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ON BOUNDEDNESS

HÜSEYİN ÇAKALLI

MALTEPE UNIVERSITY,TR 34857, MALTEPE, ISTANBUL, TURKEY

Abstract. A subset A of ℜ, the set of real numbers, is bounded if |a| ≤ M

for all a ∈ A where M is a positive real constant number. This is equivalent

to the statement that any sequence of points in A has a Cauchy subsequence.

It is proved that a subset A of ℜ is bounded if and only if any sequence

of points in A has a subsequence which is any type of the following, quasi-

Cauchy, statistically quasi-Cauchy, lacunary statistically quasi-Cauchy, slowly

oscillating. It turns out that a function on a subset A of ℜ is uniformly

continuous if and only if it preserves either quasi-Cauchy sequences or slowly

oscillating sequences.

1. Introduction

The concept of boundedness and continuity; and any concept involving bound-

edness and continuity play a very important role not only in pure mathematics

but also in other branches of sciences involving mathematics especially in computer

sciences, biological sciences, and dynamical systems. The Bolzano-Weierstrass the-

orem is a fundamental result about convergence in ℜ, the set of real numbers. The

theorem states that each bounded sequence in ℜ has a convergent subsequence.

An equivalent statement is that a subset of ℜ is sequentially compact if and only

if it is closed and bounded. If we omit the term ”closed” and take only the term

”bounded”, it is the case that a subset of ℜ is bounded if and only if any sequence

of points in A has a Cauchy subsequence.

The purpose of this paper is to present various characterizations of a bounded

subset of ℜ, and two characterizations of uniform continuity in terms of sequences.
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2. Definitions and Notation

A subset of ℜ is compact if and only if it is closed and bounded. A is called

bounded if |a| ≤ M for all a ∈ A where M is a positive real constant number.

This is equivalent to the statement that any sequence of points in A has a Cauchy

subsequence. The concept of a Cauchy sequence involves far more than that the

distance between successive terms is tending to zero. Nevertheless, sequences which

satisfy this weaker property are interesting in their own right. These sequences are

named as quasi-Cauchy by Burton and Coleman [1], while those sequences were

called as forward convergent to zero sequences in both [2], and [3]. As it seems

more suitable, we also call them quasi-Cauchy. Explicitly, A sequence (an) is called

quasi-Cauchy if lim∆an = 0 where ∆an is either forward or backward difference

operator, i.e. , either ∆an = an+1−an or ∆an = an−an+1. Recently, some further

results on Quasi-Cauchy sequences are obtained in [4], and [5].

A sequence (xn) of points in ℜ is called slowly oscillating if for any given ε > 0,

there exists δ = δ(ε) > 0 and N = N(ε) such that |am − an| < ε if n ≥ N(ε) and

n ≤ m ≤ (1 + δ)n ([6]). Any Cauchy sequence is slowly oscillating, and any slowly

oscillating sequence is quasi-Cauchy. But the converses are not always true. For

example, the sequences (
∑

∞

k=1
1
n
), (ln n), (ln ln n), and combinations like that are

slowly oscillating, but Cauchy (see also [7]). The sequence (
∑k=n

k=1 (
1
k
)(
∑j=k

j=1
1
j
)) is

quasi-Cauchy, but slowly oscillating ([8], and [9]).

A sequence (ak) of points in ℜ is called to be statistically convergent to an

element ℓ of ℜ if for each ε

lim
n→∞

1

n
|{k ≤ n : |ak − ℓ| ≥ ε}| = 0,

and this is denoted by st− limn→∞ an = ℓ ([10]). We call a sequence (an) of points

in ℜ statistically quasi-Cauchy if st− limn→∞ ∆an = 0.

A sequence (ak) of points in ℜ is called lacunary statistically convergent to an

element ℓ of ℜ if

lim
r→∞

1

hr

|{k ∈ Ir : |ak − ℓ| ≥ ε}| = 0,

for every ε > 0 where Ir = (kr−1, kr] and k0 = 0, hr : kr − kr−1 → ∞ as r → ∞
and θ = (kr) is an increasing sequence of positive integers, and lim infr

kr

kr−1

> 1 ,
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and this is denoted by Sθ− limn→∞ an = ℓ ([11]). We call a sequence (an) of points

in ℜ lacunary statistically quasi-Cauchy if Sθ − limn→∞ ∆an = 0.

3. Characterizations of Boundedness

In this section, we give a further investigation of quasi-Cauchy sequences, and

slowly oscillating sequences; and obtain some more characterizations of bounded-

ness of a subset of ℜ by using the concepts of a quasi-Cauchy sequence, a slowly

oscillating sequence, a statistically quasi-Cauchy sequence, and a lacunary statisti-

cally quasi-Cauchy sequence of points in ℜ.
Trivially, Cauchy sequences are slowly oscillating. It is easy to see that any slowly

oscillating sequence is quasi-Cauchy. Therefore Cauchy sequences are quasi-Cauchy.

There are quasi-Cauchy sequences which are not Cauchy. For example, the sequence

(
√
n) is quasi-Cauchy, but Cauchy. Any subsequence of a Cauchy sequence is

Cauchy. The analogous property fails for not only quasi-Cauchy sequences, but also

slowly oscillating sequences. A counterexample for the case, quasi-Cauchy, is again

the sequence (an) = (
√
n) with the subsequence (an2) = (n). A counterexample for

the case slowly oscillating is the sequence (lnn) with the subsequence (n).

Now we introduce the definitions of statistically ward compactness, lacunary

statistically ward compactness of a subset of ℜ, and recall the definitions of ward

compactness, and slowly oscillating compactness.

Definition 1. (i) A subset A of ℜ is called ward compact if whenever a = (an) is

a sequence of points in A there is a quasi-Cauchy subsequence z = (zk) = (ank
) of

a.

(ii) A subset A of ℜ is called statistically ward compact if whenever a = (an)

is a sequence of points in A there is a statistically quasi-Cauchy subsequence

z = (zk) = (ank
) of a.

(iii) A subset A of ℜ is called lacunary statistically ward compact if whenever

a = (an) is a sequence of points in A there is a lacunary statistically quasi-Cauchy

subsequence z = (zk) = (ank
) of a.

(iv) A subset A of ℜ is called slowly oscillating compact if whenever a = (an) is a se-

quence of points in A there is a slowly oscillating subsequence z = (zk) = (ank
) of a.
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Now we give an important result, which enables us to have certain characteriza-

tions of boundedness of a subset of ℜ, in the following.

Theorem 1. Let A be a subset of ℜ. The following statements are equivalent.

(a) A is bounded.

(b) A is ward compact.

(c) A is slowly oscillating compact.

(d) A is statistically ward compact.

(e) A is lacunary statistically ward compact.

Proof. It is an easy exercise to check that bounded subsets of ℜ are ward

compact. Thus (a) implies (b). To prove that (b) implies (a), suppose that a

subset A of ℜ is unbounded. If it is unbounded above, then one can construct

a sequence (an) of terms in A such that an+1 > 1 + an for each positive integer

n. Then the set of the terms of the sequence (an) is not ward compact. If A is

unbounded below, then write F = −E and apply the above result. Hence the

proof that (b) implies (a) is completed. If A is slowly oscillating compact, then

any sequence (an) of terms in A has a slowly oscillating subsequence which is

quasi-Cauchy, since any slowly oscillating sequence is quasi-Cauchy. Therefore A

is ward compact. If A is bounded, then any sequence has a Cauchy subsequence

which is also slowly oscillating. Hence (a) implies (c). Since any slowly oscillating

sequence is quasi-Cauchy, it follows that (c) implies (b). If A is ward compact,

then any sequence (an) of terms in A has a quasi-Cauchy subsequence, which is

also statistically quasi-Cauchy. Thus (b) implies (d). If A is statistically ward

compact, then any sequence (an) of terms in A has a statistically quasi-Cauchy

subsequence, (akn
) i.e. st − limn→∞ ∆akn

= 0. Since any statistically convergent

sequence with limit ℓ has a convergent subsequence with the same limit ℓ in the

ordinary sense, there exists a subsequence (zj) of the sequence (∆akn
) such that

limj→∞ zj = limn→∞ ∆aknj
= 0. This means that the subsequence (aknj

) is quasi-

Cauchy. So we get that (d) implies (b). Since any convergent sequence is lacunary

statistically convergent with tha same limit, it follows that (b) implies (e). Now let

A be lacunary statistically ward compact. Then any sequence (an) of terms in A

has a lacunary statistically quasi-Cauchy subsequence, i.e. Sθ − limn→∞ ∆akn
= 0.

Since any lacunary statistically convergent sequence with limit ℓ has a convergent
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subsequence with the same limit ℓ in the ordinary sense, there exists a subsequence

(zm) of the sequence (∆akn
) such that limn→∞ zm = 0. This means that the

subsequence we have obtained,(aknm
), is quasi-Cauchy. So we get that (e) implies

(b). Finally, if A is ward compact, then any sequence (an) of terms in A has a quasi-

Cauchy subsequence. Since any convergent sequence is also lacunary statistically

convergent, it is lacunary statistically quasi-Cauchy. This completes the proof of

the theorem.

A sequence a = (an) is δ-quasi-Cauchy if limk→∞ ∆2an = 0 where ∆2an =

an+2 − 2an+1 + an ([12]). A subset A of ℜ is called δ-ward compact if whenever

a = (an) is a sequence of points in A there is a subsequence z = (zk) = (ank
) of

a with limk→∞ ∆2zk = 0. We note that any ward compact subset of ℜ is δ-ward

compact.

We see that for any regular subsequential method G defined on ℜ, if a subset

A of ℜ is G-sequentially compact, then any one of the conditions of Theorem 1

is satisfied (see [13] for the definition of G-sequentially compactness). But the

converse is not always true.

4. Characterizations of uniform continuity

A real function f is continuous if and only if, for each point x0 in the domain,

limn→∞ f(xn) = f(x0) whenever limn→∞ xn = x0. This is equivalent to the state-

ment that (f(xn)) is a convergent sequence whenever (xn) is. This is also equivalent

to the statement that (f(xn)) is a Cauchy sequence whenever (xn) is Cauchy pro-

vided that domain of the function is either whole ℜ or a bounded and closed subset

of ℜ. These well known results for continuity for real functions in terms of sequences

suggested us to give a new type continuity, namely, ward continuity in [3].

The functions preserving quasi-Cauchy sequences are called forward continuous

in [2]. In [3], it is proved that any ward continuous function on a ward compact

subset A of ℜ is uniformly continuous. From Theorem 1 we see that a function

defined on a bounded subset of ℜ is uniformly continuous if and only if it preserves

quasi-Cauchy sequences of points in A. On the other hand, in [1], Burton and

Coleman proved that a function defined on an interval is uniformly continuous if

and only if it preserves quasi-Cauchy sequences. The functions preserving slowly

oscillating sequences are called slowly oscillating continuous in [9]. In [8], it is proved
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that any slowly oscillating continuous function on a slowly oscillating compact

subset A of ℜ is uniformly continuous. It follows from Theorem 1 that a function

defined on a bounded subset of ℜ is uniformly continuous if and only if it preserves

slowly oscillating sequences of points in A. On the other hand, in [7], Vallin also

proved that a function is uniformly continuous if and only if it preserves slowly

oscillating sequences for functions defined on a subset of ℜ.
Theorem 2. Let A be a subset of ℜ, and f be a function defined on A. Then

the following statements are equivalent.

(i) f is uniformly continuous.

(ii) f is ward continuous.

(iii) f is slowly oscillating continuous.

Proof. It is Theorem 6 in [3], and [2] that any uniformly continuous function

preserves quasi-Cauchy sequences. The converse was proved in [1] for the case that

A is an interval and we see that the proof is valid if A is any subset of ℜ. This

completes the proof that (i) is equivalent to (ii). Since the sequence constructed

for the contradiction in the proof that (ii) implies that (i) is not slowly oscillating

as well, it follows that (iii) implies (i). This is also proved by Vallin in [7]. The

implication (ii) implies (iii) is Theorem 2.4 in [9]. Thus the proof of the theorem is

completed.

Corollary 1. If f preserves δ-quasi-Cauchy sequences of points in a subset A

of ℜ, then it is slowly oscillating continuous, and ward continuous on A.

Proof. The proof follows from Theorem 7 in [12] and Theorem 2 above.

We note that the converse is not true. �

Corollary 2. Let G be a regular subsequential method. If a function is uni-

formly continuous, then it is G-sequentially continuous (see [14]).

In this paper, two new concepts, namely a statistically quasi-Cauchy, and a

lacunary statistically quasi-Cauchy sequence are introduced. We give four charac-

terizations of a bounded subset of ℜ, which seem to be very useful, and fruitful for

further investigations. We also present two characterizations of uniform continuity

of a function defined on a subset of ℜ.
For further study, we suggest to investigate quasi Cauchy sequences of fuzzy

points, and characterizations of ward continuity for the fuzzy functions. However
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due to the change in settings, the definitions and methods of proofs will not always

be analogous to those of the present work (for example see [15]).
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[12] H.Çakallı, δ-quasi-Cauchy sequences, Math. Comput. Modelling , 53, (2011), 397-401.

[13] .............., Sequential definitions of compactness, Appl. Math. Lett., 21 , No:6, (2008), 594-

598, MR 2009b:40005.

[14] ............., On G-continuity, Computer and Mathematics with Applications, to appear.
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