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Abstract

We analyze certain conservative interacting particle system and establish

ergodicity of the system for a family of invariant measures. Furthermore,

we show that convergence rate to equilibrium is exponential. This result is

of interest because it presents counterexample to the standard assumption

of physicists that conservative system implies polynomial rate of conver-

gence.
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system, ergodicity.

1 Introduction

In this paper we present an example of the conservative interacting particle sys-
tem with exponential rate of convergence to equilibrium. This system naturally
appears in the dyadic model of turbulence (see [2]). In [2] it has been estab-
lished that the system has anomalous dissipation. This result seems to be the
reason behind exponential rate of convergence to equilibrium. Similar systems
naturally appear in the models of heat conduction and quantum spin systems
([3],[4],[9],[10],[11]).

Ergodic properties of systems of interacting particles is one of the central
topics of statistical mechanics. They have been studied starting from the works
of Spitzer [19] and Dobrushin [7]. The literature of the subject is huge and we
will not attempt to list it here, see [17] and references therein.

Interacting particle systems are usually divided into two classes: conservative
and nonconservative ones. Conservative ones are presumed to have at most
polynomial rate of convergence to equilibrium and dissipative ones exponential
one ([16]).

∗Supported by EPSRC EP/D05379X/1
†On leave from Imperial College London

1

http://arxiv.org/abs/1012.0582v1


In the same time rigorous mathematical results about rates of convergence
to equilibrium of conservative systems has been established only in the handful
of cases such as Kawasaki dynamics ([5],[6]), Ginzburg-Landau type processes
([14],[16]) and Brownian moment processes ([13]). The result of this paper
shows that existence of formal conservation law does not necessarily imply poly-
nomial rate of convergence. Consequently, ”meta” theorem that conservative
interacting particle systems are ergodic with polynomial rate of convergence to
equilibrium is not correct.

2 The system

Let (Ω, Ft, P ) be a filtered probability space and (Wn) be a sequence of inde-
pendent Brownian motions. Consider the equation

dXn = kn−1Xn−1 ◦ dWn−1 − knXn+1 ◦ dWn, Xn (0) = X(0)
n (1)

for all n ≥ 0, with X0 = 0, k0 = 0, and kn = λn, n ∈ N for some λ > 1,

X
(0)
n deterministic or F0-adapted. The stochastic integral in the system (1) is

in Stratonovich sense.

Remark 1 The assumption kn = λn, n ∈ N has been imposed for simplicity. It

can be relaxed to the assumption that the sequence
{

kn+1

kn

}∞

n=1
is nondecreasing

and the first term of the sequence is bigger than 1.

Consider the space

W =
{
(xn)n∈N

: ‖x‖
2
W :=

∑
k−2
n x2

n < ∞
}
.

Definition 2 We say that a sequence of continuous adapted processes (Xn)
is a weak (in the analytical sense) solution in W of equation (1) if (Xn) is
L∞

(
[0, T ] ;L2 (Ω;W )

)
and

dXn = kn−1Xn−1dWn−1 − knXn+1dWn −
1

2

(
k2n + k2n−1

)
Xndt

for each n ≥ 1. If we have

E
[
‖X (t)‖

2
W

]
≤ E

[∥∥∥X(0)
∥∥∥
2

W

]
, a.e. t ≥ 0

we say it is a Leray solution in W .

Theorem 3 For every X(0) ∈ L2 (Ω;W ), F0-measurable, there exists a unique
weak Leray solution in W of equation (1).

Remark 4 We use Galerkin type finite dimensional approximation to show ex-
istence of solution of system (1). Different way would be to apply results of
Holevo [12].
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Proof. Step 1 (existence). For each N ∈ N, consider the finite dimensional
system

dXN
n = kn−1X

N
n−1dWn−1−knX

N
n+1dWn−

1

2

(
k2n + k2n−1

)
XN

n dt, n = 1, ..., N

with XN
0 = XN

N+1 = 0 and the initial condition XN
n (0) equal to X

(0)
n , n =

1, ..., N . This system has a unique strong solution, with all moments finite.
Indeed, it immediately follows from the Theorem 3.3, p. 7 of [1]. Set

qNn = E
[(
XN

n

)2]
.

By Itô formula (we need finite fourth moments to have that the Itô terms are
true martingales, then they disappear taking expected value) we have (we drop
N)

q′n = −
(
k2n + k2n−1

)
qn + k2n−1qn−1 + k2nqn+1

= −k2n−1 (qn − qn−1) + k2n (qn+1 − qn)

for n = 1, ..., N , with q0 = qN+1 = 0. Denote by ‖·‖
2
W the same norm introduced

above also in the case of a finite number of components. We have

d

dt
E
[∥∥XN

∥∥2
W

]
=

N∑

n=1

k−2
n

d

dt
qNn =

= −

N∑

n=1

k−2
n k2n−1 (qn − qn−1) +

N∑

n=1

k−2
n k2n (qn+1 − qn)

= −λ−2
N∑

n=1

(qn − qn−1) +

N∑

n=1

(qn+1 − qn) ≤ −q1.

Since q1 ≥ 0 by definition, we have

E
[∥∥XN (t)

∥∥2
W

]
≤ E

[∥∥XN (0)
∥∥2
W

]
, t ≥ 0. (2)

Thus the sequence
(
XN

)
N≥0

is bounded in L∞
(
[0, T ] ;L2 (Ω;W )

)
. Therefore,

there exists a subsequence Nk → ∞ such that
(
X

(Nk)
n

)
n≥1

converges weakly to

some (Xn)n≥1 in L2 (Ω× [0, T ] ;W ) and also weak star in L∞
(
[0, T ] ;L2 (Ω;W )

)
.

Now the proof proceeds by standard arguments typical of equations with mono-
tone operators (which thus apply to linear equations), presented in [18], [15].
The subspace of L2 (Ω× [0, T ] ;W ) of progressively measurable processes is
strongly closed, hence weakly closed, hence (Xn)n≥1 is progressively measur-
able. The one-dimensional stochastic integrals which appear in each equation
of the system are (strongly) continuous linear operators from the subspace of
L2 (Ω× [0, T ]) of progressively measurable processes to L2 (Ω), hence they are
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weakly continuous, a fact that allows us to pass to the limit in each one of the
linear equations of the system. A posteriori, from these integral equations, it
follows that there is a modification such that all components are continuous.
The proof of existence is complete.

Step 2 (uniqueness). Assume that X(i), i = 1, 2 are two weak solutions
in W . Then Y = X(1) − X(2) is a weak solution in W , but with zero initial
condition. Set similarly as above

qn = E
[
Y 2
n

]
.

By Itô formula we have

1

2
dY 2

n = kn−1Yn−1YndWn−1 − knYnYn+1dWn

−
1

2

(
k2n + k2n−1

)
Y 2
n dt+ k2n−1Y

2
n−1dt+ k2nY

2
n+1dt.

Define family of stopping times

τnm = inf
t≥0

{

t∫

0

Y 4
n (s)ds ≥ m},m, n ∈ N.

Since Y ∈ L∞
(
[0, T ] ;L2 (Ω;W )

)
we infer that for all n ∈ N

∫ t

0

Y 4
n (s) ds < ∞,P− a.s.

Therefore,
lim

m→∞
τnm = t,P− a.a

Define family of local martingales {Mn} by

Mn(t) :=

∫ t

0

kn−1Yn−1YndWn−1 − knYnYn+1dWn, t ≥ 0.

Then, {Mm
n (· ∧ τnm)} is a family of martingales. Denote

qn,m(·) = E
[
Y 2
n (· ∧ τnm)

]

Consequently

q′n,m = −
(
k2n + k2n−1

)
qn,m + k2n−1qn−1,m + k2nqn+1,m

= −k2n−1 (qn,m − qn−1,m) + k2n (qn+1,m − qn,m)

and from this (and the positivity of qn,m’s) we can deduce qn,m = 0. Taking
the limit m → ∞ by the Lebesgue Dominated Convergence Theorem we can
conclude that qn = 0.
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Step 3 (Leray solution). From (2) and the definition of XN (0) we have

E
[∥∥XN (t)

∥∥2
W

]
≤ E

[∥∥∥X(0)
∥∥∥
2

W

]
, t ≥ 0.

Hence

E

[∫ b

a

∥∥XN (t)
∥∥2
W

dt

]
≤ (b− a)E

[∥∥∥X(0)
∥∥∥
2

W

]
, 0 ≤ a ≤ b.

Weak convergence in L2 (Ω× [0, T ] ;W ) implies that

E

[∫ b

a

‖X (t)‖
2
W dt

]
≤ (b− a)E

[∥∥∥X(0)
∥∥∥
2

W

]
, 0 ≤ a ≤ b.

By Lebesgue differentiation theorem, we get E
[
‖X (t)‖

2
W

]
≤ E

[∥∥X(0)
∥∥2
W

]
for

a.e. t. The proof is complete.

3 Continuous dependence and Markov property

Proposition 5 The unique Leray solution in W depends continuously on its
initial condition in the following sense. If Xη and Xρ are the solutions corre-
sponding to the initial conditions η, ρ ∈ L2 (Ω;W ), F0-measurable, then:

i)

E
[
‖Xη (t)−Xρ (t)‖

2
W

]
≤ E

[
‖η − ρ‖

2
W

]
, a.e. t ≥ 0

ii) for every N > 0

E

[
N∑

n=1

k−2
n (Xη

n (t)−Xρ
n (t))

2

]
≤ E

[
‖η − ρ‖

2
W

]
, for all t ≥ 0.

Proof. The difference Xη −Xρ is a weak solution in W with initial condition
η− ρ, hence it is Leray. This implies (i). Then (ii) holds by continuity of single
components and Fatou theorem.

We have proved that, for every x ∈ W there is a unique weak solution
(Xx

n (t)) in W . Let us prove that the family Xx is a Markov process. Define
the operator Pt on Bb (W ) as

(Ptϕ) (x) := E [ϕ (Xx (t))] .

By the previous result, Pt is well defined also from Cb (W ) to Cb (W ).

Proposition 6 We have

E [ϕ (Xx (t+ s)) |Ft] = (Psϕ) (X
x (t)) (3)

for all ϕ ∈ Cb (W ), hence the family Xx is a Markov process. The Markov
semigroup Pt is Feller.
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Proof. We have just to prove the identity (3), the other claims being obvious
or classical. Indeed, Feller property follows from part i) of Proposition 5.

Consider the equation on a generic interval [s, t] with initial condition η ∈
L2 (Ω;W ), Fs-measurable, at time s and call Xs,η (t) the solution. Consider the
function

Y (t) :=

{
Xx (t) for t ∈ [0, s]

Xs,Xx(s) (t) for t ≥ s.

Direct substitution into the equations prove that Y is a solution with initial
condition x, hence equal to Xx (t) also for t ≥ s. This proves the evolution
property

Xs,Xx(s) (t) = Xx (t) , t ≥ s.

Thus
E [ϕ (Xx (t+ s)) |Ft] = E

[
ϕ
(
Xt,Xx(t) (t+ s)

)
|Ft

]
.

If we prove that
E
[
ϕ
(
Xt,η (t+ s)

)
|Ft

]
= (Psϕ) (η)

for all η ∈ L2 (Ω;W ), Ft-measurable, we are done. If η = x, a.s. constant, it
is true, by exploiting the fact that the increments of the Brownian motions Wn

from t to t+ s are independent of Ft; and because the dynamics is autonomous.
From constant values one generalizes to η =

∑n
i=1 xi1Ai

, Ai ∈ Ft; indeed, for
such η, we have

Xt,η (t+ s) =

n∑

i=1

Xt,xi (t+ s) 1Ai
.

Finally we have the identity for all η by the continuity result above.

4 Invariant measures

Consider the measures µr, parametrized by r ≥ 0, formally defined as

µr (dx) =
1

Z
exp

(
−

∑∞
n=1 x

2
n

2r

)
dx.

The rigorous definition is: µr is the Gauss measure on l2, namely the Gaussian
measure on W having covariance equal to identity. For every function f of the
first n coordinates only of l2, the measure µr is given by

∫

Y

f (x1, ..., xn)µr (dx) =
1

Zn

∫

Rn

f (x1, ..., xn) exp

(
−

∑n
k=1 x

2
k

2r

)
dx1...dxn

where Zn = (2πr)n/2. This formula identifies µr.
Moreover, for technical reasons, we need

W̃ =
{
(xn)n∈N

: ‖x‖
2
W :=

∑
k−4
n x2

n < ∞
}
.
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Notice that
µr

(
W̃

)
= 1

and the embedding of W in W̃ is compact.

Proposition 7 For every r > 0, µr is invariant for the Markov semigroup Pt

defined above on W .

Proof. It is sufficient to prove
∫

Y

(Ptϕ) (x)µr (dx) =

∫

Y

ϕ (x)µr (dx)

for all ϕ of the form ϕ (x) = f (x1, ..., xn), with bounded continuous f . We have

∫

Y

(Ptϕ) (x)µr (dx) = E

[∫

Y

f (Xx
1 (t) , ..., Xx

n (t))µr (dx)

]
.

The strategy now is the following one. On an enlarged probability space, if
necessary, we can define an F0-measurable r.v. X(0) ∈ L2 (Ω;W ) with law µr.
For every N > 0 denote by XN the Galerkin approximations used to prove

existence above, with initial condition XN
n (0) = X

(0)
n . Since such sequence has

only one weak limit point in L2 ([0, T ]× Ω;W ), the full sequence XN weakly
converges to the Leray solution X having initial condition X(0). Denote by ρN
the law of XN and by ρ the law of X , on L2 ([0, T ] ;W ). We shall prove that

the sequence ρN is tight in L2
(
[0, T ] ; W̃

)
. Then there exists a subsequence

ρnk
weakly convergent to some probability measure on L2

(
[0, T ] ; W̃

)
. Such

measure must be ρ.
It is enough to show that the sequence XN of Galerkin approximations

is bounded in L2(Ω, L2([0, T ] ,W )) ∩ L2(Ω,Wα,2([0, T ] , W̃ )), α ∈ (0, 1). That
implies that laws {ρN}∞N=1 are bounded in probability on

L2([0, T ] ,W ) ∩Wα,2([0, T ] , W̃ ), α ∈ (0, 1).

Since embedding

L2([0, T ] ,W ) ∩Wα,2([0, T ] , W̃ ) ⊂ L2([0, T ] , W̃ ), α ∈ (0, 1).

is compact by Theorem 2.1, p. 370 of [8]( applied with B0 = W , B = B1 = W̃ ,

p = 2) we shall conclude that the sequence ρN is tight in L2
(
[0, T ] ; W̃

)
.

Since the sequence (XN ) is bounded in L∞([0, T ] , L2(Ω,W )) it remains to

show that the sequence (XN ) is bounded in L2(Ω,Wα,2([0, T ] , W̃ )) for some
α ∈ (0, 1).

Decompose XN as

XN(t) = XN (0)−

∫ t

0

ANXN(s)ds+

∫ t

0

BN (XN )dW (s) = JN
1 (t)+JN

2 (t)+JN
3 (t)

7



where

(ANx)n,m = −
δn,m

2
(k2n−1 + k2n)xn,

(BNx)n,m = kn−1xn−1δn,m+1 − knxn+1δn,m, x ∈ PN (W ), m, n = 1, . . . , N.

We have
E|J1

N |2W 1,2(0,T ;W ) ≤ TE|X(0)|2W . (4)

Since |AN |
L(W,W̃ )

≤ K = 1+ sup
n

k2
n−1

k2
n

we infer that

E|JN
2 |2

W 1,2(0,T ;W̃ )
≤ C(T,K)E|XN |2L2([0,T ],W ) ≤ C(T,K)E|X(0)|2W . (5)

Fix α ∈ (0, 1
2 ). By Lemma 2.1, p. 369 of [8] we have that

E|JN
2 |2

Wα,2(0,T ;W̃ )
≤ E

∫ T

0

|BN (XN)|2
LHS(l2,W̃ )

ds (6)

Notice that

|B(x)|2
LHS(l2,W̃ )

=

∞∑

n=1

|B(x)(en)|
2
W̃

≤
∞∑

n=1

k−4
n k2nx

2
n+1 + k−4

n+1k
2
nx

2
n ≤ (K +K2)|x|2W , x ∈ W. (7)

where (en)
∞
n=1 is ONB in l2.

Combining inequalities (6) and (7) we infer that

E|JN
2 |2

Wα,2(0,T ;W̃ )
≤ CE

∫ T

0

|XN(s)|2W ds ≤ C(T,K, α)E|X(0)|2W . (8)

Hence, inequalities (4), (5) and (8) imply that for some α ∈ (0, 1
2 )

E|XN |2
Wα,2([0,T ],W̃ )

≤ C(T,K, α)E|X(0)|2W , (9)

and the result follows.

Corollary 8 The semigroup (Pt)t≥0 acting on Cb(W ) can be extended to Lp(W,µr)
for any p ≥ 1. Generator of the semigroup (Pt)t≥0 is given by the formula

L =
1

2

∞∑

j=1

k2jD
2
j,j+1

with Dj,j+1 = xj∂xj+1
− xj+1∂xj

, j ∈ N.

Proof. It follows from Itô formula.
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5 Symmetry of the generator in the Sobolev spaces

Let

L =
∞∑

i=1

(
∂2

∂x2
i

− xi
∂

∂xi
)

be Ornstein-Uhlenbeck operator and

Hn =
{
f ∈ L2(W,µr) : |f |

2
Hn = |f |2L2(W,µr)

+ ((−L)nf, f)L2(W,µr) < ∞
}
, n ∈ Z,

C =
{
φ : W → R, φ(x) = f(x1, . . . , xn), f ∈ C4(Rn,R), n ∈ N

}
.

We have
[Di,i+1, L]φ = 0, φ ∈ C.

Consequently,
[L, L]φ = 0, φ ∈ C,

and

Proposition 9 For all f, g ∈ C we have

(f,Lg)Hn = (g,Lf)Hn = −
∞∑

l=1

k2l (Dl,l+1f,Dl,l+1g)Hn , n ∈ Z.

Fix n ∈ N ∪ 0.

Corollary 10 The operator L is closable in Hn and its closure has bounded
from above self-adjoint extension, which we continue to denote by the same
symbol L. Moreover, the self-adjoint extension L generates a strongly continuous
contraction semigroup Tt = etL : Hn → Hn such that Tt = Pt|Hn .

6 Ergodicity

Define

Ar(f) =

∞∑

n=1

|∂nf |
2
L2(W,µr)

= (−Lf, f)L2(W,µr),

ν =
∞∑

n=1

n

k2n
.

Theorem 11 There exist C = C({kn}
∞
n=1) > 0 such that for any f ∈ H1 and

t ≥ 0
Ar(Ptf) ≤ CAr(f)e

− t
ν , f ∈ H1. (10)

9



Proof.
It is enough to show (10) for f ∈ C4

b (W ). Indeed, C4
b (W ) is dense in H1

and (Pt)t≥0 is a contraction on H1 by 10.
Denote ft = Ptf for t ≥ 0. For i ∈ N, we can calculate that

|∂ift|
2 − Pt|∂if |

2 =

∫ t

0

d

ds
Pt−s|∂ifs|

2ds

=

∫ t

0

Pt−s(−L(|∂ifs|
2) + 2∂ifsL∂ifs + 2∂ifs[∂i,L]fs)ds

=

∫ t

0

Pt−s

(
−

∑

m∈N

k2m|Dm,m+1(∂ifs)|
2

+ ∂ifs(−(k2i + k2i−1)∂ifs + 2k2i−1Di,i−1∂i−1fs + 2k2iDi,i+1∂i+1fs)
)
ds.

(11)

Integrating (11) with respect to the invariant measure µr yields

µr|∂ift|
2 − µr|∂if |

2 =

∫ t

0

(
−

∑

m∈N

k2m|Dm,m+1(∂ifs)|
2

− (k2i + k2i−1)µr|∂ifs|
2 + 2k2i−1µr(∂ifsDi,i−1∂i−1fs)

+ 2k2i µr(∂ifsDi,i+1∂i+1fs)
)
ds. (12)

Notice that the operators Di,j , i, j ∈ N, are antisymmetric in L2(µr). Therefore

µr|∂ift|
2 − µr|∂if |

2 =

∫ t

0

(
−

∑

m∈N

k2mµr|Dm,m+1(∂ifs)|
2

− (k2i + k2i−1)µr|∂ifs|
2 − 2k2i−1µr(Di,i−1(∂ifs)∂i−1fs)

− 2k2i µr(Di,i+1(∂ifs)∂i+1fs)
)
ds. (13)

Hence, by Young’s inequality we deduce that

µr|∂ift|
2 − µr|∂if |

2 ≤

∫ t

0

(
−

∑

m∈N

k2mµr|Dm,m+1(∂ifs)|
2

− (k2i + k2i−1)µr|∂ifs|
2 + k2i−1µr|Di,i−1∂ifs|

2 + k2i−1µr|∂i−1fs|
2

+ k2i µr|Di,i+1∂ifs|
2 + k2i µr|∂i+1fs)|

2
)
ds ≤

≤

∫ t

0

(
−

∑

m 6=i,i−1

k2mµr|Dm,m+1(∂ifs)|
2

− (k2i + k2i−1)µr|∂ifs|
2 + k2i−1µr|∂i−1fs|

2 + k2i µr|∂i+1fs)|
2
)
ds. (14)

Let △k denote the operator on R
N given by

△kf(i) = k2i (f(i+ 1)− f(i)) + k2i−1(f(i− 1)− f(i)), i ∈ N, f : N → R, k0 = 0,
(15)

10



and set F (i, t) = µr|∂i(Ptf)|
2 for t ≥ 0, i ∈ N. Then we can rewrite (14) as

F (t) ≤ F (0) +

t∫

0

△kF (s) ds, t ∈ [0,∞). (16)

Hence, by the positivity of the semigroup (et△
k

)t≥0, and Duhamel’s principle,
we can conclude that

F (t) ≤ G(t) := et△
k

F (0) (17)

for t ∈ [0,∞). It has been shown in [2] that there exist C = C({kn}
∞
n=1) > 0

such that
∑

i

G(i, t) ≤ Ce−
t
ν

∑

i

G(i, 0), t ≥ 0, ν =

∞∑

n=1

n

k2n
. (18)

Now the result follows from inequalities (17) and (18).

Corollary 12

µr(Ptf − µrf)
2 ≤ CAr(f)e

− t
ν , f ∈ H1.

Proof. Proof immediately follows from Poincare inequality for Gaussian mea-
sure µr.

Define

H
1
= {f ∈ L2(µr)|

∫
fdµr = 0, ||f ||2

H
1 = Ar(f) < ∞}.

Let D
H

1(L) domain of operator L in H
1
.

Corollary 13 (Poincare inequality in H
1
) There exists C > 0 such that

||f ||2
H

1 ≤ C < −Lf, f >
H

1 , f ∈ D
H

1(L).

Corollary 14 There exists C > 0 such that

µr(f−µrf)
2 ≤ 2ν(−Lf, f)L2(µr)(1+max(0, log

C||f ||2
H

1

2ν(−Lf, f)L2(µr)
)), f ∈ D(L)∩H1.

Corollaries 13 and 14 can be deduced from the theorem 11 in the same way as
Nash-Liggett inequalities has been proven in [13], see proof of Theorem 8.1.

Remark 15 The convergence in Theorem 11 cannot be improved. Indeed, let
S(l, t) = Pt(x

2
l ) for t ≥ 0 and l ∈ N. Then Lx2

l = k2l (x
2
l+1 − x2

l ) + k2l−1(x
2
l−1 −

x2
l ), l ∈ N, so that,

∂S

∂t
= △kS,

where △k is defined by formula (15). Thus

S(t) = et△
k

S(0), t ≥ 0, (19)

so that convergence rate in the Theorem 11 is achieved.

11



Remark 16 If
∞∑

n=1

n
k2
n
= ∞ then it is possible to show polynomial rate of con-

vergence to equilibrium in the same way as in the paper [13].

Remark 17 We have shown that the exponential rate of convergence for the
semigroup (Pt)t≥0 holds if kn = λn, λ > 1. In the same time, there is no

spectral gap if λ = 1. Indeed, it is enough to notice that if fN =
N∑

k=1

(x2
k − 1)

then
||fN ||2

H
1 ∼ N,< −LfN , fN >

H
1 is independent upon N,

and corollary 13 does not hold. Thus, the asymptotic behaviour of our conser-
vative system depends upon the value of the parameter λ.
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[11] C. Giardinà, J. Kurchan, F. Redig, and K.Vafayi, Duality and hid-
den symmetries in interacting particle systems, J. Stat. Phys., 135 (2009),
pp. 25–55.

[12] A. S. Holevo, On dissipative stochastic equations in a hilbert space,
Probab. Theory Relat. Fields, 104 (1996), pp. 483–500.

[13] J. Inglis, M. Neklyudov, and B. Zegarlinski, Ergodicity for infinite
particle systems with locally conserved quantities, arXiv:1002.0282, (2010).

[14] E. Janvresse, C. Landim, J. Quastel, and H. T. Yau, Relaxation
to equilibrium of conservative dynamics. I. Zero-range processes, Ann.
Probab., 27 (1999), pp. 325–360.

[15] N. Krylov and B. Rozovskii, Stochastic Evolution Equations (in Rus-
sian), no. 14 in Itogi Nauki i Tekhniki, Seria Sovremiennyie Problemy
Matematiki, 1979.

[16] C. Landim and H. T. Yau, Convergence to equilibrium of conservative
particle systems on Z

d, Ann. Probab., 31 (2003), pp. 115–147.

[17] T. Liggett, Interacting Particle Systems, Springer, 2004.

[18] E. Pardoux, Stochastic partial differential equations and filtering of dif-
fusion processes, Stochastics, 3 (1979), pp. 127–167.

[19] F. Spitzer, Random processes defined through the interaction of an infinite
particle system, 89 (1969), pp. 201–223.

13


	1 Introduction
	2 The system
	3 Continuous dependence and Markov property
	4 Invariant measures
	5 Symmetry of the generator in the Sobolev spaces
	6 Ergodicity
	References

