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TURAEV-VIRO INVARIANTS AS AN EXTENDED TQFT III

BENJAMIN BALSAM

Abstract. In the third paper in this series, we examine the Reshetikhin-
Turaev and Turaev-Viro TQFTs at the level of surfaces. In particular, we
show that for a closed surface Σ, ZTV,C(Σ) ∼= ZRT,Z(C)(Σ), thus extending

the equality of 3-manifold invariants proved in [TV II] to an equivalence of
TQFTs.

Introduction

In this paper we continue the work from [BK], [Bal] in which we generalized the
Turaev-Viro state-sum invariant to manifolds with corners. This gave an extended
Topological Quantum Field Theory (TQFT). Using this extended theory, we showed
that for a closed 3-manifold M, ZTV,C(M) = ZRT,Z(C)(M), where C is a spherical
fusion category, Z(C) is its Drinfeld Center (which is modular) and ZRT,Z(C) is
the Reshetikhin-Turaev invariant based on Z(C). In this paper, we show that the
TQFTs are isomorphic at the level of surfaces. Namely, if Σ is a closed surface,
we show that there is a nautural isomorphism ZTV,C(Σ) ∼= ZRT,Z(C)(Σ) of vector
spaces. We also note that we actually get an equivalence of extended 3-2-1 theories
if we impose mild restrictions on the allowed types of manifolds with corners.

It is easy to compute the dimensions of the above spaces:

(0.1) DimZTV (Σg) = DimZRT (Σg) = D2g−2
∑

i∈Irr(C)

d
2−2g
i

where D is the dimension of C and di is the dimension of simple object Xi. The
vector spaces are therefore isomorphic, but this is not enough. We need to exhibit
a natural isomorphism between the spaces.

The same question occurs in general when attempting to define any 2D modular
functor. For example, in RT theory, one decomposes the surface Σ into a union of
punctured spheres1, evaluates ZRT for each of them, and uses the gluing axiom to
obtain ZRT (Σ). A priori, this appears to depend on the choice of decomposition
of Σ. Refining earlier work by Moore and Seiberg, Bakalov and Kirillov [BK2000]
proposed a set of moves (The ”Lego-Teichmüller Game”) relating any two such
decompositions. One can show that each of these moves corresponds to a certain
natural isomorphism of vector spaces and any two ”paths” between two chosen
decompositions yield the same map. The space Z(Σ) is therefore well defined.

In this paper we apply the results described above to TV theory. In [BK], we
constructed an isomorphism

(0.2) ZTV (Σ) ∼= HomZ(C)(1, Y1 ⊗ · · · ⊗ Yn)

This work was partially suported by NSF grant DMS-0700589 .
1Following [BK2000], we call this a cut sytem.
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where Σ is an n-punctured sphere with boundary components labeled by Y1, . . . Yn ∈
Irr(Z(C)). Notice that the space on the right of this equation is by definition
ZRT,Z(C)(Σ;Y1, . . . Yn).

It is important to note that RT is defined using ”pairs-of-pants” decompositions
of surfaces, while TV is defined via cell decompositions. Since the latter is a local
construction and the former is inherently nonlocal, comparing the two requires
a natural way of passing between them. The solution is simple and is provided
immediately by the surface parametrizations defined in [BK]. Using these, we can
compute maps between TV state spaces that correspond to each of the moves
between cut systems and check that such maps are compatible with the projector
HTV (Σ) −→ ZTV (Σ). Thus, we get a natural identification ZRT (Σ) ∼= ZTV (Σ).

In both RT and TV theory, once we know the value of the TQFT on a punctured
sphere, we can use the gluing axiom to define Z(Σ) for any surface. Thus, we get
a well-defined vector space, up to natural isomorphism that depends only on the
topology of Σ. We do this in each case by defining ”intermediate” vector spaces
which do depend on some choices2 and demonstrating that we can identify all such
spaces naturally. The key result in this paper is that we can pass between the
theories in a natural way, so that ZTV,C(Σ) ∼= ZRT,Z(C)(Σ) independent of any
choices.

The paper is organized as follows. First, we briefly review the theory of parametrized
surfaces from [BK2000]. Next, we examine the effect of passing between parametriza-
tions on the associated TV state spaces. In particular, we show that each of the
moves yields a natural map between state spaces, which under projection gives the
same identification between vector spaces as that in RT. The appendix contains
some of the larger diagrams referenced in the paper.

This paper completes the program outlined in [TV] and continued in [TVII]. The
reader is strongly encouraged to read these papers before this one, as they contain
much prerequisite material.

Acknowledgments. The author would like to thank Sasha Kirillov for his help
in writing this paper.

1. Surface Decompositions

In this section we briefly review the notion of a parametrized surfaces. For a
complete exposition, see [BK2000]. Informally, a parametrization is a way of writing
a surface Σ as the union on punctured spheres, together with a fixed identification
of each punctured sphere with a standard sphere. The standard sphere with n
punctures is defined formally as

(1.1) S0,n = CP
1\{D1, . . . , Dn};Dj = {z||z − zj | < ǫ}, z1 < · · · < zn

where ǫ is sufficiently small so the boundary circles do not intersect. We also fix a
point pi ∈ ∂Di. Note that we have fixed an ordering of the boundary circles, so we
can refer to the set of boundary components by {1, . . . , n}.

Definition 1.1. An extended surface is a compacted oriented surface Σ , possibly
with boundary, together with a fixed point pα on each boundary component (∂Σ)α.

2The parametrization in RT and the cell decomposition in TV.
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Note that there are several other equivalent ways of defining an extended surface
(See [BK2001]). We now give the main definition of this section. Let Σ be an
extended surface.

Definition 1.2. A parametrization of Σ consists of

(1) A finite set C of non-intersecting simple closed curves on Σ such that Σ\C
is of genus zero. We call C the set of cuts and fix a point on each cut.

(2) For each component Σa of Σ\C, a homeomorphism ψ : Σa → S0,na

Two parametrizations are considered equivalent if they are isotopic 3. There is a
nice graphical way of describing parametrized surfaces. Namely, take the standard
sphere with the graph as shown in Figure 1. This graph connects a single internal

Figure 1. The graph on S0,3

vertex to each of the points pα fixed on the boundary and labels the edge connected
to circle 1 by an arrow.

To depict a parametrization of any surface Σ, we draw the cuts on Σ. Then for
each connected component Σα, we pull back the graph on the standard sphere by
ψα to obtain a graph Mα on Σα. Clearly, such data are equivalent (up to isotopy)
to specifying a parametrization and henceforth we will refer to a parametrization
as a pair (C,M) where C is a set of cuts on Σ and M = ∪αMα. When possible, we

Figure 2. A parametrization of a genus two surface Σ = S0,3 ⊔
S0,3 ⊔ S0,2. The blue lines are cuts and the green lines are graphs
Mα

will often draw the graphs Mα in the plane, ignoring the sufaces into which they
are embedded. The reader should have no difficulty passing between such a graph
and the surface it represents.

3Both the set of cuts and the homemorphisms of boundary components are considered up to
isotopy
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α

Z
−→

α

Figure 3. Z-move

α β

B
−→

α β

Figure 4. B-move

Definition 1.3. Let (Σ, P ) be a parametrized surfaces. Then

(1.2) ZRT,Z(C)(Σ, P ) =
⊕

Y1α ,...Ynα

⊗

α

ZRT,Z(C)(Σα;Y1α , . . . Ynα
)

where the product is over all connected components of Σ\C and the sum is over all
possible labelling boundary disks by irreducible objects of Z(C).

We will typically denote a simple object Yi ∈ Z(C) by its index i. In all that
follows, i∗ represents the dual object Y ∗

i , which is also simple. To simplify formulas,
many authors attempt to pick a function f : Irr(C) → Irr(C) so that Y ∗

i = Yf(i),
but one should avoid doing this at all costs since it is often impossible to do so in
a consistent manner (See [BK2001], Remark 2.4.2).

Example 1.4. Let Σ be the torus with one puncture and parametrization as
shown on the left hand side of Figure 1 and boundary disk labeled by Y . Then

ZRT,Z(C)(Σ) =
⊕

i∈Irr(Z(C))

HomZ(C)(1, Y ⊗ i⊗ i∗).

Now we describe a set of moves between parametrizations of a surface. As we’ll
see below, we can relate any two decompositions by a finite composition of these
moves:

(1) The Z-move cyclically permutes the boundary components.
(2) The B-move braids one boundary component about an adjacent one.
(3) The F-move removes a cut. If a cut separates S0,n and S0,m, deleting the

cut gives a component homeomorphic to S0,m+n−2 together with a graph
inherited from the original components. Notice that we connect circle 1

from the one sphere to circle m of the other, thus resulting in a graph
which inherits a natural ordering of boundary circles.

(4) The S-move interchanges meridians and longitudes of the punctured torus.

Theorem 1.5. Let A = (Σ, C,M) and A′ = (Σ, C′,M ′) be two parametrizations of

a surface. Then A and A′ are related by a finite sequence of Z,B, F and S moves

described above.
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F
−→

Figure 5. F-move

S
−→

Figure 6. S-move

This result has its origins in conformal field theory. It was conjectured by Moore
and Seiberg and rigorously proved in [BK2000]. It is a generalization of a result by
Hatcher and Thurston ([HT1980]), which describes moves between surfaces decom-
posed into spheres, cylinders and pairs-of-pants, but doesn’t take into account the
full data of a parametrization. The theorem in [BK2000] does a lot more in fact: it
provides a complete set of relations between the above moves, but we will not need
this part explicitely.

These moves are important for defining a 2-dimensional (extended) modular
functor F . Given the vector space associated to the punctured sphere, one should be
able to use the gluing axiom to describe F(Σ) for a surface of any genus. Different
parametrizations should give naturally isomorphic vector spaces; one can check
that this is so by verifying that it is true for each of the simple moves between
parametrizations. If P, P ′ are two parametrizations of a surface Σ related by a
single Z,B, F or S move, we can explicitely describe the correspondence between
associated vector spaces in RT theory:

Lemma 1.6. Let P, P ′ be two parametrizations of a surface Σ and let X : (Σ, P ) −→
(Σ, P ′) be any composition of Z,B, F and S moves connecting P and P ′. Then X

induces an isomorphism X∗ : ZRT,Z(C)(Σ, P )
∼=
−→ ZRT,Z(C)(Σ, P

′). This isomor-

phism is independent of the choice of X. In terms of the generators,

(1) The Z-move corresponds to the rotation isomorphism:

〈Y1, . . . , Yn〉 → 〈Yn, Y1, . . . , Yn−1〉

ϕ

Y1 Y2 Yn

. . . Z∗−→

ϕ

Y1 Y2Yn

. . .
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(2) The F-move gives the composition isomorphism. That this is an isomor-

phism follows directly from semisimplicity.

∑

i∈Irr(Z(C))

ϕ

Y1 Y2 i

. . .

ϕ′

Yn
Yn−1i

. . . F∗−→
∑

i

ϕ′

Yn
Yn−1

ϕ

Y1 Y2

i

. . . . . .

(3) The B-move gives the braiding isomorphism

ϕ

Y1 Y2 Yn

. . . B∗−→

ϕ

Y1 Yn
Yn−1

. . .

(4) The S-move gives multiplication by the S-matrix

∑

B
ϕ

A B B
∗

S∗−→ 1
D2

∑

B,Y
ϕ

A

B B
∗

Y Y
∗

2. Parametrized surfaces and cell decompositions

In this section, we state and prove the main result of the paper: TV and RT
theories assign the same vector space (up to natural isomorphism) to any closed
surface Σ.

Given two cell decompositions ∆,∆′ of a surface Σ, there is a natural map

(2.1) Ψ∆′,∆ : H(Σ,∆) −→ H(Σ,∆′)

obtained by computing a state sum on the cylinder Σ × I, with a decomposition
chosen to agree with ∆ on Σ × 0 and ∆′ on Σ × 1. Note, that this map does not
depend on the choice of the internal decomposition. We will refer to this map as
the cylinder map.
The cylinder map is not an isomorphism in general since the dimension ofHTV,C(Σ,∆)
depends on the number of edges of ∆, but it is almost an isomorphism. More pre-
cisely, define the space ZTV,C(Σ,∆) = Im(Ψ∆,∆). Then

(2.2) Ψ∆,∆′ : ZTV,C(Σ,∆) −→ ZTV,C(Σ,∆
′)

is a natural isomorphism. We can refer to this space as ZTV,C(Σ), since up to
natural isomorphism it doesn’t depend on the cell decomposition.

Given a parametrized surface Σ, there is a natural way to obtain a cell decompo-
sition of Σ . We have a fixed collection of closed curves dividing Σ into the union of
punctured spheres. These cuts become 1-cells in the cell decomposition. Further,
for each punctured sphere thus obtained, we have a graph from our parametriza-
tion terminating at fixed points on the boundary circles. Each edge of this graph
becomes a 1-cell and the points at which the 1-cells terminate become vertices. It is
easy to see that these choices define a cell decomposition in the sense of [BK] 4. We
call the cell decomposition obtained in this way, the associated cell decomposition
to parametrization P .

4See, in particular, Figure 27
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Recall that for a punctured sphere with standard cell decomposition (Figure 1),

we have a projection HTV,C(S
2)

π
→ ZTV,C(S

2) ∼= ZRT,Z(C)(S
2). The associated

inclusion map i can be described graphically. The normalization factors are chosen

ϕ
i

−→
⊕

x1,...,xn

n
∏

j=1

√

dxj

ϕ

x1
xn

Y1
Yn

...

Figure 7. i : ZRT,Z(C)(S
2) →֒ HTV,C(S

2)

to agree with that in [BK], so that π ◦ i = Id.
We have two parallel notions in TV and RT theory. On the RT side, we have

surface parametrizations and passing between any two parametrizations gives an
isomorphism as described earlier in Lemma 1.6. On the TV, side, we have cell
decompositions; passing between any two cell decompositions gives a natural iso-
morphism obtained from a cylinder as described earlier. The following theorem,
which implies the main result in this paper, shows that these two notions are the
same, up to projection.

Theorem 2.1. Let P, P ′ be two parametrizations of a surface Σ with associated

cell decompositions ∆,∆′ respectively. Then the diagram in Figure 8 commutes.

Here, X∗ is the map described in Lemma 1.6, j is the map described in Figure 7
followed by projection to ZTV,C(Σ)and Ψ is the isomorphism described in (2.2).

Proof. To show the diagram commutes, we will verify that it does for each of the
generators Z,B, F and S. The Z and B moves are essentially immediate, while
the F and S moves require some work. Throughout the proof, our convention
will be that diagrams of surfaces represent the vector spaces associated to them.
In particular, a parametrized surface (Σ, P ) represents ZRT,Z(C)(Σ, P ) and a cell-
decomposed surface (Σ,∆) represents ZTV,C(Σ,∆). In the diagrams below, we
have written Ψ from Figure 8 as the composition of several elementary steps for
the reader’s edification. We have moved several of the large diagrams to Section 3.

The Z-move. This follows directly from the natural isomorphism from Lemma 1.6(1).

The B-move. A proof of this fact may be found in [BK] (lemma 2.1), where we
provide an explicit computation.

ZTV,C(Σ,∆) ZTV,C(Σ,∆
′)

j j

ZRT,Z(C)(Σ, P ) ZRT,Z(C)(Σ, P
′)

X∗

Ψ

Figure 8.
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The F-move. We will show that the diagram in Figure 11 commutes . The arrow
labeled F is the isomorphism described in Lemma 1.6, those labeled i are inclusion
maps (Figure 7), and G is the gluing isomorphism at the level of state-spaces
(Theorem 7.3, [BK]) . The other maps are all cylinder maps 2.1. Notice that this
can be done in fewer steps, but the cylinder maps will be more difficult to realize.
Figure 11 by contrast contains cylinder maps that are all easy to compute.

To check that this diagram commutes we begin with a vector in ZRT,Z(C) and
proceed about the diagram in two ways. In Figure 12 we give the answer. The
explicit computation at each stage left to the reader.

The S-move. We will show that the diagram in Figure 13 commutes. We have
omitted some intermediate steps on the right side of the diagram as they are much
the same as those on the left. Notice that the diagrams connected by the horizontal
arrow labeled S are parametrized surface while the others are of cell-decomposed
surfaces. We have chosen a convenient cell decomposition as the terminating point
of the diagram which is easy to work with since there are simple maps α, β to this
space which can be though of as contractions along edges u1 and u2 respectively
(Figure 9). If we start on the bottom left of figure Figure 13 and proceed around

α β

u1

u2

Figure 9. To identify the spaces on the left and the right, we
use cylinder maps α, β to the space in the center and compare the
images of these maps.

in two different ways, we get two vectors, ϕ1, ϕ2 in the same space as shown in
Figure 10

ϕ1 = 1
D

∑

x1,x2,N

(dx1
dx2

dN )
1

2

ϕ

iY i

NN
∗x2 x

∗

2

;ϕ2 =
1

D3

∑

x1,x2,N

(dx1
dx2

dN )
1

2

x
∗

2x2

N

ϕ

Y
i

j

Figure 10.

We can easily verify that these vectors are the same by picking some vector w in
the dual space and comparing the pairings 〈ϕ1, w〉 and 〈ϕ1, w〉. Let w be given by

1

D

∑

i,N,x1,x2

(dNdx1
dx2

)
1

2

w̃

j Yj

x
∗

2 x2N
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where w̃ is some vector in
⊕

j

HomZ(C)(1, j
∗ ⊗ j ⊗ Y ). Then

〈w,ϕ1〉 =
1

D2

∑

dNdx1
dx2

w̃

jY j

ϕ

i i

x2 N∗x1

=

ϕ

Y i

j

w̃

= 〈w̃, S∗ϕ〉

=
1

D4

∑

dNdx1
dx2

w̃

ϕ

Y

i

j

N
x2 x

∗

2
x1

j

= 〈w,ϕ2〉 �

As an immediate corollary, we get

Theorem 2.2. For any closed surface, Σ, we have a natural isomorphism

ZRT,Z(C)(Σ) ∼= ZTV,C(Σ).

The results in [BK], [Bal] and in this paper actually show that RT and TV
theories are equivalent as extended (3-2-1) theories in a suitably restricted sense. In
particular, we allow 3-manifolds with embedded tubes inside, but not with arbitrary
embedded graphs. Keeping this in mind, the two theories are equivalent; they
associate the same category to a closed 1-manifold (Z(C)⊠n to a union of n circles),
and all the above arguments, particularly Theorem 2.2 work in the same exact way
for surfaces with boundary.

3. Diagrams
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B
E
N
J
A
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IN
B
A
L
S
A
M

F

i i

G

Figure 11. The F-move fuses together two spheres along a boundary component. In terms of parametrized surfaces
this is realized by simply removing a cut separating the spheres. At the level of cell decompositions we want to
identify the result with the standard sphere decomposition (Figure 1). We include several intermediate steps to make
the computation more transparent.
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E
X
T
E
N
D
E
D

T
Q
F
T

III
1
1

x1 x2 x3

ϕ

iY1 Y2

ψ

i Z1 Z2

ϕi

iY1 Y2

ψi

i Z1 Z2

ϕ

iY1 Y2

ψ

i Z1 Z2

M N

M
∗

i

N
∗

N
∗

N

ϕ

Y1 Y2

ψ

Z1 Z2

ϕ

Y1 Y2

ψ

Z1 Z2

ϕ

Y1
Y2

ψ

Z1 Z2

ϕ

iY1 Y2

ψ

i Z1 Z2

i

i

F∗

i
i

∑

Yk,Zk∈Z(C)

x4 x5 x6

x1 x2 x3 x4 x5 x6

∑
(dx1

. . . dx6
)
1

2

∑
(dXdx1

. . . dx6
)
1

2 dMdN

∑
(dx1

. . . dx6
)
1

2 dN

∑
(dx1

dx2
dx5

dRdx6
)
1

2

∑
(dx1

dx2
dx5

dx6
)
1

2

∑

i

i

X

Figure 12. A verification that Figure 11 commutes. All unlabeled arrow represent cylinder maps. We start on the
lower left and proceed in two ways around the diagram.
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Y Y

Y Y

Y

YY

i i

Figure 13. The S-move interchanges meridians and longitudes of the 1-punctured torus. Thus, the cut (blue) and
the parametrizing graph (green) exchange places under the application of S. On both sides of the diagram, the map
i cuts the surface into a pair of pants along the blue edge. Some intermediate steps on the right side of the diagram
are omitted since they are identical to those on the left.
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T
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1
3

ϕ

iY i

ϕ

Y
i

j

ϕ

iY i

ϕ

Y
i

j

M N

M∗

i

N∗

ϕ

iY i

NN∗

ϕ

iY i

NN∗

ϕ

iY i

x∗

2x2
N

ϕ

Y
i

j

x2

∑
(dx1

dx2
dx3

)
1
2

1
D

∑
dMdN (didudx1

dx2
dx3

)
1
2

∑

i

x1 x2 x3

1
D

∑
di

1
2 dN (dx1

dx2
dx3

)
1
2

1
D2

∑

i,j

x1 x2 x3

1
D

∑
(didNdx1

dx2
)
1
2

1
D3

∑
(dNdidx1

dx2
)
1
2

u

1
D2

∑
(dx1

dx2
dx3

)
1
2

?

Figure 14. A demonstration that Figure 13 commutes. Notice that when we proceed around the diagram we get

two different pictures (separated by ”
?
= ”), but can verify that they represent the same vector.
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