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Abstract

In 1918 Brouwer considered stability of a heavy particle in a rotating vessel. This was the first demon-

stration of a rotating saddle trap which is a mechanical analogue for quadrupole particle traps of Penning

and Paul. We revisit this pioneering work in order to uncover its intriguing connections with classical rotor

dynamics and fluid dynamics, stability theory of Hamiltonian and non-conservative systems as well as with

the modern works on crystal optics and atomic physics. In particular, we find that the boundary of the

stability domain of the undamped Brouwer’s problem possesses the Swallowtail singularity corresponding to

the quadruple zero eigenvalue. In the presence of dissipative and non-conservative positional forces there is

a couple of Whitney umbrellas on the boundary of the asymptotic stability domain. The handles of the um-

brellas form a set where all eigenvalues of the system are pure imaginary despite the presence of dissipative

and non-conservative positional forces.

Keywords: Rotating saddle, Quadrupole trap, Crystal optics, Rotor dynamics, Stokes waves, Benjamin-Feir

instability, Dissipation-induced instabilities, Swallowtail, Whitney umbrella, Exceptional point

1 Introduction

In 1918 Luitzen Egbertus (Bertus) Jan Brouwer (1881–1966) — a founder of modern topology who established,

for example, the topological invariance of dimension and the fixpoint theorem — considered a problem on

stability of a heavy particle in a rotating vessel [1]. The work written in Dutch was almost forgotten until in

1976 Bottema drew attention to it [2]. However, even those later publications did not manage to popularize

substantially the Brouwer’s work, which is remarkable in many respects.
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Figure 1: A heavy particle in a rotating vessel [1].

In Brouwer’s setting, a heavy particle of unit mass is moving on a surface that has a horizontal tangential

plane at some point O and rotates with a constant angular velocity Ω around a vertical axis through O, Fig. 1.

A rectangular coordinate system (x, y, z) with the origin at O and the (x, z)- and (y, z)-plane of which coincide

with the principal normal sections of the surface at O, rotates with the surface’s angular velocity around the

z-axis in a counter-clockwise direction, Fig. 1.

Taking into account that a potential function of the particle is V = gz and a kinetic energy is T = 1

2
[(ẋ −

yΩ)2 + (ẏ + xΩ)2 + ż2], Brouwer derives the non-linear equations of motion both in the frictionless case and in

the case of Coulomb friction between the particle and the surface. The frictionless equations linearized around

the equilibrium position O, have the form [1]

ẍ− 2Ωẏ +
(

k1 − Ω2
)

x = 0,

ÿ + 2Ωẋ+
(

k2 − Ω2
)

y = 0, (1)

where dot indicates time differentiation, k1,2 = g/r1,2, and r1,2 are the radii of curvature of the intersection

of the surface with the (x, y)- and (x, z)-plane, respectively, r1 6= r2. A merit of Brouwer is that he not only

allowed the radii of curvature to be non-equal, which was already the state-of-the-art of his time, but he also

did not impose restrictions on the sign of k1 and k2 and considered both concave (Fig. 1(a)) and saddle-like

(Fig. 1(b)) surfaces, ahead of his contemporaries.

Analyzing the characteristic equation of the system (1)

λ4 + (k1 + k2 + 2Ω2)λ2 + (k1 − Ω2)(k2 − Ω2) = 0, (2)
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Figure 2: (a) Contours of the Whitney umbrella and two parabolic cylinders (3) in the (k1, k2)-plane for

Ω = 0, 0.3, 0.5, 0.7 and (b) the domain of the marginal stability in the same plane for Ω = 0.7.

Brouwer writes down the conditions for marginal stability of the particle

(k1 − Ω2)(k2 − Ω2) > 0,

k1 + k2 + 2Ω2 > 0,

(k1 − k2)
2 + 8Ω2(k1 + k2) > 0. (3)

It is instructive to plot the stability domain (3) in the (k1, k2,Ω)-space. We restrict our study by the

non-negative values of Ω because the stability domain is symmetric with respect to the plane Ω = 0.

First we note that the parabolic cylinders k1 = Ω2 and k2 = Ω2 intersect along the parabola that lies in

the plane k1 = k2. This parabola smoothly touches the parabolic cylinder k1 + k2 + 2Ω2 = 0 as well as the

Whitney umbrella k1 + k2 = −(k1 − k2)
2/(8Ω2) at the origin. The Whitney umbrella smoothly touches both

of the parabolic cylinders k1 = Ω2 and k2 = Ω2 along spacial curves that project into the lines k2 = −3k1 and

k1 = −3k2 in the (k1, k2)-plane, see Fig. 2(a).

In Fig. 2(a), the contours of the Whitney umbrella and of the two parabolic cylinders are shown for various

values of Ω. One sees that the contours of the Whitney umbrella are parabolas that shrink into a fragment of a

single line k1 = k2 that lies in the third quadrant of the (k1, k2)-plane. The contours of the parabolic cylinders

are straight lines parallel to the coordinate axes. The parabolas touch the straight lines, the latter intersect

each other along the line k1 = k2. Therefore, the stability domains have the form of a curvilinear triangle ABC

with cuspidal point singularities at the two corners A and B and with the transversal intersection singularity

at the third one marked as the point C in Fig. 2(b). At the singular point C the triangular stability domain

(stability for large angular velocities according to Brouwer) is joint with the infinite stability domain given by

the inequalities k1 > Ω2, k2 > Ω2 (stability for small angular velocities according to Brouwer). The latter part of

the stability diagram was found already in 1869 by Rankine [3] whereas the triangle ABC was reconstructed by

the joint efforts of Föppl (1895) [4], von Kármán (1910) [5], Prandtl (1918) [6], Brouwer (1918) [1], and Jeffcott
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Figure 3: The Swallowtail singularity (04, [11]) at the origin on the stability boundary of the Brouwer’s problem

on a heavy particle in a rotating vessel illustrating peculiarities of gyroscopic stabilization.

(1919) [7]. Note that similar planar stability domains appear in a recent study of levitation of a rotating body

carrying a point electrical charge in the field of a fixed point charge of the same sign [8], see also [9].

A remarkable result of Brouwer is that for k1k2 < 0, i.e. when the surface is a saddle, the particle can be

stabilized by rotation of the surface. Brouwer concludes that ‘as long as in O the principal curvature, concave

in an upward direction, is less than three times the one concave in a downward direction, there are rotation

velocities for which the motion of the particle on the rotating saddle yields formal stability’ [1]. Cuspidal points

A and B on the stability boundary clearly seen in Fig. 2(b) evidence that such a stabilization occurs for a rather

non-trivial choice of the main curvatures of the rotating saddle.

We notice however, that while Brouwer [1] neither plotted the stability domain nor discussed its geometry,

Bottema [2] improved Brouwer’s result and even produced a planar stability diagram which however does not

detect the singularities because of the unsatisfactory choice of parameters. Therefore, we substantially refine

the analysis performed by Brouwer and Bottema by finding the singularities of the planar stability boundary for

the system (1). Moreover, we discover that in the (k1, k2,Ω)-space the full stability domain given by inequalities

(3) is bounded by a surface that has the Swallowtail singularity at the origin, see Fig. 3. Bold lines in Fig. 3

indicate two cuspidal edges (A,B) and one regular intersection (C) on the stability boundary. Thus, the part of

the stability domain that corresponds to stability for large angular velocities is inside the spike of the singular

surface whereas the part of the stability domain that corresponds to stability for small angular velocities occupies

the remaining bigger portion of it that has only a regular edge singularity. The tangent cone to the stability

domain at the tip of the spike consists of the semi-axis Ω ≥ 0, Fig. 3. Similar structure of the stability domain

was found in the model of a two-link rotating shaft with four degrees of freedom [9, 10].

At the origin, the conditions k1 = k2 = 0 and Ω = 0 yield quadruple zero eigenvalue λ = 0 with the Jordan
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block. Galin [11] had proven that this spectral degeneracy (04) corresponds to the Swallowtail singularity of

the stability boundary of a Hamiltonian system and has codimension 3. The Swallowtail singularity generically

appears in the Brouwer’s problem that is described by the three parameter Hamiltonian system (1). We note

that in the works [9, 10] the Swallowtail singularity had been found on the stability boundary of a two-link

rotating shaft that has twice as many degrees of freedom. The Brouwer’s problem on a heavy particle in a

rotating vessel appears to be the simplest physically meaningful system that possesses this singularity and as

we will show further in the text, this fundamental paradigmatic model has deep connections to many important

effects of classical and modern physics.

2 Manifestations in physics

The singular surface bounding the stability domain of the Brouwer’s heavy particle in a rotating vessel perfectly

symbolizes the variety of applications to which it is connected. Almost literally at every corner of this surface

lives a physical phenomenon.

2.1 Helical quadrupole magnetic focussing systems

Already in 1914, in his correspondence to Georg Hamel, Brouwer discussed the possibility of experimental

verification of stabilization of a heavy ball on a rotating saddle [1]. Nowadays such mechanical demonstrations

are available as teaching laboratory experiments [12]. However, the prospects for the first non-trivial physical

application of this effect had arisen as early as 1936 when Penning proposed using the quadrupole electric field

to confine the charged particles [13, 14].

In the RF-electric-quadrupole Paul trap invented in 1953 [15, 16], a saddle-shaped field created to trap

a charged ion is not rotating about the ion in the center. The Paul-trap potential can only ‘flap’ the field

up and down, which yields two decoupled Mathieu equations describing the motions of a single ion in the

trap. Nevertheless, comparing the rotating saddle trap and the Paul trap, Shapiro [17, 18] and Thompson

et al. [12] demonstrated that the former mimics most of the characteristics of the Paul trap such as stability

and instability regions, micromotion and secular oscillation frequency [12]. Despite the Brouwer’s problem is

not only a mechanical analogy to the Paul trap, the equations of the two models are substantially different.

Brouwer’s system is autonomous, which greatly simplifies its solution. An example of a natural appearance

of the Brouwer’s equations comes from accelerator physics, where they originate in a theory of focussing by a

helical magnetic quadrupole lens [19].

Indeed, according to Pearce [19] the linearized equations of motion in the laboratory (x, y, z)-frame of a

particle of momentum p and charge e in the helical quadrupole magnetic field that rotates with distance along

the z-axis, completing one rotation in an axial distance λ, in the assumption that x, y ≪ λ, are

ẍ = a(x cos z + y sin z),

ÿ = a(x sin z − y cos z), (4)
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where dot stands for the derivative d/dz and

a = −λ2k2

16π2
, k2 =

eG

pc
, (5)

and c is the speed of light. The downstream distance z is measured in units of λ/(4π). At z = 0, the components

of the magnetic field in the laboratory frame are Bx = Gy, By = Gx, Bz = 0 as for the conventional quadrupole.

By coordinate transformation to a frame (X,Y, z), which rotates with the mechanical rotation of the helix:

X = x cos
z

2
+ y sin

z

2
,

Y = −x sin
z

2
+ y cos

z

2
, (6)

we arrive at the autonomous system of equations that is equivalent to (4)

v̈ + Jv̇ + (K+ (J/2)2)v = 0, (7)

where

v =





X

Y



 , J =





0 −1

1 0



 , K =





−a 0

0 a



 . (8)

We note that (7) is a particular case of the Brouwer’s rotating vessel equations (1) with Ω = 1/2 and k2 =

−k1 = a that corresponds to a rotating saddle.

2.2 Propagation of polarized light within the cholesteric liquid crystal

Following Marathay [20] we consider the state of polarization of a plane wave as it propagates along the helical

axis within the nonmagnetic cholesteric liquid crystal. Assume that z-axis of a right-handed laboratory frame

is parallel to the helical axis. The molecular planes of the structure are parallel to the (x, y)-plane of the

laboratory frame. The principal axes of each molecular plane are gradually rotated as one proceeds along z-

direction. Define the pitch p as the minimum distance between the two planes whose principal axes are parallel

and introduce the parameter α = 2π/p. Restricting ourselves by the plane waves that propagate normally to

the crystal planes, i.e. along the helical axis, we find from the Maxwell’s equations that

∂2

zE =
ε(z)

c2
∂2

tE, E =





Ex

Ey



 , (9)

where E = E(z, t) is the Jones vector [20]. The 2× 2 matrix ε(z) describes the dielectric properties of the layer

at z in the laboratory frame and for a right-handed structure in terms of the principal dielectric constants ε011

and ε022 it can be expressed as

ε(z) = R(αz)KR
−1(αz), (10)

where K = diag (ε011, ε
0
22) and R is the rotation matrix

R =





cos(αz) − sin(αz)

sin(αz) cos(αz)



 . (11)
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Looking for a time-harmonic solution of Eq. (9) of the form E(z, t) = F(z)exp(−iωt) and transforming to a

space-rotating coordinate system by

f(z) = R(−αz)F(z), (12)

we find that in the space rotating coordinate system the dynamics of the state of polarization f is governed by

the autonomous equation

f̈ + 2αJḟ + (k2K+ (αJ)2)f = 0, (13)

where k2 = ω2/c2 and the dot stands for the derivative d/dz. We again obtained the Brouwer’s equations (1),

with Ω = α, k1 = k2ε011 and k2 = k2ε022.

2.3 Benjamin-Feir instability of traveling waves

The modulations of Stokes waves in deep water are described by the Non-Linear Schrödinger equation (NLS)

iAt + αAxx + γ|A|2A = 0, (14)

where i =
√
−1, A is the envelope of the wave carrier, α and γ are positive real numbers and the modulations

are restricted to one space dimension x, for details see recent work by Bridges and Dias [21].

Assuming A = u1+ iu2, linearizing the non-linear partial differential equation (14) about the basic traveling

wave solution with the amplitude u0 = (u0
1, u

0
2), spacial wavenumber k and the frequency ω and then expanding

the periodic in x solution with the period σ of the linearized problem into Fourier series, we find that the

σ-dependent modes decouple into four-dimensional subspaces for each harmonic with the number n, so that for

n = 1 we get

Jv̇ + 2αkσJw − ασ2
v + 2γu0u

T
0 v = 0,

Jẇ − 2αkσJv − ασ2
w + 2γu0u

T
0 w = 0, (15)

where dot indicates time differentiation, the matrix J is defined in (8), the dyad u0u
T
0 is a 2 × 2 symmetric

matrix and ω2 = αk2 − ‖u0‖2. The NLS model (14) has a Benjamin-Feir instability: considering all other

parameters fixed, with the increase of the wave amplitude u0 at some threshold value two eigenvalues of the

linear stability problem (15) experience the Krein collision [22], and these two modes have negative and positive

energy, respectively [21].

Differentiating the first of the equations (15) once, substituting into the result the expression for Jẇ that

follows from the second of the equations (15), then expressing w from the first of the equations (15) and finally

multiplying the result by J from the left we obtain the equation that describes the time evolution of v

v̈ − 2JBv̇ + (4α2k2σ2 + (JB)2)v = 0, (16)

where B = 2γu0u
T
0 −ασ2

I, and I is the unit matrix. The vector w satisfies the same equation. The matrix JB

is non-symmetric and thus can be decomposed into a symmetric and skew-symmetric parts

JB = qJ+ γD, (17)
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where q = σ2α− γ‖u0‖2 and D = u0u
T
0 J− Ju0u

T
0 .

With this notation we reduce the equation (16) to the standard for the gyroscopic systems form

v̈ + 2qJv̇ + 2γDv̇+ (P+ (qJ)2)v = 0, (18)

where P = (4α2k2σ2 + γ2‖u0‖4)I.
Equation (18) is the damped Brouwer’s equation (1) with Ω = q and k1 = k2 = 4α2k2σ2 + γ2‖u0‖4.

The ‘damping’ matrix D is symmetric and traceless, i.e. it is indefinite with the eigenvalues µ1,2 = ±‖u0‖2.
Therefore we can give a new interpretation to the Benjamin-Feir instability and treat it as the destabilization

of a gyroscopic system by the indefinite damping [23]. Remarkably, this destabilization mechanism is known in

rotor dynamics, where the indefinite damping matrix results from the falling friction characteristic that typically

occurs in the problems of acoustics of friction such as the squealing brake or the singing wine glass [23, 24, 25].

In [25] destabilization of the Brouwer-type equations by the indefinite damping was considered in detail.

2.4 Stability of deformable rotors

With the equal positive coefficients k1 = k2 > 0, the Brouwer’s equations (1) coincide with that of the idealized

model of the classical rotor dynamics problem of shaft whirl by Föppl (1895) [4], von Kármán (1910) [5], and

Jeffcott (1919) [7], written in the rotating (x, y)-frame.

Indeed, a deformable shaft carrying, e.g., a turbine wheel, and rotating with the angular speed Ω about its

axis of symmetry can be modeled as a planar oscillator on a rotating plate [26], i.e. as a unit mass point that is

suspended symmetrically by massless springs with the effective stiffness coefficients k1 = k2 = k from the frame

that rotates with the angular velocity Ω [27, 28], see Fig. 4(a).

For the symmetrical Föppl-von Kármán-Jeffcott rotor the transverse bending modes occur in pairs with equal

natural frequencies ωn =
√
k for vibrations in orthogonal diametral planes. When the vibrations of such a pair

are combined with equal amplitudes and a quarter period phase difference, the result is a circularly polarized

vibration — a clockwise- or a counter-clockwise circular whirling motion with the whirl rate ωn [27, 28]. This

phenomenon is related to the Doppler splitting of the doublet modes into the forward and backward traveling

waves, which propagate along the circumferential direction of a rotating elastic solid of revolution discovered

by Bryan in 1890 [29].

According to the Brouwer’s stability conditions (3) the symmetrical Föppl-von Kármán-Jeffcott rotor is

marginally stable at any speed Ω. Indeed, the part of the plane k1 = k2 corresponding to k1,2 > 0 belongs to

the domain of marginal stability, as is seen in the stability diagrams of Fig. 2(b) and Fig. 3.

The symmetry of the Föppl-von Kármán-Jeffcott rotor is, however, a latent source of its instability. Destabi-

lization can be caused already by constraining the mass point to vibrate along a rotating diameter. For example,

if a guide rail is installed along the x-axis so that y is constrained to vanish identically, equation (1) reduces to

the 1869 model by Rankine [3]

ẍ+ (k1 − Ω2)x = 0, (19)
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Figure 4: (a) A Prandtl-Smith model of whirling shaft [27, 28]: A point mass m = 1 suspended by the springs

from the frame that rotates with the angular velocity Ω. (b) Whirling frequencies of the Prandtl-Smith rotor

with k1 = 1 as a function of Ω and ε form a singular surface with four conical points in the plane ε = 0. (c)

Growth rates of the Prandtl-Smith rotor showing instability due to stiffness detuning near the critical speeds

Ω = ±1.

which predicts unbounded growth for x as soon as Ω2 > k1, i.e. as soon as the centrifugal field overpowers

the elastic field [27, 28]. In the diagram of Fig. 2(b) Rankine’s instability threshold (critical rotating speed)

bounds the infinite stability domain with the corner at the point C showing that the constraint could also be

achieved by tending one of the stiffness coefficients to infinity. Note that recently Baillieul and Levi motivated by

stabilization of satellites with flexible parts, studied the dynamical effects of imposing constraints on the relative

motions of component parts in a rotating mechanical system or structure and in particular in the Brouwer’s

equations [30].

Although after successful demonstration by De Laval of a well-balanced gas turbine running stably at

supercritical, i.e. unstable by Rankine, speeds in 1889, the model of Rankine [3] has been recognized as

inadequate [27, 28], we see that its instability threshold is just a part of the singular stability boundary of the

Brouwer’s equations shown in Fig. 3.

Soon after the success of the symmetric Föppl-von Kármán-Jeffcott model of De Laval’s rotor, Prandtl

(1918) [6] noted that if the elastic or inertia properties of a rotor are not symmetric about the axis of rotation

there may be speed ranges where the rotor whirl is unstable. He pointed out the analogy between a rotor

whose shaft had unequal principal stiffness coefficients (k1 6= k2) and a pendulum mounted asymmetrically on a

turntable. The pendulum was unstable when the turntable rotation rate Ω was between the pendulum natural

frequencies in the soft and stiff directions. Similar instability due to inertia asymmetry was discussed by Smith

in 1933 [31]. For positive coefficients k1 6= k2, the Brouwer’s equations (1) is exactly the undamped model by

Prandtl and Smith.

Let us assume in the equation (1) that k1 = 1 + ε and k2 = 1− ε [27, 28]. Calculating the imaginary parts
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of the roots of the characteristic equation (2) we find the implicit equation for the whirling frequencies in the

Prandtl-Smith model

((Imλ)2 − 1− Ω2)2 − 4Ω2 = ε2. (20)

In the (Ω, ε, Imλ)-space the whirling frequencies lie on a singular surface that has four conical points, Fig. 4(b).

The slice of this surface by the plane ε = 0 shows four straight lines that intersect each other at the conical

points at Ω = 0 and at the critical speeds Ω = ±1. These eigencurves constitute the Campbell diagram [32]

of the ideal Föppl-von Kármán-Jeffcott rotor. Stiffness modification with the variation of ε corresponds to the

eigencurves in a slice of the eigenvalue surface by the plane that departs of the conical singularities by a distance

ε 6= 0. In the vicinity of Ω = 0 the eigencurves demonstrate avoided crossings while near the critical speeds

Ω = ±1 the eigenvalues are real with zero frequency. As is seen in Fig. 4(c), the real eigenvalues (growth rates)

form a singular eigenvalue surface with two conical points at the critical speeds

((Reλ)2 + 1 + Ω2)2 − 4Ω2 = ε2. (21)

The slices of the surface (21) by the planes ε 6= 0 in the vicinity of the apexes of the cones are closed loops

known as the ‘bubbles of instability’ [33]. Hence, for small ε, the Prandtl-Smith rotor is unstable at the speeds

in the interval
√
1− ε < |Ω| <

√
1 + ε. (22)

The amount of kinetic energy available in the rotor is usually orders of magnitude greater than the de-

formational energy which any internal mode can absorb. Therefore, already small deviations from the ideal

conditions yield coupling between modes that by transferring even a tiny fraction of the rotational energy can

initiate failure in the vibratory mode [27, 28].

The conical singularities on the surfaces of frequencies and growth rates arise as unfoldings of double semi-

simple eigenvalues of the Föppl-von Kármán-Jeffcott rotor that exist at Ω = 0 and at the critical speeds. In

1986, MacKay [33] studied unfoldings of the semi-simple double pure imaginary and zero eigenvalues in general

Hamiltonian systems and demonstrated that the orientation of the cones depends on the Krein signature [22]

of the doublets. At Ω = 0 the doublets have definite Krein signature and according to MacKay the frequency

cones are oriented vertically in the (Ω, ε, Imλ)-space that yields avoided crossings in their slices and thus stability

[24, 34]. If the doublet has a mixed Krein signature then there appears a differently oriented eigenvalue cone for

the real parts of the perturbed eigenvalues that possesses bubbles of instability in its cross-sections [24, 33, 34].

According to (22) the whirling instability onset is no less than the critical speed for the mode in question.

This yields a traditional for rotor dynamics suggestion that ‘although Rankine was wrong in thinking that

supercritical operation was always unstable, he was partially correct in concluding that dynamic instability

would not occur at subcritical speeds’ [28].

Indeed, for perturbations that preserve the Hamiltonian structure of the equations of motion of the gy-

roscopic system (1), the instabilities in the subcritical speed range are prohibited by the definiteness of the
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Krein signature of the doublets. However, the non-Hamiltonian perturbations caused by dissipative and non-

conservative positional forces may yield dynamic instabilities at the small rotational speeds in the subcritical

speed range as it happens, for example, in the problems of acoustics of friction [24]. Subcritical dynamic insta-

bilities have many unusual properties partially uncovered in recent works [24, 25, 34]. In the next section, we

report new effects in the subcritical speed range on the example of the near-Hamiltonian Brouwer’s problem.

3 Brouwer’s system in the presence of dissipative and non-conservative

positional forces

In 1976 Bottema [2] extended Brouwer’s original setting by taking into account the internal and external damping

with the coefficients δ and ν, respectively

z̈+Dż+ 2ΩGż+ (K+ (ΩG)2)z+ νNz = 0, (23)

where z = (x, y)T , D = diag (δ + ν, δ + ν), G = J, K = diag (k1, k2), and N = ΩJ.

Note, however, that the equation (23) appears first in a 1933 work by Smith [31] as a model of a rotor

carried by a flexible shaft in flexible bearings, where stationary (in the laboratory frame) damping coefficient ν

represents the effect of damping in bearing supports while rotating damping coefficient δ represents the effect

of damping in the shaft. These two types of damping were introduced in 1924 by Kimball [35] in order to

explain destabilization due to damping within a rotor, studied also by Kapitsa [36]. In a more general model

of a rotating shaft by Shieh and Masur [37] the damping matrix is allowed to be D = diag (δ1, δ2) while the

matrix of the non-conservative positional forces is simply N = J. In recent works [24, 34, 25] the matrices D

and K were assumed to be arbitrary symmetric while N = J with ν = ν(Ω) as an arbitrary smooth function of

the rotation speed.

The system (23) is a particular case of a general non-conservative system with two degrees of freedom

z̈+Bż+Az = 0, (24)

where A and B are real non-symmetric matrices. Its characteristic equation is given by the Leverrier-Barnett

algorithm [38]

λ4 + trBλ3 + (trA+ detB)λ2 + (trAtrB− trAB)λ+ detA = 0. (25)

The equation (25) becomes biquadratic when the following two conditions are fulfilled

trB = 0, trAB = 0. (26)

Since trAB = trBA, these conditions are reduced to

trBs = 0, trAsBs + trAaBa = 0, (27)
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Figure 5: Imaginary and real parts of the roots of the characteristic equation (28) as a function of the damping

coefficient δ1 under the constraints (29) for k1 = 1, Ω = 0.03 and ν = 0.03.

where subscripts s and a denote symmetric and skew-symmetric components of the matrices A and B. The

conditions (27) are satisfied in particular in the case of the gyroscopic system when Bs = 0 and Aa = 0, and in

the case of the circulatory system when Bs = 0 and Ba = 0.

The systems, different from circulatory and gyroscopic that nevertheless satisfy conditions (27) should have

some unusual properties such as an indefinite damping matrix with zero trace. Although at a first glance such a

physical system looks exotic, the non-trivial example is given already by the classical Benjamin-Feir instability

of the Stokes waves discussed in the previous section. Indeed, in the equation (18) the symmetric matrix D is

traceless and the matrix of positional forces P+(qJ)2 is proportional to the unit matrix which yields fulfillment

of the conditions (27). As a consequence, the eigenvalues of the system (18) are symmetric with respect to

the imaginary axis in the complex plane which implies marginal stability if they are pure imaginary. The loss

of stability of the system (18) with the indefinite damping happens through the collision of two imaginary

eigenvalues into a double eigenvalue with the Jordan block and subsequent splitting of it into two complex ones

with positive and negative real parts (Krein collision). This is not surprising in light of that the system (18)

was shown to be Hamiltonian in [21].

The model of Shieh and Masur [37] provides a more non-trivial example where the constraints (27) play a

role. Indeed, its characteristic equation has the form

λ4+(δ1+δ2)λ
3+

(

δ1δ2 + k1 + k2 + 2Ω2
)

λ2+
(

k1δ2 + δ1k2 + 4Ων − (δ1 + δ2)Ω
2
)

λ+(Ω2−k1)(Ω
2−k2)+ν2 = 0.

(28)

The equation (28) is biquadratic in case when

δ1 + δ2 = 0, κ = −4Ων

δ1
, (29)
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with κ = k2 − k1. If k1 > Ω2 and ν > 0 then all the roots of the equation (28) are pure imaginary when

− 2Ω ≤ δ1 < 0,
4Ων(k1 − Ω2)

ν2 + (k1 − Ω2)2
< δ1 ≤ 2Ω. (30)

In Fig. 5 the pure imaginary eigenvalues are shown by black lines as functions of the damping parameter δ1. At

δ1 = δd :=
4Ων(k1 − Ω2)

ν2 + (k1 − Ω2)2
, κ = κd := −k1 +Ω2 − ν2

k1 − Ω2
(31)

there exist a double zero eigenvalue with the Jordan block (02), see Fig. 5 and Fig. 6(a). In the interval

0 < δ1 < δd there exist one positive and one negative real eigenvalue. In Fig. 5 the eigenvalues with non-zero

real parts are shown in red. In the (δ1, δ2, κ)-space the exceptional points (EPs)

(−2Ω, 2Ω, 2ν), (2Ω,−2Ω,−2ν) (32)

correspond to the double pure imaginary eigenvalues with the Jordan block

λ
−2Ω = ±i

√

k1 − Ω2 + ν, λ2Ω = ±i
√

k1 − Ω2 − ν, (33)

for δ1 = −2Ω and δ1 = 2Ω, respectively.

We see in Fig. 5 that changing the damping parameter δ1 we migrate from the marginal stability domain

to that of flutter instability by means of the Krein collision of the two simple pure imaginary eigenvalues as

it happens in gyroscopic or circulatory systems without dissipation. It is remarkable that such a behavior of

eigenvalues is observed in the gyroscopic system in the presence of dissipative and non-conservative positional

forces. The existence of pure imaginary spectrum in the non-conservative dissipative systems satisfying the

constraints (27) reminds the similar phenomenon in PT-symmetric non-Hermitian systems that can possess

pure real spectrum [39].

Let us now establish how in the (δ1, δ2, κ)-space the domain of marginal stability given by the expressions

(29) and (30) is connected to the domain of asymptotic stability of the non-constrained equation (28). Writing

the Liénard and Chipart [40] conditions for asymptotic stability of the polynomial (28) we find

p1 := δ1 + δ2 > 0,

p2 := δ1δ2 + k1 + k2 + 2Ω2 > 0,

p4 := (Ω2 − k1)(Ω
2 − k2) + ν2 > 0,

H3 := (δ1 + δ2)(δ1δ2 + k1 + k2 + 2Ω2)(k1δ2 + δ1k2 + 4Ων − (δ1 + δ2)Ω
2)

−(δ1 + δ2)
2((Ω2 − k1)(Ω

2 − k2) + ν2)− (k1δ2 + δ1k2 + 4Ων − (δ1 + δ2)Ω
2)2 > 0. (34)

The surfaces p4 = 0 and H3 = 0 are plotted in Fig. 6(a). The former is simply a horizontal plane that passes

through the point of the double zero eigenvalue (02) with the coordinates (δd,−δd, κd) and thus bounds the

stability domain from below. The surface H3 = 0 is singular because it has self-intersections along the portions

of the hyperbolic curves (29) selected by the inequalities (30). The curve of self-intersection that corresponds to

κ > 0 ends up at the EP with the double pure imaginary eigenvalue λ
−2Ω. Another curve of self-intersection has
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Figure 6: Stability domain of the rotating shaft by Shieh and Masur for k1 = 1, Ω = 0.03, ν = 0.03. (a) The

‘Viaduct’ in the (δ1, δ2, κ)-space and its slices in the (δ1, δ2)-plane with (b) κ = −0.06 and (c) κ = −0.03.

at its ends the EP with the double pure imaginary eigenvalue λ2Ω and the point of the double zero eigenvalue

(02). In Fig. 6(a) the curves of self-intersection are shown in red and the EP and 02 are marked by the black

and white circles, respectively. At the point 02 the surfaces p4 = 0 and H3 = 0 intersect each other forming

a trihedral angle singularity of the stability boundary with its edges depicted by red lines in Fig. 6(a). The

surface H3 = 0 is symmetric with respect to the plane p1 = 0. Thus, a part of it that belongs to the subspace

p1 > 0 bounds the domain of asymptotic stability.

At the EPs, the boundary of the asymptotic stability domain has singular points that are locally equivalent

to the Whitney umbrella singularity [41, 42, 43, 44, 45]. Between the two EPs the surface H3 = 0 has an

opening around the origin that separates its two sheets. This window allows the flutter instability to exist in

the vicinity of the origin for small damping coefficients and small separation of the stiffness coefficients κ. In

[34] an eigenvalue surface of the same shape was named the Viaduct.

In Fig. 6(b) a cross-section of the surface H3 = 0 by the horizontal plane that passes through the lower

exceptional point is shown. The domain in grey indicates the area of asymptotic stability. Its boundary has a

cuspidal point singularity at the EP. Although the very singular shape of the planar stability domain is typical

in the vicinity of the EP with the pure imaginary double eigenvalue with the Jordan block [45], the unusual

feature is the location of the EP that corresponds to non-vanishing damping coefficients, Fig. 6(b).

Indeed, in the known studies, the system with vanishing dissipation was either gyroscopic (Hamiltonian)

as in the works [40, 45, 46, 47, 48, 49, 50] or it was circulatory (reversible) as in the works [41, 45, 46, 51].

The undamped system in such problems has a domain of marginal stability bounded by the exceptional points

that correspond to double pure imaginary eigenvalues. This is not the case in the Brouwer’s problem with the

dissipative and non-conservative forces by Shieh and Masur [37]. According to the theorems of Bottema [52]

and Lakhadanov [53] the undamped gyroscopic system with non-conservative positional forces is generically

unstable. By examining the slices of the surface H3 = 0 at various values of κ one can see that the origin is
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indeed always unstable, Fig. 6(b,c). At κ = 0 the origin is unstable in the presence of the non-conservative

positional forces even when the rotation is absent (Ω = 0) according to the theorem of Merkin [49]. Contrary to

the situation known as the Ziegler’s destabilization paradox [51], in the Brouwer-Shieh-Masur model the tending

of the damping coefficients to zero along a path in the (δ1, δ2)-plane cannot lead to the set of pure imaginary

spectrum of the undamped system because in this model such a set corresponds to the non-vanishing damping

coefficients.

On the other hand, the lower bound κd on the difference of the coefficients k1,2 given by the equation (31)

depends on the magnitude of the non-conservative positional force ν. If ν = 0, the heavy particle on a rotating

saddle is destabilized by the arbitrary small internal damping, because in this case κd = −k1 + Ω2 and the

stability condition κ > κd reduces to κ2 > Ω2, in full agreement with [2]. Nevertheless, with the increase of ν

the critical difference of k1 and k2 takes bigger negative values so that for ν2 > Ω2(k1−Ω2) asymptotic stability

is possible also for the coefficient k2 < 0 while k1 was assumed to be positive.

Therefore, the Brouwer-Shieh-Masur model provides a non-trivial example of a gyroscopic system that can

have all its eigenvalues pure imaginary in the presence of dissipative and non-conservative forces. The corre-

sponding set in the three-dimensional space of damping coefficients and the difference between the curvatures

(stiffness coefficients) is a space curve that ends up at the exceptional points of double pure imaginary eigenval-

ues with the Jordan block. The set forms singularities of the boundary to the domain of asymptotic stability

of the Brouwer-Shieh-Masur model such as Whitney umbrellas and dihedral and trihedral angles. The highly

non-trivial shape of the discovered stability boundary illustrates the peculiarities of destabilization of a rotor in

the subcritical speed range as well as the stabilization of a heavy particle on a rotating saddle for high rotating

velocities by non-conservative positional forces in their interplay with the dissipative, gyroscopic and potential

ones.

4 Conclusion

The Brouwer’s problem on a heavy particle in a rotating vessel is a paradigmatic model for studying instabilities

in diverse areas of physics. Brouwer-like systems of equations naturally arise for instance in accelerator physics,

crystal optics, theory of Stokes waves in deep water, as well as in classical rotor dynamics. Despite a long

history, the model of Brouwer was not completely understood until now. We established new results on stability

in the Brouwer’s problem that include discovery of the Swallowtail singularity on the stability boundary of

the undamped Brouwer’s equations. This singularity was overlooked both by Brouwer and by Bottema who

re-visited Brouwer’s work in 1976. Moreover, we studied Brouwer’s equations in the presence of dissipative and

non-conservative forces and found a new type of the asymptotic stability domain in the three-dimensional space

of parameters. It turns out that the stability boundary is a surface with two Whitney umbrella singularities,

the ‘handles’ of which correspond to systems with the pure imaginary spectrum despite the presence of damping

and non-conservative positional forces. We established the necessary conditions for a non-conservative system to
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have a pure imaginary spectrum and found that the linearized equations describing the onset of the Benjamin-

Feir instability satisfy them. As a consequence, the Benjamin-Feir instability was interpreted as destabilization

of a gyroscopic system by indefinite damping.

To summarize, the Brouwer’s model describes two common situations: a heavy particle in the narrow concave

rotating vessel is difficult to destabilize; that one in the wide rotating dish or on a rotating saddle is difficult to

stabilize. The former is common in the modern problems of low-speed rotor dynamics related to squealing brakes

or singing glasses of the glass harmonica. The latter is typical for the problems of particle confinement in atomic

and accelerator physics as well as for high-speed rotor dynamics. In both situations the destabilization and

stabilization mechanisms exist that involve dissipative and other non-conservative forces. The very possibility

to create (in)stability in such circumstances where it conventionally is not expected makes such problems a

reach source for new development and insight in stability theory. The Brouwer’s problem on a heavy particle in

a rotating vessel sharply highlights some crucial effects that arise in the field of dissipation-induced instabilities.
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