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Abstract

In this paper, we generalize the usual notions of waves, fronts and propagation
speeds in a very general setting. These new notions, which cover all usual situations,
involve uniform limits, with respect to the geodesic distance, to a family of hyper-
surfaces which are parametrized by time. We prove the existence of new such waves
for some time-dependent reaction-diffusion equations, as well as general intrinsic prop-
erties, some monotonicity properties and some uniqueness results for almost planar
fronts. The classification results, which are obtained under some appropriate assump-
tions, show the robustness of our general definitions.
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1 Introduction and main results

We first introduce the definition of generalized transition waves and state some intrinsic
general properties. We then give some specifications, including the notion of global mean
speed, as well as some standard and new examples of such waves. Lastly, we state some of
their important qualitative properties. We complete this section with some further possible
extensions.

1.1 Definition of generalized transition waves

Traveling fronts describing the transition between two different states are a special important
class of time-global solutions of evolution partial differential equations. One of the simplest
examples is concerned with the homogeneous scalar semilinear parabolic equation

ut = ∆u+ f(u) in RN , (1.1)

where u = u(t, x) and ∆ is the Laplace operator with respect to the spatial variables in RN .
In this case, assuming f(0) = f(1) = 0, a planar traveling front connecting the uniform
steady states 0 and 1 is a solution of the type

u(t, x) = φ(x · e− ct)

such that φ : R→ [0, 1] satisfies φ(−∞) = 1 and φ(+∞) = 0. Such a solution propagates in
a given unit direction e with the speed c. Existence and possible uniqueness of such fronts,
formulæ for the speed(s) of propagation are well-known [1, 12, 25] and depend upon the
profile of the function f on [0, 1].

In this paper, we generalize the standard notion of traveling fronts. That will allow us
to consider new situations, that is new geometries or more complex equations. We provide
explicit examples of new types of waves and we prove some qualitative properties. Although
the definitions given below hold for general evolution equations (see Section 1.5), we mainly
focus on parabolic problems, that is we consider reaction-diffusion-advection equations, or
systems of equations, of the type{

ut = ∇x · (A(t, x)∇xu) + q(t, x) · ∇xu+ f(t, x, u) in Ω,

g[t, x, u] = 0 on ∂Ω,
(1.2)
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where the unknown function u, defined in R× Ω, is in general a vector field

u = (u1, · · · , um) ∈ Rm

and Ω is a globally smooth non-empty open connected subset of RN with outward unit
normal vector field ν. By globally smooth, we mean that there exists β > 0 such that Ω
is globally of class C2,β, that is there exist r0 > 0 and M > 0 such that, for all y ∈ ∂Ω,

there is a rotation Ry of RN and there is a C2,β map φy : B
N−1

2r0
→ R such that φy(0) = 0,

‖φy‖
C2,β
(
B
N−1
2r0

) ≤M and

Ω ∩B(y, r0)=
[
y +Ry

(
{x ∈ RN ; (x1, . . . , xN−1)∈BN−1

2r0
, φy(x1, . . . , xN−1)<xN}

)]
∩B(y, r0),

where B(y, r0) = {x ∈ RN ; |x − y| < r0}, | | denotes the Euclidean norm in RN and, for

any s > 0, B
N−1

s is the closed Euclidean ball of RN−1 with center 0 and radius s (notice in
particular that RN is globally smooth).

Let us now list the general assumptions on the coefficients of (1.2). The diffusion matrix
field

(t, x) 7→ A(t, x) = (aij(t, x))1≤i,j≤N

is assumed to be of class C1,β(R× Ω) and there exist 0 < α1 ≤ α2 such that

α1|ξ|2 ≤ aij(t, x)ξiξj ≤ α2|ξ|2 for all (t, x) ∈ R× Ω and ξ ∈ RN ,

under the usual summation convention of repeated indices. The vector field

(t, x) 7→ q(t, x)

ranges in RN and is of class C0,β(R× Ω). The function f : R× Ω× Rm → Rm

(t, x, u) 7→ f(t, x, u)

is assumed to be of class C0,β in (t, x) locally in u ∈ Rm, and locally Lipschitz-continuous
in u, uniformly with respect to (t, x) ∈ R× Ω. Lastly, the boundary conditions

g[t, x, u] = 0 on ∂Ω

may for instance be of the Dirichlet, Neumann, Robin or tangential types, or may be non-
linear or heterogeneous as well. The notation g[t, x, u] = 0 means that this condition may
involve not only u(t, x) itself but also other quantities depending on u, like its derivatives
for instance.

Throughout the paper, dΩ denotes the geodesic distance in Ω, that is, for every
pair (x, y) ∈ Ω × Ω, dΩ(x, y) is the infimum of the arc lengths of all C1 curves joining x
to y in Ω. We assume that Ω has an infinite diameter with respect to the geodesic dis-
tance dΩ, that is diamΩ(Ω) = +∞, where

diamΩ(E) = sup
{
dΩ(x, y); (x, y) ∈ E × E

}
3



for any E ⊂ Ω. For any two subsets A and B of Ω, we set

dΩ(A,B) = inf
{
dΩ(x, y); (x, y) ∈ A×B

}
.

For x ∈ Ω and r > 0, we set

BΩ(x, r) =
{
y ∈ Ω; dΩ(x, y) < r

}
and SΩ(x, r) =

{
y ∈ Ω; dΩ(x, y) = r

}
.

The following definition of a generalized transition wave, which has a geometric essence,
involves two families (Ω−t )t∈R and (Ω+

t )t∈R of open nonempty and unbounded subsets of Ω
such that 

Ω−t ∩ Ω+
t = ∅,

∂Ω−t ∩ Ω = ∂Ω+
t ∩ Ω =: Γt,

Ω−t ∪ Γt ∪ Ω+
t = Ω,

sup
{
dΩ(x,Γt); x ∈ Ω+

t

}
= +∞,

sup
{
dΩ(x,Γt); x ∈ Ω−t

}
= +∞,

(1.3)

for all t ∈ R. In other words, Γt splits Ω into two parts, namely Ω−t and Ω+
t (see Figure 1.1

below). The unboundedness of the sets Ω±t means that these sets have infinite diameters
with respect to geodesic distance dΩ. Moreover, for each t ∈ R, these sets are assumed to
contain points which are as far as wanted from the interface Γt. We further impose that

sup
{
dΩ(y,Γt); y ∈ Ω±t ∩ SΩ(x, r)

}
→ +∞ as r → +∞ uniformly in t ∈ R, x ∈ Γt (1.4)

and that the interfaces Γt are made of a finite number of graphs. By the latter we mean
that, when N ≥ 2, there is an integer n ≥ 1 such that, for each t ∈ R, there are n open
subsets ωi,t ⊂ RN−1, n continuous maps ψi,t : ωi,t → R and n rotations Ri,t of RN (for
all 1 ≤ i ≤ n), such that

Γt ⊂
⋃

1≤i≤n

Ri,t

({
x ∈ RN ; (x1, . . . , xN−1) ∈ ωi,t, xN = ψi,t(x1, . . . , xN−1)

})
. (1.5)

In dimension N = 1, the above condition reduces to the existence of an integer n ≥ 1 such
that Γt is made of at most n points, that is Γt = {x1

t , . . . , x
n
t } for each t ∈ R (where the real

numbers xit may not be all pairwise distinct). As far as the condition (1.4) is concerned, its
exact definition is

inf
{

sup
{
dΩ(y,Γt); y ∈ Ω+

t ∩ SΩ(x, r)
}

; t ∈ R, x ∈ Γt

}
→ +∞

inf
{

sup
{
dΩ(y,Γt); y ∈ Ω−t ∩ SΩ(x, r)

}
; t ∈ R, x ∈ Γt

}
→ +∞

as r → +∞.

It means that, for every point x ∈ Γt, there are some points in both Ω+
t and Ω−t which are

far from Γt and are at the same distance r from x, when r is large. The reason why this
condition is used will become clearer in the following definition of transition waves.
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Definition 1.1 (Generalized transition wave) Let p± : R × Ω → Rm be two classical so-
lutions of (1.2). A (generalized) transition wave connecting p− and p+ is a time-global
classical1 solution u of (1.2) such that u 6≡ p± and there exist some sets (Ω±t )t∈R and (Γt)t∈R
satisfying (1.3), (1.4) and (1.5) with

u(t, x)− p±(t, x)→ 0 uniformly in t ∈ R as dΩ(x,Γt)→ +∞ and x ∈ Ω±t , (1.6)

that is, for all ε > 0, there exists M such that

∀ t ∈ R, ∀x ∈ Ω±t ,
(
dΩ(x,Γt) ≥M

)
=⇒

(
|u(t, x)− p±(t, x)| ≤ ε

)
.

Let us comment with words the key point in the above Definition 1.1.2 Namely, a central
role is played by the uniformity of the limits

u(t, x)− p±(t, x)→ 0

as dΩ(x,Γt) → +∞ and x ∈ Ω±t . These limits hold far away from the hypersurfaces Γt
inside Ω. To make the definition meaningful, the distance which is used is the distance
geodesic dΩ. It is the right notion to fit with the geometry of the underlying domain. Fur-
thermore, it is necessary to describe the propagation of transition waves in domains such
as curved cylinders (like in the joint figure), spiral-shaped domains, exterior domains, etc.
Roughly speaking, these limiting conditions (1.6), together with (1.4) and (1.5), mean that
the transition between the limiting states p− and p+ is made of a finite number of neighbor-
hoods of graphical interfaces, the width of these neighborhoods being bounded uniformly in
time. Therefore, the region where a transition wave u connecting p− and p+ is not close to p±

has a uniformly bounded width. This is the reason why the word “transition”, referring to
the intuitive notion of spatial transition, is used to give a name to the objects introduced in
Definition 1.1.

We point out that, in Definition 1.1, the limiting states p± of a transition wave u are
imposed to solve (1.2). In other words, a transition wave is by definition a spatial connection
between two other solutions. Thus, if ε± are any two functions defined in R × Ω such

that ε±(t, x)→ 0 as dΩ(x,Γt)→ +∞ and x ∈ Ω±t uniformly in t, and if u is any time-global
solution of (1.2), then u is in general not a transition wave between u+ε− and u+ε+, because
the limiting states u + ε± do not solve (1.2) in general. The requirement that the limiting
states p± of a transition wave u solve (1.2) is then made in order to avoid the introduction
of artificial and useless objects.

In Definition 1.1, the sets (Ω±t )t∈R and (Γt)t∈R are not uniquely determined, given a
generalized transition wave. Nevertheless, in the scalar case, under some assumptions on p±

and Ω±t and oblique Neumann boundary conditions on ∂Ω, the sets Γt somehow reflect the
location of the level sets of u. Namely, the following result holds:

1Actually, from standard parabolic interior estimates, any classical solution of (1.2) is such that u, ut, uxi

and uxixj
, for all 1 ≤ i, j ≤ N , are locally Hölder continuous in R× Ω.

2Definition 1.1 of generalized transition waves is slightly more precise than the one used in our companion
paper [3]. In the present paper, we impose in the definition itself additional geometric conditions on the
sets (Ω±t )t∈R and (Γt)t∈R, the meaning of which is explained in this paragraph.
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Figure 1: A schematic picture of the sets Ω±t and Γt

Theorem 1.2 Assume that m = 1 (scalar case), that p± are constant solutions of (1.2) such
that p− < p+ and let u be a time-global classical solution of (1.2) such that{

u(t, x); (t, x) ∈ R× Ω
}

= (p−, p+)

and
g[t, x, u] = µ(t, x) · ∇xu(t, x) = 0 on R× ∂Ω,

for some unit vector field µ ∈ C0,β(R× ∂Ω) such that

inf
{
µ(t, x) · ν(x); (t, x) ∈ R× ∂Ω

}
> 0.3

1. Assume that u is a generalized transition wave connecting p− and p+, or p+ and p−,
in the sense of Definition 1.1 and that there exists τ > 0 such that

sup
{
dΩ(x,Γt−τ ); t ∈ R, x ∈ Γt

}
< +∞. (1.7)

Then
∀λ ∈ (p−, p+), sup

{
dΩ(x,Γt); u(t, x) = λ

}
< +∞ (1.8)

and

∀C ≥ 0, p− < inf
{
u(t, x); dΩ(x,Γt)≤C

}
≤ sup

{
u(t, x); dΩ(x,Γt)≤C

}
< p+. (1.9)

2. Conversely, if (1.8) and (1.9) hold for some choices of sets (Ω±t ,Γt)t∈R satis-
fying (1.3), (1.4) and (1.5), and if there is d0 > 0 such that the sets{

(t, x) ∈ R× Ω; x ∈ Ω+
t , dΩ(x,Γt) ≥ d

}
and {

(t, x) ∈ R× Ω; x ∈ Ω−t , dΩ(x,Γt) ≥ d
}

are connected for all d ≥ d0, then u is a generalized transition wave connecting p− and p+,
or p+ and p−.

3Therefore, u and its derivatives ut, uxi
and uxixj

, for all 1 ≤ i, j ≤ N , are bounded and globally Hölder

continuous in R× Ω.
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The assumption (1.7) means that the interfaces Γt and Γt−τ are in some sense not too
far from each other. For instance, if all Γt are parallel hyperplanes in Ω = RN , then the
assumption (1.7) means that the distance between Γt and Γt−τ is bounded independently
of t, for some τ > 0. As far as the connectedness assumptions made in part 2 of Theorem 1.2
are concerned, they are a topological ingredient in the proof, to guarantee the uniform
convergence of u to p± or p∓ far away from Γt in Ω±t .

1.2 Some specifications and the notion of global mean speed

In this section, we define the more specific notions of fronts, pulses, invasions (or traveling
waves) and almost planar waves, as well as the concept of global mean speed, when it exists.
These notions are related to some analytical or geometric properties of the limiting states p±

or of the sets (Ω±t )t∈R and (Γt)t∈R, and are listed in the following definitions, where u denotes
a transition wave connecting p− and p+, associated to two families (Ω±t )t∈R and (Γt)t∈R, in
the sense of Definition 1.1.

Definition 1.3 (Fronts and spatially extended pulses) Let p± = (p±1 , · · · , p±m). We say that
the transition wave u is a front if, for each 1 ≤ k ≤ m, either

inf
{
p+
k (t, x)− p−k (t, x); x ∈ Ω

}
> 0 for all t ∈ R

or
inf
{
p−k (t, x)− p+

k (t, x); x ∈ Ω
}
> 0 for all t ∈ R.

The transition wave u is a spatially extended pulse if p± depend only on t and p−(t) = p+(t)
for all t ∈ R.

In the scalar case (m = 1), our definition of a front corresponds to the natural extension
of the usual notion of a front connecting two different constants. In the pure vector case
(m ≥ 2), if a bounded C0,β(R× Ω) transition wave u = (u1, . . . , um) is a front for problem

ut = ∇x · (A(t, x)∇xu) + q(t, x) · ∇xu+ f(t, x, u)

in the sense of Definitions 1.1 and 1.3, if uk 6≡ p±k for some 1 ≤ k ≤ m, then the function uk
is a front connecting p−k and p+

k for the problem

(uk)t = ∇x · (A(t, x)∇xuk) + q(t, x) · ∇xuk + f̃k(t, x, uk)

associated with the same sets (Ω±t )t∈R and (Γt)t∈R as u, where

f̃k(t, x, s) = f(t, x, u1(t, x), . . . , uk−1(t, x), s, uk+1(t, x), . . . , um(t, x))

and f = (f1, . . . , fm). The same observation is valid for spatially extended pulses as well.

Definition 1.4 (Invasions) We say that p+ invades p−, or that u is an invasion of p− by p+

(resp. p− invades p+, or u is an invasion of p+ by p−) if

Ω+
t ⊃ Ω+

s (resp. Ω−t ⊃ Ω−s ) for all t ≥ s

and
dΩ(Γt,Γs)→ +∞ as |t− s| → +∞.
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Therefore, if p+ invades p− (resp. p− invades p+), then u(t, x)− p±(t, x)→ 0 as t→ ±∞
(resp. as t → ∓∞) locally uniformly in Ω with respect to the distance dΩ. One can then
say that, roughly speaking, invasions correspond to the usual idea of traveling waves. Notice
that a generalized transition wave can always be viewed as a spatial connection between p−

and p+, while an invasion wave can also be viewed as a temporal connection between the
limiting states p− and p+.

Definition 1.5 (Almost planar waves in the direction e) We say that the generalized tran-
sition wave u is almost planar (in the direction e ∈ SN−1) if, for all t ∈ R, the sets Ω±t can
be chosen so that

Γt =
{
x ∈ Ω; x · e = ξt

}
for some ξt ∈ R.

By extension, we say that the generalized transition wave u is almost planar in a moving
direction e(t) ∈ SN−1 if, for all t ∈ R, Ω±t can be chosen so that

Γt =
{
x ∈ Ω; x · e(t) = ξt

}
for some ξt ∈ R.

As in the usual cases (see Section 1.3), an important notion which is attached to a
generalized transition wave is that of its global mean speed of propagation, if any.

Definition 1.6 (Global mean speed of propagation) We say that a generalized transition
wave u associated to the families (Ω±t )t∈R and (Γt)t∈R has global mean speed c (≥ 0) if

dΩ(Γt,Γs)

|t− s|
→ c as |t− s| → +∞.

We say that the transition wave u is almost-stationary if it has global mean speed c = 0. We
say that u is quasi-stationary if

sup {dΩ(Γt,Γs); (t, s) ∈ R2} < +∞,

and we say that u is stationary if it does not depend on t.

The global mean speed c, if it exists, is unique. Moreover, under some reasonable as-
sumptions, the global mean speed is an intrinsic notion, in the sense that it does not depend
on the families (Ω±t )t∈R and (Γt)t∈R. This is indeed seen in the following result:

Theorem 1.7 In the general vectorial case m ≥ 1, let p± be two solutions of (1.2) satisfying

inf
{
|p−(t, x)− p+(t, x)|; (t, x) ∈ R× Ω

}
> 0.

Let u be a transition wave connecting p− and p+ with a choice of sets (Ω±t )t∈R and (Γt)t∈R,
satisfying (1.3), (1.4) and (1.5). If u has global mean speed c, then, for any other choice of

sets (Ω̃±t )t∈R and (Γ̃t)t∈R, satisfying (1.3), (1.4) and (1.5), u has a global mean speed and this
global mean speed is equal to c.

8



1.3 Usual cases and new examples

In this subsection, we list some basic examples of transition waves, which correspond to the
classical notions in the standard situations. We also state the existence of new examples of
transition fronts in a time-dependent medium.

For the homogeneous equation (1.1) in RN , a solution

u(t, x) = φ(x · e− ct),

with φ(−∞) = 1 and φ(+∞) = 0 (assuming f(0) = f(1) = 0) is an (almost) planar invasion
front connecting p− = 1 and p+ = 0, with (global mean) speed |c|. The uniform stationary
state p− = 1 (resp. p+ = 0) invades the uniform stationary p+ = 0 (resp. p− = 1) if c > 0
(resp. c < 0). The sets Ω±t can for instance be defined as

Ω±t =
{
x ∈ RN ; ±(x · e− ct) > 0

}
.

The general definitions that we just gave also generalize the classical notions of pulsating
traveling fronts in spatially periodic media (see [2, 5, 6, 8, 16, 20, 23, 39, 43, 44]) with
possible periodicity or almost-periodicity in time (see [14, 30, 32, 34, 35, 36, 37]) or in
spatially recurrent media (see [27]).

We point out that the limiting states p±(t, x) are not assumed to be constant in general.
It is indeed important to let the possibility of transition waves connecting time- or space-
dependent limiting states. In the aforementioned references in the periodic case, the limiting
states are typically periodic as well. Let us mention here another situation, corresponding
to a one-dimensional medium which is asymptotically homogeneous but not uniformly ho-
mogeneous, and let us explain what a transition wave can be in this case. Namely, consider
an equation of the type

ut = uxx + f(x, u),

where u : R × R → Rm, f(x, a1) = 0 for all x ∈ R, f(x, a2) → 0 as x → −∞, f(x, a3) → 0
as x→ +∞, and a1, a2 and a3 are three distinct vectors in Rm. The homogeneous states a2

and a3 are solutions of the limiting equations obtained as x→ −∞ and x→ +∞ respectively,
but these states do not solve the original equation in general since f(x, a2) and f(x, a3) are not
identically equal to 0 in general. One can then wonder what could be a generalized transition
wave u(t, x) connecting p− = a1 to another limiting state p+, with a single interface Γt = {xt}
such that Ω±t = {x ∈ R; ±(x − xt) < 0} and xt → ±∞ as t → ±∞. The limiting
state p+(t, x) such that u(t, x)− p+(t, x)→ 0 as x− xt → −∞ (uniformly in t ∈ R) cannot
be a2 or a3 in general. A natural candidate could be a solution p+(x) of the stationary
equation

p+′′(x) + f(x, p+(x)) = 0, x ∈ R,

such that p+(−∞) = a2 and p+(+∞) = a3. If such a solution p+ exists, a transition
wave connecting p− = a1 and p+ and satisfying limt→±∞ xt = ±∞ would then be such
that u(t, x) → a2 (resp. u(t, x) → a1) as x → −∞ (resp. x → +∞) locally uniformly
in t ∈ R, but u(t, x) → p+(x) 6≡ a2 as t → +∞ locally uniformly in x ∈ R. Without going
into further details here, this simple example already illustrates the wideness of Definition 1.1
and the possibility of new objects connecting general non-constant limiting states.
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In the particular one-dimensional case, when equation (1.2) is scalar and when the limi-
ting states p± are ordered, say p+ > p−, Definition 1.1 corresponds to that of “wave-like”
solutions given in [38]. However, Definition 1.1 also includes more general situations involving
complex heterogeneous geometries or media. Existence, uniqueness and stability results
of generalized almost planar transition fronts in one-dimensional media or straight higher-
dimensional cylinders with combustion-type nonlinearities and arbitrary spatial dependence
have just been proved in [28, 29, 33, 45]. In general higher-dimensional domains, generalized
transition waves which are not almost planar can also be covered by Definition 1.1: such
transition waves are known to exist for the homogeneous equation (1.1) in RN for usual types
of nonlinearities f (combustion, bistable, Kolmogorov-Petrovsky-Piskunov type), see [3, 10,
17, 18, 21, 22, 31, 40, 41] for details. Further on, other situations can also be investigated,
such as the case when some coefficients of (1.2) are locally perturbed and more complex
geometries, like exterior domains (the existence of almost planar fronts in exterior domains
with bistable nonlinearity f has just been proved in [4]), curved cylinders, spirals, etc can
be considered.

It is worth mentioning that, even in dimension 1, Definition 1.1 also includes a very
interesting class of transition wave solutions which are known to exist and which do not fall
within the usual notions, that is invasion fronts which have no specified global mean speed.
For instance, for (1.1) in dimension N = 1, if f = f(u) satisfies

f is C2 concave in [0, 1], positive in (0, 1) and f(0) = f(1) = 0, (1.10)

then there are invasion fronts connecting 0 and 1 for which Ω−t = (xt,+∞), Ω+
t = (−∞, xt)

and
xt
t
→ c1 as t→ −∞ and

xt
t
→ c2 as t→ +∞

with 2
√
f ′(0) ≤ c1 < c2 (see [18]). There are also some fronts for which xt/t→ c1 ≥ 2

√
f ′(0)

as t→ −∞ and xt/t→ +∞ as t→ +∞. For further details, we refer to [3, 18].
In the companion survey paper [3], we made a detailed presentation of the usual particular

cases of transition waves covered by Definition 1.1. We explained and compared the notions
of fronts which had been introduced earlier, starting from the simplest situations and going
to the most general ones. In the present paper, in addition to the intrinsic properties of
the generalized transition waves stated in Theorems 1.2 and 1.7 above, we mainly focus
on the proof of some important qualitative properties, including some monotonicity and
uniqueness results, and on the application of these qualitative properties in order to get
Liouville-type results in some particular situations. In doing so, we prove that, under some
assumptions, the generalized transition waves reduce to the standard traveling or pulsating
fronts in homogeneous or periodic media. These qualitative properties are stated in the
next subsection 1.4. In a forthcoming paper, we deal with a general method to prove the
existence of transition waves in a broad framework. However, in the present paper, in order
to illustrate the interest of the above definitions, we also analyze a specific example which had
not been considered in the literature. We prove the existence of new generalized transition
waves, which in general do not have any global mean speed, for time-dependent equations.
Namely, we consider one-dimensional reaction-diffusion equations of the type

ut = uxx + f(t, u) (1.11)
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where the function f : R× [0, 1]→ R is of class C1 and satisfies:

∀ t ∈ R, f(t, 0) = f(t, 1) = 0,

∀ (t, s) ∈ R× [0, 1], f(t, s) ≥ 0,

∃ t1 < t2 ∈ R, ∃ f1, f2 ∈ C1([0, 1];R),

∀ (t, s) ∈ (−∞, t1]× [0, 1], f(t, s) = f1(s),

∀ (t, s) ∈ [t2,+∞)× [0, 1], f(t, s) = f2(s),

f ′1(0) > 0, f ′2(0) > 0,

∀ s ∈ (0, 1), f1(s) > 0, f2(s) > 0.

(1.12)

In other words, the function f is time-independent and non-degenerate at 0 for times less
than t1 and larger than t2, and for the times t ∈ (t1, t2), the functions f(t, ·) are just
assumed to be nonnegative, but they may a priori vanish. If f1 and f2 are equal, then
the nonlinearity f(t, s) can be viewed as a time-local perturbation of a time-independent
equation. But, it is worth noticing that the functions f1 and f2 are not assumed to be equal
nor even compared in general. When t ≤ t1, classical traveling fronts

(t, x) ∈ R2 7→ ϕ1,c(x− ct) ∈ [0, 1]

such that ϕ1,c(−∞) = 1 and ϕ1,c(+∞) = 0 are known to exist, for all and only all speeds

c ≥ c∗1, where c∗1 ≥ 2
√
f ′1(0) > 0 only depends on f1 (see e.g. [1]). The open questions are

to know how these traveling fronts behave during the time interval [t1, t2] and whether they
can subsist and at which speed, if any, they travel after the time t2. Indeed, it is also known
that, when t ≥ t2, there exist classical traveling fronts

(t, x) ∈ R2 7→ ϕ2,c(x− ct) ∈ [0, 1]

such that ϕ2,c(−∞) = 1 and ϕ2,c(+∞) = 0 for all and only all speeds c ≥ c∗2, where

c∗2 ≥ 2
√
f ′2(0) > 0 only depends on f2. The following result provides an answer to these

questions and shows the existence of generalized transition waves connecting 0 and 1 for
equation (1.11), which fall within our general definitions and do not have any global mean
speed in general. To state the result, we need a few notations. For each c ≥ c∗1, we set

λ1,c =


c1 −

√
c2

1 − 4f ′1(0)

2
if c > c∗1,

c∗1 +
√
c∗1

2 − 4f ′1(0)

2
if c = c∗1.

(1.13)

We also denote

λ∗,−2 =
c∗2 −

√
c∗2

2 − 4f ′2(0)

2
.

Theorem 1.8 For equation (1.11) under the assumption (1.12), there exist transition in-
vasion fronts connecting p− = 0 and p+ = 1, for which Ω±t = {x ∈ R; ±(x − xt) < 0},
Γt = {xt} for all t ∈ R,

xt = c1t for t ≤ t1 and
xt
t
→ c2 as t→ +∞,

11



where c1 is any given speed in [c∗1,+∞) and

c2 =

 λ1,c1 +
f ′2(0)

λ1,c1

if λ1,c1 < λ∗,−2 ,

c∗2 if λ1,c1 ≥ λ∗,−2 .

(1.14)

When f1 = f2, then c∗1 = c∗2 and the transition fronts constructed in Theorem 1.8 are such
that c1 = c2, whence they have a global mean speed c = c1 = c2 in the sense of Definition 1.6.
When f1 ≤ f2 (resp. f1 ≥ f2), then c∗1 ≤ c∗2 (resp. c∗1 ≥ c∗2), the inequalities c1 ≤ c2 (resp.
c1 ≥ c2) always hold and, for c1 large enough so that λ1,c1 < λ∗,−2 , the inequalities c1 < c2

(resp. c1 > c2) are strict if f ′1(0) 6= f ′2(0) (hence, these transition fronts do not have any
global mean speed).

In the general case, acceleration and slow down may occur simultaneously, for the same
equation (1.11) with the same function f , according to the starting speed c1: for instance,
there are examples of functions f1 and f2 for which

c2 > c1 for all c1 > c∗1, and c2 < c1 for c1 = c∗1.

To do so, it is sufficient to choose f2 of the Kolmogorov-Petrovsky-Piskunov type, that is
f2(s) ≤ f ′2(0)s in (0, 1) whence c∗2 = 2

√
f ′2(0) = 2λ∗,−2 , and to choose f1 in such a way that

f ′1(0) < f ′2(0) and c∗1 > c∗2 (for instance, if f2 is chosen as above, if M > 0 is such that√
2M > c∗2 and if

f1(s) ≥ M

ε
× (1− |x− 1 + ε|) on [1− 2ε, 1]

for ε > 0 small enough, then c∗1 > c∗2 for ε small enough, see [9]).
Lastly, it is worth noticing that, in Theorem 1.8, the speed c2 of the position xt at large

time is determined only from c1, f1 and f2, whatever the profile of f between times t1 and t2
may be.

Remark 1.9 The solutions u constructed in Theorem 1.8 are by definition spatial transition
fronts connecting 1 and 0. Furthermore, it follows from the proof given in Section 3 that these
transition fronts can also be viewed as temporal connections between a classical traveling front
with speed c1 for the nonlinearity f1 and another classical traveling front, with speed c2, for
the nonlinearity f2.

1.4 Qualitative properties

We now proceed to some further qualitative properties of generalized transition waves.
Throughout this subsection, m = 1, i.e. we work in the scalar case, and u denotes transition
wave connecting p− and p+, for equation (1.2), associated with families (Ω±t )t∈R and (Γt)t∈R
satisfying properties (1.3), (1.4), (1.5) and (1.7). We also assume that u and p± are globally
bounded in R× Ω and that

µ(x) · ∇xu(t, x) = µ(x) · ∇xp
±(t, x) = 0 on R× ∂Ω, (1.15)

12



where µ is a C0,β(∂Ω) unit vector field such that

inf
{
µ(x) · ν(x); x ∈ ∂Ω

}
> 0.

First, we establish a general property of monotonicity with respect to time.

Theorem 1.10 Assume that A and q do not depend on t, that f and p± are nondecreasing
in t and that there is δ > 0 such that

s 7→ f(t, x, s) is nonincreasing in (−∞, p−(t, x) + δ] and [p+(t, x)− δ,+∞) (1.16)

for all (t, x) ∈ R× Ω. If u is an invasion of p− by p+ with

κ := inf
{
p+(t, x)− p−(t, x); (t, x) ∈ R× Ω

}
> 0, (1.17)

then u satisfies
∀ (t, x) ∈ R× Ω, p−(t, x) < u(t, x) < p+(t, x). (1.18)

and u is increasing in time t.

Notice that if (1.18) holds a priori and if f is assumed to be nonincreasing in s for s
in [p−(t, x), p−(t, x) + δ] and [p+(t, x) − δ, p+(t, x)] only, instead of (−∞, p−(t, x) + δ] and
[p+(t, x)− δ,+∞), then the conclusion of Theorem 1.10 (strict monotonicity of u in t) holds.
The simplest case is when f = f(u) only depends on u and p± are constants and both stable,
that is f ′(p±) < 0.

The monotonicity result stated in Theorem 1.10 plays an important role in the following
uniqueness and comparison properties for almost planar fronts:

Theorem 1.11 Under the same conditions as in Theorem 1.10, assume furthermore that f
and p± are independent of t, that u is almost planar in some direction e ∈ SN−1 and has
global mean speed c ≥ 0, with the stronger property that

sup
{∣∣ dΩ(Γt,Γs)− c|t− s|

∣∣; (t, s) ∈ R2
}
< +∞, (1.19)

where
Γt =

{
x ∈ Ω; x · e− ξt = 0

}
and Ω±t =

{
x ∈ Ω; ±(x · e− ξt) < 0

}
.

Let ũ be another globally bounded invasion front of p− by p+ for equation (1.2) and (1.15),
associated with

Γ̃t =
{
x ∈ Ω; x · e− ξ̃t = 0

}
and Ω̃±t =

{
x ∈ Ω; ±(x · e− ξ̃t) < 0

}
and having global mean speed c̃ ≥ 0 such that

sup
{ ∣∣ dΩ(Γ̃t, Γ̃s)− c̃|t− s|

∣∣; (t, s) ∈ R2
}
< +∞.

Then c = c̃ and there is (the smallest) T ∈ R such that

ũ(t+ T, x) ≥ u(t, x) for all (t, x) ∈ R× Ω.

Furthermore, there exists a sequence (tn, xn)n∈N in R× Ω such that

(dΩ(xn,Γtn))n∈N is bounded and ũ(tn + T, xn)− u(tn, xn)→ 0 as n→ +∞.

Lastly, either ũ(t + T, x) > u(t, x) for all (t, x) ∈ R × Ω or ũ(t + T, x) = u(t, x) for all
(t, x) ∈ R× Ω.
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This result shows the uniqueness of the global mean speed among a certain class of almost
planar invasion fronts. It also says that any two such fronts can be compared up to shifts.
In particular cases listed below, uniqueness holds up to shifts. However, this uniqueness
property may not hold in general.

Remark 1.12 Notice that property (1.19) and the fact that u is an invasion imply that the
speed c is necessarily (strictly) positive.

As a corollary of Theorem 1.11, we now state a result which is important in that it
shows that, at least under appropriate conditions on f , our definition does not introduce
new objects in some classical situations: it reduces to pulsating traveling fronts in periodic
media and to usual traveling fronts when there is translation invariance in the direction of
propagation.

Theorem 1.13 Under the conditions of Theorem 1.11, assume that Ω, A, q, f , µ and p±

are periodic in x, in that there are positive real numbers L1, . . . , LN > 0 such that, for every
vector k = (k1, . . . , kN) ∈ L1Z× · · · × LNZ,

Ω + k = Ω,

A(x+ k) = A(x), q(x+ k) = q(x), f(x+ k, ·) = f(x, ·), p±(x+ k) = p±(x) for all x ∈ Ω,

µ(x+ k) = µ(x) for all x ∈ ∂Ω.

(i) Then u is a pulsating front, namely

u

(
t+

γ k · e
c

, x

)
= u(t, x− k) for all (t, x) ∈ R× Ω and k ∈ L1Z× · · · × LNZ, (1.20)

where γ = γ(e) ≥ 1 is given by

γ(e) = lim
(x,y)∈Ω×Ω, (x−y) ‖ e, |x−y|→+∞

dΩ(x, y)

|x− y|
. (1.21)

Furthermore, u is unique up to shifts in t.
(ii) Under the additional assumptions that e is one of the axes of the frame, that Ω is

invariant in the direction e and that A, q, f , µ and p± are independent of x · e, then u
actually is a classical traveling front, that is:

u(t, x) = φ(x · e− ct, x′)

for some function φ, where x′ denotes the variables of RN which are orthogonal to e. More-
over, φ is decreasing in its first variable.

(iii) If Ω = RN and A, q, f(·, s) (for each s ∈ R), p± are constant, then u is a planar
(i.e. one-dimensional) traveling front, in the sense that

u(t, x) = φ(x · e− ct),

where φ : R→ (p−, p+) is decreasing and φ(∓∞) = p±.
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Notice that properties (1.4) and (1.7) are automatically satisfied here –and property (1.7)
is actually satisfied for all τ > 0– due to the periodicity of Ω, the definition of Ω±t and
assumption (1.19).

The constant γ(e) in (1.21) is by definition larger than or equal to 1. It measures the
asymptotic ratio of the geodesic and Euclidean distances along the direction e. If the do-
main Ω is invariant in the direction e, that is Ω = Ω + se for all s ∈ R, then γ(e) = 1. For a
pulsating traveling front satisfying (1.20), the “Euclidean speed” c/γ(e) in the direction of
propagation e is then less than or equal to the global mean speed c (the latter being indeed
defined through the geodesic distance in Ω).

Part (ii) of Theorem 1.13 still holds if e is any direction of RN and if Ω, A, q, f , µ and p±

are invariant in the direction e and periodic in the variables x′. This result can actually be
extended to the case when the medium may not be periodic and u may not be an invasion
front:

Theorem 1.14 Assume that Ω is invariant in a direction e ∈ SN−1, that A, q, µ and p±

depend only on the variables x′ which are orthogonal to e, that f = f(x′, u) and that (1.16)
and (1.17) hold.

If u is almost planar in the direction e, i.e. the sets Ω±t can be chosen as

Ω±t =
{
x ∈ Ω; ±(x · e− ξt) < 0

}
,

and if u has global mean speed c ≥ 0 with the stronger property that

sup
{ ∣∣ |ξt − ξs| − c|t− s| ∣∣; (t, s) ∈ R2

}
< +∞,

then there exists ε ∈ {−1, 1} such that

u(t, x) = φ(x · e− εct, x′)

for some function φ. Moreover, φ is decreasing in its first variable.
If one further assumes that c = 0, then the conclusion holds even if f and p± also depend

on x · e, provided that they are nonincreasing in x · e. In particular, if u is quasi-stationary
in the sense of Definition 1.6, then u is stationary.

In Theorems 1.13 and 1.14, we gave some conditions under which the fronts reduce to
usual pulsating or traveling fronts. The fronts were assumed to have a global mean speed.
Now, the following result generalizes part (iii) of Theorem 1.13 to the case of almost planar
fronts which may not have any global mean speed and which may not be invasion fronts. It
gives some conditions under which almost planar fronts actually reduce to one-dimensional
fronts.

Theorem 1.15 Assume that Ω = RN , that A and q depend only on t, that the functions p±

depend only on t and x · e and are nonincreasing in x · e for some direction e ∈ SN−1, that
f = f(t, x · e, u) is nonincreasing in x · e, and that (1.16) and (1.17) hold. If u is almost
planar in the direction e with

Ω±t =
{
x ∈ RN ; ±(x · e− ξt) < 0

}
15



such that
∃σ > 0, sup

{
|ξt − ξs|; (t, s) ∈ R2, |t− s| ≤ σ

}
< +∞, (1.22)

then u is planar, i.e. u only depends on t and x · e :

u(t, x) = φ(t, x · e)

for some function φ : R2 → R. Furthermore,

∀ (t, x) ∈ R× RN , p−(t, x · e) < u(t, x) < p+(t, x · e) (1.23)

and u is decreasing with respect to x · e.

Notice that the assumption sup {|ξt+σ − ξt|; t ∈ R} < +∞ for every σ ∈ R is clearly
stronger than property (1.7). But one does not need ξt to be monotone or |ξt − ξs| → +∞
as |t− s| → +∞, namely u may not be an invasion front.

As for Theorem 1.10, if the inequalities (1.23) are assumed to hold a priori and if f is
assumed to be nonincreasing in s for s in [p−(t, x·e), p−(t, x·e)+δ] and [p+(t, x·e)−δ, p+(t, x·e)]
only, instead of (−∞, p−(t, x · e) + δ] and [p+(t, x · e)− δ,+∞), then the strict monotonicity
of u in x · e still holds.

As a particular case of the result stated in Theorem 1.14 (with c = 0), the following
property holds, which states that, under some assumptions, any quasi-stationary front is
actually stationary.

Corollary 1.16 Under the conditions of Theorem 1.15, if one further assumes that the
function t 7→ ξt is bounded and that A, q, f and p± do not depend on t, then u depends
on x · e only, that is u is a stationary one-dimensional front.

1.5 Further extensions

In the previous sections, the waves were defined as spatial transitions connecting two limiting
states p− and p+. Multiple transition waves can be defined similarly.

Definition 1.17 (Waves with multiple transitions) Let k ≥ 1 be an integer and let p1, . . . , pk

be k time-global solutions of (1.2). A generalized transition wave connecting p1, . . . , pk is a
time-global classical solution u of (1.2) such that u 6≡ pj for all 1 ≤ j ≤ k, and there exist k
families (Ωj

t)t∈R (1 ≤ j ≤ k) of open nonempty unbounded subsets of Ω, a family (Γt)t∈R of
nonempty subsets of Ω and an integer n ≥ 1 such that

∀ t ∈ R, ∀ j 6= j′ ∈ {1, . . . , k}, Ωj
t ∩ Ωj′

t = ∅,

∀ t ∈ R,
⋃

1≤j≤k

(∂Ωj
t ∩ Ω) = Γt, Γt ∪

⋃
1≤j≤k

Ωj
t = Ω,

∀ t ∈ R, ∀ j ∈ {1, . . . , k}, sup
{
dΩ(x,Γt); x ∈ Ωj

t

}
= +∞,

∀A ≥ 0, ∃ r > 0, ∀ t ∈ R, ∀x ∈ Γt, ∃ 1 ≤ j 6= j′ ≤ k, ∃ yj ∈ Ωj
t , ∃ yj

′ ∈ Ωj′

t ,

dΩ(x, yj) = dΩ(x, yj
′
) = r and min

(
dΩ(yj,Γt), dΩ(yj

′
,Γt)

)
≥ A,

if N = 1 then Γt is made of at most n points,

if N ≥ 2 then (1.5) is satisfied,
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and
u(t, x)− pj(t, x)→ 0 uniformly in t ∈ R as dΩ(x,Γt)→ +∞ and x ∈ Ωj

t

for all 1 ≤ j ≤ k.

Triple or more general multiple transition waves are indeed known to exist in some
reaction-diffusion problems (see e.g. [11, 13]). The above definition also covers the case
of multiple wave trains.

On the other hand, the spatially extended pulses, as defined in Definition 1.3 with
p−(t) = p+(t), correspond to the special case k = 1, p1 = p±(t) and Ω1

t = Ω−t ∪ Ω+
t in

the above definition. We say that they are extended since, for each time t, the set Γt is
unbounded in general. The usual notion of localized pulses can be viewed as a particular
case of Definition 1.17.

Definition 1.18 (Localized pulses) In Definition 1.17, if k = 1 and if

sup
{

diamΩ(Γt); t ∈ R
}
< +∞,

then we say that u is a localized pulse.

In all definitions of this paper, the time interval R can be replaced with any interval
I ⊂ R. However, when I 6= R, the sets Ω±t or Ωj

t are not required to be unbounded, but one
only requires that

lim
t→+∞

(
sup

{
dΩ(x,Γt); x ∈ Ω±t }

)
= +∞ or lim

t→+∞

(
sup

{
dΩ(x,Γt); x ∈ Ωj

t}
)

= +∞,

in the case of double or multiple transitions, if I ⊃ [a,+∞) (resp.

lim
t→−∞

(
sup

{
dΩ(x,Γt); x ∈ Ω±t }

)
= +∞ or lim

t→−∞

(
sup

{
dΩ(x,Γt); x ∈ Ωj

t}
)

= +∞

if I ⊃ (−∞, a]). The particular case I = [0, T ) with 0 < T ≤ +∞ is used to describe the
formation of waves and fronts for the solutions of Cauchy problems.

For instance, consider equation (1.1) for t ≥ 0, with a function f ∈ C1([0, 1]) such that
f(0) = f(1) = 0, f > 0 in (0, 1) and f ′(0) > 0. If u0 is in Cc(RN) and satisfies 0 ≤ u0 ≤ 1
with u0 6≡ 0 and if u(t, x) denotes the solution of (1.1) with initial condition u(0, ·) = u0,
then 0 ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ RN and it follows easily from [1, 24] that there
exists a continuous increasing function [0,+∞) 3 t 7→ r(t) > 0 such that r(t)/t→ c∗ > 0 as
t→ +∞ and

lim
A→+∞

(
inf
{
u(t, x); t ≥ 0, r(t) ≥ A, 0 ≤ |x| ≤ r(t)− A

})
= 1,

lim
A→+∞

(
sup

{
u(t, x); t ≥ 0, |x| ≥ r(t) + A

})
= 0,

where c∗ > 0 is the minimal speed of planar fronts ϕ(x−ct) ranging in [0, 1] and connecting 0
and 1 for this equation (in other words, the minimal speed c∗ of planar fronts is also the
spreading speed of the solutions u in all directions). If we define

Ω−t =
{
x ∈ RN ; |x| < r(t)

}
, Ω+

t =
{
x ∈ RN ; |x| > r(t)

}
and Γt =

{
x ∈ RN ; |x| = r(t)

}
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for all t ≥ 0, then the function u(t, x) can be viewed as a transition invasion wave connecting
p− = 1 and p+ = 0 in the time interval [0,+∞). We also refer to [7] for further definitions
and properties of the spreading speeds of the solutions of the Cauchy problem ut = ∆u+f(u)
with compactly supported initial conditions, in arbitrary domains Ω and no-flux boundary
conditions.

It is worth pointing out that, for the one-dimensional equation ut = uxx + f(u) in R with
C1([0, 1],R) functions f such that f(0) = f(1) = 0, f(s) > 0 and f ′(s) ≤ f(s)/s on (0, 1),
there are solutions u : [0,+∞)× R→ [0, 1], (t, x) 7→ u(t, x) such that

u(t,−∞) = 1, u(t,+∞) = 0 for all t ≥ 0, and lim
t→+∞

‖ux(t, ·)‖L∞(R) = 0,

see [19]. At each time t, u(t, ·) connects 1 to 0, but since the solutions become uniformly
flatter and flatter as time runs, they are examples of solutions which are not generalized
fronts connecting 1 and 0.

Time-dependent domains and other equations. We point out that all these general
definitions can be adapted to the case when the domain

Ω = Ωt

depends on time t.
Lastly, the general definitions of transition waves which are given in this paper also hold

for other types of evolution equations

F [t, x, u,Du,D2u, · · · ] = 0

which may not be of the parabolic type and which may be non local. Here Du stands for
the gradient of u with respect to all variables t and x.

Outline of the paper. The following sections are devoted to proving all the results we
have stated here. Section 2 is concerned with level set properties and the intrinsic character
of the global mean speed. In Section 3, we prove Theorem 1.8 on the existence of genera-
lized transition waves for the time-dependent equation (1.11). Section 4 deals with the
proof of the general time-monotonicity result (Theorem 1.10). Section 5 is concerned with
the proofs of Theorems 1.11 and 1.13 on comparison of almost planar invasion fronts and
reduction to pulsating fronts in periodic media. Lastly, in Section 6, we prove the remaining
Theorems 1.14 and 1.15 concerned with almost planar fronts in media which are invariant
or monotone in the direction of propagation.

2 Intrinsic character of the interface localization and

the global mean speed

Given a generalized transition wave u, we can view the set Γt as the continuous interface
of u at time t. Of course this set is not uniquely defined, however, as we shall prove here,
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its localization in terms of (1.8) and (1.9) is intrinsic. Thus, this gives a meaning to the
“interface” in this continuous problem (even though it is not a free boundary). This section
is divided into two parts, the first one dealing with the properties of the level sets and the
second one with the intrinsic character of the global mean speed.

2.1 Localization of the level sets: proof of Theorem 1.2

Heuristically, the fact that u converges to two distinct constant states p± in Ω±t uniformly
as dΩ(x,Γt)→ +∞ will force any level set to stay at a finite distance from the interfaces Γt,
and the solution u to stay away from p± in tubular neighborhoods of Γt.

More precisely, let us first prove part 1 of Theorem 1.2. Formula (1.8) is almost imme-
diate. Indeed, assume that the conclusion does not hold for some λ ∈ (p−, p+). Then there
exists a sequence (tn, xn)n∈N in R× Ω such that

u(tn, xn) = λ for all n ∈ N and dΩ(xn,Γtn)→ +∞ as n→ +∞.

Up to extraction of some subsequence, two cases may occur: either xn ∈ Ω−tn and then

u(tn, xn) → p− as n → +∞, or xn ∈ Ω+
tn and then u(tn, xn) → p+ as n → +∞. In both

cases, one gets a contradiction with the fact that u(tn, xn) = λ ∈ (p−, p+).
Assume now that property (1.9) does not hold for some C ≥ 0. One may then assume

that there exists a sequence (tn, xn)n∈N of points in R× Ω such that

dΩ(xn,Γtn) ≤ C for all n ∈ N and u(tn, xn)→ p− as n→ +∞ (2.1)

(the case where u(tn, xn)→ p+ could be treated similarly). Since dΩ(xn,Γtn) ≤ C for all n,
it follows from (1.7) that there exists a sequence (x̃n)n∈N such that

x̃n ∈ Γtn−τ for all n ∈ N and sup
{
dΩ(xn, x̃n); n ∈ N

}
< +∞.

On the other hand, from Definition 1.1, there exists d > 0 such that

∀ t ∈ R, ∀ y ∈ Ω+
t , dΩ(y,Γt) ≥ d =⇒ u(t, y) ≥ p− + p+

2
.

From (1.4), there exists r > 0 such that, for each n ∈ N, there exists a point yn ∈ Ω+
tn−τ

satisfying
dΩ(x̃n, yn) = r and dΩ(yn,Γtn−τ ) ≥ d.

Therefore,

∀ n ∈ N, u(tn − τ, yn) ≥ p− + p+

2
. (2.2)

But the sequence (dΩ(xn, yn))n∈N is bounded and the function v = u−p− is nonnegative and
is a classical global solution of an equation of the type

vt = ∇x · (A(t, x)∇xv) + q(t, x) · ∇xv + b(t, x)v in R× Ω
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for some bounded function b, with µ(t, x) ·∇xv(t, x) = 0 on ∂Ω. Furthermore, the function v
has bounded derivatives, from standard parabolic estimates. Since v(tn, xn)→ 0 as n→ +∞
from (2.1), one concludes from the linear estimates that v(tn− τ, yn)→ 0 as n→ +∞.4 But

v(tn − τ, yn) ≥ p+ − p−

2
> 0

from (2.2). One has then reached a contradiction. This gives the desired conclusion (1.9).
To prove part 2 of Theorem 1.2, assume now that (1.8) and (1.9) hold and that there is

d0 > 0 such that the sets {
(t, x) ∈ R× Ω; x ∈ Ω+

t , dΩ(x,Γt) ≥ d
}

and {
(t, x) ∈ R× Ω; x ∈ Ω−t , dΩ(x,Γt) ≥ d

}
are connected for all d ≥ d0. Denote

m− = lim inf
x∈Ω−t , dΩ(x,Γt)→+∞

u(t, x) and M− = lim sup
x∈Ω−t , dΩ(x,Γt)→+∞

u(t, x).

One has p− ≤ m− ≤M− ≤ p+.
Call λ = (m−+M−)/2. Assume now that m− < M−. Then λ ∈ (p−, p+) and, from (1.8),

there exists C0 ≥ 0 such that

dΩ(x,Γt) < C0 for all (t, x) ∈ R× Ω such that u(t, x) = λ.

Furthermore, there exist some times t1, t2 ∈ R and some points x1, x2 with xi ∈ Ω−ti such
that u(t1, x1) < λ < u(t2, x2) and dΩ(xi,Γti) ≥ max(C0, d0) for i = 1, 2. Since the set{

(t, x) ∈ R× Ω; x ∈ Ω−t , dΩ(x,Γt) ≥ max(C0, d0)
}

is connected and the function u is continuous in R × Ω, there would then exist t ∈ R and

x ∈ Ω−t such that dΩ(x,Γt) ≥ max(C0, d0) and u(t, x) = λ. But this is in contradiction with
the choice of C0.

4We use here the fact that, since the domain Ω is assumed to be globally smooth, as well as all coefficients
A, q and µ of (1.2) and (1.15), in the sense given in Section 1, then, for every positive real numbers
δ, ρ, σ, M, B and η > 0, there exists a positive real number ε = ε(δ, ρ, σ,M,B, η) > 0 such that, for
any t0 ∈ R, for any C1 path P : [0, 1] → Ω whose length is less than δ, for any nonnegative classical
supersolution u of

ut ≥ ∇x · (A(t, x)∇xu) + q(t, x) · ∇xu+ b(t, x)u

in the set

E = Et0,P,ρ,σ = [t0, t0 + ρ]×
{
x ∈ Ω; dΩ(x, P ([0, 1])) ≤ ρ

}
∪ [t0, t0 + σ]×BΩ(P (0), ρ),

satisfying (1.15) on ∂E ∩ (R× ∂Ω), ‖∇xu‖L∞(E) ≤M , ‖b‖L∞(E) ≤ B and

max
{
u(t0, P (s)); s ∈ [0, 1]

}
≥ η,

then u(t0 + σ, P (0)) ≥ ε.
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Therefore, p− ≤ m− = M− ≤ p+ and

u(t, x)→ m− uniformly as dΩ(x,Γt)→ +∞ and x ∈ Ω−t .

Similarly,

u(t, x)→ m+ ∈ [p−, p+] uniformly as dΩ(x,Γt)→ +∞ and x ∈ Ω+
t .

If max(m−,m+) < p+, then there is ε > 0 and C ≥ 0 such that u(t, x) ≤ p+− ε for all (t, x)
with dΩ(x,Γt) ≥ C. But

sup {u(t, x); dΩ(x,Γt) ≤ C} < p+

because of (1.9). Therefore, sup {u(t, x); (t, x) ∈ R × Ω} < p+, which contradicts the fact
that the range of u is the whole interval (p−, p+). As a consequence,

max(m−,m+) = p+.

Similarly, one can prove that min(m−,m+) = p−.
Eventually, either m− = p− and m+ = p+, or m− = p+ and m+ = p−, which means

that u is a transition wave connecting p− and p+ (or p+ and p−). That completes the proof
of Theorem 1.2. �

2.2 Uniqueness of the global mean speed for a given transition
wave

This section is devoted to the proof of the intrinsic character of the global mean speed, when
it exists, of a generalized transition wave in the general vectorial case m ≥ 1, when p+ and p−

are separated from each other.

Proof of Theorem 1.7. We make here all the assumptions of Theorem 1.7 and we call

Γ̃t = ∂Ω̃−t ∩ Ω = ∂Ω̃+
t ∩ Ω

for all t ∈ R. We first claim that there exists C ≥ 0 such that

dΩ(x, Γ̃t) ≤ C for all t ∈ R and x ∈ Γt.

Assume not. Then there is a sequence (tn, xn)n∈N in R× Ω such that

xn ∈ Γtn for all n ∈ N and dΩ(xn, Γ̃tn)→ +∞ as n→ +∞.

Up to extraction of some subsequence, one can assume that xn ∈ Ω̃−tn (the case where xn ∈ Ω̃+
tn

could be handled similarly). Call

ε = inf
{
|p−(t, x)− p+(t, x)|; (t, x) ∈ R× Ω

}
> 0

and let A ≥ 0 be such that

|u(t, z)− p+(t, z)| ≤ ε

2
for all (t, z) ∈ R× Ω with dΩ(z,Γt) ≥ A and z ∈ Ω+

t .
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From the condition (1.4), there exist r > 0 and a sequence (yn)n∈N such that

yn ∈ Ω+
tn , dΩ(xn, yn) = r and dΩ(yn,Γtn) ≥ A

for all n ∈ N. Therefore,
dΩ(yn, Γ̃tn)→ +∞ as n→ +∞

and yn ∈ Ω̃−tn for n large enough. As a consequence,

u(tn, yn)− p−(tn, yn)→ 0 as n→ +∞.

On the other hand, dΩ(yn,Γtn) ≥ A and yn ∈ Ω+
tn , whence

|u(tn, yn)− p+(tn, yn)| ≤ ε

2

for all n ∈ N. It follows that

lim sup
n→+∞

|p−(tn, yn)− p+(tn, yn)| ≤ ε

2
.

This contradicts the definition of ε.
Therefore, there exists C ≥ 0 such that

∀ t ∈ R, ∀ x ∈ Γt, dΩ(x, Γ̃t) ≤ C. (2.3)

Let now (t, s) ∈ R2 be any couple of real numbers and let η > 0 be any positive number.
There exists (x, y) ∈ Γt × Γs such that dΩ(x, y) ≤ dΩ(Γt,Γs) + η. From (2.3), there exists

(x̃, ỹ) ∈ Γ̃t × Γ̃s such that

dΩ(x, x̃) ≤ C + η and dΩ(y, ỹ) ≤ C + η.

Thus, dΩ(x̃, ỹ) ≤ dΩ(Γt,Γs) + 2C + 3η and

dΩ(Γ̃t, Γ̃s) ≤ dΩ(Γt,Γs) + 2C + 3η.

Since η > 0 was arbitrary, one gets that dΩ(Γ̃t, Γ̃s) ≤ dΩ(Γt,Γs) + 2C for all (t, s) ∈ R2.
Hence,

lim sup
|t−s|→+∞

dΩ(Γ̃t, Γ̃s)

|t− s|
≤ lim sup
|t−s|→+∞

dΩ(Γt,Γs)

|t− s|
= c.

With similar arguments, by permuting the roles of the sets Ω±t and Ω̃±t , one can prove that

dΩ(Γt,Γs) ≤ dΩ(Γ̃t, Γ̃s) + 2C̃

for all (t, s) ∈ R2 and for some constant C̃ ≥ 0. Thus,

c = lim inf
|t−s|→+∞

dΩ(Γt,Γs)

|t− s|
≤ lim inf
|t−s|→+∞

dΩ(Γ̃t, Γ̃s)

|t− s|
.

As a conclusion, the ratio dΩ(Γ̃t, Γ̃s)/|t− s| converges as |t− s| → +∞, and its limit is equal
to c. The proof of Theorem 1.7 is thereby complete. �
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3 Generalized transition waves for a time-dependent

equation

In this section, we construct explicit examples of generalized invasion transition fronts con-
necting 0 and 1 for the one-dimensional equation (1.11) under the assumption (1.12). Namely,
we do the

Proof of Theorem 1.8. The strategy consists in starting from a classical traveling front
with speed c1 for the nonlinearity f1, that is for times t ∈ (−∞, t1], and then in letting it
evolve and in proving that the solution eventually moves with speed c2 at large times. The
key point is to control the exponential decay of the solution when it approaches the state 0,
between times t1 and t2.

For the nonlinearity f1, there exists a family of traveling fronts ϕ1,c(x−ct) of the equation

ut = uxx + f1(u),

where ϕ1,c : R → (0, 1) satisfies ϕ1,c(−∞) = 1 and ϕ1,c(+∞) = 0, for each speed c ∈
[c∗1,+∞). The minimal speed c∗1 satisfies c∗1 ≥ 2

√
f ′1(0), see [1, 15]. Each ϕ1,c is decreasing and

unique up to shifts (one can normalize ϕ1,c is such a way that ϕ1,c(0) = 1/2). Furthermore,
if c > c∗1, then

ϕ1,c(s) ∼ A1,ce
−λ1,cs as s→ +∞,

where A1,c is a positive constant and λ1,c > 0 has been defined in (1.13). If c = c∗1 and

c∗1 > 2
√
f ′1(0), then the same property holds. If c = c∗1 and c∗1 = 2

√
f ′1(0), then

ϕ1,c(s) ∼ (A1,cs+B1,c) e
−λ1,cs as s→ +∞,

where A1,c ≥ 0, and B1,c > 0 if A1,c = 0, see [1].
Let any speed c1 ∈ [c∗1,+∞) be given, let ξ be any real number (which is just a shift

parameter) and let u be the solution of (1.11) such that

u(t, x) = ϕ1,c1(x− c1t+ ξ) for all t ≤ t1 and x ∈ R.

Define
xt = c1t for all t ≤ t1. (3.1)

The function u satisfies{
u(t, x)→ 1 as x− xt → −∞,
u(t, x)→ 0 as x− xt → +∞,

uniformly w.r.t. t ≤ t1. (3.2)

Let us now study the behavior of u on the time interval [t1, t2] and next on the inter-
val [t2,+∞). From the strong parabolic maximum principle, there holds 0 < u(t, x) < 1 for
all (t, x) ∈ R2. For each t ≥ t1, the function u(t, ·) remains decreasing in R since f does not
depend on x. Furthermore, from standard parabolic estimates, the function u satisfies the
limiting conditions

u(t,−∞) = 1 and u(t,+∞) = 0 locally in t ∈ R, (3.3)
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since f(t, 0) = f(t, 1) = 0. Therefore, setting

xt = xt1 = c1t1 for all t ∈ (t1, t2], (3.4)

one gets that {
u(t, x)→ 1 as x− xt → −∞,
u(t, x)→ 0 as x− xt → +∞,

uniformly w.r.t. t ∈ (t1, t2]. (3.5)

Let ε be any positive real number in (0, λ1,c1). From the definition of u and the above
results, it follows that there exists a constant Cε > 0, which also depends on ξ, A1,c1 and B1,c1 ,
such that

u(t1, x) ≤ min
(
Cε e

−(λ1,c1−ε)x, 1
)

for all x ∈ R.

Let M be the nonnegative real number defined by

M = sup
(t,s)∈[t1,t2]×(0,1]

f(t, s)

s
.

This quantity is finite since f is of class C1 and f(t, 0) = 0 for all t. Denote

α = λ1,c1 − ε+
M

λ1,c1 − ε
> 0

and
u(t, x) = min

(
Cε e

−(λ1,c1−ε) (x−α(t−t1)), 1
)

for all (t, x) ∈ [t1, t2]× R.

The function u is positive and it satisfies u(t1, ·) ≤ u(t1, ·) in R. Furthermore, for all (t, x) ∈
[t1, t2]× R, if u(t, x) < 1, then

ut(t, x)− uxx(t, x)− f(t, u(t, x)) ≥ ut(t, x)− uxx(t, x)−M u(t, x)

= Cε [α (λ1,c1 − ε)− (λ1,c1 − ε)2 −M ] e−(λ1,c1−ε) (x−α(t−t1))

= 0

from the definitions of M and α. Thus, u is a supersolution of (1.11) on the time interval
[t1, t2] and it is above u at time t1. Therefore,

u(t, x) ≤ u(t, x) ≤ Cε e
−(λ1,c1−ε) (x−α(t−t1)) for all (t, x) ∈ [t1, t2]× R (3.6)

from the maximum principle.
On the other hand, from the behavior of ϕ1,c1 at +∞, there exists a constant C ′ε > 0

such that

u(t1, x) ≥ min

(
C ′ε e

−(λ1,c1+ε)x,
1

2

)
for all x ∈ R.

Let u the solution of the heat equation ut = uxx for all t ≥ t1 and x ∈ R, with value

u(t1, x) = min

(
C ′ε e

−(λ1,c1+ε)x,
1

2

)
for all x ∈ R

24



at time t1. Since f ≥ 0, it follows from the maximum principle that

u(t, x) ≥ u(t, x) for all (t, x) ∈ [t1,+∞)× R. (3.7)

But, for all x ∈ R,

u(t2, x) =

∫ +∞

−∞
p(t2 − t1, x− y)u(t1, y) dy ≥ C ′ε

∫ +∞

xε

p(t2 − t1, x− y) e−(λ1,c1+ε)y dy,

where xε is the unique real number such that C ′ε e
−(λ1,c1+ε)xε = 1/2 and p(τ, z) =

(4πτ)−1/2e−z
2/(4τ) is the heat kernel. Thus, for all x ≥ xε +

√
4(t2 − t1), there holds

u(t2, x) ≥ C ′ε√
4π(t2 − t1)

∫ x+
√

4(t2−t1)

x−
√

4(t2−t1)

e
− (x−y)2

4(t2−t1)
−(λ1,c1+ε)y

dy

≥ 2C ′ε e
−1−(λ1,c1+ε)

√
4(t2−t1)

√
π

× e−(λ1,c1+ε)x.

(3.8)

It follows from (3.6), (3.7) and (3.8) that, for all ε ∈ (0, λ1,c1), there exist two positive
constants C±ε and a real number Xε such that

C+
ε e
−(λ1,c1+ε)x ≤ u(t2, x) ≤ C−ε e

−(λ1,c1−ε)x for all x ∈ [Xε,+∞).

Remember also that 0 < u(t2, x) < 1 for all x ∈ R, and that u(t2,−∞) = 1. Since
f(t, s) = f2(s) for all t ≥ t2 and s ∈ [0, 1], the classical front stability results (see e.g.
[26, 42]) imply that

sup
x∈R

∣∣u(t, x)− ϕ2,c2(x− c2t+m(t))
∣∣→ 0 as t→ +∞, (3.9)

where m′(t)→ 0 as t→ +∞, and c2 > 0 is given by (1.14). Here, ϕ2,c2 denotes the profile of
the front traveling with speed c2 for the equation ut = uxx + f2(u), such that ϕ2,c2(−∞) = 1
and ϕ2,c2(+∞) = 0. Therefore, there exists t3 > t2 such that the map t 7→ c2t − m(t) is
increasing in [t3,+∞), and c2t3 −m(t3) ≥ c1t1. Define

xt =

{
c1t1 if t ∈ (t2, t3),

c2t−m(t) if t ∈ [t3,+∞).
(3.10)

It follows from (3.3) and (3.9) that{
u(t, x)→ 1 as x− xt → −∞,
u(t, x)→ 0 as x− xt → +∞,

uniformly w.r.t. t ∈ (t2,+∞). (3.11)

Eventually, setting
Ω±t =

{
x ∈ R; ±(x− xt) < 0

}
and Γt = {xt} for each t ∈ R, where the real numbers xt’s are defined in (3.1), (3.4)
and (3.10), one concludes from (3.2), (3.5) and (3.11) that the function u is a generalized
transition front connecting p− = 0 and p+ = 1. Furthermore, since the map t 7→ xt is
nondecreasing and xt − xs → +∞ as t− s→ +∞, this transition front u is an invasion of 0
by 1. The proof of Theorem 1.8 is thereby complete. �
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4 Monotonicity properties

This section is devoted to the proof of the time-monotonicity properties, that is Theorem 1.10.
This result has its own interest and it is also one of the key points in the subsequent unique-
ness and classification results. The proof uses several comparison lemmata and some versions
of the sliding method with respect to the time variable. Let us first show the following

Proposition 4.1 Under the assumptions of Theorem 1.10, one has

∀ (t, x) ∈ R× Ω, p−(t, x) < u(t, x) < p+(t, x).

Proof. We only prove the inequality p−(t, x) < u(t, x), the proof of the second inequality is
similar. Remember that u and p− are globally bounded. Assume now that

m := inf
{
u(t, x)− p−(t, x); (t, x) ∈ R× Ω

}
< 0.

Let (tn, xn)n∈N be a sequence in R× Ω such that

u(tn, xn)− p−(tn, xn)→ m < 0 as n→ +∞.

Since p+(t, x) − p−(t, x) ≥ κ > 0 for all (t, x) ∈ R × Ω, it follows from Definition 1.1 that
the sequence (dΩ(xn,Γtn))n∈N is bounded. From assumption (1.7), there exists a sequence of
points (x̃n)n∈N such that the sequence (dΩ(xn, x̃n))n∈N is bounded and x̃n ∈ Γtn−τ for every
n ∈ N. From Definition 1.1, there exists d ≥ 0 such that

∀ t ∈ R, ∀ z ∈ Ω+
t ,

(
dΩ(z,Γt) ≥ d

)
=⇒

(
u(t, z) ≥ p+(t, z)− κ

)
.

From the condition (1.4), there exist r > 0 and a sequence (yn)n∈N of points in Ω such that

yn ∈ Ω+
tn−τ , dΩ(yn, x̃n) = r and dΩ(yn,Γtn−τ ) ≥ d for all n ∈ N.

One then gets that
u(tn − τn, yn) ≥ p+(tn − τ, yn)− κ (4.1)

for all n ∈ N.
Call

v(t, x) = p−(t, x) +m

and
w(t, x) = u(t, x)− v(t, x) = u(t, x)− p−(t, x)−m ≥ 0

for every (t, x) ∈ R × Ω. Since p− solves (1.2), since f(t, x, ·) is nonincreasing in
(−∞, p−(t, x) + δ] for each (t, x) ∈ R× Ω,5 and since m < 0, the function v solves

vt ≤ ∇x · (A(x)∇xv) + q(x) · ∇xv + f(t, x, v) in R× Ω

5Here, we actually just use the fact that f(t, x, ·) is nonincreasing in (−∞, p−(t, x)] for each (t, x) ∈ R×Ω.
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(remember that A and f do not depend on t, but this property is actually not used here). In
other words, v is a subsolution for (1.2). But u solves (1.2) and f(t, x, s) is locally Lipschitz-
continuous in s uniformly in (t, x) ∈ R × Ω. There exists then a bounded function b such
that

wt ≥ ∇x · (A(x)∇xv) + q(x) · ∇xv + b(t, x)w in R× Ω.

Lastly, w satisfies µ · ∇xw = 0 on R × ∂Ω. Since the sequences (dΩ(xn, x̃n))n∈N and
(dΩ(yn, x̃n))n∈N are bounded, the sequence (dΩ(xn, yn))n∈N is bounded as well. Thus, since
w ≥ 0 in R × Ω and w(tn, xn) → 0 as n → +∞, one gets, as in the proof of part 1 of
Theorem 1.2, that w(tn − τ, yn)→ 0 as n→ +∞. But w(tn − τ, yn) satisfies

w(tn − τ, yn) = u(tn − τ, yn)− p−(tn − τ, yn)−m
≥ p+(tn − τ, yn)− κ− p−(tn − τ, yn)−m ≥ −m > 0

for all n ∈ N because of (4.1). One has then reached a contradiction.
As a conclusion, m ≥ 0, whence

u(t, x) ≥ p−(t, x) for all (t, x) ∈ R× Ω.

If u(t0, x0) = p−(t0, x0) for some (t0, x0) ∈ R × Ω, then the strong parabolic maximum
principle and Hopf lemma imply that u(t, x) = p−(t, x) for all x ∈ Ω and t ≤ t0, and
then for all t ∈ R by uniqueness of the Cauchy problem for (1.2). But this is impossible

since p+ − p− ≥ κ > 0 in R × Ω and u(t, x) − p+(t, x) → 0 uniformly as x ∈ Ω+
t and

dΩ(x,Γt) → +∞ (notice actually that for each t ∈ R, there are some points zn ∈ Ω+
t such

that dΩ(zn,Γt)→ +∞ as n→ +∞, from (1.3)).
As already underlined, the proof of the inequality u < p+ is similar. �

Let us now turn to the

Proof of Theorem 1.10. In the hypotheses (1.16) and (1.17), one can assume without loss
of generality that 0 < 2δ ≤ κ, even if it means decreasing δ. In what follows, for any s ∈ R,
we define us in R× Ω by

∀ (t, x) ∈ R× Ω, us(t, x) = u(t+ s, x).

The general strategy is to prove that us ≥ u in R × Ω for all s > 0 large enough, and then
for all s ≥ 0 by sliding u with respect to the time variable.

First, from Definition 1.1, there exists A > 0 such that

∀ (t, x) ∈ R× Ω,


(
x ∈ Ω−t and dΩ(x,Γt) ≥ A

)
=⇒

(
u(t, x) ≤ p−(t, x) + δ

)
,(

x ∈ Ω+
t and dΩ(x,Γt) ≥ A

)
=⇒

(
u(t, x) ≥ p+(t, x)− δ

2

)
.

(4.2)

Since p+ invades p−, there exists s0 > 0 such that

∀ t ∈ R, ∀ s ≥ s0, Ω+
t+s ⊃ Ω+

t and dΩ(Γt+s,Γt) ≥ 2A.
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Fix any t ∈ R, s ≥ s0 and x ∈ Ω. If x ∈ Ω+
t , then x ∈ Ω+

t+s and dΩ(x,Γt+s) ≥ 2A since

any continuous path from x to Γt+s in Ω meets Γt. On the other hand, if x ∈ Ω−t and

dΩ(x,Γt) ≤ A, then dΩ(x,Γt+s) ≥ A and x ∈ Ω+
t+s. In both cases, one then has that

us(t, x) = u(t+ s, x) ≥ p+(t+ s, x)− δ

2
≥ p+(t, x)− δ

since p+ is nondecreasing in time. To sum up,

∀ s ≥ s0, ∀ (t, x) ∈ R× Ω,
(
x ∈ Ω+

t

)
or
(
x ∈ Ω−t and dΩ(x,Γt) ≤ A

)
=⇒

(
us(t, x) = u(t+ s, x) ≥ p+(t, x)− δ

)
.

(4.3)

Lemma 4.2 Call

ω−A = {(t, x) ∈ R× Ω; x ∈ Ω−t and dΩ(x,Γt) ≥ A}.

For all s ≥ s0, one has
us ≥ u in ω−A .

Proof. Fix s ≥ s0 and define

ε∗ = inf
{
ε > 0; us ≥ u− ε in ω−A

}
.

Since u is bounded, ε∗ is a well-defined nonnegative real number and one has

us ≥ u− ε∗ in ω−A . (4.4)

One only has to prove that ε∗ = 0.
Assume by contradiction that ε∗ > 0. There exist then a sequence (εn)n∈N of positive

real numbers and a sequence of points (tn, xn)n∈N in ω−A such that

εn → ε∗ as n→ +∞ and us(tn, xn) < u(tn, xn)− εn for all n ∈ N. (4.5)

We first note that, when x ∈ Ω−t and dΩ(x,Γt) = A, then u(t, x) ≤ p−(t, x)+δ from (4.2),
while us(t, x) ≥ p+(t, x)− δ from (4.3). Hence

us(t, x)− u(t, x) ≥ p+(t, x)− p−(t, x)− 2δ

≥ κ− 2δ ≥ 0 when x ∈ Ω−t and dΩ(x,Γt) = A.
(4.6)

Since ∇xu is globally bounded in R × Ω, it follows from (4.5) and the positivity of ε∗ that
there exists ρ > 0 such that

lim inf
n→+∞

dΩ(xn,Γtn) ≥ A+ 2ρ.

Even if it means decreasing ρ, one can also assume without loss of generality that

0 < ρ < τ,
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where τ is given in (1.7), and that

ρ×
(
‖(u− p+)t‖L∞(R×Ω) + ‖∇x(u− p+)‖L∞(R×Ω)

)
≤ ε∗

2
(4.7)

since u and p+ have bounded derivatives.
Next, we claim that the sequence (dΩ(xn,Γtn))n∈N is bounded. Otherwise, up to extrac-

tion of some subsequence, one has

dΩ(xn,Γtn)→ +∞ and then u(tn, xn)− p−(tn, xn)→ 0 as n→ +∞.

But, from Proposition 4.1 and the fact that p− is nondecreasing in time, one has

u(tn, xn)− p−(tn, xn) > εn + u(tn + s, xn)− p−(tn, xn)

≥ εn + p−(tn + s, xn)− p−(tn, xn)

≥ εn → ε∗ > 0 as n→ +∞,

which gives a contradiction. Therefore, the sequence (dΩ(xn,Γtn))n∈N is bounded.

Since xn ∈ Ω−tn and dΩ(xn,Γtn) ≥ A+ρ for n large enough (say, for n ≥ n0), and since p+

invades p−, it follows that

xn ∈ Ω−t and dΩ(xn,Γt) ≥ A+ ρ for all n ≥ n0 and t ≤ tn

and even that

x ∈ Ω−t and dΩ(x,Γt) ≥ A for all n ≥ n0, x ∈ BΩ(xn, ρ) and t ≤ tn. (4.8)

As a consequence, since ρ < τ , there exists a sequence of points (yn)n∈N, n≥n0 in Ω such that

yn ∈ Ω−tn−τ+ρ and A+ ρ = dΩ(yn,Γtn−τ+ρ) = dΩ(xn,Γtn−τ+ρ)− dΩ(xn, yn) (4.9)

for all n ≥ n0. Thus, for each n ∈ N with n ≥ n0, there exists a C1 path Pn : [0, 1]→ Ω−tn−τ+ρ

such that Pn(0) = xn, Pn(1) = yn, the length of Pn is equal to dΩ(xn, yn) and

dΩ(Pn(σ),Γtn−τ+ρ) ≥ A+ ρ for all σ ∈ [0, 1].

Once again, since p+ invades p−, it follows that

∀n ≥ n0, ∀σ ∈ [0, 1], ∀x ∈ BΩ(Pn(σ), ρ), ∀ t ≤ tn − τ + ρ, x ∈ Ω−t and dΩ(x,Γt) ≥ A.
(4.10)

Together with (4.8), one gets that, for each n ≥ n0, the set

En = [tn − τ, tn]×BΩ(xn, ρ) ∪ [tn − τ, tn − τ + ρ]×
{
x ∈ Ω; dΩ(x, Pn([0, 1])) ≤ ρ

}
is included in ω−A .

As a consequence, for all n ≥ n0,

v := us − (u− ε∗) ≥ 0 in En
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from (4.4), and

u(t, x)− ε∗ < u(t, x) ≤ p−(t, x) + δ for all (t, x) ∈ En

from (4.2). Thus,

(u− ε∗)t = ∇x · (A(x)∇x(u− ε∗)) + q(x) · ∇x(u− ε∗) + f(t, x, u)

≤ ∇x · (A(x)∇x(u− ε∗)) + q(x) · ∇x(u− ε∗) + f(t, x, u− ε∗)

in En for all n ≥ n0, because f(t, x, ·) is nonincreasing in (−∞, p−(t, x) + δ]. In other words,
the function u − ε∗ is a subsolution of (1.2) in En for all n ≥ n0. As far as the function
us(t, x) = u(t+ s, x) is concerned, it satisfies

ust = ∇x · (A(x)∇xu
s) + q(x) · ∇xu

s + f(t+ s, x, us)

≥ ∇x · (A(x)∇xu
s) + q(x) · ∇xu

s + f(t, x, us)

for all (t, x) ∈ R × Ω because f(·, x, ξ) is nondecreasing for all (x, ξ) ∈ Ω × R. Notice that
we here use the fact that A and q are independent from the variable t. Furthermore, us still
satisfies

µ(x) · ∇xu
s(t, x) = 0 on R× ∂Ω

because µ is independent of t. In other words, us is a supersolution of (1.2). Consequently,
since the functions f(t, x, ·) are locally Lipschitz-continuous uniformly with respect to (t, x) ∈
R× Ω, the function v satisfies inequations of the type

vt ≥ ∇x · (A(x)∇xv) + q(x) · ∇xv + b(t, x)v in En

for all n ≥ n0, where the sequence (‖b‖L∞(En))n∈N, n≥n0 is bounded.
On the other hand, since the sequence (dΩ(xn,Γtn))n∈N is bounded, it follows from as-

sumption (1.7) that there exists then a sequence of points (x̃n)n∈N in Ω such that

x̃n ∈ Γtn−τ for all n ∈ N, and sup
{
dΩ(xn, x̃n); n ∈ N

}
< +∞.

Thus, for all n ≥ n0,

dΩ(xn, yn) = dΩ(xn,Γtn−τ+ρ)− (A+ ρ) ≤ dΩ(xn,Γtn−τ )− (A+ ρ) ≤ dΩ(xn, x̃n)− (A+ ρ)

since xn ∈ Ω−tn and the sets Ω−t are non-increasing with respect to t in the sense of the inclu-
sion (because p+ invades p−). The sequence (dΩ(xn, yn))n∈N, n≥n0 is then bounded. Lastly,
remember that the function ∇xv is bounded in R×Ω. As a conclusion, since v(tn, xn)→ 0 as
n→ +∞ (because of (4.5) and v(tn, xn) ≥ 0), it follows from the linear parabolic estimates
that

v(tn − τ, yn)→ 0 as n→ +∞. (4.11)

But, because of (4.9), there exists a sequence (zn)n∈N, n≥n0 such that

zn ∈ Ω−tn−τ+ρ, dΩ(yn, zn) = ρ and dΩ(zn,Γtn−τ+ρ) = A
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for all n ≥ n0. Thus, for all n ≥ n0,

us(tn − τ, yn)− p+(tn − τ, yn) ≥ us(tn − τ + ρ, zn)− p+(tn − τ + ρ, zn)− ε∗

2
≥ −δ − ε∗

2

from (4.3) and (4.7). Moreover,

u(tn − τ, yn) ≤ p−(tn − τ, yn) + δ for all n ≥ n0

from (4.2) and (4.10). Eventually, for all n ≥ n0, there holds

v(tn − τ, yn) = us(tn − τ, yn)− u(tn − τ, yn) + ε∗

= us(tn − τ, yn)− p+(tn − τ, yn) + p+(tn − τ, yn)− u(tn − τ, yn) + ε∗

≥ −δ − ε∗

2
+ p+(tn − τ, yn)− p−(tn − τ, yn)− δ + ε∗

≥ κ− 2δ +
ε∗

2
≥ ε∗

2
> 0

from (1.17) and the inequality 2δ ≤ κ.
One has then reached a contradiction with (4.11). Hence ε∗ = 0 and the proof of

Lemma 4.2 is thereby complete. �

Similarly, using now that f(t, x, ·) is nonincreasing in [p+(t, x)−δ,+∞) and that us(t, x) ≥
p+(t, x)−δ/2 ≥ p+(t, x)−δ provided that (t, x) 6∈ ω−A and s ≥ s0, we shall prove the following:

Lemma 4.3 For all s ≥ s0, one has

us ≥ u in ω+
A := R× Ω \ ω−A .

Proof. The proof uses some of the tools of that of Lemma 4.2, but it is not just identical,

because the time-sections of ω+
A , namely the sets Ω+

t ∪
{
x ∈ Ω−t ; dΩ(x,Γt) < A

}
, are now

nondecreasing with respect to time t in the sense of the inclusion.
Fix s ≥ s0 and define

ε∗ = inf
{
ε > 0; us + ε ≥ u in ω+

A

}
.

This nonnegative real number is well-defined since u is globally bounded, and one has

w := us + ε∗ − u ≥ 0 in ω+
A .

Furthermore, Lemma 4.2 implies that

w ≥ ε∗ in ω−A . (4.12)

In particular, w is nonnegative in R× Ω.
To get the conclusion of Lemma 4.3, it is sufficient to prove that ε∗ = 0. Assume by

contradiction that ε∗ > 0. There exists then a sequence (εn)n∈N of positive real numbers and
a sequence of points (tn, xn)n∈N in ω+

A such that

εn → ε∗ as n→ +∞, and us(tn, xn) + εn < u(tn, xn) for all n ∈ N.
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If the sequence (dΩ(xn,Γtn))n∈N were not bounded, then, up to extraction of a subse-
quence, it would converge to +∞, whence

xn ∈ Ω+
tn ⊂ Ω+

tn+s and dΩ(xn,Γtn+s) ≥ dΩ(xn,Γtn) for large n.

Therefore, dΩ(xn,Γtn+s)→ +∞ and us(tn, xn)− p+(tn + s, xn)→ 0 as n→ +∞. But

us(tn, xn)− p+(tn + s, xn) < u(tn, xn)− εn − p+(tn + s, xn)

≤ p+(tn, xn)− p+(tn + s, xn)− εn
≤ −εn → −ε∗ < 0 as n→ +∞

from Proposition 4.1 and since p+ is nondecreasing in time. This gives a contradiction.
Thus, the sequence (dΩ(xn,Γtn))n∈N is bounded. From (1.7), there exists then a se-

quence (x̃n)n∈N in Ω such that

x̃n ∈ Γtn−τ for all n ∈ N, and sup
{
dΩ(xn, x̃n); n ∈ N

}
< +∞.

Because of (1.4), there exist r > 0 and a sequence (yn)n∈N in Ω such that

yn ∈ Ω−tn−τ , dΩ(x̃n, yn) = r and dΩ(yn,Γtn−τ ) ≥ A for all n ∈ N.

There exists then a sequence (zn)n∈N in Ω such that

zn ∈ Ω−tn−τ and A = dΩ(zn,Γtn−τ ) = dΩ(yn,Γtn−τ )− dΩ(yn, zn) for all n ∈ N. (4.13)

Since dΩ(yn, zn) ≤ dΩ(yn,Γtn−τ ) ≤ dΩ(yn, x̃n) = r and since the sequence (dΩ(xn, x̃n))n∈N is
bounded, one gets finally that the sequence (dΩ(xn, zn))n∈N is bounded.

Choose now ρ > 0 so that

ρ ‖(us − u)t‖L∞(R×Ω) + 2 ρ ‖∇x(u
s − u)‖L∞(R×Ω) < ε∗ (4.14)

and K ∈ N\{0} so that

K ρ ≥ max
(
τ, sup

{
dΩ(xn, zn); n ∈ N

})
. (4.15)

For each n ∈ N, there exists then a sequence of points (Xn,0, Xn,1, . . . , Xn,K) in Ω such that

Xn,0 = xn, Xn,K = zn and dΩ(Xn,i, Xn,i+1) ≤ ρ for each 0 ≤ i ≤ K − 1.

For each n ∈ N and 0 ≤ i ≤ K − 1, set

En,i =
[
tn −

i+ 1

K
τ, tn −

i

K
τ
]
×BΩ(Xn,i, 2 ρ).

Since w(tn, xn) → 0 as n → +∞, it follows from (4.14) and (4.15) that w < ε∗ in En,0
for large n, whence En,0 ⊂ ω+

A from (4.12). Consequently,

us(t, x) + ε∗ > us(t, x) ≥ p+(t, x)− δ in En,0 for large n
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from (4.3). Since f(t, x, ·) is nonincreasing in [p+(t, x) − δ,+∞) for all (t, x) ∈ R × Ω and
since us is a supersolution of (1.2), it follows then as in the proof of Lemma 4.2 that the
nonnegative function w satisfies inequations of the type

wt ≥ ∇x(A(x)∇xw) + q(x) · ∇xw + b(t, x)w in En,0

for n large enough, where the sequence (‖b‖L∞(En,0))n∈N is bounded. Remember also that

µ(x) · ∇xw(t, x) = 0 for all (t, x) ∈ R × ∂Ω, and that ∇xw is bounded in R × Ω. Since
w(tn, Xn,0) = w(tn, xn)→ 0 as n→ +∞, one concludes from the linear parabolic estimates
that

w
(
tn −

τ

K
,Xn,1

)
→ 0 as n→ +∞.

An immediate induction yields w(tn− iτ/K,Xn,i)→ 0 as n→ +∞ for each i = 1, . . . , K.
In particular, for i = K,

w(tn − τ, zn)→ 0 as n→ +∞.

But zn ∈ Ω−tn−τ and dΩ(zn,Γtn−τ ) = A for all n ∈ N. As a consequence, for all n ∈ N,
(tn − τ, zn) ∈ ω−A and w(tn − τ, zn) ≥ ε∗ from (4.12).

One has then reached a contradiction, which means that ε∗ = 0. That completes the
proof of Lemma 4.3. �

End of the proof of Theorem 1.10. It follows from Lemmata 4.2 and 4.3 that

us ≥ u in R× Ω for all s ≥ s0.

Now call
s∗ = inf {s > 0; uσ ≥ u in R× Ω for all σ ≥ s}.

One has 0 ≤ s∗ ≤ s0 and one shall prove that s∗ = 0. Assume that s∗ > 0. Since
us
∗ ≥ u in R×Ω, two cases may occur: either inf

{
us
∗
(t, x)− u(t, x); dΩ(x,Γt) ≤ A

}
> 0 or

inf
{
us
∗
(t, x)− u(t, x); dΩ(x,Γt) ≤ A

}
= 0.

Case 1: assume that

inf
{
us
∗
(t, x)− u(t, x); dΩ(x,Γt) ≤ A

}
> 0.

Since ut is globally bounded, there exists η0 ∈ (0, s∗) such that

∀ η ∈ [0, η0], ∀ (t, x) ∈ R× Ω,
(
d(x,Γt) ≤ A

)
=⇒

(
us
∗−η(t, x) ≥ u(t, x)

)
. (4.16)

For each η ∈ [0, η0], one then has us
∗−η(t, x) ≥ u(t, x) for all (t, x) ∈ R×Ω such that x ∈ Ω−t

and dΩ(x,Γt) = A, while u(t, x) ≤ p−(t, x) + δ if x ∈ Ω−t and dΩ(x,Γt) ≥ A (i.e. (t, x) ∈ ω−A)
from (4.2). Therefore, the same arguments as in Lemma 4.2 imply that

∀ η ∈ [0, η0], us
∗−η ≥ u in ω−A . (4.17)

On the other hand,(
x ∈ Ω+

t and dΩ(x,Γt) ≥ A
)

=⇒
(
us
∗
(t, x) ≥ u(t, x) ≥ p+(t, x)− δ

2

)
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from (4.2). Hence, even if it means decreasing η0 > 0, one can assume without loss of
generality that

∀η ∈ [0, η0],
(
x ∈ Ω+

t and dΩ(x,Γt) ≥ A
)

=⇒
(
us
∗−η(t, x) ≥ p+(t, x)− δ

)
.

Notice that this is the place where we use the choice of δ/2 (< δ) in the second property
of (4.2). Furthermore, remember from (4.16) and (4.17) that, for all η ∈ [0, η0], us

∗−η(t, x) ≥
u(t, x) for all (t, x) ∈ R × Ω such that x ∈ Ω−t , or x ∈ Ω+

t and dΩ(x,Γt) ≤ A. As in
Lemma 4.3, one then gets that

∀η ∈ [0, η0],
(
x ∈ Ω+

t and dΩ(x,Γt) ≥ A
)

=⇒
(
us
∗−η(t, x) ≥ u(t, x)

)
.

One concludes that us
∗−η ≥ u in R×Ω for all η ∈ [0, η0]. That contradicts the minimality

of s∗ and case 1 is then ruled out.
Case 2: assume that

inf
{
us
∗
(t, x)− u(t, x); dΩ(x,Γt) ≤ A

}
= 0.

There exists then a sequence (tn, xn)n∈N in R× Ω such that

dΩ(xn,Γtn) ≤ A and us
∗
(tn, xn)− u(tn, xn)→ 0 as n→ +∞.

Since us
∗

is a supersolution of (1.2) in R×Ω (as already noticed in the proof of Lemma 4.2)
and since us

∗ ≥ u in R× Ω, it follows from the linear parabolic estimates that

u(tn, xn)− u(tn − s∗, xn) = us
∗
(tn − s∗, xn)− u(tn − s∗, xn)→ 0 as n→ +∞.

By immediate induction, one has that

u(tn, xn)− u(tn − ks∗, xn)→ 0 as n→ +∞ (4.18)

for each k ∈ N.
Fix any ε > 0. Let Bε > 0 be such that

∀ (t, x) ∈ R× Ω,
(
x ∈ Ω−t and dΩ(x,Γt) ≥ Bε

)
=⇒

(
u(t, x) ≤ p−(t, x) + ε

)
.

On the other hand, since p+ invades p− and since the sequence (dΩ(xn,Γtn))n∈N is bounded,
there exists m ∈ N such that

xn ∈ Ω−tn−ms∗ and dΩ(xn,Γtn−ms∗) ≥ Bε for all n ∈ N.

Hence,
u(tn −ms∗, xn) ≤ p−(tn −ms∗, xn) + ε ≤ p−(tn, xn) + ε for all n ∈ N

since p− is nondecreasing in time. Together with (4.18) applied to k = m, one concludes
that

lim sup
n→+∞

(
u(tn, xn)− p−(tn, xn)

)
≤ ε.

34



But u ≥ p− from Proposition 4.1, and ε > 0 was arbitrary. One obtains that

u(tn, xn)− p−(tn, xn)→ 0 as n→ +∞. (4.19)

Let now B > 0 be such that

∀ (t, x) ∈ R× Ω,
(
x ∈ Ω+

t and dΩ(x,Γt) ≥ B
)

=⇒
(
u(t, x) ≥ p+(t, x)− κ

2

)
,

where κ > 0 has been defined in (1.17). From assumption (1.7), and since the sequence
(dΩ(xn,Γtn))n∈N is bounded, there exists a sequence (x̃n)n∈N in Ω such that

x̃n ∈ Γtn−τ for all n ∈ N, and sup
{
dΩ(xn, x̃n); n ∈ N

}
< +∞.

Because of (1.4), there exist r > 0 and a sequence (yn)n∈N in Ω such that

yn ∈ Ω+
tn−τ , dΩ(yn, x̃n) = r and dΩ(yn,Γtn−τ ) ≥ B for all n ∈ N.

Thus,

u(tn − τ, yn) ≥ p+(tn − τ, yn)− κ

2
for all n ∈ N.

Remember now that both u ≥ p− are two bounded solutions of (1.2) and that f(t, x, ξ)
is locally Lipschitz-continuous in ξ, uniformly with respect to (t, x) ∈ R × Ω. Notice also
that the sequence (dΩ(xn, yn))n∈N is bounded. Since u(tn, xn)− p−(tn, xn)→ 0 as n→ +∞
because of (4.19), one concludes that

u(tn − τ, yn)− p−(tn − τ, yn)→ 0 as n→ +∞.

But

u(tn − τ, yn)− p−(tn − τ, yn) ≥ p+(tn − τ, yn)− κ

2
− p−(tn − τ, yn) ≥ κ

2
> 0

owing to the definition of κ. One has then reached a contradiction and case 2 is then ruled
out too.

As a consequence, s∗ = 0 and

us ≥ u in R× Ω for all s ≥ 0.

Let us now prove that the inequality is strict if s > 0. Choose any s > 0 and assume that

us(t0, x0) = u(t0, x0) for some (t0, x0) ∈ R× Ω.

Since us (≥ u) is a supersolution of (1.2), one gets that

us(t, x) = u(t, x) for all t ≤ t0 and x ∈ Ω

from the strong parabolic maximum principle and Hopf lemma. Fix any t ≤ t0 and x ∈ Ω.
For all k ∈ N, one then has

0 ≤ u(t, x)− p−(t, x) = u(t− ks)− p−(t, x) ≤ u(t− ks, x)− p−(t− ks, x)

because p− is nondecreasing in time. But the right-hand side converges to 0 as k → +∞,
because s > 0 and because of Definition 1.4 (here, p+ invades p−). It follows that u(t, x) =
p−(t, x) for all t ≤ t0 and x ∈ Ω, which is impossible because of Proposition 4.1.

As a conclusion, us(t, x) > u(t, x) for all (t, x) ∈ R × Ω and s > 0. That completes the
proof of Theorem 1.10. �
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5 Uniqueness of the mean speed, comparison of almost

planar fronts and reduction to pulsating fronts

In this section, we prove, under some appropriate assumptions, the uniqueness of the speed
among all almost-planar invasion fronts, and that the transition fronts reduce in some stan-
dard situations to the usual planar or pulsating fronts. Let us first process with the

Proof of Theorem 1.11. Notice first that c and c̃ are (strictly) positive. Indeed,

dΩ(Γt,Γs), dΩ(Γ̃t, Γ̃s)→ +∞ as |t− s| → +∞,

and the quantities dΩ(Γt,Γs)− c |t− s| and dΩ(Γ̃t, Γ̃s)− c̃ |t− s| are assumed to be bounded
uniformly with respect to (t, s) ∈ R2.

One shall prove that c = c̃ and that ũ is above u up to shift in time. Assume that c̃ < c
(the other case can be treated similarly by permuting the roles of u and ũ). Define

v(t, x) = ũ
(c
c̃
t, x
)

and notice that

vt(t, x) =
c

c̃
ũt

(c
c̃
t, x
)
≥ ũt

(c
c̃
t, x
)

= ∇x · (A(x)∇xv(t, x)) + q(x) · ∇xv(t, x) + f(x, v(t, x))

because c/c̃ ≥ 1 and ũt ≥ 0 from Theorem 1.10. We also use the fact that both A, q and f
are independent of t. Furthermore, µ(x) ·∇xv(t, x) = 0 on R×∂Ω. Therefore, the function v,
as well as all its time-shifts, is a supersolution for (1.2). It also follows from Definition 1.1
that

v(t, x)− p±(x)→ 0 uniformly as x ∈ Ω̃±ct/c̃ and dΩ(x,Γct/c̃)→ +∞, (5.1)

where
Ω̃±ct/c̃ = {x ∈ Ω, ±(x · e− ξ̃ct/c̃) < 0} and Γ̃±ct/c̃ = {x ∈ Ω, x · e = ξ̃ct/c̃}.

Remember that the quantities

dΩ(Γ̃ct/c̃, Γ̃cs/c̃)− c̃
∣∣∣c
c̃
t− c

c̃
s
∣∣∣ = dΩ(Γ̃ct/c̃, Γ̃cs/c̃)− c|t− s|

are bounded independently of (t, s) ∈ R2. As a consequence, the map

t 7→ dΩ(Γt,Γ0)− dΩ(Γ̃ct/c̃, Γ̃0)

is bounded in R. Furthermore, both u and ũ are almost planar invasion fronts (p+ invades p−)

in the same direction e, whence the maps t 7→ ξt and t 7→ ξ̃t are nondecreasing. Eventually,
one gets that

sup
{
dΩ(Γ̃ct/c̃,Γt); t ∈ R

}
< +∞ and sup

{
|ξ̃ct/c̃ − ξt|; t ∈ R

}
< +∞. (5.2)
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On the other hand, Definition 1.1 applied to u implies that there exists A > 0 such that

∀ (t, x) ∈ R× Ω,


(
x ∈ Ω−t and dΩ(x,Γt) ≥ A

)
=⇒

(
u(t, x) ≤ p−(x) + δ

)
(
x ∈ Ω+

t and dΩ(x,Γt) ≥ A
)

=⇒
(
u(t, x) ≥ p+(x)− δ

2

)
.

(5.3)

Since u and ũ are almost planar in the same direction e and since ũ is an invasion of p−

by p+, properties (5.1) and (5.2) yield the existence of s0 > 0 such that, for all s ≥ s0 and
for all (t, x) ∈ R× Ω,(

x ∈ Ω+
t

)
or
(
x ∈ Ω−t and dΩ(x,Γt) ≤ A

)
=⇒

(
vs(t, x) = v(t+ s, x) ≥ p+(x)− δ

)
.

Choose any s ≥ s0. Since p− ≤ u, v ≤ p+ (from Proposition 4.1) and

0 < 2δ ≤ κ := inf
{
p+(t, x)− p−(t, x); (t, x) ∈ R× Ω

}
(even if it means decreasing δ without loss of generality), the arguments used in Lemma 4.2
imply that

u(t, x) ≤ vs(t, x) in ω−A , i.e. for all x ∈ Ω−t such that dΩ(x,Γt) ≥ A.

Therefore, the arguments used in the proof of Lemma 4.3 similarly imply that

u(t, x) ≤ vs(t, x) for all (t, x) ∈ R× Ω \ ω−A .

Thus,
u ≤ vs in R× Ω for all s ≥ s0.

Call now
s∗ = inf {s ∈ R; u ≤ vs in R× Ω}.

One has s∗ ≤ s0 and s∗ > −∞ because p−(x) < u(t, x) < p+(x) for all (t, x) ∈ R× Ω (from
Theorem 1.10) and

vs(0, x0) = ũ
(c
c̃
s, x0

)
→ p−(x0) as s→ −∞

for all x0 ∈ Ω (see Definition 1.4). There holds

u ≤ vs
∗

in R× Ω.

In particular,(
x ∈ Ω+

t and dΩ(x,Γt) ≥ A
)

=⇒
(
vs
∗
(t, x) ≥ u(t, x) ≥ p+(x)− δ

2

)
. (5.4)

Assume now that

inf
{
vs
∗
(t, x)− u(t, x); dΩ(x,Γt) ≤ A

}
> 0. (5.5)
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The same property then holds when s∗ is replaced with s∗ − η for any η ∈ [0, η0] and η0 > 0
small enough, since vt (like ũt) is globally bounded. From (5.4), one can assume that η0 > 0
is small enough so that(

x ∈ Ω+
t and dΩ(x,Γt) ≥ A

)
=⇒

(
vs
∗−η(t, x) ≥ p+(x)− δ

)
for all η ∈ [0, η0]. The first property of (5.3) implies, as in Lemma 4.2, that

vs
∗−η(t, x) ≥ u(t, x) for all η ∈ [0, η0] and (t, x) ∈ R× Ω with x ∈ Ω−t and dΩ(x,Γt) ≥ A.

The above inequality then holds for all (t, x) ∈ R × Ω such that x ∈ Ω−t , or x ∈ Ω+
t and

dΩ(x,Γt) ≤ A. As in Lemma 4.3, one then gets that

vs
∗−η(t, x) ≥ u(t, x) for all η ∈ [0, η0] and (t, x) ∈ R× Ω with x ∈ Ω+

t and dΩ(x,Γt) ≥ A.

Eventually,
vs
∗−η ≥ u in R× Ω

for all η ∈ [0, η0]. That contradicts the minimality of s∗ and assumption (5.5) is false.
Therefore,

inf
{
vs
∗
(t, x)− u(t, x); dΩ(x,Γt) ≤ A

}
= 0.

Then, there exists a sequence (tn, xn) ∈ R× Ω such that dΩ(xn,Γtn) ≤ A for all n ∈ N and

vs
∗
(tn, xn)− u(tn, xn)→ 0 as n→ +∞.

Because of (1.7), there exists a sequence (x̃n)n∈N in Ω such that

x̃n ∈ Γtn−τ for all n ∈ N, and sup
{
dΩ(xn, x̃n); n ∈ N

}
< +∞.

Since vs
∗

is a supersolution of (1.2) and vs
∗ ≥ u in R×Ω, it follows from the linear parabolic

estimates that

max
{
vs
∗
(t, x)− u(t, x); tn − τ − 1 ≤ t ≤ tn − τ, dΩ(x, x̃n) ≤ 1

}
→ 0 as n→ +∞

and, since the functions vs
∗
t , vs

∗
xi

, vs
∗
xixj

, ut, uxi and uxixj are globally Hölder continuous

in R× Ω for all 1 ≤ i, j ≤ N , one gets that∣∣vs∗t (tn − τ, x̃n)− ut(tn − τ, x̃n)
∣∣+
∣∣vs∗xi (tn − τ, x̃n)− uxi(tn − τ, x̃n)

∣∣
+
∣∣vs∗xixj(tn − τ, x̃n)− uxixj(tn − τ, x̃n)

∣∣ → 0 as n→ +∞

for all 1 ≤ i, j ≤ N . But
c̃

c
vs
∗

t = ∇x · (A(x)∇xv
s∗) + q(x) · ∇xv

s∗ + f(x, vs
∗
),

ut = ∇x · (A(x)∇xu) + q(x) · ∇xu+ f(x, u).
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Therefore, (c̃/c− 1)ut(tn − τ, x̃n)→ 0 as n→ +∞, whence

ut(tn − τ, x̃n)→ 0 as n→ +∞,

because 0 < c̃ < c.
On the other hand, there exists A′ > 0 such that(

x ∈ Ω+
t and dΩ(x,Γt) ≥ A′

)
=⇒

(
u(t, x) ≥ p+(x)− κ

3

)
,

where κ was defined in (1.17). From (1.7), there exists a sequence (yn)n∈N in Ω such that

yn ∈ Γtn−2τ for all n ∈ N, and sup
{
dΩ(x̃n, yn); n ∈ N

}
< +∞.

Because of (1.4), there exist r > 0 and a sequence (zn)n∈N in Ω such that

zn ∈ Ω+
tn−2τ , dΩ(zn, yn) = r and dΩ(zn,Γtn−2τ ) ≥ A′

for all n ∈ N. Thus,

u(tn − 2τ, zn) ≥ p+(zn)− κ

3
for all n ∈ N. (5.6)

Since the sequence (dΩ(zn, x̃n))n∈N is bounded, since ut(tn − τ, x̃n) → 0 as n → +∞ and
since the globally C1(R× Ω) nonnegative function ut satisfies

(ut)t = ∇x · (A(x)∇xut) + q(x) · ∇xut + ft(t, x, u)ut in R× Ω

with ‖ft(·, ·, u(·, ·))‖L∞(R×Ω) < +∞ and µ(x) · ∇xut = 0 on R × ∂Ω, the linear parabolic
estimates imply that

ut(tn − 2τ, zn)→ 0 as n→ +∞.

Let now ε be any positive real number. Since the function ut is globally C1(R×Ω), there
exist σ > 0 and n0 ∈ N such that

0 ≤ max
{
ut(t, zn); t ∈ [tn − 2τ − σ, tn − 2τ ]

}
≤ ε for all n ≥ n0.

Remember that yn ∈ Γtn−2τ and dΩ(zn,Γtn−2τ ) ≤ dΩ(zn, yn) = r. Since u is an invasion front
of p− by p+, there exists σ′ > 0 (σ′ is independent of n and ε) such that

u(tn − 2τ − σ′, zn) ≤ p−(zn) +
κ

3
for all n ∈ N. (5.7)

Since ut(tn − 2τ, zn)→ 0 as n→ +∞ and ut ≥ 0 in R× Ω, it follows that, if σ′ ≥ σ, then

0 ≤ max
{
ut(t, zn); t ∈ [tn − 2τ − σ′, tn − 2τ − σ]

}
→ 0 as n→ +∞,

and then is less than ε for n ≥ n1 (for some n1 ∈ N). Therefore, in both cases σ′ ≥ σ or
σ′ ≤ σ, one has

0 ≤ max
{
ut(t, zn); t ∈ [tn − 2τ − σ′, tn − 2τ ]

}
≤ ε for all n ≥ max(n0, n1).
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Hence
u(tn − 2τ − σ′, zn) ≤ u(tn − 2τ, zn) ≤ u(tn − 2τ − σ′, zn) + σ′ε

for n large enough, and then

u(tn − 2τ, zn)− u(tn − 2τ − σ′, zn)→ 0 as n→ +∞

because ε > 0 was arbitrary and σ′ was independent of ε. But

u(tn − 2τ, zn)− u(tn − 2τ − σ′, zn) ≥ p+(zn)− κ

3
− p−(zn)− κ

3
≥ κ

3
> 0 for all n ∈ N

because of (5.6), (5.7) and of the definition of κ in (1.17). One has then reached a contra-
diction.

As a consequence,
c̃ ≥ c.

The other inequality follows by reversing the roles of u and ũ. Thus, c = c̃.
The above arguments also imply that, for u and ũ as in Theorem 1.11, there exists (the

smallest) T ∈ R such that ũ(t + T, x) ≥ u(t, x) for all (t, x) ∈ R× Ω. The strong parabolic
maximum principle and Hopf lemma imply that either the inequality is strict everywhere, or
the two functions u and ũT are identically equal. That completes the proof of Theorem 1.11.�

Let us now turn to the proof of the reduction of almost planar invasion fronts to pulsating
fronts in periodic media.

Proof of Theorem 1.13. To prove part (i), fix k ∈ L1Z× · · · × LNZ. By periodicity, the
function

ũ(t, x) = u(t, x+ k)

is a solution of (1.2). Furthermore, ũ, like u, satisfies all assumptions of Theorem 1.11. Thus,
there exists (the smallest) T ∈ R such that

ũ(t+ T, x) = u(t+ T, x+ k) ≥ u(t, x) for all (t, x) ∈ R× Ω (5.8)

and there exists a sequence of points (tn, xn)n∈N in R× Ω such that

(dΩ(xn,Γtn))n∈N is bounded and u(tn + T, xn + k)− u(tn, xn)→ 0 as n→ +∞. (5.9)

It shall then follow that
lim inf
n→+∞

|u(tn, xn)− p±(xn)| > 0. (5.10)

Indeed, assume for instance that, up to extraction of some subsequence, u(tn, xn)−p−(xn)→
0 as n → +∞ (the case u(tn, xn) − p+(xn) → 0 as n → +∞ could be handled similarly).
Then

max
{
u(tn − τ, y)− p−(y); dΩ(y, xn) ≤ C

}
→ 0 as n→ +∞

for any C ≥ 0, from the linear parabolic estimates applied to the nonnegative function u−p−
(remember that τ > 0 is given in (1.7)). But there is a sequence (yn)n∈N in Ω such that

(dΩ(yn, xn))n∈N is bounded , yn ∈ Ω+
tn−τ and u(tn − τ, yn) ≥ p+(yn)− κ

2
for all n ∈ N
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(one uses the facts that the sequence (dΩ(xn,Γtn))n∈N is bounded and that (1.4) is automati-
cally satisfied by periodicity of Ω). One then gets a contradiction as n→ +∞. Thus, (5.10)
holds.

Write
xn = x′n + x′′n

for all n ∈ N, where x′n ∈ L1Z× · · · × LNZ and x′′n ∈ [0, L1]× · · · × [0, LN ] ∩ Ω. Set

un(t, x) = u(t+ tn, x+ x′n)

for all n ∈ N and (t, x) ∈ R× Ω. The functions un satisfy the same equation (1.2) with the
same boundary conditions (1.15) as u, since the domain Ω is periodic and the coefficients
A, q, f and µ are periodic and independent of t. Up to extraction of a subsequence one
can assume that x′′n → x∞ ∈ Ω as n → +∞ and that, from standard parabolic estimates,
un(t, x)→ u∞(t, x) locally uniformly in R×Ω, where u∞ solves (1.2) and (1.15). Furthermore,

u∞(t+ T, x+ k) ≥ u∞(t, x) for all (t, x) ∈ R× Ω

from (5.8), and
u∞(T, x∞ + k) = u∞(0, x∞)

from (5.9). It follows then from the strong maximum principle, Hopf lemma and the unique-
ness of the solution of the Cauchy problem for (1.2) and (1.15), that

u∞(t+ T, x+ k) = u∞(t, x) for all (t, x) ∈ R× Ω. (5.11)

Furthermore,
u∞(0, x∞) 6= p±(x∞) (5.12)

from (5.10).
On the other hand, as already noticed in the proof of Theorem 1.11, the global mean

speed c is positive. Since the quantities dΩ(Γt,Γs) − c|t − s| are bounded independently of
(t, s) ∈ R2, since

Ω±t = {x ∈ Ω, ±(x · e− ξt) < 0}

and since t 7→ ξt is nondecreasing (because p+ invades p−), it follows from the definition of
γ = γ(e) in (1.21) that there exists M ≥ 0 such that∣∣ξt − c γ−1 t

∣∣ ≤M for all t ∈ R. (5.13)

But, from Definition 1.1, since the geodesic distance is not smaller than the Euclidean
distance, one has that

un(t, x)− p±(x) = u(t+ tn, x+ x′n)− p±(x+ x′n)→ 0 as (x+ x′n) · e− ξt+tn → ∓∞,

uniformly with respect to n and (t, x). Write

(x+ x′n) · e− ξt+tn = x · e− ξt + xn · e− ξtn − x′′n · e+ ξt + ξtn − ξt+tn .
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The sequence (xn · e − ξtn)n∈N is bounded because (dΩ(xn,Γtn))n∈N is bounded. The quan-
tities ξt + ξtn − ξt+tn are bounded independently of t and n because of (5.13). Lastly, the
sequence (x′′n · e)n∈N is also bounded. Finally, one gets that

u∞(t, x)− p±(x)→ 0 as x · e− ξt → ∓∞

uniformly with respect to (t, x).
Assume now, by contradiction, that T > γ(k · e)/c (one shall actually prove that T =

γ(k · e)/c). Since

(x∞ +mk) · e− ξmT → ∓∞ as m ∈ Z and m→ ±∞

because of our assumption and because of (5.13), it follows that

u∞(mT, x∞ +mk)− p±(x∞ +mk)→ 0 as m ∈ Z and m→ ±∞.

But p±(x∞ + mk) = p±(x∞) for all m ∈ Z by periodicity of p±, and u∞(mT, x∞ + mk) =
u∞(0, x∞) for all m ∈ Z because of (5.11). One finally gets a contradiction with (5.12).

Therefore, the inequality T > γ(k · e)/c was impossible, whence T ≤ γ(k · e)/c and

u

(
t+

γ k · e
c

, x+ k

)
≥ u(t, x) for all (t, x) ∈ R× Ω.

Similarly, by fixing the function u(t, x+ k) and sliding u(t, x) with respect to t, one can
prove that

u

(
t− γ k · e

c
, x

)
≥ u(t, x+ k) for all (t, x) ∈ R× Ω.

As a consequence,

u

(
t+

γ k · e
c

, x+ k

)
= u(t, x) for all (t, x) ∈ R× Ω, (5.14)

namely u is a pulsating traveling front in the sense of (1.20). Its global mean speed is equal
to c γ−1 in the sense of (1.20), but it is equal to c in the more intrinsic sense of Definition 1.6.

Let now u and v be two fronts satisfying all assumptions of part (i) of Theorem 1.13.
One shall prove that u and v are equal up to shift in time. From Theorem 1.11, there exists
(the smallest) T ∈ R such that

v(t+ T, x) ≥ u(t, x) for all (t, x) ∈ R× Ω

and there exists a sequence (tn, xn)n∈N in R× Ω such that

(dΩ(xn,Γtn))n∈N is bounded, and v(tn + T, xn)− u(tn, xn)→ 0 as n→ +∞.

Since both u and v satisfy (5.14) for all k ∈ L1Z×· · ·×LNZ, one can assume without loss of
generality that the sequence (xn)n∈N is bounded. But since the sequence (dΩ(xn,Γtn))n∈N is
itself bounded and since u is an invasion front, the sequence (tn)n∈N is then bounded as well.
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Up to extraction of some subsequence, one can then assume that (tn, xn)→ (t, x) ∈ R× Ω,
whence

v(t+ T, x) = u(t, x).

The strong parabolic maximum principle and Hopf lemma then yield

v(t+ T, x) = u(t, x) for all (t, x) ∈ R× Ω,

which completes the proof of part (i) of Theorem 1.13.

To prove part (ii), assume, without loss of generality, that e = e1 = (1, 0, . . . , 0). Fix any
σ ∈ R\{0}. The data Ω, A, q, f , µ and p± are then periodic with respect to the positive
vector (|σ|, L2, . . . , LN). Part (i) applied to k = (σ, 0, . . . , 0) then implies that

u
(
t+

γ σ

c
, x
)

= u(t, x1 − σ, x2, . . . , xN)

for all (t, x) ∈ R× Ω, where γ = γ(e) = 1 since Ω is invariant in the direction e. Since this
property holds for any σ ∈ R\{0} (and also for σ = 0 obviously), it follows that

u(t, x) = φ(x1 − ct, x′) for all (t, x) ∈ R× Ω,

where x′ = (x2, . . . , xN) and the function φ : Ω→ R is defined by

φ(ζ, x′) = u

(
−ζ
c
, 0, x′

)
for all (ζ, x′) ∈ Ω.

The function φ is then decreasing in ζ since u is increasing in t and c > 0.

Lastly, part (iii) is a consequence of part (ii) and of Theorem 1.15. Namely, part (ii)
implies that u depends only on x · e− ct and on the variables x′ which are orthogonal to e,
and Theorem 1.15 (its proof will be done in Section 6) implies that u does not depend on x′.6

Therefore,
u(t, x) = φ(x · e− ct) for all (t, x) ∈ R× RN ,

where the function φ : R → R is defined by φ(ζ) = u(−ζ/c, 0, . . . , 0) for all ζ ∈ R, is
decreasing in R and satisfies φ(∓∞) = p±. The proof of Theorem 1.13 is now complete. �

6 The case of media which are invariant or monotone

in the direction of propagation

In this section, we assume that the domain is invariant in a direction e and we prove that,
under appropriate conditions on the coefficients of (1.2), the almost planar fronts, which may
not be invasions, do not depend on the transverse variables or have a constant profile in the

6Notice that, in this part (iii), one can assume without loss of generality that ξt = c t for all t ∈ R, because
of Definition 1.1.
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direction e. We start with the

Proof of Theorem 1.15. Up to rotation of the frame, one can assume without loss of
generality that e = e1 = (1, 0, . . . , 0). We shall then prove that u is decreasing in x1 and
that it does not depend on the variable x′ = (x2, . . . , xN).

First, notice that the same arguments as in Proposition 4.1 yield the inequalities (1.23).
The proof is even simpler here due to the facts that Γt = {x1 = ξt} and that assumption (1.22)
is made.

Actually, because of (1.22) and Definition 1.1, one can assume without loss of generality
in the sequel that the map t 7→ ξt is uniformly continuous in R.

Fix any vector θ ∈ RN−1 and call

v(t, x) = u(t, x1, x
′ + θ).

Since the coefficients of (1.2) are assumed to be independent of x′, the function v is a solution
of the same equation (1.2) as u, with the same choice of sets (Ω±t )t∈R and (Γt)t∈R. Let A ≥ 0
be such that

∀ (t, x) ∈ R× RN ,


(
x1 − ξt ≥ A

)
=⇒

(
u(t, x) ≤ p−(t, x1) + δ

)
(
x1 − ξt ≤ −A

)
=⇒

(
u(t, x) ≥ p+(t, x1)− δ

2

)
.

(6.1)

For all ξ ≥ 2A and x1 − ξt ≤ A, one has

vξ(t, x) := v(t, x1 − ξ, x′) ≥ p+(t, x1 − ξ)−
δ

2
≥ p+(t, x1)− δ ≥ p−(t, x1) + δ (6.2)

because p+ is nonincreasing in x1 and one can assume, without loss of generality, that
0 < 2δ ≤ κ, under the notation used in (1.16) and (1.17).

Lemma 6.1 For all ξ ≥ 2A, there holds

vξ(t, x) ≥ u(t, x) for all (t, x) ∈ R× RN such that x1 − ξt ≥ A (6.3)

and
vξ(t, x) ≥ u(t, x) for all (t, x) ∈ R× RN such that x1 − ξt ≤ A. (6.4)

Proof. Fix any ξ ≥ 2A. We will just prove property (6.3), the proof of the second one being
similar. Since u is bounded, the nonnegative real number

ε∗ = inf
{
ε > 0; vξ(t, x) ≥ u(t, x)− ε for all (t, x) ∈ R× RN with x1 − ξt ≥ A

}
is well-defined. Observe that

vξ(t, x) ≥ u(t, x)− ε∗ for all (t, x) ∈ R× RN with x1 − ξt ≥ A. (6.5)

Assume by contradiction that ε∗ > 0. Then there exist a sequence (εn)n∈N of positive real
numbers and a sequence (tn, xn)n∈N = (tn, x1,n, x

′
n)n∈N in R× RN such that

εn → ε∗ as n→ +∞, and x1,n − ξtn ≥ A, vξ(tn, xn) < u(tn, xn)− εn for all n ∈ N. (6.6)
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Since vξ(t, x) ≥ u(t, x) when x1 − ξt = A from (6.1) and (6.2), and since u is globally
C1(R× RN), there exists κ > 0 such that

vξ(t, x) ≥ u(t, x)− ε∗

2
for all (t, x) ∈ R× RN such that |x1 − ξt − A| < κ. (6.7)

In particular, there holds
x1,n − ξtn ≥ A+ κ for large n.

Furthermore, we claim that the sequence (x1,n − ξtn)n∈N is bounded. Otherwise, up to
extraction of a subsequence, it would converge to +∞. Thus,

vξ(tn, xn)− p−(tn, x1,n − ξ) = u(tn, x1,n − ξ, x′n + θ)− p−(tn, x1,n − ξ)→ 0 as n→ +∞

and
u(tn, xn)− p−(tn, x1,n)→ 0 as n→ +∞.

Since ξ ≥ 0 and p−(t, x1) is nonincreasing with respect to x1, it would then follow that

lim inf
n→+∞

vξ(tn, xn)− u(tn, xn) ≥ 0,

which contradicts (6.6). Thus, the sequence (x1,n − ξtn)n∈N is bounded.
Remember now that, because of (1.22) and Definition 1.1, the function t 7→ ξt can be

assumed to be uniformly continuous. In particular, the sequence (ξtn−ξtn−1)n∈N is bounded,
whence the sequence (x1,n − ξtn−1)n∈N is bounded as well. Moreover, there exists a real
number ρ such that

0 < ρ ≤ κ

4
and |ξs − ξs′ | ≤

κ

2
for all (s, s′) ∈ R2 such that |s− s′| ≤ ρ. (6.8)

Choose now K ∈ N\{0} such that

K ρ ≥ max
(

1, sup
{
|x1,n − ξtn−1 − A|; n ∈ N

})
. (6.9)

For each n ∈ N and i = 0, . . . , K, set

x̃n,i = x1,n +
i

K
(ξtn−1 + A− x1,n)

and

En,i =
[
tn −

i+ 1

K
, tn −

i

K

]
× [x̃n,i − 2 ρ, x̃n,i + 2 ρ]×

{
x′ ∈ RN−1; |x′ − x′n] ≤ 1}.

Observe that |x̃n,i+1 − x̃n,i| ≤ ρ for all 0 ≤ i ≤ K − 1, from (6.9). Furthermore, since
x1,n − ξtn > A+ κ for large n, say for n ≥ n0, it follows from (6.8) and (6.9) that

x̃n,0 − 2 ρ = x1,n − 2 ρ ≥ ξt + A for all tn −
1

K
≤ t ≤ tn
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and for all n ≥ n0. Consequently,

En,0 ⊂
{

(t, x) ∈ R× RN ; x1 − ξt ≥ A} for all n ≥ n0. (6.10)

Thus,
w := vξ − (u− ε∗) ≥ 0 in En,0

and
u(t, x)− ε∗ < u(t, x) ≤ p−(t, x1) + δ in En,0

for all n ≥ n0 from (6.1) and (6.5). Since f(t, x1, ·) is nonincreasing in (−∞, p−(t, x1) + δ], it
follows that u− ε∗ is a subsolution of (1.2) in En,0 for all n ≥ n0, while vξ is a supersolution
of (1.2) in R×RN , because A and q only depend on t, and f(t, x1, s) is nonincreasing in x1.

Finally, for all n ≥ n0, the globally C1(R × RN) function w is nonnegative in En,0, it
satisfies inequations of the type

wt ≥ ∇x · (A(t)∇xw) + q(t) · ∇xw + b(t, x)w in En,0

where the sequence (‖b‖L∞(En,0))n∈N is bounded. Since w(tn, x̃n,0, x
′
n) = w(tn, xn) → 0 as

n→ +∞, one finally concludes from the linear parabolic estimates that

w
(
tn −

1

K
, x̃n,1, x

′
n

)
→ 0 as n→ +∞. (6.11)

But since
x̃n,1 − ξtn−1/K ≥ x̃n,0 − ρ− ξtn−1/K ≥ A

from (6.10) for all n ≥ n0, it follows from (6.7) and (6.11) that x̃n,1 − ξtn−1/K ≥ A+ κ for n
large enough. By repeating the arguments inductively, one concludes that

x̃n,i − ξtn−i/K ≥ A+ κ for all i = 1, . . . , K and for n large enough.

One gets a contradiction at i = K, since x̃n,K = ξtn−1 + A.
As a conclusion, the assumption ε∗ > 0 was false. Hence, the claim (6.3) is proved, and,

as already emphasized, the proof of (6.4) follows the same scheme. �

End of the proof of Theorem 1.15. Lemma 6.1 yields

vξ ≥ u in R× RN for all ξ ≥ 2A.

Now define
ξ∗ = inf

{
ξ > 0, vξ

′ ≥ u in R× RN for all ξ′ ≥ ξ
}
.

One has 0 ≤ ξ∗ ≤ 2A, and vξ
∗
(t, x) ≥ u(t, x) for all (t, x) ∈ R × RN . Assume now that

ξ∗ > 0. Two cases may occur:
Case 1: assume here that

inf
{
vξ
∗
(t, x)− u(t, x); |x1 − ξt| ≤ A

}
> 0.
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From the boundedness of ux1 , there exists then η0 ∈ (0, ξ∗) such that

vξ
∗−η(t, x) ≥ u(t, x) for all η ∈ [0, η0] and |x1 − ξt| ≤ A. (6.12)

Since

vξ
∗
(t, x) ≥ u(t, x) ≥ p+(t, x1)− δ

2
for all x1 − ξt ≤ −A,

one can assume that η0 > 0 is small enough so that

vξ
∗−η(t, x) ≥ p+(t, x1)− δ for all x1 − ξt ≤ −A.

Applying again the arguments used in Lemma 6.1, one then concludes that, for all η ∈ [0, η0],
there holds vξ

∗−η(t, x) ≥ u(t, x) for all (t, x) ∈ R×RN such that x1−ξt ≤ −A or x1−ξt ≥ A.
Eventually, together with (6.12),

vξ
∗−η ≥ u in R× RN

for all η ∈ [0, η0], which contradicts the minimality of ξ∗. Thus, case 1 is ruled out.
Case 2: one then has

inf
{
vξ
∗
(t, x)− u(t, x); |x1 − ξt| ≤ A

}
= 0.

There exists then a sequence (tn, xn)n∈N = (tn, x1,n, x
′
n)n∈N in R× RN such that{

|x1,n − ξtn| ≤ A for all n ∈ N,
u(tn, x1,n − ξ∗, x′n + θ)− u(tn, xn) = vξ

∗
(tn, xn)− u(tn, xn)→ 0 as n→ +∞.

Fix now any σ > 0 and m ∈ N\{0}. Since vξ
∗ ≥ u and vξ

∗
is a supersolution of (1.2)

in R× RN , the linear parabolic estimates then imply that

u
(
tn −

σ

m
, x1,n − 2ξ∗, x′n + 2θ

)
− u

(
tn −

σ

m
, x1,n − ξ∗, x′n + θ

)
= vξ

∗
(
tn −

σ

m
, x1,n − ξ∗, x′n + θ

)
− u

(
tn −

σ

m
, x1,n − ξ∗, x′n + θ

)
−→ 0 as n→ +∞.

By immediate induction, one gets that

u
(
tn − k

σ

m
, x1,n − (k + 1)ξ∗, x′n + (k + 1)θ

)
− u

(
tn − k

σ

m
, x1,n − kξ∗, x′n + kθ

)
−→
n→+∞

0,

for each k = 1, . . . ,m. Therefore,

lim sup
n→+∞

∣∣u(tn − σ, x1,n − (m+ 1)ξ∗, x′n + (m+ 1)θ)− u(tn, xn)
∣∣ ≤ σ‖ut‖L∞(R×RN ).

Similarly, by considering the points (tn − kσ/m, x1,n + kξ∗, x′n + kθ), one gets that

lim sup
n→+∞

∣∣u(tn − σ, x1,n + (m− 1)ξ∗, x′n + (m− 1)θ)− u(tn, xn)
∣∣ ≤ σ‖ut‖L∞(R×RN ).
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Hence,

lim sup
n→+∞

∣∣u(tn − σ, x1,n − (m+ 1)ξ∗, x′n + (m+ 1)θ)

−u(tn − σ, x1,n + (m− 1)ξ∗, x′n + (m− 1)θ)
∣∣ ≤ 2σ‖ut‖L∞(R×RN ).

(6.13)

Choose now σ > 0 such that

2σ‖ut‖L∞(R×RN ) ≤
κ

4
. (6.14)

But |x1,n − ξtn| ≤ A for all n ∈ N and the sequence (ξtn − ξtn−σ)n∈N is bounded from the
assumption made in Theorem 1.15. Therefore, the sequence (x1,n − ξtn−σ)n∈N is bounded.
Let C ≥ 0 be such that

(
x1 ≥ ξt + C

)
=⇒

(
u(t, x) ≤ p−(t, x1) +

κ

4

)
(
x1 ≤ ξt − C

)
=⇒

(
u(t, x) ≥ p+(t, x1)− κ

4

)
.

Since ξ∗ is assumed to be positive, there exists m ∈ N\{0} such that

x1,n + (m− 1)ξ∗ ≥ ξtn−σ + C and x1,n − (m+ 1)ξ∗ ≤ ξtn−σ − C for all n ∈ N.

Thus,

u(tn − σ, x1,n + (m− 1)ξ∗, x′n + (m− 1)θ) ≤ p−(tn − σ, x1,n + (m− 1)ξ∗) +
κ

4

≤ p−(tn − σ, x1,n) +
κ

4

and

u(tn − σ, x1,n − (m+ 1)ξ∗, x′n + (m+ 1)θ) ≥ p+(tn − σ, x1,n − (m+ 1)ξ∗)− κ

4

≥ p+(tn − σ, x1,n)− κ

4

for all n ∈ N, because p± are nonincreasing in x1. Hence,

u(tn − σ, x1,n − (m+ 1)ξ∗, x′n + (m+ 1)θ)− u(tn − σ, x1,n + (m− 1)ξ∗, x′n + (m− 1)θ)

≥ p+(tn − σ, x1,n)− p−(tn − σ, x1,n)− κ

2
≥ κ

2
for all n ∈ N,

by definition of κ. Therefore,

lim sup
n→+∞

∣∣u(tn − σ, x1,n − (m+ 1)ξ∗, x′n + (m+ 1)θ)

−u(tn − σ, x1,n + (m− 1)ξ∗, x′n + (m− 1)θ)
∣∣ ≥ κ

2
,

while it is less than or equal to κ/4 from (6.13) and (6.14).
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One has then reached a contradiction, which means that ξ∗ = 0. Then,

v(t, x1 − ξ, x′ + θ) ≥ u(t, x1, x
′) for all (t, x1, x

′) ∈ R× RN , ξ ≥ 0 and θ ∈ RN−1.

As a consequence, u is nonincreasing in x1 and it does not depend on x′. Furthermore, the
strong parabolic maximum principle, together with the same arguments as above, implies
that u is actually decreasing in x1. That completes the proof of Theorem 1.15. �

Proof of Theorem 1.14. Assume that all assumptions made in Theorem 1.14 are satisfied.
Up to rotation of the frame, one can assume without loss of generality that e = e1 =
(1, 0, . . . , 0). Consider first the case where c > 0. There exists ε ∈ {−1, 1} such that

ξt − ξs
t− s

→ ε c as t− s→ ±∞ and sup
{
|ξt − ε c t|; t ∈ R

}
< +∞.

The function
v(t, x) = u(t, x+ ε c t e) = u(t, x1 + ε c t, x′)

is well-defined for all (t, x) ∈ R×Ω (because Ω is invariant in the direction e) and it satisfies{
vt = ∇x · (A(x′)∇xv) + q(x′) · ∇xv + ε c vx1 + f(x′, v) in R× Ω,

µ(x′) · ∇xv = 0 on R× ∂Ω,

because A, q, µ and f are independent of x1 (and of t). Furthermore, since p± only depend
on x′, v is a transition front connecting p− and p+, with the sets

Ω̃±t =
{
x ∈ Ω, ±x1 < 0

}
and Γ̃t =

{
x ∈ Ω, x1 = 0

}
.

With the same type of arguments as in the proof of Theorem 1.15 above, one can then fix
any ζ ∈ R and slide v(t+ ζ, x) with respect to v in the x1-direction. It follows then that

v(t+ ζ, x1 − ξ, x′) ≥ v(t, x1, x
′) for all (t, x) ∈ R× Ω, ξ ≥ 0 and ζ ∈ R.

Therefore, v is independent of t and it is nonincreasing in x1. As above, v is then decreasing
in x1. That gives the required conclusion in the case where c > 0.

In the case where c = 0, the function t 7→ ξt is then bounded. Because of Definition 1.1,
one can then assume, without loss of generality, that ξt = 0 for all t ∈ R. The functions p±

and f may depend on x1, but are assumed to be nonincreasing in x1. For any ζ ∈ R and
ξ ≥ 0, the function u(t + ζ, x1 − ξ, x′) is then a supersolution of the equation (1.2) which
is satisfied by u. One can then slide u(t + ζ, x1, x

′) with respect to u in the (positive)
x1-direction, and it follows as in the proof of Theorem 1.15 that

u(t+ ζ, x1 − ξ, x′) ≥ u(t, x1, x
′) for all (t, x) ∈ R× Ω, ξ ≥ 0 and ζ ∈ R.

As usual, one concludes that u does not depend on t and is decreasing in x1. �
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