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Abstract. In 1997, Thomas Wolff proved sharp L3 bounds for his circular

maximal function, and in 1999, Kolasa and Wolff proved certain non-sharp

Lp inequalities for a broader class of maximal functions arising from curves
of the form {Φ(x, ·) = r}, where Φ(x, y) satisfied Sogge’s cinematic curvature

condition. Under the additional hypothesis that Φ is algebraic, we obtain a

sharp L3 bound on the corresponding maximal function. Since the function
Φ(x, y) = |x − y| is algebraic and satisfies the cinematic curvature condition,

our result generalizes Wolff’s L3 bound. The algebraicity condition allows
us to employ the techniques of vertical cell decompositions and random sam-

pling, which have been extensively developed in the computational geometry

literature.

1. Introduction

1.1. Background. Consider the Wolff circular maximal function

Mδf(r) = sup
x

1

|Cδ(x, r)|

∫
Cδ(x,r)

|f |, (1)

where Cδ(x, r) is the δ–neighborhood of the circle centered at x of radius r. In [12],
Wolff proved that for each ε > 0 there exists a constant Cε such that∥∥Mδf

∥∥
L3([1/2,1])

≤ Cεδε ‖f‖L3(R2) , (2)

which in particular implies that every BRK set (a planar set containing a circle of
each radius r ∈ [1/2, 1]) must have Hausdorff dimension 2. It is not possible to
omit the δ−ε factor since if (2) held with this factor omitted, it would imply that
every BRK set had strictly positive Lebesgue measure, and this is known to be
false. Wolff’s result built off of his earlier work1 (jointly with Kolasa) in [7], where
he proved the bound∥∥M δf

∥∥
q
≤ Cp,qδ−

1
2 ( 3
p−1) ‖f‖p , p <

8

3
, q ≤ 2p′. (3)

Equation (3) can almost be obtained by interpolating (2) with the trivial bound∥∥M δf
∥∥
∞ ≤ Cδ

−1 ‖f‖1 , (4)

though in doing so we pick up an additional Cεδ
ε factor.

However, this earlier Kolasa-Wolff result applied not only to circles but to any
family of curves satisfying Sogge’s cinematic curvature condition first introduced in
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1While [7] was published after [12], [7] was written first.
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2 J. ZAHL

[11]; let U be a neighborhood of (a, b) ∈ R2 × R2 and Φ: U → R with Φ smooth.
Then the family of curves2 Γ(x, r) = {y : Φ(x, y) = r} is said to satisfy the cinematic
curvature condition provided

• ∇yΦ(a, b) 6= 0. (5)

•
det
(
∇x

[
e · ∇yΦ(x, y)

e · ∇y
( e·∇yΦ(x,y)
|∇yΦ(x,y)|

) ] ∣∣∣
(x,y)=(a,b)

)
6= 0, (6)

where e is a unit vector orthogonal to ∇yΦ(a, b). While there are two
potential choices of vector e, the two choices only differ by a sign, so the
veracity of (6) is independent of the choice made.

Informally, the second condition is a quantitative version of the statement that two
distinct curves cannot be tangent to second order—it guarantees that if two curves
Γ and Γ̃ intersect at a point x, then their normal vectors at x or their curvature at
x (or both) must differ by at least the distance between Γ and Γ̃ in some suitable
metric.

Let Γδ(x, r) be the δ–neighborhood of Γ. Define

Mδ
Φf(r) = sup

x∈U1

1

|Γδ(x, r)|

∫
Γδ(x,r)

|f |, (7)

where U1 is a sufficiently small neighborhood of a. Then Kolasa and Wolff proved
that for any f supported in a sufficiently small neighborhood of b,∥∥Mδ

Φf
∥∥
Lq([1/2,1])

≤ Cp,qδ−
1
2 ( 3
p−1) ‖f‖p , p <

8

3
, q ≤ 2p′. (8)

1.2. New Results.

Theorem 1. Let Φ be an algebraic function satisfying the cinematic curvature
conditions (5) and (6) at (a, b) and let U1 be a sufficiently small neighborhood of a.
Then for all f supported in a sufficiently small neighborhood of b and for all ε > 0,
there exist a constant Cε depending only on ε and Φ such that for all δ > 0,∥∥Mδ

Φf
∥∥
L3([1/2,1])

≤ Cεδε ‖f‖L3(R2) . (9)

Remark 2. See Appendix B for the definition of an algebraic function and related
concepts.

Remark 3. Theorem 1 generalizes (2). Indeed, Φ(x, y) = |x−y| is clearly algebraic,
and by the rotational, translational, and scale invariance of Φ, in order to verify
the cinematic curvature condition it suffices to verify the condition at the point
a = (0, 0), b = (1, 0). Then e = (0, 1) and the determinant in (6) is 1. Furthermore,
if

Φ(x, y) = |x− y|+ P (x, y) (10)

for P a smooth algebraic function with ‖P‖C3 sufficiently small, then Φ satisfies
(6) uniformly in the choice of a, b ∈ [0, 1]2. Thus we obtain (9) for any family of
smooth algebraically perturbed circles, provided the perturbation is not too large.

2Note that we are reversing the role of x and y from the notation of [7].
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We shall prove Theorem 1 by modifying Schlag’s arguments in [9]. These ar-
guments rely on a key incidence lemma for circles, which is proved by Wolff in
[14]. This incidence lemma employs various bounds on the behavior of circle inter-
sections, which do not obviously hold for the more general class of curves we are
considering. Luckily, most of the analogous statements were proved by Kolasa and
Wolff in [7], so Theorem 1 can largely be obtained by patching together previously
known results.

The constraint that Φ be algebraic is quite restrictive and is likely not optimal
(indeed it is reasonable to conjecture that it is completely unnecessary). However,
this constraint allows us to use a “semi-cylindrical algebraic decomposition” argu-
ment from real algebraic geometry. We shall discuss in Section 6 some conjectures
about how the algebraic requirements can be weakened.

1.3. Proof Sketch. Through standard reductions, it suffices to prove a discretized
version of a bound on the adjoint of the maximal operator Mδ

Φ. Roughly speaking,
if we have a collection of “tubes” {Γδ} corresponding to curves with δ–separated
radii (see (11) below for the definition of Γ), we need to control the area of the
region where many of these tubes overlap. This is Lemma 4 below.

In [9], Schlag showed that (4) holds for families of curves satisfying two condi-

tions. The first is a bound ((19) below) on |Γδ∩Γ̃δ| (where here |·| denotes Lebesgue

measure) provided we have control over how close Γ and Γ̃ are to each other in a
suitable parameter space and how close the two curves are to being tangent.

The second requirement, which is made precise in (20) below, controls the num-
ber of almost-tangencies that can occur between the elements ofW and B if (W,B)
is a t–bipartite pair. Informally, two collections of curves W and B are called a
t–bipartite pair if every two curves in W (resp B) are close in an appropriate pa-
rameter space while those in W are far from those in B (there are some additional
technical requirements that we shall gloss over here. The full details can be found in
Definition 6). The requirement is a quantitative analog of the incidence geometry
result that N circles in R2 can have at most CεN

3/2+ε tangencies between pairs of
circles. The incidence geometry result was proved in [5], and in [14], Wolff obtained
the quantitative analog that was then used in Schlag’s argument.

The bulk of this paper will be devoted to showing that families of curves arising
from algebraic defining functions Φ satisfy the second requirement, i.e. that (20)
is true. Once this has been established, one can run Schlag’s arguments virtually
verbatim to obtain Theorem 1.

2. Definitions and Initial Reductions

First, let us assume U = U1×U2 with U1, U2 sufficiently small disks centered at
a and b respectively (the requirement that U1 and U2 be disks will be relevant—we
need U2 to be a semi-algebraic set). In particular, by selecting U1, U2 sufficiently
small we can assume that the cinematic curvature conditions hold for every point
(x, y) ∈ U1 × U2 with uniform bounds on ∇yΦ and with the determinant in (6)
bounded uniformly away from 0.

Throughout this paper, C,C ′, etc. will denote constants that are allowed to vary
from line to line. We will say X . Y or X is O(Y ) if X < CY and X ∼ Y if
X . Y and Y . X.
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Fix 0 < α < C−1 diam(U2). For x ∈ U1, r ∈ [1/2, 1], we define

Γ(x0, r0) = {y ∈ B(b, α) : Φ(x0, y) = r0}. (11)

We shall call these sets Φ–circles, and if Γ is a Φ–circle then Γδ will denote its
δ–neighborhood. If Γ, Γ̃, etc. are Φ–circles, then unless otherwise noted, x0, r0 and
x̃0, r̃0 will refer to their respective centers and radii. The Φ–circles defined here are
strict subsets of the sets Γ defined in the introduction. However, if the function f is
supported on a sufficiently small neighborhood of b then we can define a maximal
function analogous to (7) with Γ in place of Γ, and the two maximal functions will
agree. Thus we shall henceforth work with curves Γ defined by (11).

We shall restrict our attention to those Φ–circles Γ with x0 ∈ U1, r0 ∈ (1 −
τ, 1) for τ a sufficiently small constant which depends only on Φ. By standard
compactness arguments, we can recover Lp([1/2, 1]) bounds on MΦ from those on
the “restricted” version of MΦ by considering the supremum over a finite number
of scaled versions of the function.

Using standard reductions (see e.g. [9]), in order to prove Theorem 1 it suffices
to prove the following estimate.

Lemma 4. For η > 0 and δ sufficiently small depending on η, let A be a collection
of Φ–circles with δ–separated radii, with each radius lying in (1− τ, 1). Then there

exists Ã ⊂ A with #Ã ≥ 1
C#A such that for all Γ ∈ Ã and δ < λ < 1,∣∣∣B(b, C−1α) ∩ {y ∈ Γδ :

∑
Γ̃∈A

χΓ̃δ(y) > δ−ηλ−2}
∣∣∣ ≤ λ|Γδ|. (12)

In [9], Schlag took Wolff’s combinatorial incidence result from [14] and used it in
conjunction with an induction on scales argument to prove the analogue of Lemma
4 (in [9], this is Lemma 8). In order to state Schlag’s theorem, we first need some
additional definitions.

Definition 5. For X ⊂ B(b, α), we define

∆X(Γ, Γ̃) = inf
y∈X : Φ(x0,y)=r0
ỹ∈X : Φ(x̃0,ỹ)=r̃0

|y − ỹ|+
∣∣∣ ∇yΦ(x0, y)

‖∇yΦ(x0, y)‖
− ∇yΦ(x̃0, ỹ)

‖∇yΦ(x̃0, ỹ)‖

∣∣∣. (13)

Crucially,
∆B(b,C−1α)(Γ, Γ̃) ≥ ∆B(b,α)(Γ, Γ̃),

but there exists a finite family of translates {ti} ⊂ R2 (the cardinality of the family
depends only on C) so that

inf
i

∆B(b+ti,C−1α)(Γ, Γ̃) ≤ ∆B(b,α)(Γ, Γ̃). (14)

In the example Φ(x, y) = |x−y|, ∆X(Γ, Γ̃) describes how “far” (in (x0, r0) parameter

space) we would need to move Γ so that Γ̃ and the newly moved curve Γ′ are incident

at some point in X. Indeed, if Φ(x, y) = |x − y| and X = R2 then ∆X(Γ, Γ̃) =∣∣|x0− x̃0| − |r0− r̃0|
∣∣, provided x0, x̃0 ∈ U1 with diam(U1) sufficiently small so that

in particular, the only way circles can be tangent is if they are internally tangent.
Let

d(Γ, Γ̃) = |x0 − x̃0|+ |r0 − r̃0|. (15)

d(·, ·) is a metric on the space of curves. Throughout our arguments, the particular
choice of metric will not be important since we will not care about multiplicative
constants.
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Definition 6. Let W,B be collections of Φ–circles. We say that (W,B) is a t–
bipartite pair if

|r0 − r̃0| ≥ δ for all Γ, Γ̃ ∈ W ∪ B, (16)

d(Γ, Γ̃) ∈ (t, 2t) if Γ ∈ W, Γ̃ ∈ B, (17)

d(Γ, Γ̃) ∈ (0, t) if Γ, Γ̃ ∈ W or Γ, Γ̃ ∈ B. (18)

Definition 7. A (δ, t)–rectangle R is the δ–neighborhood of an arc of length
√
δ/t

of a Φ–circle Γ. We say that a Φ–circle Γ is incident to R if R is contained in the
C1δ neighborhood of Γ. We say that R is of type (& µ,& ν) relative to a t–bipartite
pair (W,B) if R is incident to at least Cµ curves in W and at least Cν curves in B
for some absolute constant C to be specified later.

We are now able to state Schlag’s result.

Proposition 8 (Schlag). Let A be a family of Φ–circles with δ–separated radii that
satisfy the following requirements:

(i)
|Γδ ∩ Γ̃δ ∩B(b′, C−1α)| . δ2

(d(Γ, Γ̃) + δ)1/2(∆B(b,α)(Γ, Γ̃) + δ)1/2
(19)

for any b′ in a sufficiently small neighborhood of b.
(ii) For any t–bipartite pair (W,B), with t > Cδ for an appropriate choice of

C; W,B ⊂ A; #W = m; #B = n; and for any ε > 0, the number of
(& µ,& ν) (t, δ)–rectangles is at most

Cε(mn)ε
((mn

µν

)3/4

+
m

µ
+
n

ν

)
. (20)

Then Lemma 4 holds for the collection A.

Proof. The proof of this theorem can be found in [9], Section 4. However, we need
the following minor modifications.

• Schlag actually requires the bound

|Γδ ∩ Γ̃δ| . δ2(
d(Γ,Γ) + δ

)1/2(
∆B(b,α)(Γ,Γ) + δ

)1/2 . (21)

in place of (19). However, (21) can be obtained from (19) by summing over
finitely many translates of the ball B(b, C−1α).

• Schlag stipulates that Requirement (ii) in the above theorem hold for all
values of t and δ, not merely those for which t > Cδ. However, there are at
most . δ−2 (δ, t)–rectangles incident to (W,B), and if t < Cδ we can use
this fact in place the bound from (20). �

The next sections shall be devoted to proving that any δ–separated family of
Φ–circles satisfy the two requirements from Proposition 8. Once this has been
established we will have proved Theorem 1. The first requirement will not present
much difficulty; indeed, it was already proved by Kolasa and Wolff in [7], and it
is Property 22 in Section 4 below. Thus the bulk of our efforts will be devoted to
proving that the second requirement is satisfied. This will appear as Lemma 44 in
Section 5.
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3. Algebraic Considerations

Let Γ = Γ(x0, r0) be a Φ–circle and X ⊂ B(b, α) an open semi-algebraic set
of dimension 2 (see Appendix B for the definition of the dimension of a semi-
algebraic set); in our discussion below we will only consider closed balls. For w =
(w1, w2, w3) ∈ R3, let

VΓ,X,w = {(x, r, y) ∈ U1 × (1− τ, 1)×X : Φ(x0, y)− r0 = w0,

Φ(x, y)− r = w1,∇yΦ(x0, y) ∧∇yΦ(x, y) = w2}, (22)

where

(z(1), z(2)) ∧ (z̃(1), z̃(2)) = z(1)z̃(2) − z(2)z̃(1).

Intuitively, we can think of w0, w1, w2 as being 0. However, setting w0, w1, w2 = 0
might cause VΓ,X,w to fail to have the correct dimension. Thus we shall choose
a very small “generic” choice of w0, w1, w2 which fixes this problem. This will be
elaborated upon in Lemma 9.

Let

SΓ,X,w =
(
π(x,r)VΓ,X,w

)
∩ {|x− x0| > Cδ} (23)

for an appropriately chosen C, where π(x,r) : (x, r, y) 7→ (x, r) is the projection
operator. In the example where Φ(x, y) = |x − y|, SΓ,X,0 is a section of the right-
angled “light cone” with vertex (x0, r0) ∈ R3, i.e. SΓ,X,0 ⊂ {(x, r) : |x − x0| =
|r − r0|}.

Lemma 9. For an appropriate choice of 0 ≤ w0, w1, w2 < C−1δ, SΓ,X is a semi-
algebraic set of bounded complexity. Furthermore, if X = B(b, α) then SΓ,X has
(semi-algebraic) dimension 2.

Proof. We shall first show that if w0, w1, w2 are chosen appropriately then VΓ,X,w

is a semi-algebraic set of codimension 3. It suffices to show that the the defin-
ing functions in (22) are algebraic functions whose zero-sets intersect transversely.
Φ(x0, y) − r0 and Φ(x, y) − r are immediately seen to be smooth and algebraic
since Φ is smooth and algebraic. The components of ∇yΦ(x0, y) and ∇yΦ(x, y) are
smooth and algebraic since the partial derivative of a smooth algebraic function are
smooth and algebraic, and thus ∇yΦ(x0, y) ∧ ∇yΦ(x, y) is smooth and algebraic.
The complexity of these functions is clearly independent of the choice of Γ. Finally,
by Sard’s theorem we can find w0, w1, w2 < C−1δ such that (w0, w1, w2) is a regular
value of the map

(x, r, y) 7→
(
Φ(x0, y)− r0, Φ(x, y)− r, ∇yΦ(x0, y) ∧∇yΦ(x, y)

)
.

For such a choice of values of w0, w1, w2 we have that SΓ,X,w has geometric codi-
mension 3, and thus semi-algebraic codimension 3, as desired (see Appendix B for
a review of the relevant real algebraic geometry).

By the Tarski-Seidenberg theorem, π(x,r)VΓ,X,w is semi-algebraic of bounded
complexity, and thus so is SΓ,X,w. At this point, the dimension of the components
of SΓ,X,w could be 0,1, or 2. However, we shall show in Corollary 25 below that if
X = B(b, α), then SΓ,X,w is a smooth manifold of dimension 2 or 3, and thus the
components of SΓ,X are in fact of (semi-algebraic) dimension 2. �

Remark 10. It is somewhat curious to note that in our proof, we use algebraic
considerations to show dim(SΓ,X,w) ≤ 2 and differential geometric considerations
to show dim(SΓ,X,w) ≥ 2, and thus conclude that dim(SΓ,X,w) = 2.
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Definition 11. Abusing notation slightly, we shall suppress the dependence of SΓ,X,w

on w, and we shall define SΓ,X to be SΓ,X,w for an appropriate choice of w, the
existence of which is guaranteed by Lemma 9. None of our arguments below will
depend on the specific choice of w, and all of the constants in the estimates below
will be independent of the choice of w, provided |w| < C−1δ for a sufficiently large
constant C.

We have defined SΓ,X and ∆X so that

SΓ,X,0 = {Γ′ : ∆X(Γ,Γ′) = 0}, (24)

and thus

SΓ,X ∈ {Γ′ : ∆X(Γ,Γ′) = 0}+B(0, C−1δ), (25)

{Γ′ : ∆X(Γ,Γ′) = 0} ∈ SΓ,X +B(0, C−1δ), (26)

where the + symbol denotes the Minkowski sum. These inclusions are the key facts
linking the algebraic and differential geometric properties of Φ. Lemma 9 allows
us to use the technique of semi-cylindrical algebraic decompositions (aka vertical
algebraic decompositions) to decompose R3 into a collection of “cells” adapted to
a collection of surfaces {SΓ,X}. Informally, a cell is an open subset of R3 whose
boundary consists of pieces of the surfaces from the collection {SΓ,X} as well as
additional surfaces that are added to guarantee that the cells have certain favorable
properties. More precisely we have the following result.

Lemma 12. Let D be a collection of Φ–circles, #D = N . Then there exists an
algorithm for creating a vertical decomposition of U1× (1− τ, 1) (recall that U1 and
τ were specified in Section 2 and depend only on Φ) into . N3 logN open (in R3)
cells {Ωi} such that U1 × (1− τ, 1) is the union of sets of the following types:

• cells,
• the dividing surfaces {SΓ,B(b,α) : Γ ∈ D},
• vertical walls: 2–dimensional semi-algebraic sets whose projections under

the map πx : (x, r) 7→ x are 1–dimensional semi-algebraic sets.

The cells in this decomposition have the property that

Ω ∩ SΓ,B(b,α) = ∅ for all cells Ω and all Γ ∈ D. (27)

Furthermore, for each cell Ω in the decomposition, there is a bounded number (6
will suffice) of dividing surfaces such that Ω is one of the cells arising from the
decomposition algorithm applied to this subcollection of surfaces (i.e. the existence
of the other N − 6 surfaces is irrelevant if all we care about is the cell Ω).

Proof. This statement follows from the techniques developed by Chazelle, Edels-
brunner, Guibas, and Sharir in [4]. Unfortunately, while Theorem 12 is claimed
in [4] and follows (with some effort) from the methods described in [1, chapter 8],
we are unaware of a complete and detailed proof of Theorem 12 in the literature.
The author intends to present such a proof in his forthcoming PhD thesis. In the
interests of keeping this paper self contained, we will give a brief expository sketch
of the vertical algebraic decomposition in Appendix A. �

Lemma 13. Let B be a collection of Φ–circles, #B = n. Randomly select (see
Remark 14) a subset D ⊂ B with #D = N < C−1n, and let {Ωi}M1 , M ≤ N3 logN
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be the cells from Lemma 12. Then with high probability (see Remark 15) we have
that for each i,

#{Γ ∈ B : SΓ,B(b,α) ∩ Ωi 6= ∅} .
N log n

n
. (28)

Remark 14. To obtain our random selection we shall take a uniformly distributed
random sample with replacement from B. However, our algorithm will only work
if the elements of the sample are all distinct. By requiring that N ≤ 1

Cn for C
sufficiently large, we can ensure that this will occur with high probability, so this
assumption will not cause difficulty.

Remark 15. By “high probability” we mean that for any probability P < 1 we can
select a choice of constant C in the quasi-inequality in (28) so that the decompo-
sition satisfies (28) with probability at least P . Later in the proof of Theorem 1
we shall need the above decomposition to satisfy additional properties which also
occur with high probability (relative to another set of constants that we can weaken
at will). We can ensure that all of these properties are simultaneously satisfied by
requiring that each of the properties are separately satisfied with sufficiently high
probability and using the trivial union bound.

Proof. Lemma 13 follows from Lemma 12 by the technique of random sampling
(see e.g. [5]). Again, we shall briefly review this technique in Appendix A. �

Lemma 12 (which is only used to prove Lemma 13) is the only place where
Lemma 9 is used, and it is thus the only place where we use the requirement that
Φ be algebraic. We shall discuss in Section 6 some conjectures about how to obtain
Lemma 12 through other (less algebraic) means, though our best attempts in this
direction have thus far yielded only provisional results.

4. Cinematic Curvature and its Implications

Many of Wolff’s arguments from [12] rely on the local differential properties of
families of circles. The relevant properties are captured by the notion of cinematic
curvature defined in the introduction. In [7], Kolasa and Wolff establish several
key properties of families of curves with cinematic curvature which we shall recall
below.

Property 16 (Straightening out). Let x0 ∈ U1. Then we can find a diffeomorphism
ψx0 : U ′2 → U2 and a choice of r0 = r0(x0) such that

Φ(x0, ψx0
(y))− r0 = y(2)

where U ′2 is an appropriately chosen domain (which may no longer be a disk).
Furthermore for fixed y0,

ψx0(y0) and r0(x0) are continuous in x. (29)

This is discussed in [7, p 126]. To simplify notation, we shall say that Φ has been
straightened out around x0 if we (temporarily) replace the function Φ(x0, ·) with
Φ(x0, φx0

(·))− r0(x0), i.e. in “straightened out” coordinates, Φ(x0, y) = y(2). Note
that if we straighten out around x0 then in this new coordinate system Φ might
no longer be algebraic. This will not pose any problems to our analysis below; we
shall only be straightening out to simplify the proofs of certain diffeomorphism-
invariant statements, and the statement can then be “pulled back” to the original
(semi-algebraic) Φ. This process may change some of the constants involved in the
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relevant statements. However (29) will guarantee that the constants are worsened
by at most a bounded amount so we can safely ignore this problem.

Property 17 (Derivative bounds). If we straighten out Φ at x0 then for y ∈ B(0, α),

|∂y(1)Φ(x, y)|+ |∂2
y(1)Φ(x, y)| ∼ |x− x0|, (30)

|∂y(2)Φ(x, ψx0,r0(y))| ∼ 1, (31)

where ∂y(1) denotes the partial derivative in the y(1)–direction, etc. The constants in
the quasi-equalities above are uniform in all variables. Indeed, since the cinematic
curvature condition is diffeomorphism invariant, (30) and (31) are equivalent to
the cinematic curvature condition. This is addressed in Equation (21) and the
surrounding discussion of [7].

Property 18 (Unique point of parallel normals). Let Γ, Γ̃ be Φ–circles with

∆B(b,C−1α)(Γ, Γ̃) ≤ C ′−1|x0 − x̃0|
for a sufficiently large constant C ′. Then there is a unique point ξ = ξ(x0, r0, x̃0) ∈
Γ ∩B(0, α) such that

∇yΦ(x0, ξ) ∧∇yΦ(x̃0, ξ) = 0. (32)

Furthermore,
|Φ(x̃0, ξ)− r̃0| . ∆B(b,C−1α)(Γ, Γ̃), (33)

and

Γ ∩ Γ̃ ∩B(b, C−2α) ⊂ B

(
ξ, C

(∆B(b,C−1α)(Γ, Γ̃)

|x0 − x̃0|

)1/2
)
. (34)

Equations (33) and (34) are Equations (26) and (27) in [7].

Property 19 (Appolonius-type bounds). Let t > Cδ. Fix three Φ–circles Γ1,Γ2,Γ3,
let B0 = B(b, C−2α), and let

Y =
{

Γ: ∆B(b,C−1α)(Γ,Γi) < C1δ, i = 1, 2, 3;

d(Γ ∩B0,Γi ∩B0) > t, i = 1, 2, 3;

Γδ ∩ Γδi ∩B0 6= ∅, i = 1, 2, 3;

dist(ΓC1δ ∩ ΓC1δ
i B0,Γ

δ ∩ Γδj ∩B0) > C3

√
δ/t, i 6= j

}
. (35)

Informally, Y is the collection of curves that are almost tangent to each of the
curves Γ1,Γ2,Γ3, with the additional requirement that the three regions of almost-
tangency not be too close to each other.

If we identify Φ–circles Γ with points (x0, r0) ∈ R3 then

Y is the union of two sets, each of diameter . t. (36)

This is is Lemma 3.1(ii) in [7].

Property 20. For three fixed curves Γ1,Γ2,Γ3, and a given curve Γ = Γ(x0, r0), we
say that Φ is Γ–adapted if there exists points a1, a2, a3, with aj ∈ Γj such that

|aj − ξj(x0)| ≤ C−1
√
δ/t,

and

Φ(x, a1) = 0,

∇xΦ(x, a2) = (e · (a2 − a1))β
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for all x, where e is the tangent vector to Γ1 at a1, β is a vector independent of y
with |β| ∼ 1, and

ξi(y) = ξ(xi, ri, x0).

Remark 21. Informally, the notion of a Γ–adapted defining function is a way of
getting around the problem that we are forced to work with a defining function
Φ, but we are actually interested in its level sets {Φ(x, ·) = r}. Thus we are
free (within certain constraints to be dealt with below) to modify Φ provided that
our new defining function has the same level sets as the old one. Choosing a Γ–
adapted defining function (provided a suitable one exists) simplifies many of the
technicalities in our estimates.

Lemma 3.6 in [7] tells us that if Γ ∈ Y then by composing Φ with suitable
diffeomorphisms, a Γ–adapted defining function Φ exists which satisfies uniform
derivative bounds, and this function Φ has the same level sets as our original Φ
(i.e. it gives rise to the same Φ–circles), so the corresponding maximal functions
are identical (the adapted defining function may not be algebraic, but this will not
affect our analysis).

Now, if Φ is Γ–adapted, define

T (x) =

 ∇xΦ(x, ξ1(x)) −1
∇xΦ(x, ξ2(x)) −1
∇xΦ(x, ξ2(x)) −1

 . (37)

Informally, if we fix a choice of Γ and select a defining function adapted to Γ, then
for x in a neighborhood of x0, T (x) describes how changing x affects how close
Γ(x, r0) is to being tangent with each of Γ1,Γ2,Γ3.

Lemma 3.8 in [7] tells us that when restricted to each connected component of

Y (individually), T is boundedly conjugate to its linear part, i.e. if Γ, and Γ̃ lie in
the same connected component of Y , then

T (x0)T (x̃0)−1 = I + E(x̃0), (38)

where (say) ‖E(x̃0)‖ < 1/100. Furthermore, for the same choice of Γ, Γ̃,

|ξ1(x̃0)− ξ1(x0)| .
√
δ/t. (39)

Equation (39) is a consequence of Equation 45 in [7] once we note that Γ ∈ Y
implies that |T (x0)(x− x0, r − r0)| < Cδ.

Property 22 (Bounds on intersection area). Let Γ, Γ̃ be Φ circles. Then

|Γδ ∩ Γ̃δ ∩B(b, C−2α)| . δ2(
d(Γ, Γ̃) + δ

)1/2(
∆B(b,C−1α)(Γ, Γ̃) + δ

)1/2 , (40)

diam(Γδ ∩ Γ̃δ ∩B(b, C−2α)) .
(∆B(b,C−1α)(Γ, Γ̃) + δ

d(Γ, Γ̃) + δ

)1/2

. (41)

This is Lemma 3.1(i) in [7].

As noted above, when Φ(x, y) = |x− y|, then SΓ,B(b,α) is a section of the right-
angled light-cone with focus at (x0, r0). We shall establish several lemmas that
show that certain key properties of light cones are preserved when we consider
the set SΓ,B(b,α) for Φ a general defining function satisfying the requirements from
Theorem 1.
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Lemma 23. Let Γ, Γ̃ be Φ–circles with

∆B(b,C−1α)(Γ, Γ̃) < C ′
−1|x0 − x̃0|. (42)

Then there exists Γ′ with x′0 = x̃0, |r′0 − r̃0| . ∆B(b,C−1α)(Γ, Γ̃) such that

Γ′ ∈ SΓ,B(b,α). (43)

Furthermore,

∆B(b,α)(Γ, Γ̃) . dist(SΓ,B(b,α), Γ̃) . ∆B(b,C−1α)(Γ, Γ̃). (44)

Remark 24. Note that we have to use different sets X in the subscript of ∆ on the
right and left sides of (44). In the case where Φ(x, y) = |x − y| (and thus we can
define Φ over (say) a large dilate of the unit circle),

∆(B(0,100))(Γ, Γ̃) =
∣∣|x0 − x̃0| − |r0 − r̃0|

∣∣,
provided Γ, Γ̃ lie in suitably restricted sets, and if two circles are nearly incident,
we can always change one of them slightly so that they are exactly incident. In the
more general case we are considering, however, it may not always be possible to
make two almost-incident curves exactly incident by changing one of them slightly;
it is possible that when we try to move one of the curves to make the two curves
incident, the “point of incidence” occurs outside the domain of definition of Φ (and
thus there is no point of incidence). Thus, we need to be more careful about how
we define incidence and almost-incidence. This consideration will occur frequently
in the lemmas below, and it will significantly lengthen our analysis.

Proof. By (25) and (26), in order to obtain (44), it suffices to establish the esimate

∆B(b,α)(Γ, Γ̃) . dist(SΓ,B(b,α),0, Γ̃) . ∆B(b,C−1α)(Γ, Γ̃). (45)

First, note that ∆B(b,α)(·, ·) is jointly smooth in both variables with uniformly

bounded derivatives. Since ∆B(b,α)(Γ, Γ̃) = 0 for Γ̃ ∈ SΓ,B(b,α), we immediately
obtain the first inequality in (45). The second inequality in (45) follows from (43),
which we shall now prove.

Straighten out Φ around x̃0. From Property 18 of Φ, there exists ξ ∈ B(b, α)∩Γ
such that

∇yΦ(x0, ξ) ∧∇yΦ(x̃0, ξ) = 0, (46)

i.e. (in straightened out coordinates)

∇yΦ(x0, ξ)

|∇yΦ(x0, ξ)|
= (±1, 0),

and
|Φ(x̃, ξ)− r̃0| . ∆B(b,C−1α)(Γ, Γ̃),

where here and below the implicit constants are uniform in the choice of Γ, Γ̃ pro-
vided (42) is satisfied uniformly. Thus if we select x′0 = x̃0, r

′
0 = r̃0 + Φ(x̃0, ξ) then

ξ lies on Γ′, which establishes (43). �

Corollary 25. SΓ,B(b,α) is a smooth manifold and dim(SΓ,B(b,α)) ≥ 2.

Proof. For each (x0, r0) ∈ SΓ,B(b,α), for |x − x0| sufficiently small we have that
the map (x, r0) 7→ (x, r′) described in Lemma 23 gives us a smooth embedding of
(x0, r0) 3 B(b, α) ⊂ R2 into SΓ,B(b,α). Since B(b, α) is a 2–dimensional smooth
manifold, the result follows. �
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Corollary 26. There exists C0 such that for all Φ–circles Γ, all (x, r) ∈ SΓ,B(b,α),

and all t < C−1|x− x0|,
πx
(
SΓ,B(b,α) ∩ {(x′, r′) : |x− x′| < t, |r − r′| < C0t}

)
= {x′ : |x− x′| < t}, (47)

i.e. the cylindrical section centered at (x, r) ∈ SΓ,B(b,α) of radius t and height Ct
contains all of (or possibly all of one of the sheets of) SΓ,B(b,α) confined to the
corresponding truncated cylinder.

5. Counting incidences between bipartite pairs of curve families

Recall the definition of a t–bipartite pair (W,B), a (δ, t)–rectangle, and a rec-
tangle of type (& µ,& ν) relative to (W,B) (Definition 7).

Definition 27. We shall say that a (δ, t) rectangle R is of type (∼ µ,∼ ν) if it is of
type (& µ,& ν), but is not of type (& Cµ,& ν) or (& µ,& Cν) for some absolute
constant C which shall be determined later.

Definition 28. We say that two (δ, t)–rectangles are close if there is a (2δ, t) rec-
tangle containing both of them and are comparable if there is a (C0δ, t)–rectangle
containing both of them.

For (W,B) a t–bipartite pair with t > Cδ and X a set, define

IX = {(Γ, Γ̃) ∈ (W,B) : ∆X(Γ, Γ̃) < δ},

ĨX = {(Γ, Γ̃) ∈ (W,B) : ∆X(Γ, Γ̃) < Cδ},
for some constant C to be determined later, where we recall that ∆X is defined in
(13).

We shall state and prove a series of lemmas that are analogous to Lemmas 1.5–
1.16 in [14]. If the proof of a lemma is the same as that of the corresponding lemma
in [14] we shall omit it. Throughout the discussion below, (W,B) is a t–bipartite
pair with #W = m, #B = n.

Lemma 29.

(i) If ∆B(b,C−1α)(Γ, Γ̃) < δ, then there exists a (δ, t)–rectangle R ⊂ B(b, α)

such that Γ and Γ̃ are tangent to any (t, δ)–rectangle close to R.

(ii) Conversely, if Γ, Γ̃ are tangent to a common (δ, t)–rectangle R ∈ B(b, α)

then ∆B(b,α)(Γ, Γ̃) ≤ Cδ, and if Γ, Γ̃ are tangent to comparable (δ, t)–

rectangles R,R′ ∈ B(b, α) then ∆B(b,α)(Γ, Γ̃) . δ.

Lemma 30. Let Γ ∈ W, Γ̃ ∈ B. Then there are at most O(1) incomparable (δ, t)–

rectangles R ⊂ B(b, α) tangent to both Γ and Γ̃.

Proof. Since d(Γ, Γ̃) ∼ t, (40) gives us the bound

|B(b′, C−1α) ∩ Γ ∩ Γ̃| . δ3/2t−1/2 (48)

for all b′ in a sufficiently small neighborhood of b. Each (δ, t)–rectangle has area
∼ δ3/2t−1/2 and incomparable (δ, t)–rectangles are pairwise disjoint. The lemma
follows by applying (48) to O(1) choices of b′ = b+ ti. �

Lemma 31.

(i) Let R ⊂ B(b, α) be a collection of pairwise nonclose rectangles. Then

#ĨB(b,α) & #{(R,Γ, Γ̃) ∈ R× B ×W : Γ and Γ̃ are tangent to R}.
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(ii) There exists a a collection R of pairwise incomparable (δ, t)–rectangles R ∈
B(b, α) such that

#ĨB(b,C−1α) . #{(R,Γ, Γ̃) ∈ R× B ×W : Γ and Γ̃ are tangent to R}.

Proof. The first statement is immediate. The second statement follows from (33).
�

Lemma 32. Let Γ1,Γ2,Γ3 be three Φ–circles. Let R be a collection of pairwise
incomparable rectangles R ∈ B(b, α) with the property that for each R ∈ R there is
a Φ–circle Γ such that:

• d(Γ,Γi) ≥ t, i = 1, 2, 3.
• Γ,Γ1 are tangent to R.
• There exist two (δ, t)–rectangles R2, R3 ∈ B(b, α) such that Γ and Γi are

tangent to Ri, i = 2, 3 and such that R1, R2, R3 are pairwise incomparable.

Then #R . 1.

Proof. We shall establish the proof with the additional restriction that R must lie
in B(b′, C−2α) for b′ in a sufficiently small neighborhood of b. Once this has been
established, we can recover the full result by selecting O(1) choices of b′ such that
B(b, α) ⊂

⋃
b′ B(b′, C−2α).

Let R ∈ R and let Γ be a Φ–circle satisfying the above conditions. Then we
must have Γ ∈ Y, where Y is as defined in (35); indeed the above requirements on
Γ are precisely those needed to ensure that Γ ∈ Y . By (40),

Γ ∩ Γ1 ∩B(b′, C−2α) ⊂ B(ξ(x0, r0, x1), Cδ1/2t−1/2). (49)

Now, let Γ0 ∈ Y and let Φ̃ be a Γ0–adapted defining function with the same level
sets as Φ. Since Φ̃ has the same level sets as Φ and the gradient of Φ̃ is comparable
to that of Φ, it suffices to prove the lemma for Φ̃. However, by (39) we have that
if Γ is in the same connected component of Y as Γ0 then

|ξ(x1, r1, x0)− ξ(x1, r1, x)| .
√
δ/t. (50)

Since Y contains only two connected components, (49) and (50) imply that⋃
(x0,r0)∈Y

Γ(x0, r0)∩Γ1 ∩B(b′, C−2α)

⊂
(
B(z0, Cδ

1/2t−1/2) ∩ Γ1

)
∪
(
B(z1, Cδ

1/2t−1/2) ∩ Γ1

)
, (51)

where z0, z1 are points in the two connected components of Y respectively. In
particular, the set on the right hand side of (51) has measure . δ3/2t−1/2. Since
every R ∈ R must lie in this set, and pairwise incomparable rectangles must be
disjoint, we obtain #R . 1. �

Lemma 33. Let Γ, Γ̃ be Φ–circles with d(Γ, Γ̃) = t > Cδ and r0 ≥ r̃0. Let R, R̃ ∈
B(b, C−1α) be comparable (δ, t)–rectangles with Γ, Γ̃ tangent to R, R̃ respectively.
Then

(i) Γ̃ ∩B(b, C−1α) is contained in the Cδ–neighborhood of

{y ∈ B(b, α) : Φ(x0, y) ≤ r0}.
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(ii) For any constant A there is a constant C(A) such that the cardinality of
any set of pairwise incomparable (δ, t)–rectangles R ∈ B(b, C−1α) each of
which is tangent to Γ and intersects the Aδ–neighborhood of

{y ∈ B(b, α) : Φ(x̃0, y) ≤ r0}

does not exceed C(A).

Proof. Straighten Φ around x0. By Lemma 29.(ii), with α replaced by C−1α,

we have ∆B(b,C−1α)(Γ, Γ̃) ≤ C ′δ. Thus if we choose the value of C in the state-
ment of the lemma to be sufficiently large (depending on C ′), then |x0 − x̃0| >
C ′′∆B(b,C−1α)(Γ, Γ̃), so by Property 18 of cinematic curvature, there exists a unique

point ξ(x̃0, r̃0, x0) ∈ Γ̃ satisfying (32), i.e.

∇yΦ(x̃0, ξ) = (0,±1),

so ξ is a global maximum of the function y(1) 7→ Φ(x̃0, (y
(1), y(2))) in the domain

(y(1), y(2)) ∈ B(b, α), where y(2) = y(2)(y(1)) is implicitly defined by (y(1), y(2)(y(1))) ∈
Γ̃ (we can verify without difficulty that this is well-defined). By (33) (noting that
in the straightened out coordinate system, Γ = {y(2) = 0} ∩ U ′2),

Φ(x̃0, (ξ, y
(2)(ξ)) . ∆B(b,C−1α)(Γ, Γ̃)

. δ,

and thus for an appropriate choice of C,

Γ̃ ∩ U ′2 ⊂ {y(2) < Cδ}.

Returning to our original coordinate system, this is Statement (i) of the lemma.
To obtain the second statement, note that by the same reasoning as above,

Γδ ∩ {y ∈ B(b, α) : Φ(x2, y) ≤ r1}+B(b, Aδ) ⊂ Γ̃C(A)δ

for a suitable constant C(A), where the + in the above equation denotes the
Minkowski sum. The result then follows from (40) and the fact that incomparable
rectangles are disjoint. �

Lemma 34.

(i) The cardinality of any set of (∼ µ,∼ ν) rectangles is . mn2/3

µν2/3 .

(ii) The cardinality of any set of (& µ,& ν) rectangles is . mn2/3

µν2/3 + n
ν log m

µ .

Remark 35. Recall that a rectangle of type (& µ,& ν) is a rectangle that is incident
to at most Cµ curves in W and at most Cµ curves in B for some absolute constant
C (a rectangle of type (∼ µ,∼ ν) is defined similarly), so the statement of the
lemma is well defined.

Proof. Combined with the previous lemmas, Statement (i) is simply the graph
theory theorem that a m × n matrix with entries 0 and 1 which has a forbidden
2×3 submatrix of 1s has . mn2/3 1s in total (see e.g. [5] for a proof of this theorem).
Statement (ii) is obtained from Statement (i) by dyadic summation. �

Lemma 36. Let (W,B) be a t–bipartite pair that has no (& 1,& ν0) or (& µ0,& 1)
rectangles R ∈ B(b, α). Then

#IB(b,C−1α)(W,B) . µ1/3
0 nm2/3 log ν0 + ν0m logµ0. (52)
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Lemma 37. Let W,B be a t–bipartite pair with #B = n. Randomly select a subset
D ⊂ B with #D = N < 1

Cn. (we shall call the elements of D dividing circles),
and let S = {SΓ,B(b,α) : Γ ∈ D}. Then with high probability (relative to our random
selection of D ⊂ B), we can partition

W =W∗ t
M⊔
1

Wi (53)

so that the decomposition has the following properties.

(i) M . N3 logN .
(ii) For each i,

#{Γ ∈ B : ∆B(b,C−1α)(Γ, Γ̃) . δ for some Γ̃ ∈ Wi} .
n log n

N
.

(iii) For each Γ ∈ W∗ there exists a dividing Φ–circle Γ̃ such that ∆B(b,α)(Γ, Γ̃) .
δ.

Remark 38. The implicit constants appearing above depend only on Φ and the
probability that a randomly selected D ⊂ B has the desired properties. In partic-
ular, by worsening the implicit constants we can make the probability arbitrarily
close to 1.

Proof. Perform the cell decomposition of the arrangementD, as described in Lemma
12. Let

W∗ = {Γ ∈ W : dist(Γ, SΓ̃,B(b,α)) ≤ Cδ for some Γ̃ ∈ D}, (54)

and for each i = 1, . . . ,M , let

Wi = {Γ ∈ W\W∗ : Γ ∈ Ωi}. (55)

If some Γ is present in more than one Wi, remove it from all but one of the Wi

(the choice is irrelevant). We shall now verify that this decomposition satisfies the
properties claimed in the lemma. Claim (i) is immediate from Lemma 12, and
Claim (iii) follows from (44).

Now, suppose Γ ∈ Wi, Γ̃ ∈ B with ∆B(b,C−1α)(Γ, Γ̃) ≤ δ. Then by (44),
dist(Γ, SΓ̃,B(b,α)) ≤ Cδ and so we can select (x, r) ∈ SΓ̃,B(b,α) with d((x, r),Γ) ≤ Cδ
(for possibly a larger constant C). Furthermore, since (W,B) is a t–bipartite pair,
we have that |x− x̃0| & t > Cδ, and thus by Corollary 26, there exists

(x′0, r
′
0) ∈ SΓ̃,B(b,α) ∩ {(x

′, r′) : |x′ − x̃0| < C1δ, |r′ − r̃0| < C2δ} (56)

such that x′0 = x0. However, (56) implies that |r′0 − r0| < C2δ, and selecting
constants appropriately in the definition of W∗, this is less than dist(Γ, SΓ′,B(b,α))
for any Γ′ ∈ D. Since the boundary of each cell Ω consists only of dividing surfaces
SΓ′,B(b,α) and vertical manifolds, we conclude that (x′0, r

′
0) ∈ Ωi, and thus SΓ̃,B(b,α)∩

Ωi 6= ∅. Equation (28) bounds the number of dividing surfaces that can intersect
each cell Ωi, and this in turn gives us property (ii). �

Lemma 39. With high probability,

#W∗ .
n#ĨB(b,α)(W,B)

N
. (57)
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Proof. This follows from property (iii) of Lemma 37. Indeed, the probability of a
given w ∈ W being in W∗ is bounded by

n

N
{b ∈ B : ∆B(b,α) < Cδ},

so the expected size of W∗ is
n#ĨB(b,α)(W,B)

N , from which the result follows. �

Definition 40. We define a cluster of Φ–circles analogously to Wolff’s definition
in [14]: A cluster is a subset C ⊂ W (or B) with the property that there exists a
(δ, t)–rectangle R such that every Γ ∈ C is tangent to a (δ, t)–rectangle comparable
to R.

Lemma 41. Let C ⊂ W be a cluster and let Γ ∈ B. Then then any set of pairwise
incomparable (δ, t)–rectangles each of which is tangent to some circle in C and to Γ
has cardinality O(1).

Remark 42. Lemma 33 is used to prove this lemma.

Lemma 43. Given a value of µ0, we can write

W =Wg tWb (58)

where

(i) Wg and B have no (δ, t)–rectangles of type (& µ0,& 1).

(ii) Wb is the union of . #W
µ0

(logm)(log n) clusters.

Lemma 44. Let (W,B) be a t–bipartite pair with m = |W|, n = |B|. Let R be a
set of pairwise incomparable (≥ µ,≥ ν) (δ, t)–rectangles R ⊂ B(b, α).

For any ε > 0,

#R .ε (mn)ε
((mn

µν

)3/4

+
m

µ
+
n

ν

)
. (59)

In order to prove Lemma 44, it suffices to consider the case where µ = ν = 1
and establish the bound

#R .ε (mn)ε
(

(mn)3/4 +m log n+ n logm
)
. (60)

To obtain (59) from (60) we apply a random sampling argument. The details of
this random sampling argument are in [14, p1253], so we shall not reproduce them
here. We shall call the Φ–circles Γ ∈ W “white” Φ–circles and those in B “black”
Φ–circles. By Lemma 30, each pair (Γ, Γ̃) ∈ (W,B) of white and black Φ–circles
are jointly incident to at most O(1) incomparable (δ, t)–rectangles, so #R . mn.
Thus if (mn)1/C < log(mn) then (60) holds immediately (with an implicit constant
depending on C). Thus we may assume

(mn)1/C > log(mn) (61)

for some fixed choice of C which will be determined below.
We shall closely follow [14] and substitute our lemmas above for Wolff’s analogous

ones. Wolff’s induction argument allows him to control the number of incomparable
(δ, t)–rectangles of type (& 1,& 1) relative to a collection (W,B) over the region
B(b, α) if he has similar control over smaller collections (W ′,B′). Our argument
will allow us to control the number of incomparable (& 1,& 1) rectangles in a small
region B(b, C−1α) if we have control over the number of incomparable rectangles
in a much larger region B(b, α), but luckily we only require this control for smaller
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collections of circles. Since the control is uniform in b, we can apply this result to
finitely many translates {b + ti} of b to recover the result over the larger region
B(b, α), which allows us to iterate the induction step. We shall focus on the key
steps where our arguments differ from Wolff’s, and refer readers to [14] for the
details of those arguments which are identical.

Assume (60) holds for all pairs (W ′,B′) with (#W ′)(#B′) < mn/2. The base
case of the induction is taken care of by (61).

If m ≤ n
1
3 +ε or vice versa, then Lemma 44 follows from Lemma 34. Thus we

may assume

m1/3+ε < n < m. (62)

Let W = Wg ∪ Wb, B = Bg ∪ Bb be the decomposition from Lemma 43 with

µ0 = ν0 = (mn)1/4. From property (ii) of the decomposition we have

#ĨB(b,α)(Wb,B) < logm log n(mn)3/4, (63)

#ĨB(b,α)(W,Bb) < logm log n(mn)3/4. (64)

These quantities are < 1
1000 (mn)ε(mn)3/4 provided that we choose the appropriate

constant C in (61).
We shall now obtain the bound

#ĨB(b′,C−1α)(Wg,Bg) ≤ Cε(mn)ε(mn)3/4C−1
0 , (65)

where we can make C0 arbitrarily large at the cost of increasing Cε. Furthermore,
this bound will be independent of the choice of b′ ∈ B(b, α). Thus we shall apply
(65) with b′ = b + ti for {ti} a finite family of translates such that B(b, α) ⊂⋃
B(b+ ti, C

−1α). Then

ĨB(b,α)(Wg,Bg) ⊂
⋃
ĨB(b+ti,C−1α)(Wg,Bg), (66)

since if ∆B(b,α)(Γ, Γ̃) < Cδ then we must have ∆B(b+ti,C−1α)(Γ, Γ̃) < Cδ for some
i. Thus if we apply (65) for each ti and select C0 sufficiently small we obtain

#ĨB(b,α)(Wg,Bg) ≤ Cε(mn)ε(mn)3/4C−1
0 . (67)

Combining (67), (63), and(64) and using Lemma 31 we obtain (60). It thus suffices
to prove (65).

Let us perform the decomposition Wg = W∗g t
⊔M

1 Wi
g as given by Lemma 37,

with α replaced by C−1α and selecting a value of N satisfying

C log(mn)1/ε < N < C−1 min
(
n3/4m−1/4 log(mn),m1/4n−1/12 log(mn)

)
. (68)

Such a value of N exists by assumption (62) and by selecting a sufficiently large
constant in (61).

We claim:

#W∗g ≤
1

1000C0
#Wb. (69)

Indeed, (Wg,Bg) contain no (δ, t)–rectangles of type (& µ0 & 1) or (& 1,& ν0) so
by Lemma 36 (with δ replaced by Cδ for a suitable constant C),

#ĨB(b,C−1α)(Wg,Bg) . m5/4n1/4 logm+m3/4n13/12 log n,
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and thus by Lemma 39 (recall that now α is replaced by C−1α and C−1α is replaced
by C−2α) we can select our decomposition of Wg so that

#W∗g .
n

N

(
m5/4n1/4 logm+m3/4n13/12 log n

)
. (70)

Using (68) and selecting a sufficiently large constant in (61) (of course the choice
of constant in (61) will depend on the desired constant C0 in (69)) we obtain (69).
Since (#W∗g )(#B) < mn/2 we can apply the induction hypothesis to obtain

#ĨB(b,α)(W∗g ,Bg) ≤
1

1000C0
Cε(mn)ε

(
(mn)3/4 +m log n+ n logm

)
. (71)

Now, for each i let

Big = {Γ ∈ Bg : ∆B(b,C−2α)(Γ, Γ̃) < Cδ for some Γ̃ ∈ Wi
g}. (72)

Item (ii) in Lemma 37 implies

#Big .
n log n

N
. (73)

Now, we can apply the induction hypothesis to the pair (Wi
g,Big) to conclude

#ĨB(b,α)(Wi
b,Bib) ≤ Cε[(#Wi

b)(#Bib)]ε[(#Wi
b)(#Bib)]3/4C−1

0 . (74)

However, Big was selected so that

#ĨB(b,C−2α)(Wi
g,Bg) ≤ #ĨB(b,α)(Wi

g,Big),

and thus (74) implies

#ĨB(b,C−2α)(Wi
g,Bg) ≤ Cε[(#Wi

g)(#Big)]ε[(#Wi
g)(#Big)]3/4C−1

0 . (75)

Summing (75) over the M . N3 logN choices of i and applying Hölder’s in-
equality (see [14, p1252-3], for the details), we obtain

#
⋃
i

ĨB(b,C−2α)(Wi
g,Big) ≤

1

1000C0
Cε(mn)ε

(
(mn)3/4 +m log n+ n logm

)
. (76)

Combining (76), (68), and (71) we obtain (65).

6. Riemannian metric circles and other generalizations

It is reasonable to ask whether (9) holds for functions Φ which satisfy the cine-
matic curvature conditions but are not algebraic. An examination of the arguments
above reveals that the only place where the algebraic properties of Φ are used is
in Lemma 12, where we make use of the fact that the level sets of Φ(x, ·) (and of
various functions obtained from Φ) are algebraic curves, and in particular, any two
such curves intersect O(1) times.

One might hope that we could extend (9) to analytic Φ by approximating Φ by
the first ∼ | log δ| terms of its Taylor expansion. Unfortunately, the bounds obtained
above are more than superexponential in the degree of Φ, so if we approximate Φ
by a polynomial of degree ∼ | log δ| then the above proof yields maximal function
bounds that are worse than the Kolasa-Wolff result (8).

Working through the proof of Lemma 12, we see that the proof requires us to
control the number of times certain pairs of curves can intersect. For x, x̃ ∈ U1, ω ∈
{±1}, let

γx,x̃,ω,r = {y : Φ(x, y) + ωΦ(x̃, y) = r}. (77)
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We shall call such curves Φ–conics.

Definition 45. We say that Φ has the bounded conic intersection property if it
satisfies

(i) If {x, x̃} 6= {x′, x̃′}, then

#(γx,x̃,ω,r ∩ γx′,x̃′,ω′,r′) . 1. (78)

(ii) All Φ–circles Γ and Φ–conics γ have O(1) y(1)–extremal points (defined
below).

Definition 46. A y(1)–extremal point of a curve ζ is a point y0 ∈ ζ such that ζ ∩ V
is contained in one of the closed half-spaces {y(1) ≥ y

(1)
0 } or {y(1) ≤ y

(1)
0 } for V a

sufficiently small open neighborhood of y0.

Requirement (78) is the most difficult to satisfy, and it is the analogue of the
Euclidean statement that distinct irreducible conic sections intersect in at most
O(1) places (actually 4).

If Φ satisfies the cinematic curvature hypotheses, it need not have the bounded
conic intersection property. Indeed, consider the example

Φ(x, y) = y(2) + x(1)y(1) + x(2)(y(1))2 + p(x, y). (79)

If p(x, y) = 0, the Φ–conics

γ = {y : Φ((1, 0), y) + Φ((−1, 0), y) = r},
γ̃ = {y : Φ((0, 1), y) + Φ((0,−1), y) = r}

are identical (both are simply the line y(2) = r. Thus we can select p to be a
highly oscillatory C∞ perturbation which causes #(γ ∩ γ̃) to be arbitrarily large,
independent of (say) the C3–norm of Φ (we could choose some other reasonable
norm on Φ and construct similar counter-examples). For example, we could choose

ρ(x, y) = C−1φ(x)
(
y(2) − exp

[
−1/|(y(1))6|

]
sin
(

exp
[
1/|(y(1))2|

]))
for φ(x) a C∞ function supported in a small neighborhood of (1, 0). This choice
of Φ satisfies the cinematic curvature hypothesis, since it satisfies (30) and (31)
(provided we choose C sufficiently large so the contributions from ρ do not affect
the calculations), but it does not satisfy (78). Of course, the Φ given in (79) may
still satisfy (9), but a different proof would be needed. While general Φ need not
satisfy (78), we conjecture

Conjecture 47. Let Φ(x, y) = ρ(x, y) for ρ a Riemannian metric sufficiently close
to Euclidean. Then Φ satisfies the bounded conic intersection property.

This would imply

Corollary 48 (conditional on conjecture 47). Let Φ(x, y) be as in Conjecture (47).
Then (9) holds for MΦ.

Remark 49. Actually, we can still obtain Corollary 48 if we weaken Conjecture 47 to
the following statement: If Φ(x, y) = ρ(x, y) for ρ a Riemannian metric, define a δ–
generic Φ–conic to be a curve γx,x̃,ω,r which is not contained in the δ–neighborhood
of any geodesic (this is a quantitative analogue of an (algebraic) conic section
being irreducible). Then γx,x̃,ω,r admits a decomposition γx,x̃,ω,r = ∪iγix,x̃,ω,r into

. | log δ|C connected components such that (78) is satisfied for any two components
of any two Φ–conics.
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Appendix A. The Cell Decomposition

We shall give a brief sketch of the techniques developed by Chazelle et al. in [4]
(see also [5] and [1] for a rigorous exposition closer to the one sketched here) on the
method of vertical cell decompositions and random sampling.

Let S = {S1, . . . , SN} be a collection of 2–dimensional semi-algebraic sets in R3

(for which we shall use the coordinates (x, r)).
By subdividing each Si into a bounded number of pieces if necessary, we may

assume that each set Si may be written in one of the following three forms:

• S = graph(f), for f : V → R a smooth algebraic function and V ⊂ R2 an
open semi-algebraic set. We shall call these sets “surface patches”.

• Si a semi-algebraic set with dim(Si) = 2 but dim(πx(Si)) = 1. We shall
call these sets “vertical manifolds.”

• Si a semi-algebraic set with dim(Si) < 2.

To keep our exposition brief, we shall ignore the latter two types of sets, since their
presence is merely a technical annoyance that does not contribute significantly to
the analysis of the decomposition. Thus we shall assume that the sets in S consist
entirely of surface patches.

Definition 50. For S a surface patch, we shall define bdry(S) = S\S, where S
denotes the closure of S in the Euclidean (rather than Zariski) topology. Note that
dim(bdry(S)) = 1.

Definition 51. A vertical line segment L ⊂ R3 is a connected 1–dimensional semi-
algebraic set with the property that πx(L) is a point. If (x0, r0) ∈ R3, we say that
the (connected) vertical line segment L containing (x0, r0) is maximal with respect
to S if L meets no point of any surface in S except possibly at (x0, r0), but any
strictly larger line segment does.

If γ ⊂ R3 is a 1–dimensional semi-algebraic set (i.e. a union of segments of
algebraic curves) which is not a union of vertical lines, then if we erect a maximal
line segment from every point of γ we obtain a 2–dimensional semi-algebraic set Vγ
with πx(Vγ) = πx(γ). We shall call this set the “maximal vertical wall above γ”
(relative to S).

To construct the cell decomposition, erect a maximal vertical wall above S∩S̃ for
every pair of distinct S, S̃ ∈ S, and a maximal vertical wall above bdry(S) for each
S ∈ S. If we consider R3 with the surfaces S ∈ S and the above maximal vertical
walls removed, then the remaining connected sets (which we shall call pre-cells) each
have a unique “top” and “bottom” bounding surface, i.e. for each pre-cell Ω there
are unique S, S̃ ∈ S such that any maximal line containing (x, r) ∈ Ω terminates

at points in S and S̃. Thus at this point, each pre-cell is a “cylindrical algebraic
set,” i.e. it is of the form

Ω = {(x, r) : x ∈ VΩ, f1,Ω(x) < r < f2,Ω}

for VΩ ⊂ R2 an open, semi-algebraic set and f1,Ω, f2,Ω algebraic functions.
Now, bdry(VΩ) is a 1–dimensional semi-algebraic set, and thus can be written

uniquely as an almost disjoint finite union of segments of irreducible algebraic
curves such that if any two segments share a boundary point then their defining
polynomials are distinct (and thus neither defining polynomial divides the other).
We will call the boundaries of these segments the vertices of VΩ. Now, for each
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vertex x0 ∈ VΩ, erect the wall

Wx0,Ω = {(x, r) ∈ Ω: x(1) = x
(1)
0 }.

Finally, if γ is a 1–dimensional semi-algebraic set, then we say that x0 ∈ Γ is a
x(1)–extremal point if there exists an open neighborhood U of x0 and an irreducible
algebraic curve γ′ containing γ∩U such that γ′∩U is contained in one of the closed

half planes {x : x(1) ≥ x(1)
0 } or {x : x(1) ≤ x(1)

0 } (see Figure 1).

Figure 1. Examples of extremal and non-extremal points of a
semi-algebraic curve.

extremalnon−extremal

Remark 52. This definition of a x(1)–extremal point is consistent with the definition
given in Section 6 (Definition 46) for Φ–conics when Φ(x, y) is a smooth algebraic
function. Definition 46 needs to be worded slightly differently since when Φ is not
algebraic, there is no analogous notion of an irreducible algebraic component of a
semi-algebraic set, so we need to proceed more carefully.

For each extremal point x0 ∈ VΩ, erect the vertical wall Wx0,Ω. Once this has
been done, a vertical wall will have been erected in Ω above each of the dashed lines
in VΩ in Figure 2. We also need to add some additional vertical walls Wx0,Ω with
x0 the endpoint of certain line segments (since the irreducible algebraic curve that
contains a line segment is of course a line, which (provided it is not parallel to the
x(2)–axis) does not have any x(1)–extreme points), but in the interest of brevity we
shall gloss over this point (we can also ensure that line segments never occur by
applying a slight perturbation at an earlier stage of the decomposition).

Once these vertical walls have been erected for each cell Ω, the resulting ar-
rangement of surfaces partitions R3 into topologically trivial open sets (cells). This
partition has the following properties:

(i) Each cell is a semi-algebraic set defined by at most 6 algebraic surfaces.
(ii) For each cell Ω, there is a collection of at most 6 surfaces S1, . . . , S6 ∈ S

such that if the above cell decomposition algorithm were applied to S ′ =
{S1, . . . , S6}, then Ω would be one of the resulting cells in the decomposi-
tion.

(iii) There are . N3 logN cells.

Properties (i) and (ii) are immediate from the above cell decomposition algorithm:
each cell Ω is contained in a unique pre-cell Ω′. The top and bottom of Ω are the
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Figure 2. A schematic view of πx(Ω) after vertical walls have
been erected. The dashed lines correspond to vertical walls.

same algebraic surfaces S, S̃ as the top and bottom of Ω′. The “front” and “back”
walls of Ω (if the exist) are segments of the vertical wall raised above curves γ, γ̃

which were obtained by intersecting respectively S and S̃ with two other surfaces
S′, S̃′ ∈ S, and the “right” and “left” walls of Ω (if they exist) are walls of the form
Wx0,Ω′ where x0 is a point of intersection of γ1 and γ2, where γ1 is a section of

S ∩ S′ or S̃ ∩ S̃′, and γ2 is a section of S ∩ S1 or S̃ ∩ S̃1 for some S1 or S̃1 ∈ S.
The analysis required to obtain (iii) is somewhat lengthy, but the key idea is

as follows. The main step in obtaining property (iii) is to bound the number of
vertices in the sets VΩ, since a bound on the number of vertices leads to a bound
on the number of vertical walls Wx0,Ω added to the arrangement (the contribution

from the vertical walls from x(1)–extremal points is negligible). These vertices arise
when the algebraic curves defining ∂VΩ intersect. By Bézout’s theorem, any two
algebraic curves intersect in at most O(1) places (since Φ is of bounded degree,
all of the algebraic curves appearing in the cell decomposition are also of bounded
degree). This fact allows us to use the theory of Davenport-Schintzel sequences to
control the total number of intersections between the algebraic curve segments that
define the boundaries of the cells (and thus the total number of vertices occurring
in the sets VΩ as Ω ranges over the cells in the decomposition).

Property (ii) of the cell decomposition allows us to use a random sampling ar-
gument of the type discussed in [5] to obtain Lemma 12. We shall give a brief
sketch of this lemma here. Let S be a collection of 2–dimensional semi-algebraic
surfaces with #S = n. Randomly select a subset D ⊂ S with #D = N < C−1n
(the requirement N < C−1n allows us to gloss over the distinction between select-
ing curves from S with and without replacement, since the probability of the same
curve being selected twice is low) Apply the above cell decomposition algorithm to
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the collection D. For each resulting cell Ω in the decomposition, let

Z(Ω) = #{S ∈ S : S ∩ Ω 6= ∅}.

Then,

P
(
Z(Ω) ≥ λ | Ω ∩ S = ∅ for all S ∈ D

)
≤
(

1− λ

n

)N
. (80)

If we set λ = C n logn
N , then the right hand side of (80) is . n−C . Thus since our

vertical algebraic decomposition gives us an injection from D6 into the collection
of all cells arising from the decomposition of the collection of surfaces D, and since
each cell in the resulting decomposition does not intersect any of the surfaces in
D (since the cells are subsets of R3\

⋃
S∈D S), the probability that even a single

cell meets more than λ = C n logn
N surfaces is at most C ′n6−C , which we can make

arbitrarily small by choosing C sufficiently large.

Appendix B. Real Algebraic Geometry

In this appendix we shall briefly review a few definitions and theorems from real
algebraic geometry. Throughout our discussion, the base field shall be R and all
polynomials shall be assumed to have real coefficients. Unless otherwise noted, all
open sets shall be assumed to be open in the Euclidean topology. Many of the
results discussed below are applicable to any real fields but we shall not pursue this
here. Further details on the material reviewed below can be found in [3], [2], and
[8] (see [10] for an English summary of the key results we need from [8]).

Definition 53. A set S ⊂ Rn is semi-algebraic if

S =

n⋃
i=1

{x : fi,1(x) = 0, . . . fi,`i(x) = 0, gi,1(x) > 0, . . . , gi,mi(x) > 0} (81)

for {fi,j} and {gi,j} polynomials.

Definition 54. The complexity of a semi-algebraic set is defined as

min

(∑
i,j

deg fi,j +
∑
i,j

deg gi,j

)
, (82)

where the minimum is taken over all representations of S of the form (81).

Remark 55. This definition of complexity is not standard. In the body of the
paper we refer to sets of “bounded complexity.” This means that the complexity of
the semi-algebraic set is bounded by a number that depends only on the defining
function Φ from (9).

Definition 56. A function f : Rn → Rm is semi-algebraic if its graph is a semi-
algebraic set. The complexity of a semi-algebraic function is the complexity of its
graph.

Theorem 57 (Tarski-Seidenberg). Let S ⊂ Rn be semi-algebraic. Then

π(x1,...,xn−1)(S) ⊂ Rn−1

is semi-algebraic, and the complexity of π(x1,...,xn−1)(S) is controlled by the com-
plexity of S.
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Definition 58. Let S ⊂ Rn be a semi-algebraic set. We define

I(S) = {f ∈ R[X1, . . . , Xn] : f |S = 0}. (83)

I(S) is an ideal in R[X1, . . . , Xn].

Definition 59. For an ideal I in R[X1, . . . , Xn], we define

Z(I) = {(x1, . . . , xn) ∈ Rn : f(x1, . . . , xn) = 0 for all f ∈ I}, (84)

so in particular, S ⊂ Z(I(S)).

Definition 60. let S be a semi-algebraic set. We define P(S) = R[X1, . . . , Xn]/I(S).
Then the dimension of S is given by

dim(S) = dim(P(S)),

the maximal length of a chain of prime ideals in the ring P(A) (see e.g. [6] for a
discussion of these ideas).

Proposition 61. Let S be a semi-algebraic set. Then S has the same dimension
as its closure in the real Zariski topology, i.e.

dim(S) = dim(Z(I(S))),

and the latter set is algebraic.

Proposition 62. Let f(x, xn+1) be a polynomial in n + 1 variables. Then there
exists a partition of Rn into semi-algebraic sets A1, . . . , Am and for each i a finite
number of semi-algebraic functions ξi,1, . . . , ξi,`i : Ai → R such that

(i) For each x ∈ Ai such that f(x, ·) is not identically 0,

{ξi,1(x), . . . , ξi,`i(x)} = {xn+1 : f(x, xn+1) = 0}. (85)

(ii) graph(ξi,j) ⊂ {f = 0}. (86)

The complexity of the Ai and ξi,j depend only on the complexity of f .

Corollary 63. Let S ⊂ Rn+1 be an algebraic set. Then we can write

S =

n⋃
1

Si ∪
m⋃
1

Ti, (87)

with Si = graph(fi|Ai) for fi a smooth algebraic function and Ai ⊂ Rn an open
semi-algebraic set, and dimπ(x1,...,xn)(Ti) < dimS. The complexity of the fi, Ai,
and Ti depend only on the complexity of S.

Remark 64. In addition to Proposition 62, Corollary 63 relies on the the fact that
the set of singular points of a semi-algebraic set is itself a semi-algebraic set of
strictly lower dimension (see [3, Chapter 2] for a complete discussion of these ideas).

Proposition 65. Let S =
⋃n

1 Si with Si a semi-algebraic set homeomorphic to
[0, 1]di . Then dim(S) = max{d1, . . . , dn}.

Proposition 66. Let S be a semi-algebraic set that is also a smooth manifold.
Then dim(S) equals the dimension of S as a smooth manifold.
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