interior is somewhat lacking, even for the cases where f is area preserving. One standing conjecture in this direction is the Boyland conjecture, explained below:

[^0]Given an area preserving homeomorphism of the torus f and a fixed lift \widetilde{f}, one can consider the rotation vector of the Lebesgue measure λ for \widetilde{f},

$$
\rho_{\lambda}(\tilde{f})=\int_{[0,1] \times[0,1]} \tilde{f}(x)-x d \lambda
$$

An homeomorphisms f isotopic to the identity such that $\rho_{\lambda}(\widetilde{f})=(0,0)$ is usually called in the literature an irrotational homeomorphism. Whenever we speak of an irrotational homeomorphisms, an specific lift for f is fixed.

Boyland's conjecture for the torus claims that, if f is an irrotational homeomorphisms and the interior of $\rho(\widetilde{f})$ is non-empty, then $(0,0)$ is in the interior of the rotation set.

Another important dynamical property of homeomorphisms which has received attention recently is transitivity. In [4] it was shown that \mathcal{C}^{1} generically, an area preserving diffeomorphism of the torus is transitive. In [3], the authors showed that, \mathcal{C}^{0} generically, if f is irrotational, then \tilde{f} is transitive in the whole plane. The work [4] suggests this is also true \mathcal{C}^{1} generically.

In [1] it is shown that, if g is a homeomorphism of the closed annulus whose lift \widetilde{g} to the strip $\mathbf{R} \times[0,1]$ is transitive, and if there are no fixed point in the boundary of the annulus, then 0 is in the interior of the rotation interval of \widetilde{g}. Some of the ideas presented in this note follow from that paper.

In [5] the authors study the relationship between transitivity, entropy and rotation set, showing that if f is $\mathcal{C}^{1+\varepsilon}$, has topological entropy, and the lift of f to every finite covering of the torus is transitive, then the rotation set of \widetilde{f} has non-empty interior.

Here we study homeomorphism of the 2-torus isotopic to the identity which have the following property:

Definition 1. A lift \tilde{f} of a homeomorphism of the torus isotopic to the identity is said to have the Property T if there exists a point x_{T} in \mathbf{R}^{2} such that the omegalimit of the orbit of x_{T} by $\widetilde{f}, \omega\left(x_{T}\right)$, contains all \mathbb{Z}^{2} translates of x_{T}, that is, $\pi^{-1}\left(\pi\left(x_{T}\right)\right) \subset \omega\left(x_{T}\right)$.

The above hypothesis is clearly weaker than requesting transitivity of \widetilde{f}. In fact, it covers the following case, which is of relevance for measure-preserving homeomorphisms, a hypothesis we do not require. A common and stable trait of sufficiently differentiable area preserving diffeomorphisms of the torus is the existence of elliptic islands. Of course such diffeomorphisms cannot be transitive, nor can their lift, but it is still possible for such mappings to be transitive in the complement of the interior of these islands, which in many relevant cases is a torus with infinitely many holes. If a diffeomorphism f has a lift \widetilde{f} which is transitive in the complement of the lift of the elliptic islands, then \widetilde{f} obeys Property T.

Our main result is:
Theorem 1. Let f be a homeomorphism of the 2-torus isotopic to the identity such that its lift \tilde{f} obeys Property T. Then $(0,0)$ is in the interior of $\rho(\widetilde{f})$.

In section 2 we introduce the sets B_{θ} and $\omega\left(B_{\theta}\right)$, and we study their structure. In section 3 we study the projection of the sets B_{θ} and $\omega\left(B_{\theta}\right)$ to the torus, and derive some properties of its closure. The final section is devoted to proving the main theorem.

In what follows f will always be a homeomorphism of the 2 -torus isotopic to the identity, and \widetilde{f} a lift that satisfies Property T. x_{T} will denote a point in \mathbf{R}^{2} such that $\pi^{-1}\left(\pi\left(x_{T}\right)\right)=x_{T}+\mathbb{Z}^{2} \subset \omega\left(x_{T}\right)$.

$$
\text { 2. The sets } B_{\theta}, C_{\theta}, \omega\left(B_{\theta}\right) \text {, AND } \omega\left(C_{\theta}\right)
$$

We begin by considering the one point compactification of \mathbf{R}^{2}, the set $\mathbf{R}^{2} \cup\{\infty\}$ which is homeomorphic to S^{2}. We associate to the homeomorphism f of the torus and its lift $\underset{\sim}{\tilde{f}}$ to the plane a third homeomorphism \widehat{f}, a homeomorphism of S^{2} induced by \widetilde{f} that keeps the infinity fixed.

Given any θ in $[0,2 \pi)$, we define the sets

$$
\left.V_{\theta}=\{x) \in \mathbf{R}^{2}:\left\langle x ; e_{\theta}\right\rangle=0\right\}
$$

and

$$
V_{\theta}^{+}=\left\{x \in \mathbf{R}^{2}:\left\langle x ; e_{\theta}\right\rangle \geq 0\right\},
$$

where $e_{\theta}=(\cos (\theta), \sin (\theta))$.
We consider also the corresponding sets in S^{2}, which we denote by $\widehat{V_{\theta}}$ and $\widehat{V_{\theta}^{+}}$.
Let $\widehat{B_{\theta}}$ be the connected component of

$$
\bigcap_{n \leq 0} \widehat{f}^{n}\left(\widehat{V}_{\theta}^{+}\right)
$$

that contains the infinity, and denote by B_{θ} the corresponding set in \mathbf{R}^{2}.
Let $\widehat{C_{\theta}}$ be the connected component of

$$
\bigcap_{n \geq o} \widehat{f}^{n}\left(\widehat{V}_{\theta}^{+}\right)
$$

that contains the infinity, and denote by C_{θ} the corresponding set in \mathbf{R}^{2}.
It follows from these definitions that B_{θ} is the union of all closed unbounded connected sets whose forward orbit remains in V_{θ}^{+}for all times, and that C_{θ} is the union of the connected components whose backward orbit remains in V_{θ}^{+}.

Proposition 1. For every θ in $[0,2 \pi)$, we have:
(1) B_{θ} and C_{θ} are closed and $\widetilde{f}\left(B_{\theta}\right) \subset B_{\theta}, \widetilde{f}^{-1}\left(C_{\theta}\right) \subset C_{\theta}$.
(2) Every connected component of B_{θ} or C_{θ} is unbounded.
(3) If (p, q) is a point in $V_{\theta}^{+} \cap \mathbb{Z}^{2}$, then $B_{\theta}+(p, q) \subset B_{\theta}$, and the same holds for C_{θ}.
(4) B_{θ}^{C} has a single connected component, as does C_{θ}^{C}.

Proof. We prove this properties only for B_{θ}, the reasoning is the same for C_{θ}. Properties 1 and 2 are direct consequences of the definition of B_{θ}. If x is a point of B_{θ}, let Γ be the connected component of B_{θ} that contains x. Then, for every y in Γ and every positive integer $j, \widetilde{f}^{j}(y)$ is in V_{θ}^{+}. But this implies that, if z is a point of the set $\Gamma+(p, q)$, then also for every positive integer j we have $\widetilde{f}{ }^{j}(z) \in V_{\theta}^{+}$. Therefore $\Gamma+(p, q)$ is a connected closed set whose future orbit does not leave V_{θ}^{+}, and so $\Gamma+(p, q) \subset B_{\theta}$, and $x+(p, q) \in B_{\theta}$. This proves property 3 .

Now let Ω be the connected component of B_{θ}^{C} that contains $\mathbf{R}^{2} \backslash V_{\theta}^{+}$. Since $\widetilde{f}\left(B_{\theta}\right) \subset B_{\theta}$, we have that $B_{\theta}^{C} \subset \widetilde{f}\left(B_{\theta}^{C}\right)$, and so every connected component of $\widetilde{f}\left(B_{\theta}^{C}\right)$ contains a connected component of B_{θ}^{C}. As $\widetilde{f}(\Omega) \cap \Omega \neq \emptyset$, this implies $\Omega \subset \widetilde{f}(\Omega)$. In particular, Ω^{C} is forward invariant.

Let $z \in \Omega^{C}$, and let Γ be the closed connected component of Ω^{C} that contains z. Since Ω^{C} is forward invariant, for every positive integer j we have $\widetilde{f}^{j}(\Gamma) \cap \Omega=\emptyset$ but since $\left(V_{\theta}^{+}\right)^{C} \subset \Omega, \Gamma$ is a closed connected set whose forward orbit remains in V_{θ}^{+}. Furthermore, since $\partial\left(\Omega^{C}\right) \subset B_{\theta}$, then $\Gamma \cap B_{\theta} \neq \emptyset$. Let $z \in \Gamma \cap B_{\theta}$ and Θ be the connected component of B_{θ} that contains $z . \Theta$ is unbounded and since $\Theta \subset \Omega^{C}$ and $\Theta \cap \Gamma \neq \emptyset$, then $\Theta \subset \Gamma$. So Γ is unbounded, closed and its forward orbit remains in V_{θ}^{+}, therefore $\Gamma \subset B_{\theta}$. This shows that $\Omega^{C}=B_{\theta}$ and implies property 4

Lemma 1. For every θ in $[0,2 \pi)$, we have $B_{\theta} \cap[-1,1] \times[-1,1] \neq \emptyset$, and $C_{\theta} \cap$ $[-1,1] \times[-1,1] \neq \emptyset$.

Proof. We assume, without loss of generality, that $0 \leq \theta<\frac{\pi}{2}$.
Since \widetilde{f} satisfies Property T, there is y a translate of x_{T} which lies in $V_{\theta+\pi}^{+}$such that, for every positive integer m, there exists a positive integer $n_{0}(m)$ such that $\widetilde{f}^{n_{0}(m)}(y) \in V_{\theta}^{+}+(m, 0)$. Let $n=n(m)$ be the first time that $\widetilde{f}^{n}\left(V_{\theta+\pi}^{+}\right)$intersects $V_{\theta}^{+}+(m, 0)$, that is, $\widetilde{f}^{n}\left(V_{\theta+\pi}^{+}\right) \cap V_{\theta}^{+}+(m, 0) \neq \emptyset$ and such that, for all $0 \leq j<n$, $\widetilde{f}^{j}\left(V_{\theta+\pi}^{+}\right) \cap V_{\theta}^{+}+(m, 0)$ is empty.

As $\widetilde{f}^{n(m)}\left(V_{\theta+\pi}^{+}\right) \cap V_{\theta+\pi}^{+}$is not empty, this implies that

$$
\left(\widetilde{f}^{n(m)}\left(\partial V_{\theta+\pi}^{+}\right) \cap V_{\theta}^{+}+(m, 0)\right)=\left(\widetilde{f}^{n(m)}\left(V_{\theta}\right) \cap V_{\theta}^{+}+(m, 0)\right) \neq \emptyset
$$

Let m_{k} be a sequence of integers such that $\lim _{k \rightarrow \infty} n\left(m_{k}\right)=\infty$. For each k there is an unbounded closed curve γ_{k} that starts at $\tilde{f}^{n\left(m_{k}\right)}\left(V_{\theta}\right)$ and such that $\gamma_{k} \subset \tilde{f}^{n\left(m_{k}\right)}\left(V_{\theta}^{+}\right) \cap V_{\theta}^{+}+(m, 0)$. It follows that the sets $\beta_{k}=\tilde{f}^{-n\left(m_{k}\right)}\left(\gamma_{k}\right)$ all intersect V_{θ}, and that for $0 \leq i \leq n\left(m_{k}\right), \widetilde{f}^{i}\left(\beta_{k}\right) \subset V_{\theta}^{+}$.

Also, since for every point z in V_{θ} there are integers p and q such that $\left\langle(p, q) ; e_{\theta}\right\rangle \geq$ 0 and such that $z+(p, q)$ is in $[0,1] \times[0,1]$, we have that there is a curve $\alpha_{k}=$ $\beta_{k}+(p, q)$ that starts in $[0,1] \times[0,1]$ and such that, for $0 \leq i \leq n\left(m_{k}\right), \widetilde{f}^{i}\left(\alpha_{k}\right) \subset V_{\theta}^{+}$.

Now consider the closed sets $\widehat{\alpha_{k}}$ in S^{2} corresponding to the sets α_{k}. $\widehat{\alpha_{k}}$ is a sequence of compact connected sets, and as such there is a subsequence $\widehat{\alpha_{k_{j}}}$ that is convergent in the Hausdorff topology to a closed connected set $\widehat{\Gamma}$. It is clear that $\widehat{\alpha_{k}}$ is in \widehat{B}_{θ}, and that $\widehat{\Gamma}$ intersects $[0,1] \times[0,1]$. The subset Γ of \mathbf{R}^{2} corresponding to $\widehat{\Gamma}$ shows the lemma is true

Another interesting property of the set B_{θ} is the following:
Lemma 2. There exists $(p, q) \in \mathbb{Z}^{2}$ such that $\widetilde{f}^{-1}\left(B_{\theta}\right) \subset B_{\theta}-(p, q)$. In particular, $f\left(\pi\left(B_{\theta}\right)\right)=\pi\left(B_{\theta}\right)$.

Proof. Since \tilde{f} is biperiodic, there exists a positive real K such that, for all $x \in \mathbf{R}^{2}$, $\|\widetilde{f}(x)-x\| \leq K$.

Let $y \in B_{\theta}$, and let $(p, q) \in \mathbb{Z}^{2}$ be such that $\left\langle(p, q) ; e_{\theta}\right\rangle \geq 2 K$. Let Γ be the connected component of y. Then $\tilde{f}^{-1}(\Gamma)+(p, q) \subset V_{\theta}^{+}$. As $\widetilde{f}\left(\tilde{f}^{-1}(\Gamma)+(p, q)\right)$ is a subset of $B_{\theta}+(p, q) \subset B_{\theta} \subset V_{\theta}^{+}$and as $\widetilde{f}^{-1}(\Gamma)+(p, q)$ is connected and unbounded, we have that $\widetilde{f}^{-1}(\Gamma)+(p, q) \subset B_{\theta}$, which shows the result

Also,
Lemma 3. There exists $(p, q) \in \mathbb{Z}^{2}$ such that $\widetilde{f}\left(C_{\theta}\right) \subset C_{\theta}-(p, q)$. In particular, $f\left(\pi\left(C_{\theta}\right)\right)=\pi\left(C_{\theta}\right)$.

TRANSITIVITY AND ROTATION SETS WITH NONEMPTY INTERIOR FOR HOMEOMORPHISMS OF THE 2-TORUS5

and the proof is the same of the previous lemma.
We will need to also consider the following sets:

$$
\omega\left(B_{\theta}\right)=\cap_{i=1}^{\infty} \overline{\cup_{j=i}^{\infty} \widetilde{f}^{j}\left(B_{\theta}\right)}=\cap_{i=1}^{\infty} \widetilde{f}^{i}\left(B_{\theta}\right)
$$

where the last equality comes from the positive invariance of B_{θ}, and the respective set in S^{2}

$$
\widehat{\omega\left(B_{\theta}\right)}=\cap_{i=1}^{\infty} \widehat{f^{i}}\left(B_{\theta}\right)
$$

We also define the sets

$$
\omega\left(C_{\theta}\right)=\cap_{i=1}^{\infty} \tilde{f}^{-i}\left(C_{\theta}\right)
$$

and $\widehat{\omega\left(C_{\theta}\right)}$.
The following properties of $\omega\left(B_{\theta}\right)$ and $\widehat{\omega\left(B_{\theta}\right)}$ follow directly from the definition and proposition 1.

Proposition 2. For every θ in $[0,2 \pi)$, we have:
(1) $\{\infty\} \subset \widehat{\omega\left(B_{\theta}\right)}$, and $\widehat{\omega\left(B_{\theta}\right)}$ is connected.
(2) $\omega\left(B_{\theta}\right)$ is closed and $\widetilde{f}\left(\omega\left(B_{\theta}\right)\right)=\omega\left(B_{\theta}\right)$.
(3) Every connected component of $\omega\left(B_{\theta}\right)$ is unbounded.
(4) If (p, q) is a point in $V_{\theta}^{+} \cap \mathbb{Z}^{2}$, then $\omega\left(B_{\theta}\right)+(p, q) \subset \omega\left(B_{\theta}\right)$.
(5) $\omega\left(B_{\theta}\right)^{C}$ has a single connected component.

Proposition 3. $\omega\left(B_{\theta}\right)=\omega\left(C_{\theta}\right)$.
Proof. We show only that $\omega\left(B_{\theta}\right) \subset \omega\left(C_{\theta}\right)$. Let Γ be a connected component of $\omega\left(B_{\theta}\right)$. Since $\omega\left(B_{\theta}\right)$ is invariant, we have $\tilde{f}^{-k}(\Gamma) \subset \omega\left(B_{\theta}\right) \subset V_{\theta}^{+}$, for all positive integers k, which shows that $\Gamma \subset C_{\theta}$. Since the choice of Γ was arbitrary, we have $\omega\left(B_{\theta}\right) \subset C_{\theta}$. Again, we use the invariance of $\omega\left(B_{\theta}\right)$ and get

$$
\widetilde{f}^{i}\left(\omega\left(B_{\theta}\right)\right)=\omega\left(B_{\theta}\right) \subset C_{\theta}
$$

so that $\omega\left(B_{\theta}\right) \subset \tilde{f}^{-i}\left(C_{\theta}\right)$ for all integers i, proving the proposition
The following lemma will be our main tool in establishing the existence of vectors in the rotation set of \widetilde{f}.
Lemma 4. If $\omega\left(B_{\theta}\right)=\emptyset$, then there exists a positive real number a such that:

- For all x in B_{θ},

$$
\liminf _{n \rightarrow \infty} \frac{\left\langle\tilde{f}^{n}(x) ; e_{\theta}\right\rangle}{n} \geq a
$$

- For all x in C_{θ},

$$
\liminf _{n \rightarrow \infty} \frac{\left\langle\tilde{f}^{-n}(x) ; e_{\theta}\right\rangle}{n} \geq a
$$

Proof. We again assume, without loss of generality, that θ is in $[0, \pi / 2)$, and we prove just the first item. We claim that there is a positive n such that $\widetilde{f}^{i}\left(B_{\theta}\right)$ is contained in $V_{\theta}^{+}+(1,0)$, for all $i>n$. If this was not the case, then there would be a sequence $i_{j} \rightarrow \infty$ such that, for all j, there is a point $x_{j}=B_{\theta}$ such that $\widetilde{f}^{i_{j}}\left(x_{j}\right) \in V_{\theta}^{+} \backslash V_{\theta}^{+}+(1,0)$.

But this implies that there is a sequence of pair of integers p_{j}, q_{j} such that $\left\langle\left(p_{j}, q_{j}\right) ; e_{\theta}\right\rangle \geq 0$ and such that $\widetilde{f}^{i_{j}}\left(x_{j}\right)+\left(p_{j}, q_{j}\right)$ is in $[1,2] \times[0,1]$. But since $B_{\theta}+$ $\left(p_{j}, q_{j}\right) \subset B_{\theta}$, we would have that, if $z_{j}=x_{j}+\left(p_{j}, q_{j}\right)$, then the sequence $\left(\widetilde{f}\left(z_{j}\right)\right)_{j \in \mathbb{N}}$
would have a convergent subsequence, which contradicts $\omega\left(B_{\theta}\right)=\emptyset$, since $z_{j} \in B_{\theta}$ for all j.

Let Γ be a connected component of B_{θ}. By the choice of n, for all $j \geq 0$ we have $\widetilde{f}^{j+n}(\Gamma) \subset V_{\theta}^{+}+(1,0)$, and so $\tilde{f}^{n+j}(\Gamma)-(1,0) \subset V_{\theta}^{+}$. Since $\widetilde{f}^{n}(\Gamma)$ is closed, connected and unbounded, it follows from the definition of B_{θ} that $\widetilde{f}^{n}(\Gamma)-(1,0) \subset$ B_{θ}, and so $\tilde{f}^{n}(\Gamma) \subset B_{\theta}+(1,0)$. As the choice of Γ was arbitrary, we have

$$
\tilde{f}^{n}\left(B_{\theta}\right) \subset B_{\theta}
$$

A simple induction argument now shows that, for every positive integer k, $\tilde{f}^{n k}\left(B_{\theta}\right) \subset B_{\theta}+(k, 0) \subset V_{\theta}^{+}+(k, 0)$, and so, for every x in B_{θ},

$$
\liminf _{i \rightarrow \infty} \frac{\left\langle\widetilde{f}^{i}(x) ; e_{\theta}\right\rangle}{i} \geq \frac{\cos (\theta)}{n}
$$

which ends the proof
The following is an immediate consequence of the previous lemma:
Corollary 1. If $\omega\left(B_{\theta}\right)=\emptyset$, than there exists $r_{1}, r_{2} \in \rho(\tilde{f})$ such that $\left\langle r_{1} ; e_{\theta}\right\rangle>0$, and $\left\langle r_{2} ; e_{\theta}\right\rangle<0$.

We can now state the main lemma of this work: which will be proved in the last section:

Lemma 5. For every $\theta \in[0, \pi)$, at least one of $\omega\left(B_{\theta}\right)$ and $\omega\left(B_{\theta+\pi}\right)$ is empty.
We will postpone the proof of this result to the last section, but let us now show how this lemma yields theorem 1.

Proof of theorem 1: We first note that, since \tilde{f} satisfies Property T, it has a recurrent point, and as so $(0,0) \in \rho(\widetilde{f})$. Since $\rho(\widetilde{f})$ is convex, either $(0,0)$ is in the interior of $\rho(\tilde{f})$, and we are done, or there exists a straight line passing through $(0,0)$ such that $\rho(\widetilde{f})$ is contained in one side of this line. Assume by contradiction that the latter happens. This means that there is θ_{1} such that for all $r \in \rho(\widetilde{f})$, $\left\langle r ; e_{\theta_{1}}\right\rangle \geq 0$.

But from lemma 5 either $\omega\left(B_{\theta_{1}}\right)=\emptyset$ or $\omega\left(B_{\theta_{1}+\pi}\right)=\emptyset$, and in both cases this implies, by corollary 1 , that there exists $r \in \rho(\widetilde{f})$ with $\left\langle r ; e_{\theta_{1}}\right\rangle<0$.

$$
\text { 3. The SETS } \pi\left(B_{\theta}\right) \text { AND } \pi\left(\omega\left(B_{\theta}\right)\right)
$$

Let us state this general result:
Lemma 6. Let g be a homeomorphism of the torus isotopic to the identity and \widetilde{g} be its lift to the plane. Let $\widetilde{A} \subset \mathbf{R}^{2}$ be such that if $\widetilde{z} \in \widetilde{A}$, then $\widetilde{z}+(i, 0) \in \widetilde{A}$ for all integer i. Assume that there exists a point \widetilde{x} in \mathbf{R}^{2} such that

$$
\widetilde{A} \subset \omega(\widetilde{x})=\cap_{i=1}^{\infty} \overline{\cup_{j=i}^{\infty} \widetilde{g}^{j}(\widetilde{x})}
$$

Then, for every $z \in A=\pi(\widetilde{A})$ and every $\varepsilon>0$, there exists a curve $\gamma \subset \mathbf{R}^{2}$ which is unbounded in the e_{0} direction but bounded in the $e_{\theta / 2}$ direction, and such that, for every point in $y \in \gamma$ there exists a positive $n(y)$ such that $\pi\left(\widetilde{g}^{n(y)}(y)\right) \in B_{\varepsilon}(z)$.

Proof:
Let $z \in A$ and and \widetilde{z} be a point such that $\pi(\widetilde{z})=z$. Since $\widetilde{A} \subset \omega(\widetilde{x})$, there are points x_{1} and x_{2} and integers k_{1} and k_{2}, both strictly negative, such that
$\widetilde{g}^{k_{1}}\left(x_{1}\right)=y_{1} \in B_{\varepsilon}(\widetilde{z})$ and $\widetilde{g}^{k_{2}}\left(x_{2}\right)=y_{2} \in B_{\varepsilon}(\widetilde{z}+(1,0))$. Let α_{0} be the segment connecting x_{1} and x_{2}, α_{1} be the segment connecting x_{1} and y_{1}, α_{2} be the segment connecting x_{2} and $y_{2}-(1,0), \alpha_{3}$ be the segment connecting y_{1} and \widetilde{z} and α_{4} be the segment connecting $y_{2}-(1,0)$ and \widetilde{z}. We note that $\pi\left(\alpha_{i}\right) \subset B_{\varepsilon}(z)$, for $i \in\{0,1,2,3,4\}$.

Also, since x_{1} and y_{1} belong to α_{1}, and since $y_{1}=\widetilde{g}^{k_{1}}\left(x_{1}\right)$ belongs to $\widetilde{g}^{k_{1}}\left(\alpha_{1}\right)$, we have that $\widetilde{g}^{k_{1}}\left(\alpha_{1}\right) \cup \alpha_{1}$ is a connected set that contains $\widetilde{g}^{k_{1}}\left(x_{1}\right)$. A simple induction shows that

$$
\beta_{1}=\left(\bigcup_{i=0}^{-k_{2}} \tilde{g}^{i k_{1}}\left(\alpha_{1}\right)\right)
$$

is a connected arc joining $\widetilde{g}^{-k_{1} k_{2}}\left(x_{1}\right)$ and y_{1}.
Analogously, since x_{2} and $y_{2}-(1,0)$ belong to α_{2} and $\widetilde{g}^{k_{2}}\left(x_{2}\right)=y_{2}$, it follows that the set $\widetilde{g}^{k_{2}}\left(\alpha_{2}\right) \cup \alpha_{2}+(1,0)$ is an arc connecting $\widetilde{g}^{k_{2}}\left(x_{2}\right)$ and y_{2}. Therefore the set

$$
\beta_{2}=\left(\bigcup_{i=0}^{-k_{1}}\left(\widetilde{g}^{i k_{2}}\left(\alpha_{2}+\left(i-k_{1}, 0\right)\right)\right)\right.
$$

is a connected arc joining $\widetilde{g}^{-k_{1} k_{2}}\left(x_{2}\right)$ and $y_{2}-\left(k_{1}-1,0\right)$. This implies that

$$
\widetilde{g}^{-k_{1} k_{2}}\left(\alpha_{0}\right) \cup \beta_{1} \cup \beta_{2}
$$

is a connected arc joining y_{1} and $y_{2}-\left(k_{1}-1,0\right)$.
Consider the set

$$
\gamma_{0}=\widetilde{g}^{-k_{1} k_{2}}\left(\alpha_{0}\right) \cup \beta_{1} \cup \beta_{2} \cup \alpha_{3} \cup \alpha_{4}+\left(-k_{1}, 0\right)
$$

which is also connected and bounded in the $e_{\pi / 2}$ direction, and which contains both \widetilde{z} and $\widetilde{z}-\left(k_{1}, 0\right)$. If $\gamma=\bigcup_{i=-\infty}^{\infty}\left(\gamma_{0}+\left(i k_{1}, 0\right)\right)$, then γ is connected, unbounded in the e_{0} direction and bounded in the $e_{\pi / 2}$ direction, and satisfies that, if $y \in \gamma$, then there is a $n(y)>0$ such that $\pi\left(\widetilde{g}^{n(y)}(y)\right) \in \pi\left(\alpha_{i}\right)$ for some $0 \leq i \leq 4$. Since $\pi\left(\alpha_{i}\right) \subset B_{\varepsilon}(z), 0 \leq i \leq 4$, we have the result

The previous lemma yields this two simple corollaries, the first one which will be used in the remainder of the paper, the second interesting in itself.

Corollary 2. Let g be a homeomorphism of the torus and \widetilde{g} be its lift to the plane. Assume there is a set $\widetilde{A} \subset \mathbf{R}^{2}$ which is \mathbb{Z}^{2} invariant, i.e., for every \widetilde{y} in \widetilde{A}, and every pair of integers $(p, q) \in \mathbb{Z} 2, \widetilde{y}+(p, q) \in \widetilde{A}$. Assume further than there is a point \widetilde{x} in \widetilde{A} such that $\widetilde{A} \subset \omega(\widetilde{x})$.

Let $B \subset \mathbf{R}^{2}$ be a set such that $\widetilde{g}(B) \subset B$ and such that B has an unbounded connected component. Then $\pi(\widetilde{A}) \subset \overline{\pi(B)}$.

Proof. Let $\widetilde{z} \in B$ be a point in an unbounded connected component of B. Suppose, by contradiction, that there exists a point $\widetilde{y} \in \widetilde{A}$ and a positive real ε such that $\pi(B) \cap B_{\varepsilon}(\pi(\widetilde{y}))=\emptyset$.

The previous lemma implies that there are two connected sets, α and β, with the following property:

- For all \widetilde{x} in $\alpha \cup \beta$, there exists a positive integer $n(\widetilde{x})$ such that $\pi\left(\widetilde{g}^{n}(\widetilde{x})\right) \in$ $B_{\varepsilon}(\pi(\widetilde{y}))$.
- α is unbounded in the direction of $e_{\pi / 2}$, bounded in the direction of e_{0} and disconnects the plane.
- β is bounded in the direction of $e_{\pi / 2}$, unbounded in the direction of e_{0} and disconnects the plane.
Now, by the contradiction hypothesis and the first item,

$$
\begin{equation*}
\pi(B) \cap \pi(\alpha \cup \beta)=\emptyset \tag{1}
\end{equation*}
$$

By the second item, there is an integer k_{1} such that \widetilde{z} is to the left of $\alpha+\left(k_{1}, 0\right)$, to the right of $\alpha-\left(k_{1}, 0\right)$, below $\beta+\left(0, k_{1}\right)$ and above $\beta-\left(0, k_{1}\right)$. This shows that \widetilde{z} is in a bounded connected component of the complement

$$
D=\alpha+\left(k_{1}, 0\right) \cup \alpha-\left(k_{1}, 0\right) \cup \beta+\left(0, k_{1}\right) \cup \beta-\left(0, k_{1}\right)
$$

But, from (1), $B \cap D=\emptyset$, which is absurd since the connected component of B that contains \widetilde{z} must be unbounded by hypothesis and remain in the same connected component of D^{C} that contains \widetilde{z}.

We finish this section with 2 direct applications of this results:
Corollary 3. Let g be a homeomorphism of the torus isotopic to the identity and \widetilde{g} be its lift. Assume \widetilde{g} is transitive in \mathbf{R}^{2}.

Let $B \subset \mathbf{R}^{2}$ be a set such that $\widetilde{g}(B) \subset B$ and such that B has an unbounded connected component. Then $\overline{\pi(B)}=T^{2}$.
Corollary 4. Let \tilde{f} be a homeomorphism of the torus satisfying property T. Then, for all $0 \leq \theta<2 \pi$, if $\omega\left(B_{\theta}\right)$ is non-empty, then $\pi\left(x_{T}\right) \subset \bar{\pi}\left(\omega\left(B_{\theta}\right)\right)$.

4. Proof of lemma 5

It suffices to show that, for every $\theta \in[0, \pi)$, either $\omega\left(B_{\theta}\right)=\emptyset$, or $\omega\left(B_{\theta+\pi}\right)=\emptyset$.
Assume, by contradiction, that there exists θ for which this does not hold. Without loss in generality, we will assume that $0 \leq \theta<\pi / 2$.

There are 2 possibilities:
(1) $\pi\left(\omega\left(B_{\theta}\right)\right) \cap \pi\left(\omega\left(B_{\theta+\pi}\right)\right) \neq \emptyset$
(2) $\pi\left(\omega\left(B_{\theta}\right)\right) \cap \pi\left(\omega\left(B_{\theta+\pi}\right)\right)=\emptyset$
4.1. Case 1. If $\pi\left(\omega\left(B_{\theta}\right)\right) \cap \pi\left(\omega\left(B_{\theta+\pi}\right)\right) \neq \emptyset$, then there exists $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ such that

$$
\omega\left(B_{\theta}\right)+\left(p_{1}, q_{1}\right) \cap \omega\left(B_{\theta+\pi}\right)+\left(p_{2}, q_{2}\right) \neq \emptyset
$$

and so, if $(p, q)=\left(p_{2}-p_{1}, q_{2}-q_{1}\right)$,

$$
\omega\left(B_{\theta}\right) \cap \omega\left(B_{\theta+\pi}\right)+(p, q) \neq \emptyset
$$

In this case, we have:
Lemma 7. The open set

$$
O_{1}=\left(\left(\omega\left(B_{\theta}\right)-(1,1)\right) \bigcup\left(\omega\left(B_{\theta+\pi}\right)+(p+1, q+1)\right)\right)^{C}
$$

has infinitely many connected components. Furthermore, the set $x_{T}+\mathbb{Z}^{2}$ intersects infinitely many of these connected components.
Proof. Let N be a fixed integer. There exists integers $n_{1}, m_{1}, n_{2}, m_{2}$ such that $n_{2}<0<n_{1}, m_{1}>0, m_{2}>0$ and such that

$$
\frac{-1}{4 N}<\left\langle\left(n_{1}, m_{1}\right) ; e_{\theta}\right\rangle<0
$$

and

$$
0<\left\langle\left(n_{2}, m_{2}\right) ; e_{\theta}\right\rangle<\frac{1}{4 N}
$$

Let $y \in x_{T}+\mathbb{Z}^{2}$ be such that $1 / 4 \leq\left\langle y ; e_{\theta}\right\rangle \leq 3 / 4$.
We will show that at least N of the points $y, y+i\left(n_{1}, m_{1}\right), y+j\left(n_{2}, m_{2}\right)$, for $1 \leq i \leq N, 1 \leq j \leq N$, are in distinct connected components of O_{1}, which clearly proves the proposition.

Assume, by contradiction, that there are i_{1}, i_{2}, j_{1}, and j_{2} in $[0, N], i_{1}<i_{2}$, $j_{1}<j_{2}$ such that $y_{1}=y+i_{1}\left(n_{1}, m_{1}\right)$ and $y_{1}+\left(i_{2}-i_{1}\right)\left(n_{1}, m_{1}\right)$ are in the same connected component, as are $y_{2}=y+j_{1}\left(n_{2}, m_{2}\right)$ and $y_{2}+\left(j_{2}-j_{1}\right)\left(n_{2}, m_{2}\right)$.

Since y_{1} and $y_{1}+\left(i_{2}-i_{1}\right)\left(n_{1}, m_{1}\right)$ are in the same connected component, there is a curve α joining these 2 points that does not intersect O_{1}^{C}. Likewise, there is a curve β joining y_{2} and $y_{2}+\left(j_{2}-j_{1}\right)\left(n_{2}, m_{2}\right)$, that also does not intersect O_{1}^{C}. Note that

$$
\begin{align*}
& 0<\left\langle y_{1} ; e_{\theta}\right\rangle<1 \tag{2}\\
& 0<\left\langle y_{2} ; e_{\theta}\right\rangle<1
\end{align*}
$$

We recall that, if $\left(r_{1}, s_{1}\right) \in \mathbb{Z}^{2}$ is such that $\left\langle\left(r_{1}, s_{1}\right) ; e_{\theta}\right\rangle<1 \leq\left\langle(1,1) ; e_{\theta}\right\rangle$, then $\left\langle\left(1-r_{1}, 1-s_{1}\right) ; e_{\theta}\right\rangle>0$, and from proposition 2 we have $\omega\left(B_{\theta}\right)+\left(1-r_{1}, 1-s_{1}\right) \subset$ $\omega\left(B_{\theta}\right)$, and $\omega\left(B_{\theta}\right) \subset \omega\left(B_{\theta}\right)+\left(r_{1}-1, s_{1}-1\right)$. Therefore, if $C \cap \omega\left(B_{\theta}\right)-(1,1)=\emptyset$, than $C+\left(r_{1}, s_{1}\right) \cap \omega\left(B_{\theta}\right)+\left(r_{1}-1, s_{1}-1\right)=\emptyset$ and so $C+\left(r_{1}, s_{1}\right) \cap \omega\left(B_{\theta}\right)=\emptyset$.

Likewise, if $\left(r_{2}, s_{2}\right) \in \mathbb{Z}^{2}$ is such that $\left\langle\left(r_{2}, s_{2}\right) ; e_{\theta}\right\rangle>-1$, and if $C \cap \omega\left(B_{\theta+\pi}\right)+$ $(p+1, q+1)=\emptyset$, then $C+\left(r_{2}, s_{2}\right) \cap \omega\left(B_{\theta+\pi}\right)+(p, q)=\emptyset$.

This and (2) shows that, if z is such that $\pi(z)=\pi(y)$ and such that $0 \leq$ $\left\langle z-y ; e_{\theta}\right\rangle \leq 1$, then both $\alpha+(z-y)$ and $\beta+(z-y)$ do not intersect $\omega\left(B_{\theta}\right) \cap$ $\omega\left(B_{\theta+\pi}\right)+(p, q)$.

Let $z_{0} \in \pi^{-1}\left(\pi\left(x_{T}\right)\right)$ be such that $1 / 4<\left\langle z_{0} ; e_{\theta}\right\rangle<3 / 4$. For $-\infty \leq i \leq+\infty$, we define, if $\left\langle z_{i} ; e_{\theta}\right\rangle<1 / 2, \gamma_{i}=\alpha+\left(z_{i}-y_{1}\right), z_{i+1}=z_{i}+\left(i_{2}-i_{1}\right)\left(n_{1}, m_{1}\right)$; and if $\left\langle z_{i} ; e_{\theta}\right\rangle>1 / 2$, we define $\gamma_{i}=\beta+\left(z_{i}-y_{2}\right), z_{i+1}=z_{i}+\left(j_{2}-j_{1}\right)\left(n_{2}, m_{2}\right)$. Note that γ_{i} connects z_{i} and z_{i+1}. Also notice that, since m_{1} and m_{2} are positive, $\left\langle z_{i+1}, e_{\pi / 2}\right\rangle>\left\langle z_{i}, e_{\pi / 2}\right\rangle$ and that

$$
\lim _{i \rightarrow \infty}\left\langle z_{i}, e_{\pi / 2}\right\rangle=+\infty, \lim _{i \rightarrow-\infty}\left\langle z_{i}, e_{\pi / 2}\right\rangle=-\infty
$$

Also, since $-\frac{1}{4}\left\langle\left(i_{2}-i_{1}\right)\left(n_{1}, m_{1}\right) ; e_{\theta}\right\rangle<0$ and $0<\left\langle\left(j_{2}-j_{1}\right)\left(n_{2}, m_{2}\right) ; e_{\theta}\right\rangle<\frac{1}{4}$, then an induction shows that $1 / 4<\left\langle z_{i} ; e_{\theta}\right\rangle<3 / 4$, for all integers i. Therefore, for all $i \in \mathbb{Z}$, both $\left|\left\langle z_{i}-y_{1} ; e_{\theta}\right\rangle\right|<1$ and $\left|\left\langle z_{i}-y_{2} ; e_{\theta}\right\rangle\right|<1$. This shows that $\gamma_{i} \cap\left(\omega\left(B_{\theta}\right) \cup \omega\left(B_{\theta+\pi}\right)+(p, q)\right)=\emptyset$.

Finally, let $M=\max _{x \in(\alpha \cup \beta)}\left\{\left|\left\langle x ; e_{\theta}\right\rangle\right|\right\}$. Then

$$
\max _{x \in \gamma_{i}}\left\{\left|\left\langle x ; e_{\theta}\right\rangle\right|\right\}<M+1
$$

Let $\gamma=\cup_{1=-\infty}^{\infty} \gamma_{i}$. Then clearly γ is connected, does not intersect $\omega\left(B_{\theta}\right) \cup$ $\omega\left(B_{\theta+\pi}\right)+(p, q)$, is unbounded in the $e_{\pi / 2}$ direction, and bounded in the e_{θ} direction. This shows that the sets $\left\{x \in \mathbf{R}^{2} \mid\left\langle x, e_{\theta}\right\rangle>M+1\right\}$, and $\left\{x \in \mathbf{R}^{2} \mid\left\langle x, e_{\theta}\right\rangle<\right.$ $-(M+1)\}$ are in different connected components of γ^{C}.

But since $\omega\left(B_{\theta}\right) \cap \omega\left(B_{\theta+\pi}\right)+(p, q)$ is not empty, there exists x in the intersection. Let Γ be the connected component of $\omega\left(B_{\theta}\right)$ that contains x, and let Θ be the connected component of $\omega\left(B_{\theta+\pi}\right)+(p, q)$ that contains x. Then $\Gamma_{1}=\Gamma \cup \Theta$ is a connected component of $\omega\left(B_{\theta}\right) \cap \omega\left(B_{\theta+\pi}\right)+(p, q)$ such that $\left.\sup _{w \in \Gamma_{1}}\left\langle w ; e_{\theta}\right)\right\rangle=+\infty$
and such that $\inf f_{w \in \Gamma_{1}}\left\langle w ; e_{\theta}\right\rangle=-\infty$. But this contradicts the fact that $\gamma \cap \Gamma_{1}=\emptyset$ and that γ is connected

Since \widetilde{f} satisfies Property T , the forward orbit of x_{T} is not confined to any half-plane and, as such, $x_{T} \notin\left(\omega\left(B_{\theta}\right) \cup \omega\left(B_{\theta+\pi}\right)+(p, q)\right.$, so that $x_{T} \in O_{1}$.

Now x_{T} is a recurrent point, so there is an n such that $\widetilde{f}^{n}\left(x_{T}\right)$ and x_{T} are in the same connected component of O_{1}. Therefore, if U is the connected component of O_{1} that contains x_{T}, then $\tilde{f}^{n}(U) \cap U$ is not empty, and since O_{1} is an invariant set, this implies that $\widetilde{f}^{n}(U)=U$. Thus, the orbit of x_{T} only intersects n connected components of O_{1}.

But lemma 7 tells us that the set $x_{T}+\mathbb{Z}^{2}$ both intersects infinitely many connected components of O_{1}, and is contained in the closure of the forward orbit of x_{T} which is absurd. Therefore Case 1 cannot be.
4.2. Case 2. We still need to deal with the case where

$$
\pi\left(\omega\left(B_{\theta}\right)\right) \cap \pi\left(\omega\left(B_{\theta+\pi}\right)\right)=\emptyset
$$

which we assume throughout the section.
We begin with the following proposition, whose proof can be seen in [11]
Proposition 4. Let K_{1} and K_{2} be compact connected sets of \mathbf{R}^{2} such that $K_{1} \cap K_{2}$ is connected. If x and y are in the same connected component of K_{1}^{C} and are also in the same connected component of K_{2}^{C}, then x and y are in the same connected component of $\left(K_{1} \cup K_{2}\right)^{C}$.
Proposition 5. For every $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in \mathbb{Z}^{2}$, the complement of the set

$$
\left(\omega\left(B_{\theta}\right)+\left(p_{1}, q_{1}\right) \cup \omega\left(B_{\theta+\pi}\right)+\left(p_{2}, q_{2}\right)\right)
$$

has a single connected component.
Proof. We already know that $\omega\left(B_{\theta}\right)+\left(p_{1}, q_{1}\right) \cap \omega\left(B_{\theta+\pi}\right)+\left(p_{2}, q_{2}\right)=\emptyset$. We also know that, from lemma 1 , that both the complements of $\omega\left(B_{\theta}\right)+\left(p_{1}, q_{1}\right)$ and of $\omega\left(B_{\theta+\pi}\right)+\left(p_{2}, q_{2}\right)$ have a single connected component. This means that, if we consider the corresponding sets in $\left.S^{2}, \omega\left(B_{\theta}\right) \widehat{(p}, q_{1}\right)$ and $\omega\left(B_{\theta+\pi} \widehat{)+}\left(p_{2}, q_{2}\right)\right.$, their intersection consists of the point ∞, and so we can apply the previous proposition, which gives us the result

The following is result follows from a construction very similar to the one done in the proof of lemma 7 .

Proposition 6. For every point x in T^{2}, and every $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ in \mathbb{Z}^{2}, there is an arc $\gamma \subset \mathbf{R}^{2}$ that contains infinitely many points of $\pi^{-1}(x)$ and such that $\omega\left(B_{\theta}\right)+\left(p_{1}, q_{1}\right)$ and $\omega\left(B_{\theta+\pi}\right)+\left(p_{2}, q_{2}\right)$ are in distinct connected components of γ^{C}.
Proof. Since $\pi\left(\omega\left(B_{\theta}\right)\right) \cap \pi\left(\omega\left(B_{\theta}+\pi\right)\right)=\emptyset$, we will assume, without loss in generality, that $x \notin \pi\left(\omega\left(B_{\theta}\right)\right)$. Therefore, there is a point y in $\pi^{-1}(x)$ such that $\left\langle y ; e_{\theta}\right\rangle \geq$ $\left\langle\left(p_{2}, q_{2}\right) ; e_{\theta}\right\rangle+3$. This means that the points $y, y+(0,1)$ and $y-(1,0)$ are all in the semi-plane $V_{\theta}^{+}+\left(p_{2}+1, q_{2}+1\right)$, and therefore none of these 3 points belongs to $\omega\left(B_{\theta}\right)+\left(p_{1}-1, q_{1}-1\right) \cup \omega\left(B_{\theta+\pi}\right)+\left(p_{2}+1, q_{2}+1\right)$.

Now, from proposition 5 , we know that all three points are in the same connected component of $\left(\omega\left(B_{\theta}\right)+\left(p_{1}-1, q_{1}-1\right) \cup \omega\left(B_{\theta+\pi}\right)+\left(p_{2}+1, q_{2}+1\right)\right)^{C}$, and so there is an arc α joining y and $y+(0,1)$ and an $\operatorname{arc} \beta$ joining y and $y-(1,0)$ such that

$$
(\alpha \cup \beta) \cap\left(\omega\left(B_{\theta}\right)+\left(p_{1}-1, q_{1}-1\right) \cup \omega\left(B_{\theta+\pi}\right)+\left(p_{2}+1, q_{2}+1\right)\right)=\emptyset .
$$

Now an argument similar to the one as in the proof of lemma 4, can construct the arc γ by joining together translations of α and β, such that

$$
-\infty<m=\inf _{z \in \gamma}\left\langle z ; e_{\theta}\right\rangle \leq \sup _{z \in \gamma}\left\langle z ; e_{\theta}\right\rangle=M<\infty
$$

and such that γ^{C} has two connected unbounded components, one of which contains all points of $V_{\theta}^{+}+M e_{\theta}$, and the other contains all points of $\mathbf{R}^{2} \backslash\left(V_{\theta}^{+}+m e_{\theta}\right)$.

Since $\omega\left(B_{\theta}\right)+\left(p_{1}, q_{1}\right) \cap V_{\theta}^{+}+M e_{\theta} \neq \emptyset$, and since

$$
\omega\left(B_{\theta+\pi}\right)+\left(p_{2}, q_{2}\right) \cap \mathbf{R}^{2} \backslash\left(V_{\theta}^{+}+m e_{\theta}\right)
$$

is also nonempty, we have the result
Since $x_{T}+\mathbb{Z}^{2} \subset \omega\left(x_{T}\right), \pi\left(x_{T}\right)$ is not a fixed point. Let $\varepsilon>0$ such that, if $B_{\varepsilon}\left[\pi\left(x_{T}\right)\right]$ is the closed ball with center $\pi\left(x_{T}\right)$ and radius ε, then $f\left(B_{\varepsilon}\left[\pi\left(x_{T}\right)\right]\right) \cap$ $B_{\varepsilon}\left[\pi\left(x_{T}\right)\right]=\emptyset$.

Now, from corollary 4,

$$
\pi\left(x_{T}\right) \in \overline{\pi\left(\omega\left(B_{\theta}\right)\right)} \cap \overline{\pi\left(\omega\left(B_{\theta}+\pi\right)\right)}
$$

therefore there exists $y \in x_{T}+\mathbb{Z}^{2}$, and two integers p and q, such that the distance from y to B_{θ} is less than ε, as is the distance between $y-(p, q)$ to $B_{\theta+\pi}$.

Since we assumed that $\pi\left(\omega\left(B_{\theta}\right)\right) \cap \pi\left(\omega\left(B_{\theta+\pi}\right)\right)=\emptyset$, the distance between the compact sets $\omega\left(B_{\theta}\right) \cap B_{\varepsilon}[y]$ and $\left(\omega\left(B_{\theta+\pi}\right)+(p, q)\right) \cap B_{\varepsilon}[y]$ is strictly positive number a, and $a<\varepsilon$. Let v be an open line segment with length a such that its endpoints are u and w, where $u \in \omega\left(B_{\theta}\right)$ and $w \in \omega\left(B_{\theta+\pi}\right)+(p, q)$. Note that, as $v \subset$ $B_{\varepsilon}[y], \widetilde{f}(V) \cap V=\emptyset$.

Finally, let Γ be the connected component of $\omega\left(B_{\theta}\right)$ that contains u and let Θ be the connected component of $\omega\left(B_{\theta+\pi}\right)+(p, q)$ that contains w.
Lemma 8. The set $(\Gamma \cup \Theta)^{C}$ contains a single connected component. The set $(\Gamma \cup \Theta \cup v)^{C}$ has exactly two connected components, Ω_{1} and Ω_{2}. Also, for every x in $T^{2}, \pi^{-1}(x)$ intersects both Ω_{1} and Ω_{2}.

Proof. The first claim follows from proposition 5.
Let p be the midpoint of the segment v, and let $r=\operatorname{dist}(p, \Theta)=\operatorname{dist}(p, \Gamma)$. The closed ball $B_{r}[p]$ is splitted in two by v. Of course, since $(\Gamma \cup \Theta)^{C}$ has a single connected component, $(\Gamma \cup \Theta \cup v)^{C}$ has, at most, two components. Let p be a point in one of the connected components of $B_{r}[p] \backslash v$ and let q be a point in the second connected component. Suppose, by contradiction, that p and q are in the same connected component of $(\Gamma \cup \Theta \cup v)^{C}$. Then, there is an arc α connecting p and q lying entirely on this set. We can add to α the segment joining p and q to obtain a Jordan curve J, which does not intersect $\Gamma \cup \Theta$. But one endpoint of v must be in the $\operatorname{int}(J)$, and so one of Γ and Θ must be in the $\operatorname{int}(J)$, absurd since both are unbounded.

Proposition 7. For $i=\{1,2\}, \widetilde{f}\left(\Omega_{i}\right) \cap \Omega_{i}$ is not empty.
Proof. Let y be a fixed point of \tilde{f} (Since x_{T} is a recurrent point of \tilde{f}, \tilde{f} cannot be a Brouwer homeomorphism and so it has fixed points). By proposition 6 , there is an arc γ which connects infinitely many translates of y and that separates $\omega\left(B_{\theta}\right)$ and $\omega\left(B_{\theta+\pi}\right)+(p, q)$. Since $\Gamma \cup \Theta \cup v$ is connected, $\gamma \cap v \neq \emptyset$, and so there must be translates of y both in Ω_{1} and in Ω_{2}

Lemma 9. Either $\widetilde{f}\left(\overline{\Omega_{1}}\right) \subset \overline{\Omega_{1}}$ or $\widetilde{f}\left(\overline{\Omega_{2}}\right) \subset \overline{\Omega_{2}}$.

Proof. By the definition of $v, v \cap \omega\left(B_{\theta}\right)=\emptyset$, as well as $v \cap \omega\left(B_{\theta+\pi}\right)+(p, q)=\emptyset$. Since both $\omega\left(B_{\theta}\right)$ and $\omega\left(B_{\theta+\pi}\right)$ are invariant, and since $\widetilde{f}\left(B_{\varepsilon}[y]\right) \cap B_{\varepsilon}[y]=\emptyset$, we have that $\widetilde{f}(v) \cap(\Gamma \cup \Theta \cup v)=\emptyset$.

This means that either $\widetilde{f}(v) \subset \Omega_{1}$ or $\widetilde{f}(v) \subset \Omega_{2}$. We will assume, without loss of generality, that the former is true.

Since Γ is a connected component of $\omega\left(B_{\theta}\right)$ and the latter is invariant, then $\widetilde{f}(\Gamma)$ is also a connected component of $\omega\left(B_{\theta}\right)$ and so either $\widetilde{f}(\Gamma)=\Gamma$ or $\widetilde{f}(\Gamma) \cap \Gamma=\emptyset$. We also have that $\widetilde{f}(\Gamma) \cap(v \cup \Theta)=\emptyset$. . If $\widetilde{f}(\Gamma)=\Gamma$, then $\widetilde{f}(\Gamma) \cap \Omega_{2}=\emptyset$. If $\widetilde{f}(\Gamma) \neq \Gamma$, since $\Gamma \cup v$ is connected, and since $\widetilde{f}(v) \subset \Omega_{1}$ and $\widetilde{f}(\Gamma) \cap \partial \Omega_{1}=\emptyset$, we have $\widetilde{f}(\Gamma) \subset \Omega_{1}$, and thus $\tilde{f}(\Gamma) \cap \Omega_{2}$ is also empty.

By a similar argument, $\widetilde{f}(\Theta) \cap \Omega_{2}=\emptyset$, and so $\widetilde{f}\left(\partial \Omega_{1}\right) \cap \Omega_{2}$ is empty. Since both Ω_{1} and Ω_{2} are connected, this implies that either $\Omega_{2} \subset \tilde{f}\left(\Omega_{1}\right)$ or $\Omega_{2} \cap \widetilde{f}\left(\Omega_{1}\right)=\emptyset$. By proposition 7 the first possibility cannot be, since \widetilde{f} is a homeomorphism. The second possibility implies that and $\tilde{f}\left(\overline{\Omega_{1}}\right) \subset \overline{\Omega_{1}}$.

But since \tilde{f} satisfies property T the future orbit of x_{T} must visit any neighborhood of any \mathbb{Z}^{2} translate of x_{T} infinitely many times, and so, from lemma 8 , there must be integers $n_{1}<n_{2}<n_{3}$ such that

$$
\begin{equation*}
\tilde{f}^{n_{1}}\left(x_{T}\right) \in \Omega_{1}, \tilde{f}^{n_{2}}\left(x_{T}\right) \in \Omega_{2} \text { and } \tilde{f}^{n_{3}}\left(x_{T}\right) \in \Omega_{1} \tag{3}
\end{equation*}
$$

But, from the previous lemma, if $\tilde{f}\left(\overline{\Omega_{1}}\right) \subset \overline{\Omega_{1}}$, then for all $n \geq n_{1}, \widetilde{f}^{n}\left(x_{T}\right) \notin \Omega_{2}$, which violates (3) and if $\widetilde{f}\left(\overline{\Omega_{2}}\right) \subset \overline{\Omega_{2}}$, then for all $n \geq n_{2}, \widetilde{f^{n}}\left(x_{T}\right) \notin \Omega_{1}$, which again violates (3), and we are done.

5. AKNOWLEDGMENT

I'd like to thank Prof. Addas-Zanata for the insightful discussions on this work, and presenting ideas that helped to clarify some of the proofs presented here.

References

1. Addas-Zanata S. and Tal F. A. (2009) Homeomorphisms of the annulus with a transitive lift. Math. Zeit.
2. Addas-Zanata S. and Tal F. A. (2010) On generic rotationless diffeomorphisms of the annulus. Proc. Am. Math. Soc. 138, 1023-1031.
3. Alpern S.and Prasad V. (1995) Typical transitivity for lifts of rotationless annulus or torus homeomorphisms. Bull. London Math. Soc. 27, 79-81.
4. Bonatti C. and Crovisier S.(2004) Récurrence et généricité. Invent. Math. 158, 33-104.
5. Enrich H., Guelman N., Larcanche A. and Liousse I. (2009) Diffeomorphisms having rotation sets with non-empty interior. Nonlinearity 22, 1899-1907.
6. Franks J. (1989) Realizing rotation vectors for torus homeomorphisms. Trans. Am. Math. Soc. 311, 107-115
7. Jaeger T. (2009) Linearization of conservative toral homeomorphisms. Inventiones Math. 176, 601-616.
8. Llibre J. and Macay R.S. (1991) Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity Erg. Th. and Dyn. Sys. 11, 115-128.
9. Misiurewicz M. and Ziemian K. (1989) Rotation sets of toral Maps. J. London Math. Soc. 40, 490-506.
10. Misiurewicz M. and Ziemian K. (1991) Rotation sets and ergodic measures for torus homeomorphisms. Fundam. Math. 137(1), 45-52.
11. Newman M. H. A. (1939) Elements of the Topology of Plane Sets of Points. Cambridge University Press, 216 pp.

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil

E-mail address: fabiotal@ime.usp.br

[^0]: Key words and phrases. Torus homeomorphisms, rotation set, transitivity, omega limits.
 Supported by CNPq grant 304360/05-8.

