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ON THE EDIT DISTANCE FROM K2,t-FREE GRAPHS II: CASES t ≥ 5

RYAN MARTIN AND TRACY MCKAY

Abstract. The edit distance between two graphs on the same vertex set is defined to be size of
the symmetric difference of their edge sets. The edit distance function of a hereditary property,
H, is a function of p and measures, asymptotically, the furthest graph with edge density p from H

under this metric.
The edit distance function has proven to be difficult to compute for many hereditary properties.

Some surprising connections to extremal graph theory problems, such as strongly regular graphs
and the problem of Zarankiewicz, have been uncovered in attempts to compute various edit distance
functions. In this paper, we address the hereditary property Forb(K2,t) when t ≥ 5, the property
of having no induced copy of the complete bipartite graph with 2 vertices in one class and t in the
other.

This work continues from a prior paper by the authors. Employing an assortment of techniques
and colored regularity graph constructions, we are able to extend the interval over which the edit
distance function for this hereditary property is generally known and determine its maximum value
for all odd t. We also explore several constructions to improve upon known upper bounds for the
function.

1. Introduction

Motivated by applications, including property testing applications in computer science, the prob-
lem of determining graph edit distances was developed independently in papers by Alon and Stav
[1] and Axenovich, Kézdy and the first author [2].

A hereditary property is a set of graphs closed under vertex deletion and isomorphism, and the
edit distance from a graph G to a hereditary property H, denoted by Dist(G,H), is the minimum
number of edge additions or deletions necessary to make G a member of H.

The edit distance function for a hereditary property H, which is denoted edH(p), is presented
in [3] by Balogh and the first author. It models with high probability the limiting behavior as
n → ∞ of the edit distance from an Erdős-Rényi random graph on n vertices with edge probability
p ∈ [0, 1] to a hereditary property normalized by

(

n
2

)

.
Marchant and Thomason explore the value of 1 − edH(p) for various hereditary properties in

[10], developing some insightful results for determining the value of the function in general. One
discovery from [10] of particular interest is a relationship between the problem of determining the
edit distance function for Forb(K3,3) and constructions by Brown in [6] for K3,3-free graphs, related
to the Zarankiewicz problem.

Meanwhile in [12], the precursor to this paper and to which we refer the reader for further back-
ground on the problem, constructions that are used to address the Zarankiewicz problem proved to
be immaterial to the edit distance function for Forb(K2,t) when t = 3 or 4. In this paper, however,
we show that not only does their relevance reemerge as a potential player in the problem of deter-
mining the value of the edit distance function for Forb(K2,t) when t is sufficiently large, but that
exploring the relationship between edForb(K2,t)(p) and colored regularity graph (CRG) constructions
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involving strongly regular graphs and cycles also gives insight into the general behavior of these
functions.

As described in [3], there are two different ways that colored regularity graphs may be used to
define the edit distance function for a given hereditary property H.

The first method involves the function

(1) fK(p) =
1

k2

[

p (|VW(K)|+ 2|EW(K)|) + (1− p) (|VB(K)|+ 2|EB(K)|)
]

,

where VW(K), VB(K), EW(K) and EB(K) are the sets of white vertices, black vertices, white
edges and black edges in K respectively. The CRG, K, does not permit embedding of any of the
forbidden induced subgraphs associated with H–we refer to the set of all such K as K(H), or just
K, when H is evident.

The second method involves the function

(2) gK(p) = min{uTMK(p)u : uT1 = 1 and u ≥ 0}.
Defined in [3], the matrix MK(p) is a weighted adjacency matrix for the CRG, K ∈ K, with black,
white and gray vertices/edges receiving weights (1− p), p and 0, respectively.

Both equations (1) and (2) can readily supply an upper bound for the edit distance function,
since edH(p) = inf{fK(p) : K ∈ K} = inf{gK(p) : K ∈ K} = min{gK(p) : K ∈ K}, where this final
equality is a result from [10].

The maximum value of the edit distance function, d∗
H
, was originally defined as follows:

d∗H = lim
n→∞

Dist(n,H)/
(

n
2

)

.

That is, it is the limit as n → ∞ of the maximum possible distance of any graph on n vertices
from a hereditary property H normalized by the total number of possible edges in such a graph.
We refer to the value of p, or the set of values of p, for which edH(p) = d∗

H
, as p∗

H
. It follows from

the concavity of the edit distance function that p∗
H
must be a closed, though potentially degenerate,

interval.
In practice, the edit distance function can be difficult to determine for a given hereditary property,

and most methods depend heavily on the structures of related colored regularity graphs (or types, if
one employs the paradigm used in [10]) introduced in [1]. In the case of Forb(K2,t), the hereditary
property of forbidding an inducedK2,t subgraph, however, much can be said about the edit distance
function, especially in the cases when t is small or p > 1/2. The following theorem summarizes
some known results for the edit distance function of Forb(K2,t).

Theorem 1. Let H = Forb(K2,t), and edH(p) be the edit distance function for H, then

(1) (Marchant-Thomason [10]) If t = 2, then edH(p) = p(1− p).
(2) (Marchant-Thomason [10]) If p ≥ 1/2, then edH(p) = (1− p)/(t− 1).
(3) ([12]) For p < 1/2,

• If t = 3, then edH(p) = p(1− p).

• If t = 4, then edH(p) = min
{

p(1− p), 7p+1
15 , 1−p

3

}

.

The part of the function edForb(K2,4)(p) with value (7p + 1)/15 corresponds to a construction

derived from the so-called (15, 6, 1, 3)-strongly regular graph, which is commonly called the gener-
alized quadrangle GQ(2, 2). We will discuss more about the connection between edForb(K2,t)(p) and
strongly regular graphs later.

In this paper we continue the exploration of what can be said about the edit distance function of
Forb(K2,t) when t ≥ 5. In particular, we will extend the interval from [10] for which this function
is generally known, and explore some new colored regularity graph constructions that reduce the
known upper bound for these edit distance functions on certain intervals. One of these construc-
tions originates from a construction in [9] by Füredi for K2,t-free graphs. When t is large enough,
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we demonstrate a similar result to that in [10] from Brown’s construction. Other constructions
arise from powers of cycles and strongly regular graphs.

1.1. New results.

In [10], it is established that for p ≥ 1/2 and H = Forb(K2,t), the edit distance function edH(p) =
(1− p)/(t− 1). We extend this result to hold true for p ≥ 2/(t + 1).

Theorem 2. Let t ≥ 4, p ≥ 2/(t+ 1) and H = Forb(K2,t), then edH(p) = (1− p)/(t− 1).

This extension along with a new CRG construction results in the determination of d∗
H
, the

maximum value of the edit distance function, for all odd t. Using the general lower bound in
Theorem 3 below, we also demonstrate, via Theorem 4, that this maximum value occurs on a
nondegenerate interval of values for p. That is, p∗

H
is not a single value for all odd t ≥ 5.

Theorem 3. Let t ≥ 3 and p < 1/2. If K is a black-vertex, p-core CRG with white and gray edges
such that the gray edges have neither a K2,t nor a Bt−2 (as defined in Lemma 12), then

(3) gK(p) ≥ p− t− 1

4t− 5

[

3p − 2 + 2
√

1− 3p + (t+ 1)p2
]

.

Theorem 4. For odd t ≥ 5 and H = Forb(K2,t),

d∗H = 1/(t+ 1) and p∗H ⊇
[

2t− 1

t(t+ 1)
,

2

t+ 1

]

.

For small p and t large enough we demonstrate a “Zarankiewicz effect” similar to that discovered
in [10] for Forb(K3,3) and rejected for t = 3 and 4 in [12].

Theorem 5. For H = Forb(K2,t), the edit distance function edH(p) ≤ t−1+p(2q2−q(t−1)−2t)
2(q2−1) for any

prime power q such that t− 1 divides q − 1.

Corollary 6. For t ≥ 9, there exists a value q0, so that if q > q0, then
t−1+p(2q2−q(t−1)−2t)

2(q2−1)
< p(1−p)

for some values of p, which approach 0 as q increases. That is, arbitrarily close to p = 0, there is
some value for p such that edH(p) < p(1− p).

A strongly regular graph construction provides a key upper bound for edForb(K2,4)(p). Such
constructions continue to be relevant for larger t values.

Theorem 7. For any (k, d, λ, µ) strongly regular graph, there exists a corresponding CRG, K, such
that

fK(p) =
1

k
+

(

k − d− 2

k

)

p.

If λ ≤ t− 3 and µ ≤ t− 1, then K forbids K2,t embedding, and when equality holds for both λ and
µ,

(4) fK(p) =
t− 1

t− 1 + d(d+ 1)
+

(

1− (d+ 2)(t− 1)

t− 1 + d(d+ 1)

)

p.

The following upper bound arises from a CRG construction involving the second power of cycles.

Theorem 8. For H = Forb(K2,t),

edH(p) ≤
3p + 1

5 + t
.
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There is a very close connection between the result in Theorem 3 and strongly regular graphs. If
we take the expression in (4) and minimize it with respect to d (see expression (5)), then we obtain
the expression on the right-hand side of (3). In particular, we show that if a (k, d, t − 3, t − 1)-
strongly regular graph exists, then the corresponding CRG, K, has fK(p) tangent to the curve

p − t−1
4t−5 [3p − 2 + 2

√

1− 3p+ (t+ 1)p2] for some value of p. Thus, we obtain the exact value of
edForb(K2,t) for that value of p.

Below are known upper bounds for 5 ≤ t ≤ 8. It should be noted that as our knowledge of
existing strongly regular graphs increases, new upper bounds are also likely to be discovered.

Theorem 9. Let H = Forb(K2,t).

• If t = 5, then

edH(p) ≤ min

{

p(1− p),
1 + 75p

96
,
1 + 26p

40
,
1 + 5p

13
,
1

6
,
1− p

4

}

.

• If t = 6, then

edH(p) ≤ min

{

p(1− p),
1 + 63p

85
,
1 + 14p

26
,
1 + 7p

17
,
1 + 2p

10
,
1− p

5

}

.

• If t = 7, then

edH(p) ≤ min

{

p(1− p),
1 + 124p

156
,
1 + 76p

100
,
1 + 44p

64
,
1 + 31p

49
,
1 + 20p

36
,
1 + 5p

16
,
1

8
,
1− p

6

}

.

• If t = 8, then

edH(p) ≤ min

{

p(1− p),
1 + 124p

156
,
1 + 95p

125
,
1 + 53p

76
,
1 + 20p

36
,
1 + 11p

25
,
1 + 5p

16
,
3p+ 1

13
,
1− p

7

}

.

We compare these upper bounds to the lower bound in Theorem 3 via the figures in Appendix A.

1.2. Organization.

Section 2 reviews some relevant definitions and results that also appear in [12]. Section 3 ad-
dresses the proofs of Theorems 2, 3 and 4. In Section 4, we present several new CRG constructions
that yield upper bounds for edForb(K2,t)(p) in general. Sections 5 and 6 are conclusions and ac-
knowledgements, respectively. Section A contains the figures that compare our upper and lower
bounds.

2. Pertinent definitions and past results

In order to continue our exploration of Forb(K2,t) begun in [10] by Marchant and Thomason,
and pursued in [12], we first need to review some important results and definitions also used in [12].

Colored regularity graphs that do not permit colored homomorphisms from forbidden induced
subgraphs associated with a hereditary property are imperative for determining the edit distance
function. If there does not exist a colored homomorphism from a simple graph H to a CRG, K,
then we say that K forbids an H embedding. In the case of Forb(K2,t) we are, not surprisingly,
looking for CRGs that forbid a K2,t embedding.

To this end, it is sometimes convenient to refer only to the subgraph induced by edges of a
particular color in K. We will refer to these subgraphs as the white, black and gray subgraphs of
K. We also define a sub-CRG of K as any complete subgraph of K retaining its original coloring
(i.e., a sub-CRG of K is formed by deleting some vertices of K). Frequently, the color of the vertices
in the CRGs we examine may be restricted to black due to several results from [10] with regard to
a subset of CRGs known as p-cores.
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Definition 10 (Marchant-Thomason [10]). A p-core CRG is a CRG, K, such that for no non-
trivial sub-CRG, K ′, of K is it the case that gK(p) = gK ′(p). In other words, if K is a p-core CRG,
and K ′ is a nontrivial sub-CRG of K, then gK ′(p) > gK(p).

As before, we let K(w, b) denote the CRG with w white vertices, b black vertices and only gray
edges.

Theorem 11 (Marchant-Thomason [10]). Let H = Forb(K2,t) and t ≥ 3. For p ≤ 1
2 , either

• edH(p) = min{gK(1,1)(p), gK(0,t−1)(p)} = min{p(1− p), 1−p
t−1 }, or

• edH(p) = gK(p) < min{gK(1,1)(p), gK(0,t−1)(p)}, where K is a p-core CRG with only black
vertices and, consequently, no black edges.

Since the value of the edit distance function for Forb(K2,t) is already known to be 1−p
t−1 for p > 1/2,

the restriction of vertex color to black holds in most instances explored in this paper. Hence we
also make repeated use of the following lemma.

Lemma 12 (Marchant-Thomason [10]). A CRG, K, on all black vertices with only white and
gray edges forbids a K2,t embedding if and only if its gray subgraph contains no K2,t or Bt−2 as
a subgraph, where Bt−2 is a book as described in [7]. That is, the graph Bt−2 is defined to be the
graph consisting of t− 2 triangles that all share a single common edge.

From [10], we know that for a p-core CRG, K, there is a unique vector x so that gK(p) =
xTMK(p)x.

Definition 13 (Marchant-Thomason [10]). For a p-core CRG K with optimal weight vector x, the
entry of x corresponding to a vertex, v ∈ V (K), is denoted by x(v). This is the weight of v and
the function x(v) is the optimal weight function.

Two propositions from [11], which follow easily from [10], relate the optimal weight function
and the function described in equation (2). They are used extensively in [12] and will also play a
significant role in the proofs of Theorems 2, 3 and 4.

Proposition 14 ([11]). Let K be a p-core CRG with all vertices black. Then for any v ∈ V (K)

and optimal weighting x, dG(v) =
p−gK(p)

p
+ 1−2p

p
x(v), where dG(v) is the sum of the weights of the

vertices adjacent to v via a gray edge.

Proposition 15 ([11]). Let K be a p-core CRG with all vertices black, then for p ∈ [0, 1/2] and
optimal weighting x,

x(v) ≤ gK(p)

1− p
, ∀v ∈ V (K).

Recall from [12] that since edH(p) ≤ p(1− p) for H = Forb(K2,t), Proposition 14 gives the lower

bound dG(v) ≥ p+ 1−2p
p

x(v), and Proposition 15 restricts the optimal weights of all vertices in K

to be no more than p.

3. Proofs of Theorems 2, 3 and 4

In this section we extend the generally known interval for edForb(K2,t)(p) from p ∈ [1/2, 1] to

p ∈ [ 2
t+1 , 1]. With a new CRG construction, this extension is sufficient to determine d∗

H
and a

subset of p∗
H

for odd t. Subsection 3.1 contains the proof of Theorem 2, while the remaining
subsections address Theorems 3 and 4.
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3.1. An extension of the known interval for K2,t.

Proof of Theorem 2. Let K be a p-core CRG for p ∈
[

2
t+1 , 1

]

that does not permit K2,t embedding

for t ≥ 5. If we assume that gK(p) < gK(0,t−1)(p) = (1 − p)/(t − 1), then by Theorem 11, K has
only black vertices and no black edges.

As in [12], partition the vertices of K into three sets {u0}, U = {u1, . . . , uℓ} and W , where u0 is
a fixed vertex with maximum weight x; U is the set of all vertices in the gray neighborhood of u0
with u1 a vertex of maximum weight x1 in U ; and W is the set of all remaining vertices, or those
vertices adjacent to u0 via white edges. Finally, let dG(ui) signify the sum of the weights of all
vertices in the gray neighborhood of ui.

Then by Lemma 12, the total weight of the vertices in W is greater than

dG(u1)− (t− 3)x1 − x,

since no vertex in U can be adjacent to more than t− 3 other vertices in U without forming a book
Bt−2 gray subgraph with u0. Thus,

x+ dG(u0) + [dG(u1)− (t− 3)x1 − x] ≤ 1.

Applying Proposition 15 and letting gK(p) = g for ease of notation,

2

(

p− g

p

)

+
1− 2p

p
x+

[

1− 2p

p
− (t− 3)

]

x1 ≤ 1

2(p− g)− p+ (1− 2p)x ≤ [p(t− 1)− 1]x1

2(p− g)− p+ (1− 2p)x ≤ [p(t− 1)− 1]x

p− 2g ≤ [p(t+ 1)− 2]x.

Since p ≥ 2
t+1 and x ≤ g

1−p
by Proposition 15,

p− 2g ≤ [p(t+ 1)− 2]
g

1− p
1− p

t− 1
≤ g.

By Theorem 11, g ≤ 1−p
t−1 , for p ∈ [ 2

t+1 , 1], so edForb(K2,t)(p) =
1−p
t−1 . �

We will now show that this result is enough to determine the maximum value of edForb(K2,t)(p)
for odd t.

3.2. A construction for odd t.

Proposition 16. Let H = Forb(K2,t) for odd t. Then edH(p) ≤ 1/(t+ 1).

Proof. Let K be the CRG consisting of t+ 1 black vertices with white subgraph forming a perfect
matching and all other edges gray. The CRG, K, does not contain a gray K2,t or book Bt−2, and
so by Lemma 12, K forbids a K2,t embedding.

The CRG, K, contains exactly (t+ 1)/2 white edges, so by Equation (1),

fK(p) =
1

(t+ 1)2

[

p

(

2 · t+ 1

2

)

+ (1− p)(t+ 1)

]

=
1

t+ 1
.

Therefore, edH(p) ≤ 1/(t+ 1). �

Since by Theorem 2, edForb(K2,t)(
2

t+1 ) =
1

t+1 , and by Proposition 16, edForb(K2,t) ≤ 1
t+1 , we have

that d∗Forb(K2,t)
= 1

t+1 for odd t ≥ 5.
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3.3. A general lower bound for t.

We conclude this section by determining a general lower bound for the edit distance function of
Forb(K2,t). It is the lower bound from Theorem 3, and it allows us to make the claim in Theorem
4 that, in the case of odd t, there is a nondegenerate interval p∗

H
that achieves the maximum value

of the function.

Proof of Theorem 3. Here we use the standard bounds from Propositions 14 and 15. Let g = gK(p),
where K is a black-vertex, p-core CRG, and let NG(v) denote the gray neighborhood of a given
vertex v in K. Then if u1, . . . , uℓ are the vertices in the gray neighborhood, U , of a fixed vertex of
maximum weight, u0,

ℓ
∑

i=1

[dG(ui)− x− x (NG(ui) ∩NG(u0))] ≤ (t− 1)(1 − x− dG(u0)).

The left-hand side of this inequality calculates the weight of the total gray neighborhood of each
vertex in U that must be contained in W , the set of all vertices not in U or u0. On the right-hand
side we make use of the facts that x(W ) = 1−x−dG(u0) and that no vertex in W may be adjacent
to more than (t − 1) vertices in U without violating Lemma 12 by forming a gray K2,t with u0.
Thus, applying Proposition 14,

ℓ
∑

i=1

[

p− g

p
− x+

1− 2p

p
x(ui)

]

−
ℓ

∑

i=1

x (NG(ui) ∩NG(u0)) ≤ (t− 1)(1 − x− dG(u0)).

Again considering Lemma 12 reveals that no vertex ui ∈ U can have more than t − 3 gray
neighbors in U without inducing a gray book Bt−2 with u0. Therefore,

ℓ

[

p− g

p
− x

]

+
1− 2p

p
dG(u0)− (t− 3)dG(u0) ≤ (t− 1)(1 − x− dG(u0))

ℓ

[

p− g

p
− x

]

≤ (t− 1)(1 − x)− 1

p
dG(u0).

Recalling that by Proposition 15, p−g
p

≥ x, we use the bound ℓ ≥ dG(u0)/x (which follows from

the pigeon-hole principle) to get

dG(u0)

x

[

p− g

p
− x

]

≤ (t− 1)(1− x)− 1

p
dG(u0)

dG(u0)

[

p− g

p
− x

]

≤ (t− 1)x(1− x)− x

p
dG(u0)

dG(u0)

[

p− g

p
+

1− p

p
x

]

≤ (t− 1)x(1− x).

By Proposition 14,
[

p− g

p
+

1− 2p

p
x

] [

p− g

p
+

1− p

p
x

]

≤ (t− 1)x(1 − x).

Collecting terms yields,
(

p− g

p

)2

+

[(

p− g

p

)(

2− 3p

p

)

− (t− 1)

]

x+

[(

1− 2p

p

)(

1− p

p

)

+ (t− 1)

]

x2 ≤ 0,

7



and so minimizing the left-hand side of the inequality with respect to x, we have

(

p− g

p

)2

−

[

(t− 1)−
(

p−g
p

)(

2−3p
p

)]2

4
[(

1−2p
p

)(

1−p
p

)

+ (t− 1)
] ≤ 0

(

p− g

p

)2

(4t− 5) + 2

(

p− g

p

)

(t− 1)

(

2− 3p

p

)

− (t− 1)2 ≤ 0.

Using the quadratic formula,

p− g

p
≤

−2(t− 1)
(

2−3p
p

)

+

√

4(t− 1)2
(

2−3p
p

)2
+ 4(t− 1)2(4t− 5)

2(4t− 5)

p− g ≤ t− 1

4t− 5

[

3p − 2 +
√

(2− 3p)2 + (4t− 5)p2
]

g ≥ p− t− 1

4t− 5

[

3p − 2 + 2
√

1− 3p+ (t+ 1)p2
]

.

�

The function in (3) achieves its maximum at p = 2t−1
t2+t

, and that maximum is, in fact, 1
t+1 . Hence

edForb(K2,t)(p) is at least
1

t+1 at p = 2t−1
t(t+1) and is at least 1

t+1 at p = 2
t+1 . As a result of concavity,

edForb(K2,t)(p) ≥
1

t+ 1
for p ∈

[

2t− 1

t(t+ 1)
,

2

t+ 1

]

.

Equality holds whenever t is odd because, in that case, Proposition 16 gives that edForb(K2,t)(p) ≤
1/(t+ 1), so p∗

H
must be an interval. This concludes the proof of Theorem 4.

As can be seen from an analysis of the first and second derivatives of

p(1− p)−
(

p− t− 1

4t− 5

[

3p− 2 + 2
√

1− 3p+ (t+ 1)p2
]

)

with respect to p, the maximum difference between p(1− p) and the lower bound in Theorem 3 on
the interval [0, 2

t+1 ] occurs when p = 2
t+1 as long as t ≥ 5. The ratio of this difference to the value

of p(1− p) at this point increases with t, and approaches 1/2 as t → ∞.

4. Upper bound constructions

That we have been able to determine the entire edit distance function for Forb(K2,3) and
Forb(K2,4) raises the question of whether it might be possible to do something similar for Forb(K2,t)
when t ≥ 5. That is, can we always find a few simple upper bounds that determine the entire edit
distance function? In this section we show that when t ≥ 5, the number and types of known
upper bounds for the function increases significantly, though this does not necessarily preclude the
possibility that a few, yet to be discovered, CRG constructions could determine the entire function.

We start with the following CRG construction, inspired by the theory in [4].

4.1. Results from strongly regular graph constructions.

Recall that a strongly regular graph with parameters (k, d, λ, µ) is a d-regular graph on k vertices
such that each pair of adjacent vertices has λ common neighbors, and each pair of nonadjacent
vertices has µ common neighbors. Here we develop a function based on the existence of a strongly
regular graph.

8



Suppose that K is a CRG with all vertices black and all edges white or gray that is derived from
a (k, d, λ, µ)-strongly regular graph so that the edges of the strongly regular graph correspond to
gray edges of K. In such a case we recall from [12] that

fSk,d,λ,µ
(p) =

1

k
+

(

k − d− 2

k

)

p.

As is commonly known (see [13], for instance), if a strongly regular graph with parameters
(k, d, λ, µ) exists then it is necessary, though not sufficient, for

d(d− λ− 1) = µ(k − d− 1).

If we substitute λ = t− 3 and µ = t− 1 in this equation and then solve for k, we find that

k =
t− 1 + d(d+ 1)

t− 1
,

and substituting these values into fSk,d,λ,µ
(p) yields

fSk,d,λ,µ
(p) =

t− 1

t− 1 + d(d+ 1)
+

(

1− (d+ 2)(t− 1)

t− 1 + d(d + 1)

)

p.

Fixing p and minimizing fSk,d,λ,µ
(p) with respect to d gives the following expression:

(5)
p(t− 2) + 2(t− 1)

4t− 5
− 2(t− 1)

4t− 5

√

1− 3p+ p2(t+ 1).

which is equal to the lower bound from (3) in Theorem 3.
Of course, in order to even have a chance of actually attaining (5) with a strongly regular

graph construction, both d and k = t−1+d(d+1)
t−1 must be integers. This equation, however, provides

something of a best case scenario for strongly regular graphs, and if there is a CRG, K, derived
from a (k, d, t− 3, t− 1)-strongly regular graph that realizes equation (5), then fK(p) is tangent to
the lower bound in (3) at

p =
2d+ 1

(d+ 1)(d + 3)− t
,

determining the value of edForb(K2,t)(p) exactly.
The remaining upper bounds in Theorem 9 are the result of checking constructions from the

known strongly regular graphs listed at [5]. Figure 1 is a chart of the relevant parameters and
fK(p) functions for 5 ≤ t ≤ 8.

To our knowledge, it is not known whether, for fixed t, there are a finite or infinite number of
(k, d, t−3, t−1)-strongly regular graphs. See Elzinga [8] for values of λ and µ for which the number
of strongly regular graphs with parameters (k, d, λ, µ) is known to be finite or infinite.

There is an additional construction defining the upper bound for t = 8 in Theorem 8, described
in the following section.

4.2. Cycle construction.

Definition 17 ([13], p.296). For two vertices x, y ∈ V (G), where G is a simple connected graph,
let dist(x, y) denote the length of the minimum path from x to y. The rth power of G, Gr, is the
graph with vertex set V (Gr) = V (G), and edge set E(Gr) = {xy : x 6= y and dist(x, y) ≤ r}.

Let Cr
k be the cycle on k vertices raised to the rth power. Define Ck,r to be the CRG on k black

vertices with white edges corresponding to those in Cr
k and gray edges corresponding to those in
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the complement of Cr
k. Recall that EW denotes the set of white edges for a given CRG. Then

fCk,r
(p) =

1

k2
[(1− p)k + 2p |EW|]

=
1

k2
[(1− p)k + 2p(rk)]

=

(

2r − 1

k

)

p+
1

k
.

Proposition 18. C5+t,2 forbids a K2,t embedding, and therefore edForb(K2,t)(p) ≤
3p+1
5+t

.

Proof. First, we check that C5+t,2 does not contain a gray K2,t. If u1 and u2 are any two vertices
in C2

5+t, then |(N(u1) ∪N(u2)) − {u1, u2}| ≥ 4. This inequality is justified by observing that two
vertices u1 and u2 that are neighbors in C5+t have the smallest possible number of total neighbors
in C2

5+t, and this common neighborhood has order 4. It then follows that |N(u1) ∩N(u2)| ≤ t− 1

in the complement of C2
5+t. Thus, C5+t,2 does not contain a gray K2,t.

Second, we check that C5+t,2 does not contain a gray Bt−2. If u1 and u2 are any two nonadjacent
vertices in C2

5+t, then |(N(u1) ∪N(u2)) − {u1, u2}| ≥ 6. Therefore, by reasoning similar to above,

|N(u1) ∩N(u2)| ≤ t− 3 in the complement of C2
5+t, implying C5+t,2 does not contain a gray Bt−2.

Thus, by Lemma 12, C5+t,2 forbids a K2,t embedding, and therefore edForb(K2,t)(p) ≤ fC5+t,2
(p) =

3p+1
5+t

. �

While there are several other orders and powers of cycles that would also lead to a construction
forbidding K2,t embedding, none of them have a corresponding fK(p) value that beats the upper

bound min{p(1− p), 3p+1
5+t

, 1−p
t−1 }, so we restrict our interest to this one.

For t ≥ 5, fC5+t,2
(p) is always an improvement on the bound min{p(1 − p), 1−p

t−1 } from Theorem
11, though it is improved upon or made irrelevant by bounds from strongly regular graphs, for
t ≤ 7. When t = 4, the function fC9,2

(p) is tangent to the edit distance function at p = 1/3, where
the edit distance function achieves its maximum value.

4.3. Füredi constructions.

As is observed in Lemma 12 and used in the exploration of the past two constructions, graphs
that forbid K2,t and Bt−2 as subgraphs are of interest when looking for CRGs that forbid K2,t

embedding. The following results come from examining the bipartite versions of K2,t-free graph
constructions described by Füredi [9]. This strategy mimics the one used in [10] with Brown’s
K3,3-free construction.

Proof of Theorem 5. We take the construction described in [9] for a K2,t-free graph G on n =
(q2 − 1)/(t − 1) vertices, each with degree q, where q is a prime power so that t− 1 divides q − 1.
We should note here that in the original construction from [9], loops were omitted, reducing the
degree of some vertices to q − 1. It is to our advantage, however, to leave the loops in so that the
final construction will be q-regular. By the same proof as in [9], the graph with loops still retains
the property that no two vertices have a common neighborhood greater than t − 1 even when a
looped vertex is considered to be in its own neighborhood.

Next, we create a CRG, K, by taking two copies of the vertex set {v1, . . . , vn} from the K2,t-free
graph with loops described above: {v′1, . . . , v′n}, {v′′1 , . . . , v′′n}. Color all of these k = 2n vertices
black, and let EG(K) = {v′iv′′j : vivj ∈ E(G)} with all edges not in EG(K) white.

The gray subgraph of K is bipartite, so it cannot contain a Bt−2, and since no two vertices
vi and vj from the original construction have more than t − 1 common neighbors, the common
neighborhood of two vertices in the gray subgraph of K is also at most t− 1. Thus by Lemma 12,
K forbids a K2,t embedding.
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The CRG, K, has k = 2n = 2(q2 − 1)/(t − 1) vertices and q(q2 − 1)/(t − 1) gray edges, so by
equation (1), fK(p) is as described in the statement of Theorem 5. �

Remark 19. Though the property of being bipartite is sufficient to exclude a Bt−2 subgraph, using
a bipartite K2,t-free construction may not be the optimal choice. A more efficient CRG may be
constructed from another graph that has a gray subgraph that is both K2,t- and Bt−2-free, but, for
instance, still contains triangles.

Nevertheless, we can discover more about the potential for these constructions to improve upon
the bounds for edForb(K2,t)(p) by fixing p and considering the general formula in Theorem 5 as a
continuous function with respect to q.

Lemma 20. Let t ≥ 3, and let q0 < q be prime powers such that t−1 divides both q0−1 and q−1.
If the CRG, K0, is constructed according to the proof of Theorem 5 with parameter q0 and if the
CRG, K, is constructed according to the proof of Theorem 5 with parameter q, then fK0

(p) ≤ fK(p)

for p ∈
[

2
4+q0

, 13

)

.

Proof. We begin the proof by fixing p and t and analyzing φ(q) = t−1+p(2q2−q(t−1)−2t)
2(q2−1)

. Note that

fK0
(p) = φ(q0), and fK(p) = φ(q). Consider when the derivative

φ′(q) =
(t− 1)(q2p+ p+ 4qp− 2q)

2(q2 − 1)2

is positive and, therefore, φ is increasing. Since the greater value of q that makes q2p+p+4qp−2q = 0

(note that the leading term is nonnegative) occurs at q =
(1−2p)+

√
(1−2p)2−p2

p
, it follows that

φ′(q) ≥ 0 when q ≥ (1−2p)+
√

(1−2p)2−p2

p
. If p < 1/3 and q0 ≥ 2(1−2p)

p
, then

q > q0 ≥
2(1− 2p)

p
>

(1− 2p) +
√

(1− 2p)2 − p2

p
.

Thus, φ′(q) ≥ 0 for 2
4+q0

≤ p < 1/3. Therefore fK0
(p) ≤ fK(p) for p in this interval. �

Additionally, we can make some statements about when we can expect constructions that origi-
nate from the K2,t-free graphs described by Füredi [9] to improve upon the bound p(1− p) for any
q.

Lemma 21. Fix t ≥ 9, and let q be a prime power such that t− 1 divides q− 1. Let K be the CRG

with parameter q described in the proof of Theorem 5, hence fK(p) = t−1+p(2q2−q(t−1)−2t)
2(q2−1) . Then

for any sufficiently large prime power q and corresponding K, there is an interval of values of p
on which fK(p) < p(1 − p). Moreover as q → ∞ the left-hand endpoints of these open intervals
approach 0.

That is, we can find an infinite sequence of CRG constructions that improve upon the known
bounds for Forb(K2,t) when t ≥ 9, and the intervals on which these improvements occur get arbi-
trarily close to 0.

Proof. We begin by observing that fK(p) = t−1+p(2q2−q(t−1)−2t)
2(q2−1)

= p− p(q(t−1)+2t−2)−(t−1)
2(q2−1)

. Thus if

fK(p) < p(1− p),

p− p(q(t− 1) + 2t− 2)− (t− 1)

2(q2 − 1)
< p− p2

2p2(q2 − 1) < p(q(t− 1) + 2(t− 1))− (t− 1)

2p2(q2 − 1)− p(t− 1)(q + 2) + (t− 1) < 0.(6)
11



The minimum value of 2p2(q2−1)−p(t−1)(q+2)+(t−1) occurs when p = (t−1)(q+2)
4(q2−1)

. Therefore,

the inequality above is satisfied for some q and p values if and only if

2

[

(t− 1)(q + 2)

4(q2 − 1)

]2

(q2 − 1)−
[

(t− 1)(q + 2)

4(q2 − 1)

]

(t− 1)(q + 2) + (t− 1) < 0

(t− 1)

(

1− (t− 1)(q + 2)2

8(q2 − 1)

)

< 0.

That is, fK(p) from the constructions in [9] is less than p(1 − p) for some value of p if and

only if 1 − (t−1)(q+2)2

8(q2−1)
< 0. For positive q, it is always the case that (q + 2)2 > q2 − 1, and so

any q satisfying the constraints of the original construction will improve upon the upper bound
established by p(1 − p) for some p when t ≥ 9. Furthermore, for a fixed prime power q for which

t− 1 divides q − 1 it is a definite improvement for some open neighborhood around p = (t−1)(q+2)
4(q2−1)

.

This value approaches 0 as q → ∞, and there are an infinite number of prime powers q such that
t − 1 divides q − 1 (see [9]). Thus, it is the case that for arbitrarily small p, we can find some q
such that fK(p) < p(1− p).

�

Lemma 22. Fix 5 ≤ t ≤ 8, and let q be a prime power such that t − 1 divides q − 1. Let K be

the CRG with parameter q described in the proof of Theorem 5, hence fK(p) = t−1+p(2q2−q(t−1)−2t)
2(q2−1)

.

Then

(7) q <
(t− 1) +

√

(t− 1)2 + (9− t)(t+ 1)
1
2 (9− t)

.

Proof. Returning to inequality (6) and performing a similar analysis to that in the proof of Lemma
21, we see that if t ≤ 8, then 2p2(q2 − 1) − p(t− 1)(q + 2) + (t− 1) < 0 for some value of p if and
only if

(t− 1)−
√

(t− 1)2 + (9− t)(t+ 1)
1
2 (9− t)

< q <
(t− 1) +

√

(t− 1)2 + (9− t)(t+ 1)
1
2 (9− t)

.

The lower bound for q described above is immaterial since for t ≤ 8 it is always negative. The
upper bound completes the proof of Lemma 22. �

Using Lemma 22, we generated the following table of possible q values that obey the inequality
in (7). Since we have already determined the entire edit distance function for Forb(K2,3) and
Forb(K2,4), only t = 5, 6, 7, 8 needed to be considered:

t possible q values
5 5
6 none
7 7, 13
8 8, 29

A case analysis of the fK(p) functions corresponding to these q values finds no improvement to the

bounds established by min{p(1−p), 3p+1
t+5 , 1−p

t−1 }, except in the cases when t = 7 and q = 13, and t = 8

and q = 29. In these cases, we see an improvement for the approximate ranges p ∈ (0.125, 0.1358)
and p ∈ (0.0625, 0.06667), respectively, but even these improvements are surpassed by results from
strongly regular graph constructions.

5. Conclusions

• While we have yet to determine the entire edit distance function edForb(K2,t)(p) when t ≥ 5,
strongly regular graph constructions have the potential to determine its value exactly, at
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least for certain values of p. It is likely that with the development of knowledge of strongly
regular graphs, we will see improved upper bounds for edK2,t

(p). Already, they provide
significant improvements to previously known upper bounds, in some cases realizing the
function value exactly.

• For t ≥ 9, Füredi’s K2,t-free construction leads to improvements to the bound p(1− p) for
values of p arbitrarily close to 0. In fact, analyzing inequality (6) with respect to q, indicates
that for fixed p and t ≥ 9, if an appropriate q exists such that

t− 1−
√

(t− 1)2 − 8(t− 1)(1 − 2p)− 16p2

4p
< q <

t− 1 +
√

(t− 1)2 − 8(t− 1)(1 − 2p)− 16p2

4p
,

then there is an improvement.
Meanwhile, for t ≤ 8, the upper bounds from these constructions are inferior to those

from alternative constructions. It is unknown, whether or not these improvements are best
possible, or if there is an unknown construction that could render them irrelevant too.
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Maria Axenovich for providing references on Füredi’s constructions. Thank you to Ed Marchant and
Andrew Thomason for helpful conversations and to Stephen Hartke for providing some references
on strongly regular graphs.

References

[1] Noga Alon and Uri Stav. What is the furthest graph from a hereditary property? Random Structures Algorithms,
33(1):87–104, 2008.
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t values parameters fK(p)
t ≥ 5 (13, 6, 2, 3) (1 + 5p)/13

(40, 12, 2, 4) (1 + 26p)/40
(96, 19, 2, 4) (1 + 75p)/96

t ≥ 6 (10, 6, 3, 4) (1 + 2p)/10
(17, 8, 3, 4) (1 + 7p)/17
(26, 10, 3, 4) (1 + 14p)/26
(85, 20, 3, 5) (1 + 63p)/85

t values parameters fK(p)
t ≥ 7 (16, 9, 4, 6) (1 + 5p)/16

(36, 14, 4, 6) (1 + 20p)/36
(49, 16, 3, 6) (1 + 31p)/49
(64, 18, 2, 6) (1 + 44p)/64
(100, 22, 0, 6) (1 + 76p)/100
(156, 30, 4, 6) (1 + 124p)/156

t ≥ 8 (25, 12, 5, 6) (1 + 11p)/25
(76, 21, 2, 7) (1 + 53p)/76
(125, 28, 3, 7) (1 + 95p)/125

Figure 1. Above are the known parameters (see [5]) and fK(p) functions from
strongly regular graphs that provide an improvement upon the known upper bound
for edH(p) for some interval of p values, whereH = Forb(K2,t) for 5 ≤ t ≤ 8. Param-
eters with resulting bounds surpassed by other strongly regular graph constructions
are omitted.
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Figure 2. Upper
and lower bounds
(in solid and dashed
respectively) for
edForb(K2,5)(p). Points
indicate tangency.
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Figure 3. Difference
between upper and
lower bounds for
edForb(K2,5)(p).
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Figure 4. Upper
and lower bounds
(in solid and dashed
respectively) for
edForb(K2,6)(p). Points
indicate tangency.
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Figure 5. Difference
between upper and
lower bounds for
edForb(K2,6)(p).
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Figure 6. Upper
and lower bounds
(in solid and dashed
respectively) for
edForb(K2,7)(p). Points
indicate tangency.
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Figure 7. Difference
between upper and
lower bounds for
edForb(K2,7)(p).
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Figure 8. Upper
and lower bounds
(in solid and dashed
respectively) for
edForb(K2,8)(p). In this
instance there are no
points of tangency.
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Figure 9. Difference
between upper and
lower bounds for
edForb(K2,8)(p).
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