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MODULAR CATEGORIES, INTEGRALITY AND EGYPTIAN

FRACTIONS

PAUL BRUILLARD AND ERIC C. ROWELL

Abstract. It is a well-known result of Etingof, Nikshych and Ostrik that there
are finitely many inequivalent integral modular categories of any fixed rank n.
This follows from a double-exponential bound on the maximal denominator in
an Egyptian fraction representation of 1. A näıve computer search approach to
the classification of rank n integral modular categories using this bound quickly
overwhelms the computer’s memory (for n ≥ 7). We use a modified strategy:
find general conditions on modular categories that imply integrality and study
the classification problem in these limited settings. The first such condition is
that the order of the twist matrix is 2, 3, 4 or 6 and we obtain a fairly complete
description of these classes of modular categories. The second condition is that
the unit object is the only simple non-self-dual object, which is equivalent to
odd-dimensionality. In this case we obtain a (linear) improvement on the bounds
and employ number-theoretic techniques to obtain a classification for rank at
most 11 for odd-dimensional modular categories.

1. Introduction

The problem of classifying low-rank modular categories has its roots in the
classification problem for rational conformal field theories going back to the 1980s
(predating the definition of modular category [24]). Currently, the most complete
results are in [22] where unitary modular categories of rank at most 4 are classified.
More generally, Ostrik classified ribbon fusion categories of rank at most 3 [20] and
fusion categories of rank at most 2 [19].
By a generalized form of Ocneanu rigidity [7, Prop. 2.31] one may classify

modular categories of a given rank up to finite ambiguity by classifying their
Grothedieck semirings. In [13] such an approach yielded a classification (up to
Gr.-semirings) of modular categories of rank at most 5 with the property that
some object is not isomorphic to its dual object.
Wang has conjectured that there are only finitely many inequivalent modular

categories of each rank (see [22, Conjecture 6.1]), and the results mentioned above
bear this out for rank at most 4 and for rank at most 5 in case some object is
non-self-dual. The most general class of modular categories for which Wang’s
conjecture has been verified is for weakly integral categories, that is, categories C
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with FPdim(C) ∈ N [7, Prop. 8.38]. The proof relies upon a classical result of
Landau [14] that the diophantine equation:

(1.1) 1 =

n
∑

i=1

1

xi

has finitely many solutions with xi ∈ N. Such solutions are Egyptian fraction
representations of 1 which are of independent interest in combinatorial number
theory (see [12, Section D11] and [18, Seq. A002966]). Moreover the number
of solutions to (1.1) is at least exponential in n since 1

x
= 1

x+1
+ 1

x2+x
so that

each (non-constant) n-term Egyptian fraction representation of 1 leads to at least
2 (n + 1)-term representation. In [13] a computational approach to classifying
integral modular categories (that is, with FPdim(X) ∈ N for all objects X) of
rank n is suggested using two facts:

(1) [6, Lemma 1.2]:
√

FPdim(C)
FPdim(Xi)

∈ N for all simple Xi

(2) [3]: dim(C) ≤ un where un is inductively defined by u1 := 1 and uk :=
uk−1(uk−1 + 1).

As un is double exponential in n, a direct search for solutions by computer quickly
becomes infeasible.
We attempt to circumvent this computational obstacle by finding interesting

conditions on modular categories that imply integrality, and then use these condi-
tions to simplify the classification problem for these classes of categories. Specifi-
cally, we have:

Theorem. Suppose C is a modular category such that either:

(a) the twist matrix T satisfies TN = I for N ∈ {2, 3, 4, 6} or
(b) the only simple object in C satisfying X ∼= X∗ is the unit object 1

then C is integral.

Statement (a) is proved below in Theorem 3.1 and was inspired by Davydov who
posed the question for N = 2 to the second author. Statement (b) is [13, Theorem
2.2] and follows from a Galois theory argument.
We are interested in classifying categories with one of these two properties (a)

or (b). We obtain a fairly explicit description of modular categories with property
(a) in Theorem 3.2. Modular categories with property (b) of rank at most 11 are
shown to be pointed in Theorem 4.5, that is, FPdim(Xi) = 1 for each simple object
Xi. While property (b) may seem to be a rare condition at first glance one can
show (see Prop. 4.3) that it is equivalent to the condition that FPdim(C) is odd.
The remainder of the paper is structured as follows: in Section 2 we collect

together some notation and useful facts about modular categories. We address
the classification problem for modular categories having property (a) or (b) in
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Sections 3 and 4 respectively, and give some perspectives and futher directions in
Section 5.

Acknowlegements. We benefitted from discussions with K. Rusek, M. Papaniko-
las, Y. Sommerhäuser and D. Naidu. The second author was partially supported
by NSA grant H98230-10-1-0215.

2. Notation

A modular category C is a non-degenerate braided, balanced fusion category
(see [1] or [21] for the complete axiomatic definition). In this section we establish
notation and describe some of the algebraic data and relations coming from the
axioms of modular categories.
We shall typically adopt the notation and normalizations of [17] for the data

of a modular category. The fusion coefficients are Nk
i,j := dimHom(Xi ⊗ Xj, Xk)

where 1 = X0, . . . , Xn−1 are the (isomorphism classes of) simple objects the num-
ber of which (n) is called the rank of C. The diagonal twist matrix Tij := δijθi
has finite order and the S-matrix is normalized so that S00 = 1. We will denote
by di the dimension of the simple object Xi, i.e. di = Si0 = dim(Xi). Defin-
ing the Gauss sums by p+ =

∑

i θi(di)
2 and p− = p+ we have (ST )3 = p+S

2,
S2 = p+p−C where Cij = δij∗ is the (involutive) charge conjugation matrix, which
commutes with T . In particular (S, T ) give rise to a (projective) representation

of the modular group SL(2,Z). We define the fusion matrices (Ni)jk := N j
ik and

denote by FPdim(Xi) the largest eigenvalue of Ni, i.e. the FP-dimension of Xi.
The global dimension of C is dim(C) =

∑

i(di)
2 and the global FP -dimension

is FPdim(C) :=
∑

i FPdim(Xi)
2. If FPdim(C) = dim(C) then C is said to be

pseudo-unitary. The Verlinde formula relates the fusion coefficients to the S-
matrix entries:

(2.1) Nk
ij =

∑

r

SirSjrSkr

dim(C)S0r
.

A pair of matrices (S, T ) satisfying the above relations such that the right-hand-
side of (2.1) is a non-negative integer for all i, j, k is called a modular datum
([9]). A modular category C with corresponding S and T matrices is called a
categorification of (S, T ).
A category C is called integral if FPdim(Xi) ∈ N for all simple objects Xi. All

categories encountered in this work will be integral and hence pseudo-unitary so
that we may assume that FPdim(Xi) = di and FPdim(C) = dim(C) by [7, Prop.
8.23, 8.24].
The entries of Ni, S and T satisfy further relations:

(2.2) p+p− = dim(C)
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and

(2.3) θiθjSij =
∑

k

Nk
i∗jθkdk.

Since dim is a character of the Grothendieck semiring of C we have:

(2.4)
∑

k

Nk
ijdk = didj .

The (second) FS-indicator is defined to be

νk =
1

dim(C)

∑

i,j

Nk
i,jdidj

(

θi
θj

)2

and satisfies:

(2.5) νk =

{

0 Xk 6∼= X∗
k

±1 Xk
∼= X∗

k

.

More generally the n-th FS-indiactor ν
(n)
k may be defined for simple objects

in modular categories in an analogous way ([16, Theorem 7.5]). The quantity

FSexp(C) is the smallest integer m > 0 such that ν
(m)
k = dk for all simple k.

For modular categories FSexp(C) coincides with the order of the T matrix ([16,
Theorem 7.7]).

3. Low-order Twist Matrices

In this section we study modular categories with twist matrix of order 2, 3, 4 or
6 of arbitrary rank. Our first result is:

Theorem 3.1. Suppose that T is the twist matrix of a modular category C such
that TN = I for N ∈ {2, 3, 4, 6}. Then C is integral.

Proof. First we observe that by [17, Prop. 5.7] the entries of the S-matrix for C
must lie in Q (θ1, . . . , θn−1) = Q (ζN) where ζN is a primitive Nth root of unity.
Since sij are algebraic integers and ϕ(N) ≤ 2 (Euler’s totient ϕ), if sij ∈ R then
sij ∈ Z. In particular some column of the S-matrix must be an integer multiple of
the vector of FP -dimensions (since C is modular) and so FPdim(Xi) are rational
integers. �

We now characterize modular categories with TN = I for N ∈ {2, 3, 4, 6} in the
following:

Theorem 3.2. Suppose C is a modular category such that TN = I. Then:

(a) If N = 2 then C is braided tensor equivalent to a subcategory of Rep(DωG)
where G is an abelian 2-group of exponent 2 and dim(C) = 22s (in partic-
ular, C is pointed),



5

(b) If N = 3 then C is braided tensor equivalent to a subcategory of Rep(DωG)
where G is a 3-group of exponent 3, and

(c) If N = 4 then C is braided tensor equivalent to a subcategory of Rep(DωG)
where G is a 2-group of exponent 2 or 4.

(d) If N = 6 then C is solvable and hence weakly integral.

Proof. If T 2 = I then each Xk is self-dual since the entries of the S-matrix are
real. Computing the FS-indicator we have:

νk =
1

dimC

∑

i,j

Nk
ijdidj

(

θi
θj

)2

= ±1

for all k. But
(

θi
θj

)2

= 1 by assumption and
∑

i N
k
ijdi = dkdj (as Nk

ij is totally

symmetric in the self-dual case) so we may simplify:

νk =
1

dimC

∑

j

dkd
2
j = dk.

But νk = ±1 and dk > 0 so this implies dk = 1 for all simple objects Xk. We must
then have X⊗2

k
∼= 1 as well. Thus C is pointed and has the same fusion rules as

the group Zm
2 where 2m is both the rank and global dimension of C. Now since

p+ ∈ R we have p+ = p− ∈ Z so that by (2.2) we must have dim(C) = 2m = (p+)
2

and hence m = 2s. Since C is braided tensor equivalent to a subcategory of
Z(C) ∼= Rep(DωG) we must have G an elementary abelian 2-group.
For (b) and (c) with N = 3 (resp. 4) we use [16, Theorem 8.4] to conclude that

dim(C) = pt where p = 3 (resp. 2). In particular C is braided and nilpotent and
hence group theoretical by [4, Theorem 6.10]. Thus we conclude that C is braided
tensor equivalent to a subcategory of Z(C) ∼= Rep(DωG) where G is a p-group and
since FSexp(C) = FSexp(Z(C)) = 3 (resp. 4) by [16, Corollary 7.8] G must have
exponent 3 (resp. 2 or 4 as the exponent of G must divide that of Rep(DωG)).
For (d) with N = 6 [16, Theorem 8.4] implies that dim(C) = 2a3b with a, b > 0

and so by [8, Theorem 1.6] C is solvable, and in particular weakly group-theoretical.
�

Remark 3.3.

• In principle, Theorem 3.2(a),(b),(c) can be used to completely classify mod-
ular categories with twist matrix of orders 2, 3 and 4.

• Theorem 3.2(d) is sharp in the sense that we cannot conclude C is group
theoretical as [10, Example 5.3(a)] shows that non-group-theoretical mod-
ular categories with T 6 = I exist.

• In [2, Prop. 5.1] an infinite family of modular data (S, T ) depending on an
integer k ≥ 0 is described with Sij ∈ Z for all i, j and T 2 = I. Theorem
3.2(a) shows that this family is not categorifiable for k ≥ 1.
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4. Integrality and Egyptian Fractions

In this section we classify integral modular categories of rank at most 6 and
maximally non-self-dual modular categories of rank at most 11.
If C is a (pseudo-unitary) integral modular category with dimensions of simple

objects d1, d2, . . . , dn = dim(1) = 1 then by [6, Lemma 1.2] the numbers xi =
dim(C)/(di)

2 are integers and so satisfy eqn. (1.1). In [13, Lemma 2.3] it is shown
that after relabelling if necessary so that x1 ≤ x2 ≤ · · · ≤ xn = dim(C) then:

k ≤ xk ≤ uk(n− i+ 1) forall 1 ≤ k ≤ n,

where u1 = 1, uk = uk−1(uk−1 + 1). These bounds rely upon two classical results
in [14] and [3]. Notice also that xn/xi = (di)

2 is a perfect square for each i. The
trivial solution x1 = · · · = xn = n corresponds to a pointed modular category of
rank n as then di = 1 for all i. Our basic algorithm for finding x1 ≤ · · · ≤ xn

satisfying these conditions is as follows:

Algorithm 4.1.

(1) form the set of pairs S2 := {(j, j · i2) : 2 ≤ j ≤ n, 1 ≤ i ≤
√

un/j}. These
are the possible pairs (x1, xn).

(2) having determined Sk for some 2 ≤ k ≤ n − 2 let Sk+1 be the set of
(k + 1)-tuples (j1, . . . , jk−1, J, jk) such that
(a) (j1, . . . , jk) ∈ Sk,
(b) max(jk−1, k) ≤ J ≤ min(jk, uk(n− k + 1)),

(c)
√

jk/J ∈ Z and

(d) 1
J
+
∑k

i=1
1
xi

≤ 1.

(3) the solution set Sn is the set of n-tuples (j1, . . . , jn−2, J, jn−1) where
(a) (j1, . . . , jn−1) ∈ Sn−1,
(b) max(jn−2, n− 1) ≤ J ≤ min(jn−1, 2un−1),

(c)
√

jn−1/J ∈ Z and

(d) 1
J
+
∑n−1

i=1
1
xi

= 1.

For n = 5 and n = 6 the solutions are: {(5, 5, 5, 5, 5), (2, 8, 8, 8, 8)} and

{(6, 6, 6, 6, 6, 6), (3, 3, 12, 12, 12, 12), (4, 4, 4, 9, 9, 36)}

respectively. These computations were carried out in a few hours on a desktop
computer using Maple, and we have:

Theorem 4.2. Any integral modular category of rank at most 6 is pointed.

Proof. For rank at most 5 this result is known, see: [22] and [13]. For rank
6 we need only show that no modular category may have simple dimensions
(1, 1, 1, 1, 2, 2) or (1, 2, 2, 3, 3, 3) corresponding to the non-pointed solutions above.
The first case is eliminated by [15, Prop. 4.11]: integral modular categories C with
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FPdim(C) = 223 must be pointed. On the other hand, a fusion category of dimen-
sion 36 must be solvable and contain a non-trivial invertible object by [8, Prop.
8.2] which eliminates the second solution. �

We remark that there is a non-pointed integral modular category of rank 8,
namely Rep(D(S3)), the representation category of the double of the symmetric
group S3. We expect that this is the smallest possible rank for non-pointed inte-
gral modular categories. Unfortunately for n = 7 one has u7 ≈ 1013 and attempts
to implement Algorithm 4.1 quickly overwhelms a computer’s memory. This mo-
tivates passing to a restricted class of modular categories that enjoy integrality.
With a view towards improving the upper bound un above, suppose that C is

a maximally non-self dual (MNSD) modular category, i.e. each non-trivial simple
object Xi satisfies Xi 6∼= X∗

i . Then C is integral with rank n = 2k + 1 by [13,
Theorem 2.2]. Since di = dim(Xi) = dim(X∗

i ) we may label the dimensions of
simple objects: d1, d1 . . . , dk, dk, dk+1 = dim(1) = 1 so that FPdim(C) = 1 +

2
∑k

i=1 d
2
i is odd. After reordering the k + 1 integers xi := dim(C)/d2i so that

x1 ≤ x2 ≤ · · · ≤ xk ≤ xk+1 = dim(C) they satisfy the special case of eqn. (1.1):

(4.1)
1

xk+1
+

k
∑

i=1

2

xk

= 1

The maximal non-self-dual condition may seem somewhat exceptional, but it fol-
lows from [13, Theorem 2.2], [16, Corollary 8.2(ii)] and [5, Corollary 2.33] that:

Proposition 4.3. Let C be a modular category of rank n. The the following are
equivalent:

(1) C is maximally non-self-dual
(2) FPdim(C) is odd
(3) C is (monoidally) equivalent to Rep(A) where A is an odd-dimensional,

semisimple quasi-Hopf algebra.

The following generalization of [13, Lemma 2.3] gives a linear improvement of the
upper bounds in Algorithm 4.1 for a restricted class of integral modular categories
and includes the MNSD setting as the special case ℓ = 2:

Lemma 4.4. Suppose that C is an integral modular category of rank n and there
exist k (weakly decreasing) integers p1 ≥ p2 ≥ · · · ≥ pk such that the non-trivial
(isomorphisms classes of) simple objects can be partitioned into k sets P1, . . . , Pk

such that X ∈ Pi has dim(X) = pi and |Pi| = ℓ for all 1 ≤ i ≤ k. Then:

(i) The numbers xi :=
dimC

p2i
form a weakly increasing sequence of integers such

that
∑k

i=1
ℓ
xi
+ 1

xk+1
= 1, and

(ii) ℓi ≤ xi ≤ (n+ ℓ− iℓ) Ai

ℓ
for i ≤ k and (k+1) ≤ xk+1 ≤

Ak+1

ℓ
where A1 = ℓ

and Ai = Ai−1 (Ai−1 + 1).
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Proof. The proof of (i) proceeds exactly as in [13, Lemma 2.3] so we focus on (ii).
First define x′

i = xi for 1 ≤ i ≤ k and x′
k+1 = xk+1/ℓ so that:

(4.2)

k+1
∑

i=1

1

x′
i

=
1

ℓ

and x′
1 ≤ · · · ≤ x′

k+1 = ℓxk+1. Observing that n = kℓ + 1 we finds that (ii)

becomes ℓi ≤ x′
i ≤ (n + ℓ− iℓ) Ai

ℓ
. Since the x′

i are weakly increasing the lower
bounds are clear: for if ℓi > x′

i for some i then ℓi > x′
i ≥ x′

i−1 ≥ · · · ≥ x′
1 so

1/ℓ = i 1
ℓi

>
∑i

j=1
1
x′

j

, a contradiction. For the upper bounds follow the same

strategy as in [13]: we use Takenouchi’s [23] bound on the largest denominator
x′
k+1 in eqn. (4.2) and Landau’s [14] estimate. In particular, if

k
∑

i=1

1

yi
= r

with y1 ≤ y2 ≤ · · · ≤ yk then Landau’s result says yi ≤ (k−i+1)/ri−1 where r0 = r
and ri = ri−1 − 1/yi. Takenouchi’s result says that the maximum denominator yi
of a solution to 1

ℓ
=

∑k

i=1
1
yi

is Ak where A1 = ℓ and Ai := Ai−1(Ai−1 + 1). So in

particular 1/ri−1 ≤ Ai for all i and the result follows.
�

Lemma 4.4 provides a linear improvement on the bounds in [13, Lemma 2.3]:
one has roughly rank(C)/ℓ variables as opposed to rank(C). Taking the case ℓ = 2
one can modify Algorithm 4.1 to search for possible MNSD modular categories in
the obvious way. As the bounds are still double exponential the best result we can
achieve with our (modified) algorithm is:

Theorem 4.5. All maximally non-self dual modular categories of rank at most 11
are pointed.

Proof. The only non-trivial solution the modified algorithm produces is in rank 11,
consisting of 9 simple objects of dimension 1 and two simple objects of dimension 3.
To eliminate this possibility we use a result in [11]: any integral modular category
C is faithfully graded by its universal grading group U(C), which is isomorphic to
the group of invertible objects in C. Since each component of a faithful grading
must have the same FP -dimension we see that this is impossible as |U(C)| = 9 and
any component Cg of the grading containing a simple objectX with FPdim(X) = 3
must have FPdim(Cg) ≥ 9. �

Remark 4.6. An obvious source of MNSD modular categories are those of the
form Rep(DωG) where |G| is odd (that is, the representation category of the
twisted double of a finite group of odd order). The smallest rank example of a
non-pointed MNSD modular category we are aware of is the rank 25 category
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Rep(D(Z3 ⋉ Z7)) of dimension 441 where Z3 ⋉ Z7 is a non-abelian semidirect
product. One might speculate that any MNSD modular category of rank at most
23 is pointed.

We close with the following related question that we find interesting:

Question 4.7. Is there an odd dimensional modular category that is non-group-
theoretical?

5. Conclusions and Future Directions

We have made significant progress towards classifiying modular categories with
twist matrices of order 2, 3, 4 or 6. It is not clear how to extend these techniques
to other orders. One might hope that one could generalize [16, Theorem 8.4] to
non-integral categories to get some statement about the possible prime divisors
of FPdim(C) in terms of those of the order of the twist matrix. However, the
relevant number field would no longer be Z so that other complications would
arise particularly concerning units.
For rank greater than 11 even the improved bounds for MNSD modular cate-

gories become too large for our computational techniques. However, if one consid-
ers MNSD modular categories with:

(1) rank r
(2) FPdim(Xi) ≤ M , for each simple Xi and
(3) |{FPdim(Xi) : 0 ≤ i ≤ r − 1}| = t (Xi simple).

further headway can be made. For example, taking r ≤ 23, M = 45 and t ≤ 6 we
set ki = |{j : FPdim(Xj) = di}| with d0 = 1 we obtain (using [6, Lemma 1.2] and
[7, Prop. 8.15]):

k0 ≡ 1 mod 2

ki ≡ 0 mod 2, (i 6= 0)
t−1
∑

i=0

ki = r

∑

j 6=i

kj(dj)
2 ≡ 0 mod (di)

2

∑

j 6=0

kj(dj)
2 ≡ 0 mod k0

For any fixed r ≤ 23 and subsets of {d : 3 ≤ d ≤ 45, d ∈ 2Z + 1} of size at
most 5 we convert these congruences to a system of linear diophantine equations
and then use the Smith normal form of the corresponding matrix to solve for the
ki. Applying further classification theorems and ad hoc techniques produces the
following partial result:
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Theorem 5.1. If C is a non-pointed maximally non-self dual modular category
with 13 ≤ rank (C) ≤ 23 then either C has:

(a) FPdim(Xi) ≥ 47 for some simple Xi or
(b) |{FPdim(Xi) : 0 ≤ i ≤ m− 1}| ≥ 7

This is further evidence that perhaps a non-pointed MNSD modular category
of smallest rank is indeed the category of rank 25 and dimension 441 described
above.
More generally, one can also obtain partial classification results for integral

modular categories of small rank by bounding the FP -dimension further (below
the double-exponential bound of un in Algorithm 4.1). For example, using a
streamlined version of Algorithm 4.1 provided by K. Rusek and some classification
theorems we can prove:

Theorem 5.2. If a non-pointed modular category C has rank 7 then FPdim(C) >
105.
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