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TRANSITIVITY AND ROTATION SETS WITH NONEMPTY

INTERIOR FOR HOMEOMORPHISMS OF THE 2-TORUS

FÁBIO ARMANDO TAL

Abstract. We show that, if f is a homeomorphism of the 2–torus isotopic to

the identity, and its lift f̃ is transitive, or even if it is transitive outside of the

lift of the elliptic islands, then (0, 0) is in the interior of the rotation set of f̃ .
This proves a particular case of Boylands conjecture.

1. Introduction

In this work we study homeomorphisms of the 2 torus isotopic to the identity.

Let f be such a homeomorphism, and let f̃ be a fixed lift of f to the plane, a
homeomorphism of R2 that satisfies

f̃(x+ 1, y + 1) = f̃(x, y) + (1, 1),

and π(f̃(x)) = f(π(x)), where π : R2 → T 2 is the covering map.

Given f and f̃ we define, following [9]and [6], the rotation set of f̃ as the set of
accumulation points of the subset of R2

{
f̃n(x)− x

n
| x ∈ R2, n ∈ ZZ+

}
,

which is a compact convex set (see [9]).
One important question is to characterize for which homeomorphisms of the torus

the rotation set of its lifts has non-empty interior. There are several consequences
associated with this property. In [8], it is shown that if a lift of f has a rotation set
with non-empty interior, then f has positive topological entropy. In [9] it is shown

that if a point (p1

q ,
p2

q ) ∈ Q2 is in the interior of ρ(f̃), then there exists a point

x in the plane such that f̃ q(x) = x + (p1, p2), while the results from [7] and [10]

show that, if α is a point in the interior of ρ(f̃), with both coordinates irrational,
then there exists a minimal set Kα such that the restriction of f to Kα is regularly
semi-conjugate to the translation by α.

While the dynamics tied to the interior of the rotation set is somewhat well
understood, a description of the dynamics implied by the extremal points of the
rotation set when it has interior is somewhat lacking, even for the cases where f is
area preserving. One standing conjecture in this direction is the Boyland conjecture,
explained below:
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Given an area preserving homeomorphism of the torus f and a fixed lift f̃ , one

can consider the rotation vector of the Lebesgue measure λ for f̃ ,

ρλ(f̃) =

∫

[0,1]×[0,1]

f̃(x) − xdλ.

An homeomorphisms f isotopic to the identity such that ρλ(f̃) = (0, 0) is usually
called in the literature an irrotational homeomorphism. Whenever we speak of an
irrotational homeomorphisms, an specific lift for f is fixed.

Boyland’s conjecture for the torus claims that, if f is an irrotational homeomor-

phisms and the interior of ρ(f̃) is non-empty, then (0, 0) is in the interior of the
rotation set.

Another important dynamical property of homeomorphisms which has received
attention recently is transitivity. In [4] it was shown that C1 generically, an area
preserving diffeomorphism of the torus is transitive. In [3], the authors showed

that, C0 generically, if f is irrotational, then f̃ is transitive in the whole plane. The
work [4] suggests this is also true C1 generically.

In [1] it is shown that, if g is a homeomorphism of the closed annulus whose lift
g̃ to the strip R× [0, 1] is transitive, and if there are no fixed point in the boundary
of the annulus, then 0 is in the interior of the rotation interval of g̃. Some of the
ideas presented in this note follow from that paper.

In [5] the authors study the relationship between transitivity, entropy and rota-
tion set, showing that if f is C1+ε, has topological entropy, and the lift of f to every

finite covering of the torus is transitive, then the rotation set of f̃ has non-empty
interior.

Here we study homeomorphism of the 2-torus isotopic to the identity which have
the following property:

Definition 1. A lift f̃ of a homeomorphism of the torus isotopic to the identity is

said to have the Property T if there exists a point xT in R2 such that the omega-

limit of the orbit of xT by f̃ , ω(xT ), contains all ZZ2 translates of xT , that is,

π−1(π(xT )) ⊂ ω(xT ).

The above hypothesis is clearly weaker than requesting transitivity of f̃ . In fact,
it covers the following case, which is of relevance for measure-preserving homeomor-
phisms, a hypothesis we do not require. A common and stable trait of sufficiently
differentiable area preserving diffeomorphisms of the torus is the existence of el-
liptic islands. Of course such diffeomorphisms cannot be transitive, nor can their
lift, but it is still possible for such mappings to be transitive in the complement of
the interior of these islands, which in many relevant cases is a torus with infinitely

many holes. If a diffeomorphism f has a lift f̃ which is transitive in the complement

of the lift of the elliptic islands, then f̃ obeys Property T.
Our main result is:

Theorem 1. Let f be a homeomorphism of the 2-torus isotopic to the identity such

that its lift f̃ obeys Property T. Then (0, 0) is in the interior of ρ(f̃).

In section 2 we introduce the sets Bθ and ω(Bθ), and we study their structure.
In section 3 we study the projection of the sets Bθ and ω(Bθ) to the torus, and
derive some properties of its closure. The final section is devoted to proving the
main theorem.
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In what follows f will always be a homeomorphism of the 2-torus isotopic to the

identity, and f̃ a lift that satisfies Property T. xT will denote a point in R2 such
that π−1(π(xT )) = xT + ZZ2 ⊂ ω(xT ).

2. The sets Bθ, Cθ, ω(Bθ), and ω(Cθ)

We begin by considering the one point compactification of R2, the set R2∪{∞}
which is homeomorphic to S2. We associate to the homeomorphism f of the torus

and its lift f̃ to the plane a third homeomorphism f̂ , a homeomorphism of S2

induced by f̃ that keeps the infinity fixed.
Given any θ in [0, 2π), we define the sets

Vθ = {x) ∈ R2 : 〈x; eθ〉 = 0}

and
V +
θ = {x ∈ R2 : 〈x; eθ〉 ≥ 0},

where eθ = (cos(θ), sin(θ)).

We consider also the corresponding sets in S2, which we denote by V̂θ and V̂ +
θ .

Let B̂θ be the connected component of
⋂

n≤0

f̂n(V̂ +
θ ),

that contains the infinity, and denote by Bθ the corresponding set in R2.

Let Ĉθ be the connected component of
⋂

n≥o

f̂n(V̂ +
θ ),

that contains the infinity, and denote by Cθ the corresponding set in R2.
It follows from these definitions that Bθ is the union of all closed unbounded

connected sets whose forward orbit remains in V +
θ for all times, and that Cθ is the

union of the connected components whose backward orbit remains in V +
θ .

Proposition 1. For every θ in [0, 2π), we have:

(1) Bθ and Cθ are closed and f̃(Bθ) ⊂ Bθ, f̃
−1(Cθ) ⊂ Cθ.

(2) Every connected component of Bθ or Cθ is unbounded.

(3) If (p, q) is a point in V +
θ ∩ ZZ2, then Bθ + (p, q) ⊂ Bθ, and the same holds

for Cθ.
(4) BC

θ has a single connected component, as does CC
θ .

Proof. We prove this properties only for Bθ, the reasoning is the same for Cθ.
Properties 1 and 2 are direct consequences of the definition of Bθ. If x is a point
of Bθ, let Γ be the connected component of Bθ that contains x. Then, for every y

in Γ and every positive integer j, f̃ j(y) is in V +
θ . But this implies that, if z is a

point of the set Γ+(p, q), then also for every positive integer j we have f̃ j(z) ∈ V +
θ .

Therefore Γ+ (p, q) is a connected closed set whose future orbit does not leave V +
θ ,

and so Γ + (p, q) ⊂ Bθ, and x+ (p, q) ∈ Bθ. This proves property 3.
Now let Ω be the connected component of BC

θ that contains R2 \ V +
θ . Since

f̃(Bθ) ⊂ Bθ, we have that BC
θ ⊂ f̃(BC

θ ), and so every connected component of

f̃(BC
θ ) contains a connected component of BC

θ . As f̃(Ω) ∩ Ω 6= ∅, this implies

Ω ⊂ f̃(Ω). In particular, ΩC is forward invariant.
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Let z ∈ ΩC , and let Γ be the closed connected component of ΩC that contains

z. Since ΩC is forward invariant, for every positive integer j we have f̃ j(Γ)∩Ω = ∅
but since (V +

θ )C ⊂ Ω, Γ is a closed connected set whose forward orbit remains in

V +
θ . Furthermore, since ∂(ΩC) ⊂ Bθ, then Γ∩Bθ 6= ∅. Let z ∈ Γ∩Bθ and Θ be the

connected component of Bθ that contains z. Θ is unbounded and since Θ ⊂ ΩC

and Θ∩Γ 6= ∅, then Θ ⊂ Γ. So Γ is unbounded, closed and its forward orbit remains
in V +

θ , therefore Γ ⊂ Bθ. This shows that Ω
C = Bθ and implies property 4

Lemma 1. For every θ in [0, 2π), we have Bθ ∩ [−1, 1] × [−1, 1] 6= ∅, and Cθ ∩
[−1, 1]× [−1, 1] 6= ∅.

Proof. We assume, without loss of generality, that 0 ≤ θ < π
2 .

Since f̃ satisfies Property T, there is y a translate of xT which lies in V +
θ+π such

that, for every positive integer m, there exists a positive integer n0(m) such that

f̃n0(m)(y) ∈ V +
θ + (m, 0). Let n = n(m) be the first time that f̃n(V +

θ+π) intersects

V +
θ + (m, 0), that is, f̃n(V +

θ+π) ∩ V +
θ + (m, 0) 6= ∅ and such that, for all 0 ≤ j < n,

f̃ j(V +
θ+π) ∩ V +

θ + (m, 0) is empty.

As f̃n(m)(V +
θ+π) ∩ V +

θ+π is not empty, this implies that

(
f̃n(m)(∂V +

θ+π) ∩ V +
θ + (m, 0)

)
=
(
f̃n(m)(Vθ) ∩ V +

θ + (m, 0)
)
6= ∅.

Let mk be a sequence of integers such that limk→∞ n(mk) = ∞. For each k

there is an unbounded closed curve γk that starts at f̃n(mk)(Vθ) and such that

γk ⊂ f̃n(mk)(V +
θ ) ∩ V +

θ + (m, 0). It follows that the sets βk = f̃−n(mk)(γk) all

intersect Vθ, and that for 0 ≤ i ≤ n(mk), f̃
i(βk) ⊂ V +

θ .
Also, since for every point z in Vθ there are integers p and q such that 〈(p, q); eθ〉 ≥

0 and such that z + (p, q) is in [0, 1] × [0, 1], we have that there is a curve αk =

βk+(p, q) that starts in [0, 1]×[0, 1] and such that, for 0 ≤ i ≤ n(mk), f̃
i(αk) ⊂ V +

θ .
Now consider the closed sets α̂k in S2 corresponding to the sets αk. α̂k is a

sequence of compact connected sets, and as such there is a subsequence α̂kj
that is

convergent in the Hausdorff topology to a closed connected set Γ̂. It is clear that

α̂k is in B̂θ, and that Γ̂ intersects [0, 1]× [0, 1]. The subset Γ of R2 corresponding

to Γ̂ shows the lemma is true
Another interesting property of the set Bθ is the following:

Lemma 2. There exists (p, q) ∈ ZZ2 such that f̃−1(Bθ) ⊂ Bθ− (p, q). In particular,

f(π(Bθ)) = π(Bθ).

Proof. Since f̃ is biperiodic, there exists a positive real K such that, for all x ∈ R2,

‖f̃(x)− x‖ ≤ K.
Let y ∈ Bθ, and let (p, q) ∈ ZZ2 be such that 〈(p, q); eθ〉 ≥ 2K. Let Γ be the

connected component of y. Then f̃−1(Γ) + (p, q) ⊂ V +
θ . As f̃(f̃−1(Γ) + (p, q)) is a

subset of Bθ+(p, q) ⊂ Bθ ⊂ V +
θ and as f̃−1(Γ)+(p, q) is connected and unbounded,

we have that f̃−1(Γ) + (p, q) ⊂ Bθ, which shows the result
Also,

Lemma 3. There exists (p, q) ∈ ZZ2 such that f̃(Cθ) ⊂ Cθ − (p, q). In particular,

f(π(Cθ)) = π(Cθ).
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and the proof is the same of the previous lemma.
We will need to also consider the following sets:

ω(Bθ) = ∩∞
i=1∪

∞
j=if̃

j(Bθ) = ∩∞
i=1f̃

i(Bθ),

where the last equality comes from the positive invariance of Bθ, and the respective
set in S2

ω̂(Bθ) = ∩∞
i=1f̂

i(Bθ).

We also define the sets

ω(Cθ) = ∩∞
i=1f̃

−i(Cθ),

and ω̂(Cθ).

The following properties of ω(Bθ) and ω̂(Bθ) follow directly from the definition
and proposition 1.

Proposition 2. For every θ in [0, 2π), we have:

(1) {∞} ⊂ ω̂(Bθ), and ω̂(Bθ) is connected.

(2) ω(Bθ) is closed and f̃(ω(Bθ)) = ω(Bθ).
(3) Every connected component of ω(Bθ) is unbounded.

(4) If (p, q) is a point in V +
θ ∩ ZZ2, then ω(Bθ) + (p, q) ⊂ ω(Bθ).

(5) ω(Bθ)
C has a single connected component.

Proposition 3. ω(Bθ) = ω(Cθ).

Proof. We show only that ω(Bθ) ⊂ ω(Cθ). Let Γ be a connected component of

ω(Bθ). Since ω(Bθ) is invariant, we have f̃−k(Γ) ⊂ ω(Bθ) ⊂ V +
θ , for all positive

integers k, which shows that Γ ⊂ Cθ. Since the choice of Γ was arbitrary, we have
ω(Bθ) ⊂ Cθ. Again, we use the invariance of ω(Bθ) and get

f̃ i(ω(Bθ)) = ω(Bθ) ⊂ Cθ,

so that ω(Bθ) ⊂ f̃−i(Cθ) for all integers i, proving the proposition
The following lemma will be our main tool in establishing the existence of vectors

in the rotation set of f̃ .

Lemma 4. If ω(Bθ) = ∅, then there exists a positive real number a such that:

• For all x in Bθ,

lim inf
n→∞

〈f̃n(x); eθ〉

n
≥ a.

• For all x in Cθ,

lim inf
n→∞

〈f̃−n(x); eθ〉

n
≥ a.

Proof. We again assume, without loss of generality, that θ is in [0, π/2), and we

prove just the first item. We claim that there is a positive n such that f̃ i(Bθ) is
contained in V +

θ + (1, 0), for all i > n. If this was not the case, then there would
be a sequence ij → ∞ such that, for all j, there is a point xj = Bθ such that

f̃ ij (xj) ∈ V +
θ \ V +

θ + (1, 0).
But this implies that there is a sequence of pair of integers pj , qj such that

〈(pj , qj); eθ〉 ≥ 0 and such that f̃ ij (xj) + (pj , qj) is in [1, 2]× [0, 1]. But since Bθ +

(pj , qj) ⊂ Bθ, we would have that, if zj = xj+(pj , qj), then the sequence (f̃(zj))j∈IN
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would have a convergent subsequence, which contradicts ω(Bθ) = ∅, since zj ∈ Bθ

for all j.
Let Γ be a connected component of Bθ. By the choice of n, for all j ≥ 0 we

have f̃ j+n(Γ) ⊂ V +
θ + (1, 0), and so f̃n+j(Γ) − (1, 0) ⊂ V +

θ . Since f̃n(Γ) is closed,

connected and unbounded, it follows from the definition of Bθ that f̃n(Γ)− (1, 0) ⊂

Bθ, and so f̃n(Γ) ⊂ Bθ + (1, 0). As the choice of Γ was arbitrary, we have

f̃n(Bθ) ⊂ Bθ.

A simple induction argument now shows that, for every positive integer k,

f̃nk(Bθ) ⊂ Bθ + (k, 0) ⊂ V +
θ + (k, 0), and so, for every x in Bθ,

lim inf
i→∞

〈f̃ i(x); eθ〉

i
≥

cos(θ)

n
,

which ends the proof
The following is an immediate consequence of the previous lemma:

Corollary 1. If ω(Bθ) = ∅, than there exists r1, r2 ∈ ρ(f̃) such that 〈r1; eθ〉 > 0,
and 〈r2; eθ〉 < 0.

We can now state the main lemma of this work: which will be proved in the last
section:

Lemma 5. For every θ ∈ [0, π), at least one of ω(Bθ) and ω(Bθ+π) is empty.

We will postpone the proof of this result to the last section, but let us now show
how this lemma yields theorem 1.

Proof of theorem 1: We first note that, since f̃ satisfies Property T, it has a

recurrent point, and as so (0, 0) ∈ ρ(f̃). Since ρ(f̃) is convex, either (0, 0) is in the

interior of ρ(f̃), and we are done, or there exists a straight line passing through

(0, 0) such that ρ(f̃) is contained in one side of this line. Assume by contradiction

that the latter happens. This means that there is θ1 such that for all r ∈ ρ(f̃),
〈r; eθ1

〉 ≥ 0.
But from lemma 5 either ω(Bθ1

) = ∅ or ω(Bθ1+π) = ∅, and in both cases this

implies, by corollary 1, that there exists r ∈ ρ(f̃) with 〈r; eθ1
〉 < 0.

3. The sets π(Bθ) and π(ω(Bθ))

Let us state this general result:

Lemma 6. Let g be a homeomorphism of the torus isotopic to the identity and g̃

be its lift to the plane. Let Ã ⊂ R2 be such that if z̃ ∈ Ã, then z̃ + (i, 0) ∈ Ã for all

integer i. Assume that there exists a point x̃ in R2 such that

Ã ⊂ ω(x̃) = ∩∞
i=1∪

∞
j=ig̃

j(x̃).

Then, for every z ∈ A = π(Ã) and every ε > 0, there exists a curve γ ⊂ R2 which

is unbounded in the e0 direction but bounded in the eθ/2 direction, and such that,

for every point in y ∈ γ there exists a positive n(y) such that π(g̃n(y)(y)) ∈ Bε(z).

Proof:

Let z ∈ A and and z̃ be a point such that π(z̃) = z. Since Ã ⊂ ω(x̃), there
are points x1 and x2 and integers k1 and k2, both strictly negative, such that
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g̃k1(x1) = y1 ∈ Bε(z̃) and g̃k2(x2) = y2 ∈ Bε(z̃ + (1, 0)). Let α0 be the segment
connecting x1 and x2, α1 be the segment connecting x1 and y1, α2 be the segment
connecting x2 and y2 − (1, 0), α3 be the segment connecting y1 and z̃ and α4

be the segment connecting y2 − (1, 0) and z̃. We note that π(αi) ⊂ Bε(z), for
i ∈ {0, 1, 2, 3, 4}.

Also, since x1 and y1 belong to α1, and since y1 = g̃k1(x1) belongs to g̃k1(α1), we
have that g̃k1(α1)∪α1 is a connected set that contains g̃k1(x1). A simple induction
shows that

β1 =

(
−k2⋃

i=0

g̃ik1(α1)

)
,

is a connected arc joining g̃−k1k2(x1) and y1.
Analogously, since x2 and y2 − (1, 0) belong to α2 and g̃k2(x2) = y2, it follows

that the set g̃k2(α2)∪α2+(1, 0) is an arc connecting g̃k2(x2) and y2. Therefore the
set

β2 =

(
−k1⋃

i=0

(g̃ik2(α2 + (i− k1, 0))

)

is a connected arc joining g̃−k1k2(x2) and y2 − (k1 − 1, 0). This implies that

g̃−k1k2(α0) ∪ β1 ∪ β2

is a connected arc joining y1 and y2 − (k1 − 1, 0).
Consider the set

γ0 = g̃−k1k2(α0) ∪ β1 ∪ β2 ∪ α3 ∪ α4 + (−k1, 0),

which is also connected and bounded in the eπ/2 direction, and which contains both

z̃ and z̃ − (k1, 0). If γ =
⋃∞

i=−∞(γ0 + (ik1, 0)), then γ is connected, unbounded in
the e0 direction and bounded in the eπ/2 direction, and satisfies that, if y ∈ γ,

then there is a n(y) > 0 such that π(g̃n(y)(y)) ∈ π(αi) for some 0 ≤ i ≤ 4. Since
π(αi) ⊂ Bε(z), 0 ≤ i ≤ 4, we have the result

The previous lemma yields this two simple corollaries, the first one which will
be used in the remainder of the paper, the second interesting in itself.

Corollary 2. Let g be a homeomorphism of the torus and g̃ be its lift to the plane.

Assume there is a set Ã ⊂ R2 which is ZZ2 invariant, i.e., for every ỹ in Ã, and

every pair of integers (p, q) ∈ ZZ2, ỹ + (p, q) ∈ Ã. Assume further than there is a

point x̃ in Ã such that Ã ⊂ ω(x̃).
Let B ⊂ R2 be a set such that g̃(B) ⊂ B and such that B has an unbounded

connected component. Then π(Ã) ⊂ π(B).

Proof. Let z̃ ∈ B be a point in an unbounded connected component of B. Suppose,

by contradiction, that there exists a point ỹ ∈ Ã and a positive real ε such that
π(B) ∩Bε(π(ỹ)) = ∅.

The previous lemma implies that there are two connected sets, α and β, with
the following property:

• For all x̃ in α∪ β, there exists a positive integer n(x̃) such that π(g̃n(x̃)) ∈
Bε(π(ỹ)).

• α is unbounded in the direction of eπ/2, bounded in the direction of e0 and
disconnects the plane.
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• β is bounded in the direction of eπ/2, unbounded in the direction of e0 and
disconnects the plane.

Now, by the contradiction hypothesis and the first item,

π(B) ∩ π(α ∪ β) = ∅(1)

By the second item, there is an integer k1 such that z̃ is to the left of α + (k1, 0),
to the right of α− (k1, 0), below β + (0, k1) and above β − (0, k1). This shows that
z̃ is in a bounded connected component of the complement

D = α+ (k1, 0) ∪ α− (k1, 0) ∪ β + (0, k1) ∪ β − (0, k1).

But, from (1), B ∩D = ∅, which is absurd since the connected component of B
that contains z̃ must be unbounded by hypothesis and remain in the same connected
component of DC that contains z̃.

We finish this section with 2 direct applications of this results:

Corollary 3. Let g be a homeomorphism of the torus isotopic to the identity and

g̃ be its lift. Assume g̃ is transitive in R2.
Let B ⊂ R2 be a set such that g̃(B) ⊂ B and such that B has an unbounded

connected component. Then π(B) = T 2.

Corollary 4. Let f̃ be a homeomorphism of the torus satisfying property T. Then,

for all 0 ≤ θ < 2π, if ω(Bθ) is non-empty, then π(xT ) ⊂ π(ω(Bθ)).

4. Proof of lemma 5

It suffices to show that, for every θ ∈ [0, π), either ω(Bθ) = ∅, or ω(Bθ+π) = ∅.
Assume, by contradiction, that there exists θ for which this does not hold. With-

out loss in generality, we will assume that 0 ≤ θ < π/2.
There are 2 possibilities:

(1) π(ω(Bθ)) ∩ π(ω(Bθ+π)) 6= ∅
(2) π(ω(Bθ)) ∩ π(ω(Bθ+π)) = ∅

4.1. Case 1. If π(ω(Bθ)) ∩ π(ω(Bθ+π)) 6= ∅, then there exists (p1, q1) and (p2, q2)
such that

ω(Bθ) + (p1, q1) ∩ ω(Bθ+π) + (p2, q2) 6= ∅,

and so, if (p, q) = (p2 − p1, q2 − q1),

ω(Bθ) ∩ ω(Bθ+π) + (p, q) 6= ∅.

In this case, we have:

Lemma 7. The open set

O1 =
(
(ω(Bθ)− (1, 1))

⋃
(ω(Bθ+π) + (p+ 1, q + 1))

)C
,

has infinitely many connected components. Furthermore, the set xT +ZZ2 intersects

infinitely many of these connected components.

Proof. Let N be a fixed integer. There exists integers n1,m1, n2,m2 such that
n2 < 0 < n1,m1 > 0,m2 > 0 and such that

−1

4N
< 〈(n1,m1); eθ〉 < 0,
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and

0 < 〈(n2,m2); eθ〉 <
1

4N
.

Let y ∈ xT + ZZ2 be such that 1/4 ≤ 〈y; eθ〉 ≤ 3/4.
We will show that at least N of the points y, y + i(n1,m1), y + j(n2,m2), for

1 ≤ i ≤ N, 1 ≤ j ≤ N, are in distinct connected components of O1, which clearly
proves the proposition.

Assume, by contradiction, that there are i1, i2, j1, and j2 in [0, N ], i1 < i2,
j1 < j2 such that y1 = y + i1(n1,m1) and y1 + (i2 − i1)(n1,m1) are in the same
connected component, as are y2 = y + j1(n2,m2) and y2 + (j2 − j1)(n2,m2).

Since y1 and y1 + (i2 − i1)(n1,m1) are in the same connected component, there
is a curve α joining these 2 points that does not intersect OC

1 . Likewise, there is a
curve β joining y2 and y2+(j2− j1)(n2,m2), that also does not intersect OC

1 . Note
that

0 < 〈y1; eθ〉 < 1,(2)

0 < 〈y2; eθ〉 < 1.

We recall that, if (r1, s1) ∈ ZZ2 is such that 〈(r1, s1); eθ〉 < 1 ≤ 〈(1, 1); eθ〉, then
〈(1− r1, 1− s1); eθ〉 > 0, and from proposition 2 we have ω(Bθ) + (1− r1, 1− s1) ⊂
ω(Bθ), and ω(Bθ) ⊂ ω(Bθ) + (r1 − 1, s1 − 1). Therefore, if C ∩ ω(Bθ)− (1, 1) = ∅,
than C + (r1, s1) ∩ ω(Bθ) + (r1 − 1, s1 − 1) = ∅ and so C + (r1, s1) ∩ ω(Bθ) = ∅.

Likewise, if (r2, s2) ∈ ZZ2 is such that 〈(r2, s2); eθ〉 > −1, and if C ∩ ω(Bθ+π) +
(p+ 1, q + 1) = ∅, then C + (r2, s2) ∩ ω(Bθ+π) + (p, q) = ∅.

This and (2) shows that, if z is such that π(z) = π(y) and such that 0 ≤
〈z − y; eθ〉 ≤ 1, then both α + (z − y) and β + (z − y) do not intersect ω(Bθ) ∩
ω(Bθ+π) + (p, q).

Let z0 ∈ π−1(π(xT )) be such that 1/4 < 〈z0; eθ〉 < 3/4. For −∞ ≤ i ≤ +∞,
we define, if 〈zi; eθ〉 < 1/2, γi = α + (zi − y1), zi+1 = zi + (i2 − i1)(n1,m1);
and if 〈zi; eθ〉 > 1/2, we define γi = β + (zi − y2), zi+1 = zi + (j2 − j1)(n2,m2).
Note that γi connects zi and zi+1. Also notice that, since m1 and m2 are positive,
〈zi+1, eπ/2〉 > 〈zi, eπ/2〉 and that

lim
i→∞

〈zi, eπ/2〉 = +∞, lim
i→−∞

〈zi, eπ/2〉 = −∞.

Also, since − 1
4 〈(i2 − i1)(n1,m1); eθ〉 < 0 and 0 < 〈(j2 − j1)(n2,m2); eθ〉 < 1

4 ,
then an induction shows that 1/4 < 〈zi; eθ〉 < 3/4, for all integers i. Therefore,
for all i ∈ ZZ, both |〈zi − y1; eθ〉| < 1 and |〈zi − y2; eθ〉| < 1. This shows that
γi ∩ (ω(Bθ) ∪ ω(Bθ+π) + (p, q)) = ∅.

Finally, let M = maxx∈(α∪β){|〈x; eθ〉|}. Then

max
x∈γi

{|〈x; eθ〉|} < M + 1.

Let γ = ∪∞
1=−∞γi. Then clearly γ is connected, does not intersect ω(Bθ) ∪

ω(Bθ+π)+(p, q), is unbounded in the eπ/2 direction, and bounded in the eθ direction.

This shows that the sets {x ∈ R2 | 〈x, eθ〉 > M + 1}, and {x ∈ R2 | 〈x, eθ〉 <
−(M + 1)} are in different connected components of γC .

But since ω(Bθ)∩ω(Bθ+π)+(p, q) is not empty, there exists x in the intersection.
Let Γ be the connected component of ω(Bθ) that contains x, and let Θ be the
connected component of ω(Bθ+π) + (p, q) that contains x. Then Γ1 = Γ ∪ Θ is a
connected component of ω(Bθ)∩ω(Bθ+π)+(p, q) such that supw∈Γ1

〈w; eθ)〉 = +∞
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and such that infw∈Γ1
〈w; eθ〉 = −∞. But this contradicts the fact that γ ∩ Γ1 = ∅

and that γ is connected

Since f̃ satisfies Property T, the forward orbit of xT is not confined to any
half-plane and, as such, xT /∈ (ω(Bθ) ∪ ω(Bθ+π) + (p, q), so that xT ∈ O1.

Now xT is a recurrent point, so there is an n such that f̃n(xT ) and xT are in
the same connected component of O1. Therefore, if U is the connected component

of O1 that contains xT , then f̃n(U) ∩ U is not empty, and since O1 is an invariant

set, this implies that f̃n(U) = U. Thus, the orbit of xT only intersects n connected
components of O1.

But lemma 7 tells us that the set xT + ZZ2 both intersects infinitely many con-
nected components of O1, and is contained in the closure of the forward orbit of
xT which is absurd. Therefore Case 1 cannot be.

4.2. Case 2. We still need to deal with the case where

π(ω(Bθ)) ∩ π(ω(Bθ+π)) = ∅,

which we assume throughout the section.
We begin with the following proposition, whose proof can be seen in [11]

Proposition 4. Let K1 and K2 be compact connected sets of R2 such that K1∩K2

is connected. If x and y are in the same connected component of KC
1 and are also

in the same connected component of KC
2 , then x and y are in the same connected

component of (K1 ∪K2)
C .

Proposition 5. For every (p1, q1), (p2, q2) ∈ ZZ2, the complement of the set

(ω(Bθ) + (p1, q1) ∪ ω(Bθ+π) + (p2, q2))

has a single connected component.

Proof. We already know that ω(Bθ) + (p1, q1) ∩ ω(Bθ+π) + (p2, q2) = ∅. We also
know that, from lemma 1, that both the complements of ω(Bθ) + (p1, q1) and
of ω(Bθ+π) + (p2, q2) have a single connected component. This means that, if we

consider the corresponding sets in S2, ̂ω(Bθ) + (p1, q1) and ̂ω(Bθ+π) + (p2, q2), their
intersection consists of the point ∞, and so we can apply the previous proposition,
which gives us the result

The following is result follows from a construction very similar to the one done
in the proof of lemma 7.

Proposition 6. For every point x in T 2, and every (p1, q1) and (p2, q2) in ZZ2,

there is an arc γ ⊂ R2 that contains infinitely many points of π−1(x) and such that

ω(Bθ)+(p1, q1) and ω(Bθ+π)+(p2, q2) are in distinct connected components of γC .

Proof. Since π(ω(Bθ))∩π(ω(Bθ+π)) = ∅, we will assume, without loss in generality,
that x /∈ π(ω(Bθ)). Therefore, there is a point y in π−1(x) such that 〈y; eθ〉 ≥
〈(p2, q2); eθ〉 + 3. This means that the points y, y + (0, 1) and y − (1, 0) are all in
the semi-plane V +

θ + (p2 + 1, q2 + 1), and therefore none of these 3 points belongs
to ω(Bθ) + (p1 − 1, q1 − 1) ∪ ω(Bθ+π) + (p2 + 1, q2 + 1).

Now, from proposition 5, we know that all three points are in the same con-

nected component of (ω(Bθ) + (p1 − 1, q1 − 1) ∪ ω(Bθ+π) + (p2 + 1, q2 + 1))
C
, and

so there is an arc α joining y and y + (0, 1) and an arc β joining y and y − (1, 0)
such that

(α ∪ β) ∩ (ω(Bθ) + (p1 − 1, q1 − 1) ∪ ω(Bθ+π) + (p2 + 1, q2 + 1)) = ∅.
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Now an argument similar to the one as in the proof of lemma 4, can construct
the arc γ by joining together translations of α and β, such that

−∞ < m = inf
z∈γ

〈z; eθ〉 ≤ sup
z∈γ

〈z; eθ〉 = M < ∞,

and such that γC has two connected unbounded components, one of which contains
all points of V +

θ +Meθ, and the other contains all points of R2 \ (V +
θ +meθ).

Since ω(Bθ) + (p1, q1) ∩ V +
θ +Meθ 6= ∅, and since

ω(Bθ+π) + (p2, q2) ∩R2 \ (V +
θ +meθ)

is also nonempty, we have the result
Since xT + ZZ2 ⊂ ω(xT ), π(xT ) is not a fixed point. Let ε > 0 such that, if

Bε[π(xT )] is the closed ball with center π(xT ) and radius ε, then f(Bε[π(xT )]) ∩
Bε[π(xT )] = ∅.

Now, from corollary 4,

π(xT ) ∈ π(ω(Bθ)) ∩ π(ω(Bθ + π)),

therefore there exists y ∈ xT +ZZ2, and two integers p and q, such that the distance
from y to Bθ is less than ε, as is the distance between y − (p, q) to Bθ+π.

Since we assumed that π(ω(Bθ)) ∩ π(ω(Bθ+π)) = ∅, the distance between the
compact sets ω(Bθ)∩Bε[y] and (ω(Bθ+π)+(p, q))∩Bε[y] is strictly positive number
a, and a < ε. Let v be an open line segment with length a such that its endpoints
are u and w, where u ∈ ω(Bθ) and w ∈ ω(Bθ+π) + (p, q). Note that, as v ⊂

Bε[y], f̃(V ) ∩ V = ∅.
Finally, let Γ be the connected component of ω(Bθ) that contains u and let Θ

be the connected component of ω(Bθ+π) + (p, q) that contains w.

Lemma 8. The set (Γ ∪ Θ)C contains a single connected component. The set

(Γ ∪Θ ∪ v)C has exactly two connected components, Ω1 and Ω2. Also, for every x
in T 2, π−1(x) intersects both Ω1 and Ω2.

Proof. The first claim follows from proposition 5.
Let p be the midpoint of the segment v, and let r = dist(p,Θ) = dist(p,Γ). The

closed ball Br[p] is splitted in two by v. Of course, since (Γ ∪ Θ)C has a single
connected component, (Γ∪Θ∪v)C has, at most, two components. Let p be a point
in one of the connected components of Br[p] \ v and let q be a point in the second
connected component. Suppose, by contradiction, that p and q are in the same
connected component of (Γ ∪Θ ∪ v)C . Then, there is an arc α connecting p and q
lying entirely on this set. We can add to α the segment joining p and q to obtain
a Jordan curve J , which does not intersect Γ ∪Θ. But one endpoint of v must be
in the int(J), and so one of Γ and Θ must be in the int(J), absurd since both are
unbounded.

Proposition 7. For i = {1, 2}, f̃(Ωi) ∩ Ωi is not empty.

Proof. Let y be a fixed point of f̃ (Since xT is a recurrent point of f̃ , f̃ cannot be
a Brouwer homeomorphism and so it has fixed points). By proposition 6, there is
an arc γ which connects infinitely many translates of y and that separates ω(Bθ)
and ω(Bθ+π) + (p, q). Since Γ∪Θ∪ v is connected, γ ∩ v 6= ∅, and so there must be
translates of y both in Ω1 and in Ω2

Lemma 9. Either f̃(Ω1) ⊂ Ω1 or f̃(Ω2) ⊂ Ω2.
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Proof. By the definition of v, v ∩ ω(Bθ) = ∅, as well as v ∩ ω(Bθ+π) + (p, q) = ∅.

Since both ω(Bθ) and ω(Bθ+π) are invariant, and since f̃(Bε[y]) ∩ Bε[y] = ∅, we

have that f̃(v) ∩ (Γ ∪Θ ∪ v) = ∅.

This means that either f̃(v) ⊂ Ω1 or f̃(v) ⊂ Ω2. We will assume, without loss of
generality, that the former is true.

Since Γ is a connected component of ω(Bθ) and the latter is invariant, then f̃(Γ)

is also a connected component of ω(Bθ) and so either f̃(Γ) = Γ or f̃(Γ)∩Γ = ∅. We

also have that f̃(Γ)∩(v∪Θ) = ∅. If f̃(Γ) = Γ, then f̃(Γ)∩Ω2 = ∅. If f̃(Γ) 6= Γ, since

Γ ∪ v is connected, and since f̃(v) ⊂ Ω1 and f̃(Γ) ∩ ∂Ω1 = ∅, we have f̃(Γ) ⊂ Ω1,

and thus f̃(Γ) ∩ Ω2 is also empty.

By a similar argument, f̃(Θ)∩Ω2 = ∅, and so f̃(∂Ω1)∩Ω2 is empty. Since both

Ω1 and Ω2 are connected, this implies that either Ω2 ⊂ f̃(Ω1) or Ω2 ∩ f̃(Ω1) = ∅.

By proposition 7 the first possibility cannot be, since f̃ is a homeomorphism. The

second possibility implies that and f̃(Ω1) ⊂ Ω1.

But since f̃ satisfies property T the future orbit of xT must visit any neighbor-
hood of any ZZ2 translate of xT infinitely many times, and so, from lemma 8, there
must be integers n1 < n2 < n3 such that

f̃n1(xT ) ∈ Ω1, f̃
n2(xT ) ∈ Ω2 and f̃n3(xT ) ∈ Ω1.(3)

But, from the previous lemma, if f̃(Ω1) ⊂ Ω1, then for all n ≥ n1, f̃
n(xT ) /∈ Ω2,

which violates (3) and if f̃(Ω2) ⊂ Ω2, then for all n ≥ n2, f̃
n(xT ) /∈ Ω1, which

again violates (3), and we are done.
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