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ON THE EDIT DISTANCE FROM K2,t-FREE GRAPHS I: CASES t = 3, 4

RYAN MARTIN AND TRACY MCKAY

Abstract. The edit distance between two graphs on the same vertex set is defined to be size of
the symmetric difference of their edge sets. The edit distance function of a hereditary property, H,
is a function of p, and measures, asymptotically, the furthest graph of edge density p from H under
this metric.

The edit distance function has proven to be difficult to compute for most hereditary properties.
A number of surprising connections to classical extremal graph problems, such as the problem of
Zarankiewicz, have been uncovered in attempts to compute various edit distance functions. In this
paper, we address the hereditary property Forb(K2,t), the property of having no induced copy of
the complete bipartite graph with 2 vertices in one class and t in the other, in the cases t = 3 and
t = 4. We are able to, with a variety of techniques, determine the edit distance function over the
entire domain p ∈ [0, 1].

1. Introduction

The study of edit distance in graphs initially appeared in papers by Axenovich, Kézdy and the
first author [2] and, independently, by Alon and Stav [1]. It has several potential applications,
as described in [1], especially to property testing problems in theoretical computer science. More
recently, interest has been shown in determining the value of the edit distance function, introduced
in [3] by Balogh and the first author. Strategies for determining this function appear in [7], by
Marchant and Thomason, as well as in [8].

Let G(n, p) denote the Erdős-Rényi random graph on n vertices with edge probability p. Given
a hereditary property (that is, a set of graphs closed under vertex deletion and isomorphism) how
many edge additions or deletions are necessary to make G(n, p) a member of the property? What
is the behavior of this value as n → ∞? In [2], the binary chromatic number of a graph H is used
as a means of bounding this value when the hereditary property can be defined as all graphs that
forbid H as an induced subgraph. These methods give an exact result in some cases, most notably
when H is self-complementary.

In [1], a version of Szemerédi’s regularity lemma is applied to show that as n → ∞, the number
of edge changes necessary to make G(n, p) a member of a given hereditary property approaches the
maximum possible number over all n-vertex graphs within o(n2) so long as p is chosen correctly
with respect to the given hereditary property, H. The edit distance function, edH(p), from [3],
describes the expected normalized edit distance of G(n, p) as n → ∞ for all probabilities p. Not
surprisingly, the maximum value of this function occurs at the same p value described in [1].

In this paper, we explore what can be said about the edit distance function for the hereditary
property Forb(K2,t), the set of all graphs that do not contain a complete bipartite graph with
cocliques of 2 and t vertices as an induced subgraph. In particular, we determine the entire edit
distance functions for the hereditary properties of forbidding induced K2,3 and K2,4 subgraphs,
denoted Forb(K2,3) and Forb(K2,4), respectively.
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Prior results and notation come primarily from [8], as well as previous work: [1], [2], [3], [7];
however, there are a number of other excellent resources on related topics. For a more extensive
review of this literature, the reader may wish to consult Thomason [10]. We now introduce some
important definitions and state our results more rigorously.

1.1. Definitions.

We begin by recalling some important definitions relating to edit distance.

Definition 1 (Alon-Stav [1]; Axenovich-Kézdy-RM [2]). Let G and H be simple graphs on the
same labeled vertex set, and let H be a hereditary property, then

(1) Dist(G,H) = |E(G)∆E(H)| is the edit distance from G to H,
(2) Dist(G,H) = min{Dist(G,H) : H ∈ H} is the edit distance from G to H and
(3) Dist(n,H) = max{Dist(G,H) : |G| = n} is the maximum edit distance from the set of all

n-vertex graphs to the hereditary property H.

SinceH is by definition closed under isomorphism, vertex labels may be ignored when considering
Dist(G,H). In fact, Dist(G,H) could be defined equivalently as the minimum number of edge
changes necessary to make G a member of H.

The limit of the maximum edit distance from an n-vertex graph to a hereditary property H
normalized by the total number of potential edges in an n-vertex graph,

d∗H = lim
n→∞

Dist(n,H)/
(

n
2

)

,

is demonstrated in [1] to exist and to be realized asymptotically with high probability by the random
graph G(n, p∗), where p∗ ∈ [0, 1] is a probability that depends on H and is not necessarily unique.

Definition 2 ([3]). The edit distance function of a hereditary property H is defined as follows:

edH(p) = lim
n→∞

max
{

Dist(G,H) : |V (G)| = n, |E(G)| = ⌊p
(

n
2

)

⌋
}

/
(

n
2

)

.

This function has also been denoted as gH(p) in, for example, [3]. The limit above was proven to
exist in [3], and furthermore, edH(p) is both continuous and concave down. As a result, the edit
distance function attains a maximum value that is equal to d∗H. The point, or interval, at which
d∗H is attained is denoted p∗H, and when it is evident from context, the subscript H may be omitted
from both.

1.2. New Results.

In this paper, we prove the following results for the hereditary properties Forb(K2,3) and Forb(K2,4).
The case of K2,2 is mentioned in Section 5.3 of [7].

Theorem 3. Let H = Forb(K2,3). Then edH(p) = min{p(1− p), 1−p
2 } with p∗H = 1

2 and d∗H = 1
4 .

Theorem 4. Let H = Forb(K2,4). Then edH(p) = min{p(1 − p), 7p+1
15 , 1−p

3 } with p∗H = 1
3 and

d∗H = 2
9 .

It should be noted that p∗H and d∗H from Theorem 3 could be found using alternative methods
from previous literature as well. In fact, they are a direct result of Lemma 5.14 in [7], as is the
value of edH(p) for p ≥ 1/2 in both theorems. The p∗H and d∗H values in Theorem 4, however, are
not so easily found. The techniques used to prove both theorems also have the potential to yield
some results for edH(p) when H = Forb(K2,t) and t ≥ 5, as discussed in [9].
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Figure 1. Plot of
edForb(K2,3)(p) =
min{p(1 − p), (1 −
p)/2}. The point
(p∗, d∗) = (1/2, 1/4) is
indicated.
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Figure 2. Plot of
edForb(K2,4)(p) =
min{p(1 − p), (1 +
7p)/15, (1 − p)/3}.
The point (p∗, d∗) =
(1/3, 2/9) is indicated.

1.3. CRGs and Background.

To help describe how edH(p) may be calculated, some definitions from [1] are required.

Definition 5 (Alon-Stav [1]). A colored regularity graph (CRG), K, is a complete graph with
vertices colored black or white, and with edges colored black, white or gray.

At times, it may be convenient to refer to the graph induced by edges of a particular color
in a CRG, K. We shall refer to these graphs as the black, white and gray subgraphs of K. The
investigation of edit distance in [7] and in [10] uses a different paradigm with an analogous structure
called a type. Essentially, our black, white and gray are their red, blue and green, respectively.

Definition 6 (Alon-Stav [1]). A colored homomorphism from a (simple) graph H to a colored
regularity graph K is a mapping φ : V (H) 7→ V (K), which satisfies the following:

(1) If uv ∈ E(H), then either φ(u) = φ(v) = m and m is colored black, or φ(u) 6= φ(v) and the
edge φ(u)φ(v) is colored black or gray.

(2) If uv /∈ E(H), then either φ(u) = φ(v) = m and m is colored white, or φ(u) 6= φ(v) and the
edge φ(u)φ(v) is colored white or gray.

Basically, a colored homomorphism is a map from a simple graph to a CRG so that black is
only associated with adjacency, white is only associated with nonadjacency and gray is associated
with adjacency, nonadjacency or both. We will refer to a colored homomorphism from a simple
graph H to a CRG K as an embedding of H in K, and we denote the set of all CRGs that
only allow the embedding of simple graphs in a hereditary property H as K(H) or merely K
when H is clear from the context. Since any hereditary property may be described by a set of
forbidden induced subgraphs, an equivalent description of K(H) is the set of all CRGs that do not
permit the embedding of any of the forbidden induced subgraphs associated with H. For instance,
K(Forb(K2,3)) is the set of all CRGs that do not admit K2,3 embedding.

In order to calculate edH(p), colored regularity graphs are used in [3] in order to define the
following functions:

fK(p) =
1

k2
[p(|VW(K)|+ 2|EW(K)|) + (1− p)(|VB(K)|+ 2|EB(K)|)]

gK(p) = min{uTMK(p)u : uT1 = 1 and u ≥ 0}.

3



Here K is a CRG with k vertices. VW(K), VB(K), EW(K) and EB(K) represent the sets of
white vertices, black vertices, white edges and black edges in K respectively. MK is essentially
a weighted adjacency matrix for K with black vertices and edges receiving weight 1 − p, white
vertices and edges receiving weight p and gray edges receiving weight 0. From [1], it is known
that edH(p) = infK∈K{fK(p)} = infK∈K{gK(p)}. Moreover, Alon and Stav [1] show that if χB

is the binary chromatic number of H, then edH(1/2) = 1/(χB − 1). Marchant and Thomason,
demonstrate in [7] that edH(p) = minK∈K{gK(p)}. That is, given p there exists at least one CRG,
K ∈ K, such that edH(p) = gK(p).

If we say a CRG, K, is a sub-CRG of another CRG, K ′, when VW(K) ⊆ VW(K ′), VB(K) ⊆
VB(K ′), EW(K) ⊆ EW(K ′) and EB(K) ⊆ EB(K ′), then it may be observed that gK(p) ≥ gK ′(p).
Furthermore, as was noted in [7], if gK(p) = gK ′(p), then there is no need to consider both K and
K ′ when attempting to determine minK∈K{gK(p)}. Thus, a special subset of CRGs is defined as
follows.

Definition 7 (Marchant-Thomason [7]). A p-core CRG is a CRG K ′ such that for no nontrivial
sub-CRG K of K ′ is it the case that gK(p) = gK ′(p). In other words, if K ′ is a p-core CRG, and
K is a nontrivial sub-CRG of K ′, then gK(p) > gK ′(p).

It can be shown (see [7]) that a CRG, K, is p-core if and only if gK(p) = xTMK(p)x for a unique
vector x with positive entries summing to 1. Any CRG, K, that is not p-core contains at least one
p-core sub-CRG K ′ so that gK ′(p) = gK(p). Thus we could also say that

edH(p) = min{gK(p) : K ∈ K and K is p-core}.
That is, when looking for CRGs to determine edH(p), the search may be limited to the important

subset of CRGs, p-cores. This observation is especially helpful for determining lower bounds for
the edit distance function.

To prove the main results in this paper, we first show that for each p there exists a CRG, K ∈ K,
so that either fK(p) or gK(p) is equal to the function value in the theorem, giving an upper bound
for the value of edH(p). Then, employing a method called “localization” in [8], features of the
graphs K2,t, and the concavity of the edit distance function, we demonstrate that for no p-core
CRG, K ∈ K, can gK(p) be less than the value in the theorem, justifying our conclusions.

By the continuity of the edit distance function, if we know the value of the function on an open
interval, then we also know the value on its closure. Hence, for convenience, most of our proofs will
only address the value of the function on the interior of a given interval. We also note that, in [8],
whenever the edit distance function of a hereditary property is computed, there is an attempt to
determine all of the p-core CRGs that achieve the value of the edit distance function. In this paper
we only concern ourselves with the value of the edit distance function itself and do not address the
issue of multiple defining constructions, though careful study of the proof techniques should enable
others to classify all of the relevant CRGs.

1.4. The Zarankiewicz problem and strongly regular graphs.

One reason for our interest in the edit distance function for Forb(K2,t) is its relation to the
Zarankiewicz problem. This problem addresses the question of how many edges a graph can have
before it must contain a Ks,t subgraph for fixed s and t. In an intriguing result from [7], a
construction from Brown [5] for K3,3-free graphs is applied to construct an infinite set of new
CRGs that improve upon the previously known bounds for edForb(K3,3)(p) on certain intervals for
arbitrarily small p.

Marchant and Thomason [7] establish that it is sufficient to consider only p-core CRGs for which
the gray subgraph has neither a K3 nor a K3,3. Brown’s constructions are not K3-free, but a
bipartite graph can be created from the construction that has no copy of K3,3. Similarly, for K2,t,
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it is sufficient to have no gray K2,t or Bt−2 to forbid K2,t embedding. The graph Bt−2 is a “book”
as defined in [6]. We define books precisely in Lemma 12.

Although the Brown constructions show that the edit distance function for Forb(K3,3) is strictly
less than p(1− p)/(1+ p) for sufficiently small p, known constructions for dense K2,t-free graphs do
not play a role in the computation of the edit distance function for Forb(K2,3) or Forb(K2,4) in the
same way. However, the edit distance function for Forb(K2,4) is achieved over the interval [1/5, 1/3]
by a construction formed from a strongly regular graph, namely a generalized quadrangle, often
denoted GQ(2, 2). This graph is a so-called (15, 6, 1, 3)-strongly regular graph.

1.5. Organization.

In Section 2, we discuss some results from [7] and [8] for the edit distance function and how they
may be applied to the problem of determining the function for Forb(K2,t). We then proceed to
some general results and observations in Section 3 that will be useful throughout the remainder
of the paper. Sections 4 and 5 contain the proofs of our results for Forb(K2,3) and Forb(K2,4),
respectively. The final sections are reserved for conclusions and acknowledgements.

2. Applications of past results to Forb(K2,t)

If a CRG is p-core, one can say some interesting things about its overall structure. From [7], for
instance, we have the following useful result.

Theorem 8 (Marchant-Thomason [7]). If K is a p-core CRG, then all edges of K are gray except

• if p < 1/2, some edges joining two black vertices might be white or
• if p > 1/2, some edges joining two white vertices might be black.

The CRGs with all edges gray are useful in bounding the edit distance function, as we see in [8].

Definition 9. Let K(w, b) denote the CRG with w white vertices, b black vertices and only gray
edges. In particular:

(1) Let K(1, 1) be the CRG consisting of a white and black vertex joined by a gray edge.
(2) Let K(0, t− 1) be the CRG consisting of t− 1 black vertices all joined by gray edges.

Theorem 10 settled the case of K2,2, and Theorem 11 permits us to focus on black-vertex CRGs.

Theorem 10 (Marchant-Thomason [7]). Let H =Forb(K2,2). Then edH(p) = gK(1,1)(p) = p(1−p)

with p∗H = 1
2 and d∗H = 1

4 .

Theorem 11 (Marchant-Thomason [7]). Let H = Forb(K2,t), t > 2. Then

(1) For p > 1
2 , edH(p) = gK(0,t−1)(p) =

1−p
t−1 and

(2) For p ≤ 1
2 , either

• edH(p) = min{gK(1,1)(p), gK(0,t−1)(p)}, or
• edH(p) = gK(p) < min{gK(1,1)(p), gK(0,t−1)(p)}, where K is a p-core CRG with only
black vertices and, consequently, no black edges.

The following lemma is about the structure of the p-core CRGs described in the second part of
Theorem 11. It was originally observed in Example 5.16 of [7]. The proof is a straightforward case
analysis

Lemma 12 (Marchant-Thomason [7]). A CRG, K, on all black vertices with only white and gray
edges forbids K2,t embedding if and only if its gray subgraph contains no K2,t or Bt−2 as a subgraph,
where Bt−2 is a book as described in [6]. That is, the graph Bt−2 is defined to be the graph consisting
of t− 2 triangles that all share a single common edge.

5



As demonstrated in [7], for a p-core CRG, K, there is a unique vector x so that gK(p) =
xTMK(p)x.

Definition 13 (Marchant-Thomason [7]). For a p-core CRG K with optimal weight vector x, the
entry of x corresponding to a vertex, v ∈ V (K), is denoted by x(v). This is the weight of v, and
the function x(v) is the optimal weight function.

With this in mind, we have two propositions from [8], which follow easily from [7].

Proposition 14 ([8]). Let K be a p-core CRG with all vertices black. Then for any v ∈ V (K)

and optimal weighting x, dG(v) =
p−gK(p)

p
+ 1−2p

p
x(v), where dG(v) is the sum of the weights of the

vertices adjacent to v via a gray edge.

Proposition 15 ([8]). Let K be a p-core CRG with all vertices black, then for p ∈ [0, 1/2] and
optimal weighting x,

x(v) ≤ gK(p)

1− p
, ∀v ∈ V (K).

Because of Theorem 11, we may restrict our attention to those CRGs, K, for which gK(p) ≤
p(1 − p). As a result, Proposition 14 gives the lower bound dG(v) ≥ p + 1−2p

p
x(v). Meanwhile,

Proposition 15 restricts the optimal weights of all vertices in K to be no more than p. These two
restrictions are useful when attempting to prove lower bounds for edForb(K2,t)(p).

3. Preliminary results and observations

We begin with some notation used throughout the paper for convenience.

Definition 16. Let K be a black-vertex, p-core CRG with gK(p) ≤ p(1 − p) and optimal weight
function x:

• NG(v) = {y ∈ V (K) : vy ∈ EG(K)},
• u0 is a fixed vertex in K such that x(u0) ≥ x(v), for all v ∈ V (K), and x = x(u0) is its
weight,

• U = NG(u0) and |U | = ℓ,
• u1 is a fixed vertex with maximum weight in U , and x1 = x(u1),
• W is the set of all vertices in K that are neither u0, nor contained in U , or equivalently,
W is the set of all vertices in the white neighborhood of u0 and

• x(S) =
∑

y:y∈S x(y) for some set S ⊆ V (K).

Partitioning the vertices in a black-vertex, p-core CRG that forbids a K2,t embedding into the
three sets {u0}, U and W as seen in Figure 3, illustrates some interesting features of its optimal
weight function when the gray neighborhoods of these vertices are examined. One such feature is
the upper bounds in Proposition 17 for x1.

Proposition 17. Let K ∈ [K(Forb(K2,3)) ∪ K(Forb(K2,4))] be a black-vertex, p-core CRG. If either
p < 1/3 or both p < 1/2 and the gray sub-CRG of K is triangle-free, then

x1 ≤ x and x1 ≤ p− x

where x = x(u0) is the maximum weight of a vertex in K, and x1 = x(u1) is the maximum weight
of a vertex in that vertex’s gray neighborhood.

Proof. The inequality x1 ≤ x follows directly from definitions of x1 and x, since x is the greatest
weight in K. To justify the inequality x1 ≤ p− x, we break the problem into two cases:

Case 1: u0 and u1 have no common gray neighbor.

6



W

u0

U

Figure 3. A partition of the vertices in a black-vertex, p-core CRG, K. Dashed
lines and gray background represent gray edges. White edges are omitted, as are
edges within subsets.

Recall that u1 is a vertex with maximum weight in the gray neighborhood of u0, a vertex with
maximum weight in all of K and assume that x + x1 > p. Then applying Proposition 14 and
Theorem 11,

dG(u0) + dG(u1) ≥
[

p+
1− 2p

p
x

]

+

[

p+
1− 2p

p
x1

]

= 2p+

(

1− 2p

p

)

(x+ x1) > 2p+ (1− 2p).

This is a contradiction because in Case 1, NG(u0) ∩ NG(u1) = ∅. Thus, dG(u0) + dG(u1) ≤ 1,
since the sum of the weights of the vertices in K must be 1.

This completes the proof of Proposition 17 for K ∈ K(Forb(K2,3)) since, in this case, no K ∈ K
contains a gray triangle. So we may assume that K ∈ K(Forb(K2,4)).

Case 2: u0 and u1 have a common gray neighbor and p < 1/3.

In this case, u1 has a single neighbor u2 in U because any more such neighbors would result in a
gray B2. Furthermore, we note that in order to avoid a gray B2, the common neighborhood of u1
and u2 in W must be empty. Consequently, dG(u1) + dG(u2) ≤ x(W ) + 2x+ x1 + x(u2).

Applying similar reasoning to that in Case 1,

dG(u0) + dG(u1) + dG(u2) ≥
[

p+
1− 2p

p
x

]

+

[

p+
1− 2p

p
x1

]

+

[

p+
1− 2p

p
x(u2)

]

.

So,

dG(u0) + (x(W ) + 2x+ x1 + x(u2)) ≥
[

p+
1− 2p

p
x

]

+

[

p+
1− 2p

p
x1

]

+

[

p+
1− 2p

p
x(u2)

]

x(U) + (x(W ) + 2x+ x1 + x(u2)) ≥ 3p+
1− 2p

p
(x+ x1 + x(u2))

x(U) + x(W ) + x ≥ 3p+
1− 3p

p
(x+ x1 + x(u2))

1 ≥ 3p+
1− 3p

p
(x+ x1 + x(u2)) .

With p < 1/3 and x+ x1 ≥ p, we have a contradiction. �

Applying the pigeon-hole principle, we also have the following lower bound for ℓ:
7



Fact 18. In a CRG, if u0 is a vertex with maximum weight, x = x(u0), the maximum weight
in the gray neighborhood of u0 is x1 and the order of the gray neighborhood of u0 is ℓ, then ℓ ≥
dG(u0)/x1 ≥ dG(u0)/x.

While simple, when combined with Propositions 14 and 17 along with the observation that
x(u0) + x(U) + x(W ) = 1, this fact forces a delicate balance between the weights of the vertex u0,
the vertices in U and the vertices in W .

4. Proof of Theorem 3

In this section, we establish the value of edForb(K2,3)(p) for p ∈ (0, 1/2), determining the entire

function through continuity and Theorem 11, which gives that edForb(K2,3)(p) = (1 − p)/2 for

p ∈ [1/2, 1].
For the following discussion, we assume that K is a p-core CRG on all black vertices into which

K2,3 may not be embedded and that gK(p) ≤ p(1 − p). The following lemma yields a useful
restriction of the order of U itself.

Lemma 19. Let K be a black-vertex, p-core CRG with p ∈ (0, 1/2), no gray triangles, no gray K2,3

and gK(p) ≤ p(1− p). If u0 is a vertex of maximum weight, x, in K, and ℓ = |NG(u0)|, then

ℓ ≤
2(1 − x)− 1

p
dG(u0)

p− x
.

Proof. Let u1, . . . , uℓ be an enumeration of the vertices in U , the gray neighborhood of u0. Observe
that K cannot contain a K3 with all gray edges, and so U contains no gray edges. Therefore, with
the exception of u0, the entire gray neighborhood of each ui is contained in W . Furthermore, if
any three vertices in U had a common gray neighbor in W , then K would contain a gray K2,3.
That is, each vertex in W is adjacent to at most 2 vertices in U via a gray edge. Applying these
observations,

ℓ
∑

i=1

(dG(ui)− x) ≤ 2x(W ).

Using Proposition 14 and the fact that x(W ) = 1− x− dG(u0),

ℓ
∑

i=1

(

p− x+
1− 2p

p
x(ui)

)

≤ 2x(W )

ℓ(p − x) +
1− 2p

p
dG(u0) ≤ 2 (1− x− dG(u0))

ℓ(p− x) ≤ 2− 2x− 1

p
dG(u0)

ℓ ≤
2(1− x)− 1

p
dG(u0)

p− x
.

�

The following technical lemma is an important tool in the proof of the Theorem.

Lemma 20. Let K be a black-vertex, p-core CRG for p ∈ (0, 1/2) with no gray triangles, no gray
K2,3 and gK(p) ≤ p(1− p). If x and x1 are defined as in Proposition 17, then

[

p+
1− 2p

p
x

] [

1

x1
+

1

p(p− x)

]

≤ 2(1 − x)

p− x
.
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Proof. By Fact 18, ℓ ≥ dG(u0)
x1

, and by Lemma 19, ℓ ≤ 2(1−x)− 1

p
dG(u0)

p−x
. Therefore,

dG(u0)

x1
≤

2(1 − x)− 1
p
dG(u0)

p− x
.

After combining dG(u0) terms we get,

dG(u0)

[

1

x1
+

1

p(p− x)

]

≤ 2(1 − x)

p− x
,

and then applying Proposition 14,

[

p+
1− 2p

p
x

] [

1

x1
+

1

p(p− x)

]

≤ 2(1 − x)

p− x
.

�

We now turn to the proof of the main theorem for this section.

Proof of Theorem 3. Let p ∈ (0, 1/2), and K be a black-vertex, p-core CRG with gK(p) < p(1− p)
and no gray triangle (i.e., the book B1) or gray K2,3.

With the above assumptions, we will show that there is no possible value for x, the value of the
largest vertex-weight. To do so, we break the problem into 2 cases: x ≥ p

2 and x < p
2 .

Case 1: x ≥ p/2.

We start with the inequality from Lemma 20,

[

p+
1− 2p

p
x

] [

1

x1
+

1

p(p− x)

]

≤ 2(1 − x)

p− x
,

and apply the bound x1 ≤ p− x from Proposition 17 to get

[

p+
1− 2p

p
x

] [

1

p− x
+

1

p(p− x)

]

≤ 2(1− x)

p− x
.

From Proposition 15, p− x > 0, and so

[

p+
1− 2p

p
x

] [

1 +
1

p

]

≤ 2(1 − x)

x

(

1− p

p2

)

≤ 1− p

x ≤ p2,

a contradiction, since p
2 > p2 for p ∈ (0, 1/2).

Case 2: x < p/2.

We again apply Lemma 20, only now we employ the trivial bound x1 ≤ x from Proposition 17:
9



[

p+
1− 2p

p
x

] [

1

x
+

1

p(p− x)

]

≤ 2(1 − x)

p− x
[

p+
1− 2p

p
x

]

[p(p− x) + x] ≤ 2px(1 − x)

(4p2 − 3p+ 1)x2 − (3p3)x+ p4 ≤ 0.

Observe that 4p2−3p+1 is always positive, and therefore the parabola (4p2−3p+1)x2−(3p3)x+p4

with respect to x is concave up, so the range of x values for which this inequality is satisfied is
x ∈ [x′, x′′] where

x′ =
3p3 −

√

−4p4 + 12p5 − 7p6

2(1− 3p+ 4p2)
and x′′ =

3p3 +
√

−4p4 + 12p5 − 7p6

2(1 − 3p+ 4p2)
.

If p < (6− 2
√
2)/7, then neither x′ nor x′′ is real. For p ∈

[

6−2
√
2

7 , 12

)

, routine calculations show

that p
2 < x′, a contradiction to the assumption that x < p/2.

Hence, there is no possible value for x if edForb(K2,3)(p) < p(1− p), so the proof is complete. �

5. Proof of Theorem 4

This section addresses the case for edForb(K2,4)(p).

5.1. Upper bounds.

Recall that from Theorem 11 we already know that edForb(K2,4)(p) ≤ min{p(1− p), 1−p
3 }.

For the remaining upper bound, we turn to strongly regular graphs:

Definition 21. A (k, d, λ, µ)-strongly regular graph is a graph on k vertices such that each
vertex has degree d, each pair of adjacent vertices has exactly λ common neighbors and each pair
of nonadjacent vertices has exactly µ common neighbors.

Lemma 22. Let H = Forb(K2,t). If there exists a (k, d, λ, µ)-strongly regular graph with λ ≤ t− 3
and µ ≤ t− 1, then

edH(p) ≤
1

k
+

k − d− 2

k
p.

Proof. Let G be the aforementioned strongly regular graph. We construct a CRG, K, on k black
vertices with gray edges in K corresponding to adjacent vertices in G and white edges in K corre-
sponding to nonadjacent vertices in G.

If no pair of adjacent vertices has t − 2 common neighbors, then there is no book Bt−2 in the
gray subgraph. If no pair of vertices has t common neighbors, then there is no K2,t in the gray
subgraph. By Lemma 12, K2,t 67→ K. Furthermore,

fK(p) =
1

k2

[

(1− p)k + 2p

((

k

2

)

− dk

2

)]

=
1

k
+

k − d− 2

k
p.

�
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In fact, there is a (15, 6, 1, 3)-strongly regular graph [4]. It is a so-called “generalized quadrangle,”
GQ(2, 2). As a result,

edForb(K2,4)(p) ≤ min

{

p(1− p),
1 + 7p

15
,
1− p

3

}

.

A list of known strongly regular graphs and their parameters has been compiled by Andries
Brouwer [4]. Their implications for edForb(K2,t)(p) in general are explored further in [9].

5.2. Lower bounds.

Because the edit distance function is both continuous and concave down, it is sufficient to verify
that edForb(K2,4)(p) ≥ p(1−p) for p ∈ (0, 1/5) and that edForb(K2,4)(p) ≥ (1−p)/3 for p ∈ (1/3, 1/2).

This is because the line determined by the bound 1+7p
15 passes through the points (1/5, 4/25) and

(1/3, 2/9). Furthermore, by Theorem 11, we need only consider CRGs that have black vertices and
white and gray edges.

Lemmas 23 and 26 settle the cases where p ∈ (1/3, 1/2) and where p ∈ (0, 1/5), respectively.

Lemma 23. Let p ∈ (1/3, 1/2). If K is a black-vertex, p-core CRG that does not contain a gray

book B2 or a gray K2,4, then gK(p) ≥ 1−p
3 , with equality occurring only if K is a gray triangle (i.e.,

K ≈ K(0, 3)).

Proof. We break this into two cases, as to whether or not K has a gray triangle.

Case 1: K has a gray triangle.

Let the gray subgraph of K contain a triangle whose vertices are v1, v2 and v3 with optimal
weights y1, y2 and y3, respectively. Because K has no gray B2, we know that no pair of the vertices
v1, v2, v3 have a common gray neighbor other than the remaining vertex in the triangle. Letting
g = gK(p), we have the following because the sum of the optimal weights on all vertices in K is 1:

y1 + y2 + y3 +

3
∑

i=1

[dG(vi)− (y1 + y2 + y3 − yi)] ≤ 1.

Then, applying Proposition 14,

y1 + y2 + y3 + 3

(

p− g

p

)

+
1− 2p

p
(y1 + y2 + y3)− 2(y1 + y2 + y3) ≤ 1

3

(

p− g

p

)

+
1− 3p

p
(y1 + y2 + y3) ≤ 1,

and so

2p− 3g

p
≤

(

3p− 1

p

)

(y1 + y2 + y3) ≤
3p− 1

p
.

Consequently, g ≥ (1 − p)/3 with equality if and only if y1 + y2 + y3 = 1; i.e., K itself is a gray
triangle.

Case 2: K has no gray triangle.

Let u0 be a vertex of largest weight, x = x(u0), and let U = NG(u0). The absence of a gray
triangle means that there are no gray edges between pairs of vertices in U . Furthermore, no vertex
in W can be adjacent to more than three vertices in U via a gray edge, since by Lemma 12, the
gray subgraph of K does not contain a K2,4.

11



Let u1, . . . , uℓ be an enumeration of the vertices in U with weights x1, . . . , xℓ, respectively, and
g = gK(p). Then

ℓ
∑

i=1

(dG(ui)− x) ≤ 3x(W )

≤ 3(1− x− x(U)),

and applying Proposition 14 to compute dG(ui),

ℓ
∑

i=1

(

p− g

p
+

1− 2p

p
xi − x

)

≤ 3(1− x− x(U))

ℓ

(

p− g

p
− x

)

+
1− 2p

p
x(U) ≤ 3(1− x)− 3x(U)

ℓ

(

p− g

p
− x

)

≤ 3(1− x)− 1 + p

p
x(U).(1)

First, suppose ℓ ≥ 5. Then, from inequality (1), we have

5

(

p− g

p
− x

)

≤ 3(1 − x)− 1 + p

p
x(U),

and applying Proposition 14 again,

5

(

p− g

p
− x

)

≤ 3(1− x)− 1 + p

p

(

p− g

p
+

1− 2p

p
x

)

1 + 6p

p
· p− g

p
− 3 ≤

(

5− 3− 1 + p

p
· 1− 2p

p

)

x

p(1 + 3p)− g(1 + 6p) ≤ x
(

4p2 + p− 1
)

.

If 4p2 + p− 1 < 0, then we may use the fact that x > 0,

g >
p(1 + 3p)

1 + 6p
=

1− p

3
+

(3p − 1)(1 + 5p)

3(1 + 6p)
.

If 4p2 + p− 1 ≥ 0, then we use Proposition 15 and substitute x = g/(1 − p),

p(1 + 3p)− g(1 + 6p) ≤ g

1− p

(

4p2 + p− 1
)

p(1 + 3p) ≤ g

(

6p − 2p2

1− p

)

1− p

3
+

(1− p)(11p − 3)

6(3 − p)
≤ g.

Regardless of the value of p ∈ (1/3, 1/2), if ℓ ≥ 5, then g > (1 − p)/3. Therefore, we may assume
that ℓ ≤ 4.

Second, suppose ℓ ≤ 2. Then by Fact 18 we have ℓ ≥ x(U)/x, yielding

x(U)/x ≤ ℓ ≤ 2,

and so bounding x(U) using Proposition 14,

1

x

(

p− g

p
+

1− 2p

p
x

)

≤ 2

p− g

p
≤ 4p− 1

p
x.

12



Using Proposition 15, x ≤ g/(1 − p) yields

p− g

p
≤ 4p− 1

p
· g

1− p

p(1− p) ≤ 3pg,

and so if ℓ ≤ 2, then g ≥ (1− p)/3, with equality if and only if x = g/(1− p), and consequently, K
is a gray triangle. So, we may further assume that ℓ ∈ {3, 4}.

Third, suppose ℓ = 3.

x(U)/x ≤ 3

p− g

p
≤ 5p − 1

p
x

p− g

5p− 1
≤ x.

Returning to inequality (1), we have

3

(

p− g

p
− x

)

≤ 3(1− x)− 1 + p

p
x(U)

1 + 4p

p
· p− g

p
− 3 ≤ −

[

1 + p

p
· 1− 2p

p

]

x

p(1 + p)− g(1 + 4p) ≤ −(1 + p)(1 − 2p)

(

p− g

5p− 1

)

p(1 + p)(5p − 1) + p(1 + p)(1− 2p) ≤ g [(1 + p)(1− 2p) + (1 + 4p)(5p − 1)]

1 + p

6
≤ g

1− p

3
+

3p − 1

6
≤ g.

If ℓ = 3, then g > (1− p)/3.
Fourth, and finally, suppose ℓ = 4.

x(U)/x ≤ 4

p− g

p
≤ 6p − 1

p
x

p− g

6p− 1
≤ x.

Returning to inequality (1), we have

4

(

p− g

p
− x

)

≤ 3(1− x)− 1 + p

p
x(U)

1 + 5p

p
· p− g

p
− 3 ≤

[

4− 3− 1 + p

p
· 1− 2p

p

]

x

p(1 + 2p)− g(1 + 5p) ≤
[

3p2 + p− 1
]

x.
13



If 3p2 + p− 1 < 0, then we use the fact that x ≥ (p− g)/(6p − 1):

p(1 + 2p)− g(1 + 5p) ≤
[

3p2 + p− 1
]

[

p− g

6p − 1

]

p(1 + 2p)− p(3p2 + p− 1)

6p− 1
≤ g

[

1 + 5p− 3p2 + p− 1

6p − 1

]

1 + 3p

9
≤ g

1− p

3
+

2(3p − 1)

9
≤ g.

If 3p2 + p− 1 ≥ 0, then we use Fact 18 to bound x ≤ g/(1 − p),

p(1 + 2p)− g(1 + 5p) ≤
[

3p2 + p− 1
]

[

g

1− p

]

p(1 + 2p) ≤ g

[

1 + 5p+
3p2 + p− 1

1− p

]

(1− p)(1 + 2p)

5− 2p
≤ g

1− p

3
+

2(4p − 1)(1 − p)

3(5− 2p)
≤ g.

Regardless of the value of p ∈ (1/3, 1/2), if ℓ = 4, then g > (1− p)/3.
This ends Case 2 and the proof of the lemma. �

Before we prove Lemma 26, there are two propositions that are necessary and used in several
cases.

Proposition 24. Let p ∈ (0, 1/2), and let K be a black-vertex, p-core CRG with no gray book B2

and no gray K2,4. If g = gK(p), U = NG(u0), ℓ = |U | and U1 ⊆ U is the set of vertices in U that
are incident to a gray edge in U , then

ℓ

(

p− g

p
− x

)

≤ 3− 3x− 1 + p

p
x(U) + x(U1) ≤ 3− 3x− 1

p
x(U).

Proof. Let u1, . . . , uℓ be an enumeration of the vertices of U . Then

ℓ
∑

i=1

(dG(ui)− x)− x(U1) ≤ 3(1 − x− x(U)),

and applying Proposition 14,

ℓ
∑

i=1

(

p− g

p
+

1− 2p

p
x(ui)− x

)

− x(U1) ≤ 3(1 − x− x(U)).

Simplification yields the first inequality. The second inequality results from observing that x(U1) ≤
x(U). �

Proposition 25. Let p ∈ (0, 1/2), and let K be a black-vertex, p-core CRG with no gray book B2

and no gray K2,4. If gK(p) ≤ p(1− p), then both

p ≥ 9− 4
√
3

11
and x ≥ p2

2(1 − 3p+ 5p2)

[

1 + 3p−
√

−3 + 18p − 11p2
]

≥ 1

25
.
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Proof. We begin with Proposition 24 and then use ℓ ≥ x(U)/x from Fact 18:

ℓ

(

p− g

p
− x

)

≤ 3− 3x− 1

p
x(U)

x(U)

x

(

p− g

p
− x

)

≤ 3− 3x− 1

p
x(U)

x(U)

(

p− g

px
− 1 +

1

p

)

≤ 3− 3x

[

p− g

p
+

1− 2p

p
x

] [

p− g

p
+

1− p

p
x

]

≤ 3x− 3x2.(2)

Recall that (p− g)/p ≥ p, since g ≤ p(1− p), so
[

p+
1− 2p

p
x

] [

p+
1− p

p
x

]

≤ 3x− 3x2

p2 − (1 + 3p)x+
1− 3p + 5p2

p2
x2 ≤ 0.

The quadratic formula gives that not only must the discriminant be nonnegative (requiring

p ≥ (9− 4
√
3)/11), but also

x ≥ p2

2(1− 3p + 5p2)

[

1 + 3p−
√

−3 + 18p− 11p2
]

.

Some routine but tedious calculations demonstrate that, for p ∈
[

(9− 4
√
3)/11, 1/2

)

, this expres-
sion is at least 1/25, achieving that value uniquely at p = 1/5. �

Lemma 26. Let p ∈ (0, 1/5). If K is a black-vertex, p-core CRG that does not contain a gray book
B2 or a gray K2,4, then gK(p) > p(1− p).

Proof. We assume that gK(p) ≤ p(1− p).

Case 1: ℓ ≥ 8.

According to Proposition 24,

8

(

p− g

p
− x

)

≤ ℓ

(

p− g

p
− x

)

≤ 3− 3x− 1

p

(

p− g

p
+

1− 2p

p
x

)

(1− 2p− 5p2)x ≤ 3p2 − (p− g)(1 + 8p),

and since x ≥ 1/25 and p− g ≥ p2,

1− 2p − 5p2

25
≤ 3p2 − p2(1 + 8p)

(1− 5p)2(1 + 8p) ≤ 0,

a contradiction. So, ℓ < 8.

Case 2: ℓ ≤ 7 and x < p2/(9p − 1).

Using Fact 18, and then Proposition 14

7 ≥ ℓ ≥ x(U)

x
≥ p

x
+

1− 2p

p
>

9p − 1

p
+

1− 2p

p
= 7,

a contradiction.
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Case 3: ℓ ≤ 7 and p2/(9p − 1) ≤ x ≤ p/3.

First we bound ℓ:

ℓ ≥ x(U)

x
≥ p

x
+

1− 2p

p
≥ 3 +

1

p
− 2 > 6.

So, ℓ = 7. Since ℓ is odd, x(U1) ≤ 6x. By Lemma 24,

ℓ

(

p− g

p
− x

)

≤ 3− 3x− 1 + p

p
x(U) + x(U1),

and applying Proposition 14,

7

(

p− g

p
− x

)

≤ 3− 3x− 1 + p

p

[

p− g

p
+

1− 2p

p
x

]

+ 6x

1− p− 12p2

p2
x ≤ 3− 1 + 8p

p
· p− g

p

1− p− 12p2

p2

[

p2

9p− 1

]

≤ 3− 1 + 8p

p
· p

(1− 4p)(1 + 3p)

9p− 1
≤ 2(1 − 4p)

1 + 3p

9p− 1
≤ 2,

which implies p ≥ 1/5, a contradiction.

Case 4: ℓ ≤ 7 and x > p/3.

Now we compute a stronger bound on U1. Let u1 and u2 be vertices in U that are adjacent via
a gray edge, and let their weights be x1 and x2, respectively. Then

x+ x(U) + (dG(u1)− x− x2) + (dG(u2)− x− x1) ≤ 1,

and applying Proposition 14,

x+
p− g

p
+

1− 2p

p
x+ 2

p − g

p
− 2x+

1− 3p

p
(x1 + x2) ≤ 1

1− 3p

p
(x1 + x2) ≤ 3g − 2p

p
− 1− 3p

p
x,

and since p(1− p) ≥ g,

x1 + x2 ≤ p− x.

If ℓ1 = |U1|, then x(U1) ≤ (ℓ1/2)(p − x).
16



We can also count the number of vertices in U−U1 by using the fact that (ℓ−ℓ1)x ≥ x(U)−x(U1).
Returning to Proposition 24,

ℓ

(

p− g

p
− x

)

≤ 3− 3x− 1 + p

p
x(U) + x(U1)

[

ℓ1 +
1

x
x(U)− 1

x
x(U1)

](

p− g

p
− x

)

≤ 3− 3x− 1 + p

p
x(U) + x(U1)

x(U)

(

p− g

px
− 1 +

1 + p

p

)

− 3 + 3x ≤ x(U1)

(

1 +
p− g

px
− 1

)

− ℓ1

(

p− g

p
− x

)

[

p− g

p
+

1− 2p

p
x

](

p− g

px
+

1

p

)

− 3 + 3x ≤ ℓ1
2
(p− x)

(

p− g

px

)

− ℓ1

(

p− g

p
− x

)

[

p− g

p
+

1− 2p

p
x

](

p− g

px
+

1

p

)

− 3 + 3x ≤ ℓ1

[

x− p− g

p
· 3x− p

2x

]

[

p+
1− 2p

p
x

](

p

x
+

1

p

)

− 3 + 3x ≤ ℓ1

[

x− p(3x− p)

2x

]

p2 − (1 + 2p)x+
1− 2p+ 3p2

p2
x2 ≤ ℓ1

(p− x)(p − 2x)

2
.

Now, we bound ℓ1, depending on the sign of p− 2x. That requires two more cases.

Case 4a: ℓ ≤ 7 and x > p/3 and p− 2x ≥ 0.

Here we use the bound ℓ1 ≤ 6:

p2 − (1 + 2p)x+
1− 2p+ 3p2

p2
x2 ≤ 3(p − x)(p− 2x)

−2p2 + (7p − 1)x+
1− 2p− 3p2

p2
x2 ≤ 0.

By Proposition 25, we may restrict our attention to p ≥ (9 − 4
√
3)/11 > 1/7 and so we may

substitute the smallest possible value for x, which still maintains the inequality.

−2p2 + (7p − 1)
(p

3

)

+
1− 2p− 3p2

p2

(p

3

)2
< 0

−18p2 + 3(7p − 1)p + (1− 2p− 3p2) < 0

1− 5p < 0,

a contradiction.

Case 4b: ℓ ≤ 7 and x > p/3 and p− 2x < 0.

Here we use the bound ℓ1 ≥ 0 and then replace x with p2(1+2p)
2−4p+6p2

, the value that minimizes the

left-hand side:

p2 − (1 + 2p)x+
1− 2p + 3p2

p2
x2 ≤ 0

p2 − (1 + 2p)2p2

4(1 − 2p+ 3p2)
≤ 0

p2(3− 12p + 8p2)

4(1− 2p+ 3p2)
≤ 0.
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This, too, is a contradiction for p ∈ (0, 1/5), completing the proof of Lemma 26. �

6. Conclusion

• While there are many calculations in the proofs, the underlying idea is this: x+x(W ) must
be large enough to accommodate dG(U). However, if x is too large, dG(U) is too large (as
a result of Proposition 14) to be accommodated by the weights of the vertices not in U .

Meanwhile, if x is too small, then NG(U) has too many vertices: by Fact 18, ℓ ≥ dG(U)
x

,
and by Proposition 14, the gray neighborhoods of those vertices must be large and mostly
in W .

• Although we determine all of edForb(K2,4)(p), convexity allows d∗Forb(K2,4)
to be determined

with only Lemma 23. Furthermore, the generalized quadrangle GQ(2, 2) was unnecessary
to compute this quantity, since p(1 − p) < 2/9 for p ∈ [0, 1/3), and p(1 − p) is an upper
bound for every function edForb(K2,t)(p), t ≥ 2.

• Proposition 25 gives a nontrivial lower bound for a black-vertex, p-core CRG, K, that
forbids a K2,4 embedding. If we take inequality (2) and solve for g, then we see that, if
p ∈ (0, 1/2), then

gK(p) ≥ 2p+ 6− 6
√

1− 3p + 5p2

11
=

2p(3 − 4p)

p+ 3 + 3
√

1− 3p+ 5p2
,

which is strictly larger than p(1 − p) for p ∈ (0, (9 − 4
√
3)/11). So, in particular, there is

a positive gap between the gK(p) functions for black-vertex CRGs and the CRG with one
white and one black vertex.

• Ed Marchant reports having also proven that edForb(K2,3)(p) = min{p(1 − p), (1 − p)/2},
using different methods.

• Analysis of edForb(K2,t)(p) for t ≥ 5 is continued in [9].
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