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Kernels of Linear Representations
of Lie Groups, Locally Compact Groups,

and Pro-Lie Groups

Markus Stroppel

Abstract

For a topological group G the intersection KOR(G) of all kernels of ordinary rep-
resentations is studied. We show that KOR(G) is contained in the center of G if G
is a connected pro-Lie group. The class KOR(C) is determined explicitly if C is the
class CONNLIE of connected Lie groups or the class ALMCONNLIE of almost con-
nected Lie groups: in both cases, it consists of all compactly generated abelian Lie
groups. Every compact abelian group and every connected abelian pro-Lie group
occurs as KOR(G) for some connected pro-Lie group G. However, the dimension
of KOR(G) is bounded by the cardinality of the continuum if G is locally compact
and connected. Examples are given to show that KOR(C) becomes complicated if
C contains groups with infinitely many connected components.

1 The questions we consider and the answers that we have found

In the present paper we study (Hausdorff) topological groups. If all else fails, we endow
a group with the discrete topology.

For any group G one tries, traditionally, to understand the group by means of rep-
resentations as groups of matrices. To this end, one studies the continuous homomor-
phisms from G to GLnC for suitable positive integers n; so-called ordinary representa-
tions. This approach works perfectly for finite groups because any such group has a
faithful ordinary representation but we may face difficulties for infinite groups; there
do exist groups admitting no ordinary representations apart from the trivial (constant)
one. See 10.8 below.

The possible images of G under ordinary representations are called linear groups
over C. More generally, one may study linear groups over arbitrary fields. See [47]
and [50] for overviews of results in that direction. We just note here that for every
free abelian group A there exists at least one field F such that A is a linear group over F.
However, there do exist abelian groups that are not linear over any field, see [33], cf. [47,
2.2]. Note also that quotients of linear groups may fail to be linear, cf. [47, Ch. 6]. This
phenomenon will play a role in 4.1 below.

In the present notes, we are mainly interested in that part of G that cannot be un-
derstood by means of ordinary representations, namely, the intersection KOR(G) of all
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kernels of ordinary linear representations. A detailed overview over the results of the
present paper will be given in 1.5 below; we give some coarse indications here before
we introduce more specific notation.

We will show that KOR(G) is a central subgroup of G if G belongs to the class
CONNPROLIE of all connected pro-Lie groups (in particular, if G is locally compact
and connected). Moreover, we investigate the class KOR(G) := {KOR(G) | G ∈ G}
for different classes G of groups. For the class CONNLIE of connected Lie groups, in
particular, we show in 4.5 that KOR(CONNLIE) is the class CGAL of compactly gen-
erated abelian Lie groups. Thus this class is as large as possible (after the observation
that KOR(G) is central for each G ∈ CONNLIE, cf. 3.4). The class KOR(CONNPROLIE)
contains all connected abelian pro-Lie groups and all compact abelian groups, see 6.3.
For the class CONNLCG of connected locally compact groups it turns out that there
is a somewhat surprising bound on the dimension of members of KOR(CONNLCG),
see 7.15.

1.1 Notation. For topological groups G, H let Hom(G, H) denote the set of continuous
homomorphisms from G to H. If G and H are (topological) vector spaces over F, we
write HomF(G, H) for the set of continuous F-linear homomorphisms. We put

OR(G) :=
⋃

n∈N

Hom(G, GLnC), then KOR(G) =
⋂

ρ∈OR(G)

ker ρ .

Clearly KOR(G) is a closed normal subgroup of G, in fact, it is fully invariant (i.e., each
endomorphism of the topological group G maps KOR(G) into itself, see 2.1 below).

In order to keep notation simple, we also consider continuous homomorphisms from
G to the group GL(V) of all linear bijections of a vector space V of finite dimension n
over F ∈ {R, C}. Note that this does not mean that we consider our problem in greater
generality because GL(V) is isomorphic to GLnF ≤ GLnC.

1.2 Remarks. Our present problem bears some similarity to questions that arise in char-
acter theory. E.g., for a locally compact abelian group G the ordinary representations
may be reduced to collections of homomorphisms from G into GL1C � C× � R × T

where T := R/Z as usual. The elements of G∗ := Hom(G, T) are called characters of G
while those of Hom(G, R) are the real characters1. Since Hom(R, T) separates points
we have

⋂
χ∈G∗ ker χ ⊆

⋂
ρ∈Hom(G,R) ker ρ. Pontryagin’s duality theory for locally com-

pact abelian groups (cf. [45, Ch. F]) uses characters, it rests on the fact that Hom(G, T)
separates points for each locally compact abelian group. This is no longer true for arbi-
trary topological abelian groups, cf. [15, 23.32]. The intersection over the kernels of real
characters has been identified in [9], cf. [48], [3].

1 One should not confuse this notion of real character (of topological abelian groups) with the usage of
the term in the theory of characters of finite groups where it denotes a class function assuming real
values, cf. [8, p. 56 ff]. Take the direct product ∏p∈P Z(p∞) with the discrete topology. The direct sum
⊕

p∈P Z(p∞) � Q/Z is the torsion subgroup, but the full product is isomorphic to Q(2ℵ0 ) ⊕ Q/Z. The

latter is isomorphic to (R/Z)discr and to (R ×Q/Z)discr. The projection onto the torsionfree summand

Q(2ℵ0 ) � Rdiscr is a real character, indeed.
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1.3 Remark. Our present problem disappears if we take a local (or, rather, an infinites-
imal) point of view. Indeed Ado’s Theorem ([1], see [2] for an English translation, cf.
also [12], [27], [46]) asserts that every Lie algebra g of finite dimension over R or C has
a faithful ordinary representation; i.e. a faithful homomorphism into glnR for some n.
Thus a single, suitably chosen representation suffices to show that Kor(g) is trivial,
where

Kor(g) :=
⋂

n∈N

⋂

ρ∈Hom(g,glnC)

ker ρ .

For a pro-Lie algebra g (i.e., a projective limit g of Lie algebras of finite dimension over R

such that g is complete as a topological vector space, cf. [23, Ch. 7]) one also knows that
Kor(g) is trivial.

In particular, there is no useful relationship between KOR(G) and Kor(L(G)) if G is a
group which has Lie algebra L(G) (in the sense of 3.1 below). However, the Lie algebra
will be useful to construct ordinary representations of a pro-Lie group, see 3.4.

1.4 Some classes of groups. The following will be of interest to us here:
TG : topological Hausdorff groups,
PROLIE : pro-Lie groups, i.e., complete projective limits of Lie groups,
CG : compact groups,
LCG : locally compact groups,
LCA : locally compact abelian groups,
LIE : Lie groups (without separability assumptions, i.e., including all discrete groups),
SEPLIE : separable Lie groups (i.e., the σ-compact members of LIE),
CGAL = LCA ∩ SEPLIE : compactly generated abelian Lie groups,
and the classes ABG, CONNG or ALMCONNG consisting of the abelian, connected or
almost connected members of the class G, respectively. Here a group G is called almost
connected if the quotient G/G0 modulo the connected component G0 is compact.

For sentimental historical reasons, we write LCA and CA instead of the more system-
atic ABLCG and ABCG, respectively. The diagram in Figure 1 indicates the inclusions
between these classes.

Note that we only consider Hausdorff groups; otherwise, the closure of the trivial
subgroup would occur inside KOR(G) throughout.

As it is customary in the theory of locally compact groups, we do not include sepa-
rability in the definition of a Lie group. This means that every discrete group is a Lie
group, and it secures (via the solution of Hilbert’s Fifth Problem, cf. [49], [34]) that every
locally euclidean group is a Lie group. Thus the additive group Rdiscr of real numbers
with the discrete topology belongs to LIE r SEPLIE (it is not a member of CGAL), and
the identity from Rdiscr to R is a bijective morphism of Lie groups which is not open. If
one wants to use the Open Mapping Theorem (which is indeed one of the major reasons
to require separability) one has to be careful and make sure that the domain of the map-
ping is σ-compact. Note that every closed subgroup of an almost connected Lie group
belongs to SEPLIE. In our present context separability does not appear to be of much
help (see 3.7(a), 8.1) while almost connectedness is a useful condition for Lie groups
(cf. 4.8) where it actually means that the number of connected components is finite.
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Figure 1: Inclusions between classes of topological groups

1.5 Overview of results. In the present paper, we obtain the following.

• KOR is a functor that preserves products, see 2.1, 2.7.

• For each G ∈ CONNPROLIE we have KOR(G) ⊆ Z(G) ∩ G′, see 3.4 and 3.8.
• KOR(ALMCONNLIE) = KOR(CONNLIE) = CGAL, see 4.5 and 4.8.
• KOR(G) is trivial for every compact and every abelian proto-Lie group G, see 5.1.
• For G ∈ CONNLCG the connected component (KOR(G))0 of KOR(G) has a finitely

generated dense subgroup. Thus the weight of (KOR(G))0 is bounded by 2ℵ0 ,
see 7.14.

• If G ∈ CONNLCG is solvable then G′ has a finitely generated dense subgroup,
cf. 7.12. This implies that the weight of KOR(G) is bounded by 2ℵ0 .

• The inclusions CONNABPROLIE ⊂ Π(CGAL ∪ CA) ⊆ KOR(CONNPROLIE) ⊆
S(CONNABPROLIE) are established in 6.3 and 9.2.

• KOR(CONNLCG) contains those A ∈ LCA that possess a finitely generated dense
subgroup, see 7.15.

• For each G ∈ CONNLCG there exist A ∈ CA and natural numbers e, f such that
the connected component A0 is monothetic and KOR(G) � Z f × A×Re, see 7.15.
In particular, the dimension of members of KOR(CONNLCG) is bounded by 2ℵ0 .

The latter two of these results mean that KOR(CONNLCG) is sandwiched between the
class SMALLLCA of groups of the form Z f × F × Re where F is a compact group with
a finitely generated dense subgroup and the class of groups of the form Z f × A × Re

where A is compact and its connected component A0 has a finitely generated dense
subgroup; here f and e may be arbitrary natural numbers.

The classes KOR(SEPLIE) and KOR(LCG) are large and complicated, see 8.1, 8.2
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and 8.4. Some open problems are stated in Section 9. Relevant results about (non-)
linear(ity of) groups are collected in Section 10.

2 Basic results

In this section we discuss functoriality of KOR and the behavior of this functor with
respect to homomorphisms (in particular quotients) and products.

2.1 Lemma. For ϕ ∈ Hom(G, H) we have ϕ(KOR(G)) ≤ KOR(H).

In particular, mapping G to KOR(G) and ϕ to KOR(ϕ) := ϕ|
KOR(H)
KOR(G)

implements a functor

from the category of topological groups to itself.

Proof. For each ρ ∈ OR(H) we have ρ ◦ ϕ ∈ OR(G), and ρ(ϕ(x)) = id follows for each
x ∈ KOR(G). �

2.2 Proposition. Let G be a group, and let N be a subgroup of G.

(a) In any case the group KOR(N) is contained in KOR(G).
(b) If N is a normal subgroup of G then KOR(G)N/N is contained in KOR(G/N).
(c) If N is normal and contained in KOR(G) then KOR(G)/N = KOR(G/N).
(d) The subgroup KOR(G) is a radical in the sense that KOR(G/KOR(G)) is trivial.

Proof. The first two assertions follow from 2.1 using the inclusion map ι : N → G and
the canonical quotient map qN ∈ Hom(G, G/N).

Now assume that N is normal in G and contained in KOR(G). For x ∈ G r KOR(G)
there exists ρ ∈ OR(G) with ρ(x) , id, and ρ factors as ρ = λ ◦ qN because N ≤
KOR(G) ≤ ker ρ. Thus there exists λ ∈ OR(G/N) with λ(xN) , id. This means
KOR(G)/N ≥ KOR(G/N); the inclusion KOR(G)/N ≤ KOR(G/N) is clear already.
Thus (c) is established, and the last assertion follows. �

From 2.2(d) we see that KOR(G) is a sort of “radical” of the group G. Note that
KOR(G/N) may be much larger than KOR(G)N/N if N is not contained in KOR(G);
the example in 4.1 is instructive here, again.

The category TG and its full subcategories PROLIE, CONNPROLIE, ABPROLIE and
CONNABPROLIE are closed under arbitrary products, and these are as expected (i.e.,
cartesian products with the product topology). A category of topological groups may
contain products (in the categorical sense) that are endowed with a topology that is
different from the product topology; e.g., this happens in the categories LCG and LCA
(cf. [45, 16.22]). However, products in CONNLCG are the same as those in TG (in
particular, they exist only if all but a finite number of the factors are compact), see [45,
16.23].

2.3 Definitions. For G ⊆ TG let P(G) denote the class of all cartesian products of finitely
many members of G. By Π(G) we mean the class of arbitrary cartesian products of
members of G. In any case, we use the product topology.
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The class S(G) consists of all subgroups of members of G while S(G) contains only
the closed subgroups (which is more reasonable if one studies classes of complete
groups as we do here).

By Q(G) we denote the class of all Hausdorff quotient groups of members of G, i.e.
the class of all groups G/N where G ∈ G and N is a closed normal subgroup of G.
Finally, let Q̂(G) be the class of all (Hausdorff) completions of members of G.

2.4 Remarks. A topological group need not have a completion, cf. [6, III § 3·4, Thm. 1].
The classes PROLIE and CONNPROLIE are not closed under Q, see [23, 4.11]. However,
Hausdorff quotients of pro-Lie groups are proto-Lie groups (see [23, 4.1]), i.e., they
possess completions which belong to PROLIE, again. Thus Q̂(PROLIE) = PROLIE $

Q(PROLIE). Locally compact groups are complete anyway (see [6, III §3·3, Cor. 1],
cf. [23, 1.31] or [45, 8.25]), and Q(LCG) = LCG = Q̂(LCG).

The following corollary to 2.2 is applicable to the class CONNLCG and its subclass
CONNLIE, cf. 3.4. The class CONNPROLIE is problematic because it is not closed un-
der Q. Some restriction of the sort “KOR(G) ≤ Z(G)” is necessary, cf. 8.4.

2.5 Corollary. Consider G ⊆ TG with Q(G) = G and assume that KOR(G) ≤ Z(G) holds
for each G ∈ G. Then KOR(G) = Q(KOR(G)). �

2.6 Lemma ([40, 11.18, 13.13], cf. [23, 4.28]). Let N be a normal subgroup of a pro-Lie
group G. If N is locally compact then G/N is complete, and thus a pro-Lie group. �

2.7 Proposition. The functor KOR preserves products in the category TG, in fact, we have
KOR(∏j∈J Aj) = ∏j∈J KOR(Aj). For G ⊆ TG this means P(KOR(G)) = KOR(G) if
P(G) = G and Π(KOR(G)) = KOR(G) if Π(G) = G.

Proof. Let ∏j∈J Aj be a cartesian product; the indexing set J may be infinite. For m ∈ J
let ηm : Am → ∏j∈J Aj be the natural inclusion, and let πm : ∏j∈J Aj → Am be the
natural projection.

If ρ : ∏j∈J Aj → GLnC is an ordinary representation of the product then ρ ◦ ηm

is an ordinary representation of Am, and we obtain that the subgroup generated by⋃
j∈J ηj(KOR(Aj)) is contained in KOR(∏j∈J Aj). The product ∏j∈J KOR(Aj) is the clo-

sure of that subgroup and thus also contained in KOR(∏j∈J Aj).
Conversely, consider x ∈ ∏j∈J Aj r∏j∈J KOR(Aj). Then there exists m ∈ J such

that πm(x) < KOR(Am) and we find an ordinary representation ρm of Am with id ,
ρm(πm(x)) = (ρm ◦ πm)(x). Since ρm ◦ πm is an ordinary representation of ∏j∈J Aj this
shows x < ∏j∈J Aj rKOR(∏j∈J Aj). �

2.8 Lemma. Let G be a solvable connected (not necessarily closed) subgroup of GLnC. Then
the following holds.

(a) There exists a sequence V0, . . . , Vn of G-invariant subspaces such that for all j < n we
have Vj ≤ Vj+1 and dim Vj = j.

(b) For any sequence as in (a) the commutator group G′ acts trivially on each Vj+1/Vj.
(c) There are no compact (in particular, no finite) subgroups in G′ except the trivial one.
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Proof. Replacing G by its closure in GLnC we lose neither solvability nor connectedness,
cf. [45, 2.9, 7.5]. For closed connected solvable subgroups of GLnC assertion (a) is Lie’s
Theorem, cf. [14, Thm. 2.2, Ch. III].

Since G acts as a subgroup of the abelian group GL(Vj+1/Vj) � GL1C � C× on
Vj+1/Vj the commutator group G′ acts trivially on that quotient.

Finally, let C be a compact subgroup of G′. We proceed by induction to show that C
acts trivially on Vj for each j ≤ n. Indeed, if C acts trivially on Vj it acts on Vj+1 as a
subgroup of the group Nj consisting of all a ∈ GL(Vj+1) acting trivially both on Vj and
on Vj+1/Vj. Now Nj is isomorphic to the additive group HomC(Vj+1/Vj, Vj). This is
the additive group of a vector space of finite dimension over R, and does not contain
compact subgroups apart from the trivial one. �

2.9 Corollary. Let G be a solvable connected group. Then every compact subgroup of G′ is
contained in KOR(G). �

Connectedness is a crucial assumption in 2.9, as finite groups show. Applications
of 2.9 are given in 4.1 and 5.6 below. See also 10.1(c) and 10.2.

3 Lie algebras and pro-Lie groups

For a Lie group L one model for the Lie algebra is the space Hom(R, L) of all one-
parameter subgroups, cf. [17]. This point of view works for quite general classes of
topological groups, see [23, Ch. 2].

3.1 Definitions. For a topological group G let L(G) denote the space Hom(R, G) en-
dowed with the compact-open topology (i.e., the topology of uniform convergence on
compact sets). We call exp: L(G) → G : X 7→ X(1) the exponential map for G. Multipli-
cation of X ∈ L(G) by a scalar r ∈ R is given as r X(t) := X(tr).

Addition and the Lie bracket are more involved, and not defined for arbitrary topo-
logical groups. We say that G has a Lie algebra if the following conditions are satisfied:

(a) For all X, Y ∈ L(G) there are elements X + Y and [X, Y] in L(G) such that

(X + Y)(t) = lim
n→∞

(
X( t

n )Y( t
n )
)n

and

[X, Y](t2) = lim
n→∞

comm
(
X( t

n ), Y( t
n )
)n2

hold for all t ∈ R; here comm (g, h) := ghg−1h−1 is the group commutator.
(b) The set L(G) is a topological Lie algebra with respect to these operations.

We say that G has a generating Lie algebra if it has a Lie algebra and the range of the
exponential map generates a dense subgroup of the connected component G0.

3.2 Examples. In [23, 3.5] it is shown that every projective limit G of Lie groups has a
Lie algebra and, moreover, this Lie algebra L(G) is a pro-Lie algebra: i.e., the filter basis
of closed ideals of finite co-dimension in L(G) converges to 0 and L(G) is complete as
a topological vector space. In particular, this Lie algebra is residually finite-dimensional;
the homomorphisms to finite-dimensional Lie algebras separate the points.

Every almost connected pro-Lie group, and thus every almost connected locally com-
pact group, has a generating Lie algebra, cf. [23, 4.22].

7
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Our technical machinery culminates in the adjoint representation:

3.3 Lemma ([23, 2.27, 2.28, 2.30, 4.22, 8.1]). Let G be a topological group.
(a) For each g ∈ G there is a unique bijection Ad(g) of L(G) onto itself such that gX(t)g−1 =

Ad(g)(X)(t) holds for all t ∈ R.
(b) The action G × L(G) → L(G) : (g, X) 7→ Ad(g)(X) is continuous.
Now assume that G has a Lie algebra.
(c) For each g ∈ G the bijection Ad(g) is an automorphism of the Lie algebra L(G).
(d) The adjoint representation Ad : G → Aut(L(G)) is a continuous linear representation,

where Aut(L(G)) is endowed with the strong operator topology (i.e., the topology of
pointwise convergence).

(e) The kernel of Ad is the centralizer of (the closure of) the subgroup generated by the range
of the exponential function.

(f) If G is a pro-Lie group then each ideal of the Lie algebra L(G) is invariant under the
adjoint action of the connected component of G.

3.4 Theorem. If G is a connected pro-Lie group then KOR(G) is contained in the center Z(G)
of G and is therefore abelian.

Proof. According to 3.3 the adjoint representation Ad induces ordinary representations
on the finite-dimensional quotients of L(G) that separate the points modulo ker Ad,
which equals the center of G. �

3.5 Corollary. For every connected locally compact group G the group KOR(G) is contained
in the center Z(G). �

Using 2.2 and 2.6 we infer:

3.6 Corollary. The class KOR(CONNPROLIE) is closed under quotients modulo locally com-
pact groups while KOR(CONNLIE) and KOR(CONNLCG) are closed under arbitrary (Haus-
dorff) quotients. �

3.7 Remarks. (a) Theorem 3.4 does not extend to the case of arbitrary disconnected
Lie groups even if we assume separability. In fact there are countable discrete
groups G with KOR(G) = G, see 10.8 below. However, everything is fine for
almost connected Lie groups, see 4.8.

(b) There are groups in LCG r PROLIE such that Ad is a faithful representation (of
infinite degree) but every ordinary representation is trivial on the connected com-
ponent, cf. 5.2.

The following observation will be useful to obtain restrictions on the structure and
size (measured by the dimension, i.e., the rank of the Pontryagin dual) of members
of KOR(CONNLCG); cf. 7.12, 7.14 and 9.1 below. The passage to the closure of the
commutator group is essential, cf. 4.3 and 5.7.

3.8 Lemma. (a) If G ∈ PROLIE then KOR(G) ≤ G′.

(b) If G ∈ CONNPROLIE (in particular, if G ∈ CONNLCG) then KOR(G) ≤ Z(G) ∩ G′.

8
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Proof. The quotient G/ G′ is an abelian proto-Lie group (see [23, 4.1]). Thus OR(G/ G′)

separates the points, and KOR(G/ G′) is trivial. For each x ∈ G rG′ we thus find some

ρ ∈ OR(G/ G′) with x G′ < ker ρ, and composing ρ with the quotient map we find
ρ′ ∈ OR(G) such that x < ker ρ′.

If G is also connected then KOR(G) ≤ Z(G) has been established 3.4. �

4 Almost connected Lie groups

4.1 Example. The following example has been around for quite some time, see [34,
4.14, p. 191] or [35]. We use it to show that R/Z belongs to KOR(CONNLIE). Let H
be the real Heisenberg group; i.e., H = R3 with the multiplication (a, b, x) ∗ (c, d, y) =
(a + c, b + d, x + y + ad − bc). Clearly this is a connected Lie group, and the center
{0}2 × R coincides with the commutator group H′.

The cyclic subgroup Z := {0}2 × Z is closed and central in H. Thus H/Z is a con-
nected nilpotent (and thus solvable) Lie group. According to 2.9 the compact central
subgroup C := ({0}2 × R)/Z � R/Z of (H/Z)′ is contained in KOR(H/Z). On the
other hand, the quotient H/C � R2 has a faithful ordinary representation. Therefore,
we obtain KOR(H/Z) = C � R/Z.

For every connected Lie group L with semi-simple Lie algebra one knows that KOR(L)
is a discrete (and thus central) normal subgroup, cf. [38, 5.3.6 Thm. 8, p. 264]. In fact, for
any such group one can read off KOR(L) from [38, Table 10, p. 318 f]. The relevant infor-
mation is accessible algorithmically, see [4], [5]. For our present purposes, we require
explicit knowledge of the case where L is the simply connected covering of PSL2R.

4.2 Example. Let S denote the simply connected covering of PSL2R. The center Z(S)
of S is infinite cyclic, but no proper covering of SL2R admits a faithful ordinary rep-
resentation; see [38, Table 10, p. 318 f] (where the Lie algebra sl2R occurs in the guise
of sp2R = sp4p+2R for p = 0), cf. also [35] and [41, 95.9, 95.10]. Thus we obtain

KOR(S) = {z2 | z ∈ Z(S)} � Z.

Passing from S to the quotient Sd := S/{z2d | z ∈ Z(S)} we find KOR(Sd) � Z/d Z

for any nonnegative integer d.

Instead of the simple group PSL2R we could use any other simple Lie group with
infinite fundamental group (cf. 10.4) for the construction in 4.2.

4.3 Example. Again, let S denote the simply connected covering of SL2R, and let H
be the real Heisenberg group (cf. 4.1). Pick a generator ζ for the center of S. Then the
subgroup K := {(ζ−2z, (0, 0, z)) | z ∈ Z} is closed and central. Passing to the quotient
G := (S × H)/K amounts to an identification of ζ2 with (0, 0, 1).

Composing the inclusion maps of the two factors S and H with the quotient map
modulo K we obtain continuous homomorphisms ηS and ηH from S and H, respec-
tively, into G. Composition of ordinary representations of G with ηX then yields ordi-
nary representations of X ∈ {S, H}.

9
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Any ordinary representation of S has ζ2 in its kernel (cf. 4.2). Therefore, any ordinary
representation ϕ of G yields a representation ϕ ◦ ηH of H with (0, 0, 1) in its kernel.
According to 4.1 this implies {0}2 × R ≤ ker(ϕ ◦ ηH). Therefore, the subgroup

R := {(ζ2z, (0, 0, x)) | z ∈ Z, x ∈ R}/K

is contained in KOR(G). Since G/R � SL2R × R2 has a faithful ordinary representation
we obtain KOR(G) = R � R.

The examples collected so far suffice to determine the class KOR(CONNLIE). For the
proof of 4.5 we need the following explicit description of the class CGAL (see also [26]).

4.4 Proposition. The elements of CGAL are precisely those of the form

Z f × ∏
j∈J

(Z/djZ)× (R/Z)c × Re (∗)

where f , e, c are nonnegative integers and (dj)j∈J is a finite family of positive integers.

Proof. The groups with a product decomposition as in (∗) are clearly compactly gen-
erated Lie groups. Among all locally compact abelian groups, those of the form (∗)
are characterized by the property of being compactly generated and having no small
subgroups, cf. [45, 21.17]. Since a Lie group has no small subgroups, the assertion fol-
lows. �

4.5 Theorem. Exactly the compactly generated abelian Lie groups occur as KOR(L) for a suit-
able connected Lie group L. In other words, we have KOR(CONNLIE) = CGAL.

Proof. Each member of the class CGAL is isomorphic to a product

Z f × ∏
j∈J

(Z/djZ)× (R/Z)c × Re

where f , e, c are nonnegative integers and (dj)j∈J is a finite family of positive integers,
cf. 4.4. Thus the assertion of our theorem follows from 2.7 together with the examples
given in 4.1, 4.2, and 4.3. Explicitly, the group

L := S f ×∏
j∈J

Sdj
× (H/Z)c × ((S × H)/K)e

satisfies our requirements. In order to prove the converse it suffices to note that KOR(G)
is a closed abelian subgroup of G if G ∈ CONNLIE, and thus lies in CGAL. �

4.6 Remark. Even for a simply connected Lie group L with simple complex Lie alge-
bra it need not be true that L/KOR(L) has an irreducible faithful ordinary representa-
tion. For instance, consider the simply connected covering Spin8C of SO8C; the center
of that group is non-cyclic and cannot be mapped faithfully into the centralizer of an
irreducible ordinary representation because that centralizer is a subgroup of the mul-
tiplicative group of Hamilton’s quaternions by Schur’s Lemma. However, the group
Spin8C is linear, and KOR(Spin8C) is trivial.

10
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4.7 Theorem. If U is an open normal subgroup of finite index in G then KOR(U) = KOR(G).

Proof. For any ρ ∈ OR(U) the U-module Mρ associated with ρ yields an induced mod-

ule Lρ := indG
U Mρ, cf. [39, 8.4, p. 230 f] or [30, XVIII 7.3]. The corresponding repre-

sentation λ : G → GL(Lρ) can now be combined with the faithful regular representa-

tion µ : G/U → GL(CG/U) of the finite quotient to obtain an ordinary representation
of G whose kernel is contained in ker ρ. Since ρ ∈ OR(U) was arbitrary we obtain
KOR(G) ≤ KOR(U). The reverse inclusion is clear from 2.2. �

In an almost connected Lie group G the discrete and compact quotient G/G0 is finite.
Thus 4.7 yields:

4.8 Corollary. If G is an almost connected Lie group then KOR(G) = KOR(G0). In particular,
we have KOR(ALMCONNLIE) = KOR(CONNLIE) = CGAL. �

4.9 Remark. One would of course like to extend 4.8 to the classes ALMCONNLCG ⊂
ALMCONNPROLIE. The ordinary representations of the compact quotient separate the
points; thus KOR(G) ≤ G0 if G ∈ ALMCONNPROLIE. If one wants to proceed along
the lines of the proof of 4.7 then there remains the problem to extend a representation
of G0 via induction. This question is treated by Mackey [32] where an invariant scalar
product is assumed and the group in question is required to be locally compact and
separable. Note that 4.7 yields KOR(U) = KOR(G) for each open normal subgroup of G
but KOR(G0) might still be smaller although G0 is the intersection of those open normal
subgroups (cf. [45, 6.8]).

5 Examples that are not Lie groups

A natural source of locally compact groups that are not Lie groups originates from
the fact that the class CG is closed under arbitrary cartesian products. Another well-
understood (and rich) class of locally compact groups is the class LCA. Both classes do
not contribute to KOR(LCG):

5.1 Theorem. The class KOR(CG)∪ KOR(LCA)∪ KOR(ABPROLIE) consists of the trivial
group alone. In fact KOR(G) is trivial for every abelian proto-Lie group G.

Proof. The Peter-Weyl Theorem asserts that the ordinary representations separate the
points in any compact group, cf. [45, 14.33]. Thus KOR(CG) contains only the trivial
group.

It remains to consider A ∈ LCA. Every character of A is a continuous homomor-
phism from A into R/Z � SU1C < GL1C and thus belongs to OR(A). Pontryagin du-
ality (cf. [45, 22.6]) implies that the characters separate the points of A. Thus KOR(A) is
trivial.

For a proto-Lie group G the continuous homomorphisms to Lie groups separate the
points. If G is abelian then it suffices to consider homomorphisms from G to abelian
Lie groups, and it follows that KOR(G) is trivial. �

11
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5.2 Example. Let C be a compact simple non-abelian group and let D be any infinite
discrete group. For instance, the group C = SO3R would do — in any case, C will
be connected (see [45, 4.13]). The product topology turns CD into a compact connected
group belonging to CONNLCG ⊂ CONNPROLIE but not to LIE. We form the semidirect
product G := D ⋉ CD where conjugation with d ∈ D maps (cj)j∈D ∈ CD to (bj)j∈D with
bj = cdj. Then G ∈ LCG.

The closed normal subgroups of CD are in one-to-one correspondence with the lattice
of subsets of D, cf. [44, 3.12]: to J ⊆ D we associate the product ∏j∈D Bj where Bj = Cj

if j ∈ J and Bj is trivial if j ∈ D r J. Consequently, every non-trivial closed normal

subgroup of G contains the connected component G0 � CD, and we have KOR(G) =
G0 � CD here.

Our investigation of the normal subgroups also makes clear that G does not belong
to PROLIE.

5.3 Example. Let S again denote the universal covering group of SL2R. As in [24,
Ex. 0.6] we consider the filter basis N (S)× of all nontrivial subgroups of the center
of S. The projective limit G := limN∈N (S)× S/N is a connected locally compact group
(see [24, 2.12]) with a center Z(G) isomorphic to the universal zero dimensional com-
pactification of Z.

In other words Z(G) is isomorphic to ∏p∈P Zp where P is the set of primes and Zp is
the additive group of p-adic integers. Note that Z(G) has a unique quotient of order 2
because Z(G)/{z2 | z ∈ Z(G)} � ∏p∈P Zp/ ∏p∈P 2 Zp � Z2/2 Z2 � Z/2 Z. From [24,
2.14] we infer that G and G/Z(G) � PSL2R have essentially the same Lie algebra.

As G/Z(G) � PSL2R is a simple group, the only proper normal subgroups of G are
those of Z(G). If ρ is an ordinary representation of G then ρ(Z(G)) is a pro-finite sub-
group of a Lie group and thus finite. This means that ker ρ = ker(ρ|Z(G)) is co-finite
in Z(G), and G/ ker ρ is an extension of Lie groups (namely G/Z(G) � PSL2R and the
finite group Z(G)/ ker ρ). Now G/ ker ρ is a connected Lie group, has the same Lie al-
gebra as PSL2R and possesses a faithful ordinary representation. Thus |Z(G)/ ker ρ| ≤
2 and ker ρ contains {z2 | z ∈ Z(G)} � ∏p∈P Zp. Since G/{z2 | z ∈ Z(G)} � SL2R

clearly has a faithful ordinary representation we obtain KOR(G) � ∏p∈P Zp.

5.4 Definitions. A topological group G is called monothetic if there exists g ∈ G such
that the closure of the subgroup generated by g is dense in G. Any such g is called
a topological generator of G. The class of all compact monothetic (necessarily abelian)
groups will be denoted by MONCA.

The one-parameter subgroups of G are the elements of Hom(R, G). We say that G

has a dense one-parameter subgroup if there is ϕ ∈ Hom(R, G) with ϕ(R) = G.

5.5 Lemma. (a) A locally compact monothetic group is either compact or isomorphic to Z.
(b) If A ∈ LCA has a dense one-parameter subgroup then A is either isomorphic to R or A

is a connected compact monothetic group.
(c) The Pontryagin duals of compact monothetic groups are the subgroups of the discrete

group Q(2ℵ0) × Q/Z.

12
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(d) The duals of connected compact monothetic groups are the subgroups of the discrete

group Q(2ℵ0) � Rdiscr.

Proof. The first two assertions are known as Weil’s Lemma, cf. [45, 6.26]. Assertion (c)
is due to [11], we present the argument for the reader’s convenience. The existence
of a cyclic subgroup means that there is an epimorphism η : Z → A in the category
LCA which upon dualizing gives a monomorphism η∗ : A∗ → Z∗ � R/Z; cf. [45, 15.5,
15.7, 20.13]. Since A is compact the dual A∗ is discrete (see. [45, 20.6]), and we may

interpret η∗ as an embedding of A∗ into the discrete group Rdiscr/Z � Q(2ℵ0) × Q/Z.
Now connectedness of A implies that A∗ is torsion-free (cf. [45, 23.18]) and η∗ induces

an embedding of A∗ into the quotient Q(2ℵ0) of Rdiscr/Z modulo its torsion group Q/Z.
In order to prove the last assertion we dualize the epimorphism ϕ : R → A to a

monomorphism ϕ∗ : A∗ → R∗ � R and then replace the range by the discrete group
Rdiscr. �

5.6 Example. Generalizing the construction described in 4.1 we take A ∈ LCA with a
dense one-parameter group ϕ ∈ Hom(R, A) and define a multiplication ∗ on R2 × A
by (a, b, x) ∗ (c, d, y) = (a + c, b + d, x + y + ϕ(ad − bc)). Then Hϕ := (R2 × A, ∗)
is a connected locally compact group. If A is compact we proceed as in 4.1 to see
KOR(Hϕ) = {0}2 × A � A.

5.7 Example. Again, let S denote the universal covering group of SL2R. Assume that
A is a compact monothetic group and let c be a topological generator. Proceeding as
in 4.3 we construct the quotient G of S × A such that ζ2 is identified with c. Then an
argument as in 4.3 shows that KOR(G) contains the closure of c in G. This is a subgroup
isomorphic to A.

6 Connected pro-Lie groups

In order to show CA ⊂ KOR(CONNPROLIE) we study free compact abelian groups.

6.1 Definitions. For a pointed compact space X let X/conn be the totally disconnected
compact space of connected components of X and letw(X) denote the weight of X (i.e.,
the minimal cardinality of a basis for the topology on X). Put w0(X) := w(X)− 1; this
coincides with w(X) if the latter is infinite.

Let C0(X, T) denote the set of all continuous functions from X to T mapping the base
point to 0. This set endowed with the compact-open topology and the pointwise opera-
tions becomes a topological group. The quotient [X, T] := C0(X, T)/C0(X, T)0 modulo
the connected component C0(X, T)0 is discrete (cf. the paragraph preceding [22, 8.50]);
its compact Pontryagin dual [X, T]∗ plays a crucial role in the structure of the free com-
pact abelian group F(X).

6.2 Theorem. For every nonsingleton pointed compact space the free compact abelian group

F(X) is isomorphic to (Q∗)w(X)ℵ0 ×∏p∈P Z
w0(X/conn)
p × [X, T]∗. The group [X, T] is torsion-

free, and its Pontryagin dual [X, T]∗ is a quotient of some power of Q∗.
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Proof. The structure of F(X) is known from [18, 1.5.4], cf. [22, 8.67]. For every compact
Hausdorff space X the group [X, T] � H1(X, Z) is torsion-free, see [18, 1.3.1], cf. [22,
8.50(ii)]. For d := dimQ(Q ⊗ [X, T]) we have an embedding of [X, T] into Q ⊗ [X, T] �
Q(d) which dualizes to the quotient map in question. �

6.3 Theorem. The class KOR(CONNPROLIE) contains at least the class Π(CGAL ∪ CA) =
Π({Z, R} ∪ CA). In particular, we have CONNABPROLIE ⊂ KOR(CONNPROLIE).

The class KOR(CONNLCG) contains the class SMALLLCA = P({Z, R} ∪ MONCA)
consisting of all groups of the form Z f × A × Re with e, f ∈ N and a compact monothetic
group A.

Proof. Abelian pro-Lie groups are studied in [21], cf. [23, Ch. 5]: in particular, the con-
nected ones are of the form Rc × C where c is arbitrary (possibly infinite) and C is a
connected compact abelian group. Such a group belongs to CONNLCA precisely if c is
finite, cf. [45, 24.9].

Let C be a compact abelian group. Then C is a quotient of the free compact abelian
group F(C). From 6.2 we know that F(C) is a quotient of a product of compact mono-
thetic groups. The class MONCA of all compact monothetic groups is contained in
KOR(CONNLCG) ⊂ KOR(CONNPROLIE) by 5.7 and 5.6. From 2.7 and 3.6 we conclude
CA = QΠ(MONCA) ⊆ KOR(CONNPROLIE) and QP(MONCA) ⊆ KOR(CONNLCG).

From 4.3 we recall that Z and R lie in KOR(CONNLCG) ⊂ KOR(CONNPROLIE); it
remains to use products once again. �

6.4 Remark. The factor A in 6.3 cannot be arbitrarily large; we showw(A0) ≤ 2ℵ0 in 7.14
below. If the answer to 9.1 is affirmative then we know that SMALLLCA coincides
with KOR(CONNLCG), cf. 7.15.

6.5 Remarks. We have mentioned in 6.2 that the factor [X, T]∗ of F(X) has a torsion-free
dual. Conversely, every torsion-free abelian group A is isomorphic to [X, T] for some
compact connected Hausdorff space (namely, for the underlying space X = |A∗| of the
Pontryagin dual of A), see [18, 1.3.2]. The corrections in [19] only concern assertions
about cardinalities (dimension, rank) in [18].

6.6 Proposition. Each discrete member of KOR(CONNPROLIE) is finitely generated. Each
member of KOR(CONNLCG) is compactly generated.

Proof. Discrete central subgroups of connected pro-Lie groups are finitely generated
by [25, 5.10]. Consider G ∈ CONNLCG. Any compact neighborhood in KOR(G) gen-
erates a central subgroup C of G, and KOR(G)/C is a discrete subgroup of G/C ∈
CONNLCG ⊂ CONNPROLIE. Now it remains to note that the class of compactly gen-
erated locally compact groups is closed under extensions, see [45, 6.11]. �

6.7 Remark. Locally compact abelian groups are compactly generated precisely if they
are contained in some almost connected locally compact group, see [26, Cor. 1]. The
compactly generated members of LCA are of the form Z f × C × Re with natural num-
bers e, f and some C ∈ CA, cf. [45, 23.11]. Note that every C ∈ CA is contained in
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a connected compact group because the characters separate the points: this yields an
embedding into TC∗

.

7 Connected locally compact groups

Our aim in this section is to establish a bound on the size of KOR(G) if G ∈ CONNLCG.
To this end, we need some information on the weight (cf. 6.1) and generating rank.

If X is discrete then w(X) is just the cardinality |X|. The function w is monotonic; i.e.
each subspace Y ⊆ X satisfies w(Y) ≤ w(X). For an infinite compact group the weight
coincides with the local weight, i.e., the minimal cardinality of a neighborhood basis.

For C ∈ CONNCA a finer invariant than the weight is the rank dimQ(Q ⊗ C∗) of
its dual C∗. Note that C∗ embeds in Q ⊗ C∗ only if C∗ is torsion-free (i.e., if C is con-
nected, see [45, 23.18]). The rank of C∗ coincides with the topological dimension of C,
cf. [22, 8.26]. Every compact abelian Lie group has finite dimension; its dual is finitely
generated.

7.1 Lemma. (a) For each positive integer n we have w(Rn) = ℵ0.
(b) The equality w(A) = w(A∗) holds for each A ∈ LCA.
(c) In particular, for C ∈ CA we have w(C) = |C∗|.
(d) For C ∈ CA we have w(C0) = max{ℵ0, dimQ(Q ⊗ C∗)} unless C is trivial.
(e) If n is a positive integer and C ∈ CONNCA then w(Rn × C) = max{ℵ0,w(C)}.
(f) If G ∈ CG and N is a totally disconnected closed normal (and thus central) subgroup

of G0 then w(G) = w(G/N).

Proof. The assertion on w(Rn) is obvious from the fact that the underlying space is
metrizable and the weight equals the local weight. See [15, 24.14] or [22, 7.76] for asser-
tion (b). The assertions on compact groups are taken from [22, 12.25] and [20, 3.2]. �

7.2 Lemma. For C ∈ CA we have w(C0) ≤ 2ℵ0 precisely if C0 is monothetic. If C ∈ CA has
a finitely generated dense subgroup then w(C) ≤ 2ℵ0 .

Proof. From 7.1 we know w(C0) = dimQ(Q ⊗ C∗
0). Since C∗

0 is torsion-free we have an
embedding η : C∗

0 → Q ⊗ C∗
0 . Thus C∗

0 is the dual of a monothetic group, see 5.5. �

7.3 Suitable sets and generating rank. Following [20] (cf. [22, 12.1]), a subset X of a
topological group G is called suitable if it does not contain the neutral element 1, is
discrete and closed in G r {1}, and generates a dense subgroup of G. Every locally
compact group possesses suitable sets by [20, 1.12]. We define the generating rank s(G)
as the minimum over the cardinalities of suitable sets.

7.4 Examples. (a) For the additive group R any two elements that are linearly inde-
pendent over Q form a suitable set. Thus s(R) = 2.

(b) A suitable set for Rn needs at least n+ 1 elements because fewer vectors will either
be linearly dependent (and thus contained in a proper closed subgroup) or form a
basis (and then generate a discrete proper subgroup). It is known that there exists
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v ∈ Rn such that v+Z generates a dense subgroup of Rn/Zn. The standard basis
together with any such v forms a suitable set for Rn. Thus s(Rn) = n + 1.

(c) For G ∈ CONNCG the generating rank depends on the weight, see [22, 12.22]:
(i) If w(G) ≤ 2ℵ0 and G is abelian (but not trivial) then s(G) = 1.

(ii) If w(G) ≤ 2ℵ0 and G is not abelian then s(G) = 2.
(iii) If w(G) > 2ℵ0 then s(G) = min

{
i
∣∣ w(G) ≤ iℵ0

}
.

(d) In particular, the generating rank of any connected Lie group is finite.

7.5 Lemma ([22, 12.26]). Let G ∈ CONNCG and let N be a normal subgroup of G. Then
s(G/N) ≤ s(G) ≤ s(G/N) + s(N). If N is totally disconnected then s(G) = s(G/N). �

7.6 Reduction to maximal compact subgroups. Let G ∈ ALMCONNLCG. By the
Mal′tsev–Iwasawa Theorem (see [28, Thm. 13] combined with the solution of Hilbert’s
Fifth Problem [49], cf. [34] or [29]) there exists a maximal compact subgroup M of G
which is unique up to conjugacy. If M , G then there is a positive integer n (called
the characteristic index in [28]) and there are subgroups R1, . . . , Rn all isomorphic to R

such that G = R1 · · · Rn M. The number n equals the topological dimension dim G/M
of the coset space G/M (which is actually a manifold). If M = G we just have n = 0.

Note that M is connected. Thus the weight of G equals that of M if G = M and
satisfies w(G) = max{ℵ0,w(M)} otherwise.

7.7 Proposition. For G ∈ ALMCONNLCG pick a maximal compact subgroup M of G. Then
s(G) ≤ 2 dim G/M + s(M). In particular, the generating rank s(G) is finite if w(M) ≤ 2ℵ0 .
If ψ : G → H is a continuous homomorphism with dense range then s(G) ≥ s(H).

Proof. We use subgroups R1, . . . , Rn as in 7.6, where n := dim G/M. Combining a
suitable set for M with suitable sets for each Rj we find s(G) ≤ 2n + s(M). From 7.4 we

thus infer that s(G) is finite if G ∈ CONNLCG satisfies w(G) ≤ 2ℵ0 .
Every suitable set X constructed in this way will be relatively compact because only

finitely many elements lie outside the compact group M. Now [22, 12.4] asserts that
ψ(X) r {1} will be suitable in H whenever ψ : G → H is a continuous homomorphism
with dense range. �

7.8 Lemma. For each non-trivial G ∈ ALMCONNLCG we have s(G) ≤ w(G) ≤ s(G)ℵ0 .

Proof. By the Mal′tsev–Iwasawa Theorem (cf. 7.6) we know that G is homeomorphic
to Rn × M for a maximal compact subgroup M and some nonnegative integer n. The
estimates s(M) ≤ w(M) ≤ s(M)ℵ0 are valid for any non-trivial compact group M,
see [22, 12.27].

If the group G is compact it coincides with M. If M is trivial but n ≥ 1 then 7.7 yields
that s(G) ≤ 2n is finite. Thus s(G) ≤ ℵ0 = w(G) < 2ℵ0 = s(G)ℵ0 .

There remains the case where G is not compact and M is not trivial. Then n ≥ 1
and w(G) = max{ℵ0,w(M)}. Now the estimates s(G) ≤ 2n + s(M) ≤ ℵ0 + s(M) ≤
ℵ0 +w(M) = w(G) from 7.7 and w(G) = ℵ0 +w(M) ≤ ℵ0 + s(M)ℵ0 ≤ 2ℵ0 + s(M)ℵ0 =
s(G)ℵ0 yield the claim. �
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7.9 Remark. The inequality s(G) ≤ w(G) holds for arbitrary G ∈ LCG see [20, 4.2].

7.10 Lemma. Let G ∈ CONNLCG. We consider a compact normal subgroup K of G, the
centralizer C := CG(K) and its connected component C0. Then G = C0K.

Proof. We abbreviate D := C ∩ K. From [28, Thm. 2] we know CK = G. The group C
is a closed subgroup of the σ-compact group G and thus σ-compact itself, see [45, 6.10,
6.12]. The Open Mapping Theorem (cf. [45, 6.19]) yields that C/D is isomorphic to G/K.
Now C/(C0D) is totally disconnected (cf. [45, 6.9]) but also connected because it is a
continuous image of C/D � G/K. Thus C = C0D and C0K = C0DK = CK = G. �

7.11 Theorem. If G ∈ CONNLCG has a compact normal subgroup K such that G/K is a

Lie group and K0 is abelian then s(G′) is finite. Consequently, the group KOR(G) satisfies
w(KOR(G)) ≤ 2ℵ0 in this case.

Proof. The compact abelian normal subgroup K0 is contained in the center of G. A

dense subgroup of G′ is generated by γ(S× S) where S is any suitable set for G/K0 and

γ : G/K0 × G/K0 → G′ : (aK0, bK0) 7→ aba−1b−1 is induced by the commutator map.

We pick a maximal compact subgroup M of G. Then K0 ≤ M and by 7.7 there ex-
ists a nonnegative integer n such that s(G/K0) ≤ 2n + s(M/K0). Now s(G/K0) is
finite because the compact connected Lie group M/K has finite generating rank and
s(M/K0) = s(M/K) by 7.5.

Thus we may choose a finite set S; then γ(S × S) r {1} is a finite (and thus indeed

closed and discrete) suitable set for G′. The bound for the weight of KOR(G) now
follows from 7.8, monotonicity of the weight function and the fact that KOR(G) is con-

tained in G′, see 3.8. �

For any solvable compact group the connected component is abelian, see [28, Thm. 2].
Thus 7.11 yields:

7.12 Corollary. If G is a solvable connected locally compact group then s(G′) < ℵ0 and

w(KOR(G)) ≤ wG′ ≤ 2ℵ0 . �

7.13 Example. Let ℵ be any cardinal, let S be a connected compact Lie group with
simple Lie algebra and non-trivial center Z, and put G := Sℵ. Then Z is finite and

S′ = S. Thus G is a compact connected group with G′ = G and Z(G)∩G′ = Z(G) � Zℵ.

Now w(Z(G) ∩ G′) = w(Zℵ) = |Z(ℵ)|, and this cardinality may be arbitrarily large.

7.14 Proposition. For each G ∈ CONNLCG we have w(KOR(G)0) ≤ 2ℵ0 . In particular, the
connected component of the maximal compact subgroup of KOR(G) is monothetic.

Proof. Let K be the maximal compact normal subgroup of G (cf. [28, Thm. 14]). Then 7.10
says G = C0K where C0 is the connected component of the centralizer C := CG(K) of K

in G. Thus G′ = C′
0K′ = C′

0 K′ because K′ is compact, and (Z(G) ∩ G′)0 ≤ C0 ∩ G′ is

contained in C′
0(C0 ∩ K′) ≤ C0.
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The locally compact group C0/(C0 ∩ K) admits an injective continuous homomor-
phism into the Lie group G/K and thus is a Lie group itself. Moreover, we have that
C0 ∩ K is contained in the center of K and thus abelian. Thus 7.11 applies to C0 and K,

yielding w(C′
0) ≤ 2ℵ0 .

The group B := C0 ∩ K′ is contained in the intersection of K′ with the center of
the compact group K. Thus B is totally disconnected, see [22, 9.23], and the quotient

B C′
0 / C′

0 � B/(B ∩ C′
0) is totally disconnected, as well. This yields that the connected

component KOR(G)0 of KOR(G) is contained in C′
0, and the bound w(KOR(G)0) ≤ 2ℵ0

is established. Now the connected component of the maximal compact subgroup of
KOR(G) is monothetic by 7.2. �

7.15 Theorem. For each G ∈ CONNLCG there exist A ∈ CA and natural numbers e, f such
that A0 is monothetic and KOR(G) � Z f × A × Re. In particular, the dimension of members
of KOR(CONNLCG) is bounded by 2ℵ0 .

Proof. We combine 7.14 with 6.6, 6.7, and 7.2. �

8 Partial results

The classes KOR(SEPLIE), KOR(LIE), KOR(LCG) and KOR(PROLIE) are quite large
and not very well understood. We will indicate some large subclasses and note (in 8.4)
that these classes are not closed under the operations S, Q, and Q̂.

8.1 Theorem. The class KOR(SEPLIE) contains the following:
(a) The class KOR(CONNLIE) = KOR(ALMCONNLIE) = CGAL, cf. 4.5 and 4.8.
(b) All countable discrete simple groups with infinite elementary abelian subgroups, cf. 10.8(a).
(c) Countably infinite discrete simple groups with finitely many conjugacy classes, such as

those constructed as HNN-extensions, see 10.8(b).
Moreover, KOR(SEPLIE) is closed under P.

Note that KOR(SEPLIE) is considerably larger than KOR(ALMCONNLIE) = CGAL.

8.2 Theorem. The class KOR(LCG) contains the following:
(a) The class KOR(SEPLIE) ∪ KOR(CONNLCG), and thus CGAL and all compact mono-

thetic groups.
(b) All groups of the form CD where C is a compact simple non-abelian group and D is

infinite, see 5.2.
(c) All simple non-discrete totally disconnected locally compact groups.
(d) All simple discrete groups of cardinality larger than 2ℵ0 .
(e) All discrete simple groups with infinite elementary abelian subgroups.

Moreover, KOR(LCG) is closed under P but not under Π.

The class in 8.2(c) includes the simple p-adic groups such as PSLnQp. Among the
groups in 8.2(d) we find, for instance, the simple classical groups over large fields such
as PSLnF where F = Q(X) is a purely transcendental extension with a transcendency
basis X such that |X| > |R|.
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8.3 Proposition. The groups SO3R and PSL2C do not belong to KOR(TG).

Proof. The Lie algebra L(SO3R) is isomorphic to the vector product algebra (R3,×),
and Ad(SO3R) � SO3R contains all automorphisms of that algebra. Therefore, each
automorphism of SO3R is an inner automorphism, see2 [22, 6.59].

Now assume that there exists a group G ∈ TG with KOR(G) � SO3R. Then G is
the direct product of KOR(G) with its centralizer C, see 7.10. Thus G/C � SO3R has a
faithful ordinary representation, and KOR(G) ≤ C. This is a contradiction.

For the group PSL2C � PGL2C we can proceed in the same way because this group
also has only inner automorphisms, see [42], cf. [10]. �

8.4 Corollary. The classes KOR(LCG) and KOR(PROLIE) are not closed under any one of
the operations S, Q, or Q̂. �

8.5 Remark. The group PSL2R has outer automorphisms (induced by elements of GL2R

with non-square determinant). Every group PSLnF with n > 2 over a commutative
field F has outer automorphisms induced by polarities of the projective space. Thus the
argument used in the proof of 8.3 does not easily extend to arbitrary classical simple
groups.

9 Open questions

9.1 Problem. Is it true that w(KOR(G)) ≤ 2ℵ0 holds for every G ∈ CONNLCG ?

Comments on 9.1. If the answer to this problem is affirmative then KOR(CONNLCG) =
SMALLLCA, cf. 6.3, 6.6 and 6.7.

In 6.6 we have seen that KOR(CONNLCG) consists of compactly generated groups,
and 7.14 says that the connected component of the maximal compact subgroup of
KOR(G) lies in SMALLCA. For an affirmative answer to 9.1 it suffices to exclude totally
disconnected compact groups A with w(A) > 2ℵ0 from KOR(CONNLCG) because that
class is closed under the passage to Hausdorff quotients, cf. 2.5.

For G ∈ CONNLCG consider the maximal compact normal subgroup K of G and

let C0 be the connected component of the centralizer of K. Then the weight of C0 ∩ K′

may be arbitrarily large, as 7.13 shows. It is therefore clear that we have to find a more
subtle approach than 3.8 if we want to give an affirmative answer to 9.1.

9.2 Problem. Which abelian pro-Lie groups are in KOR(CONNPROLIE) ?

Comments on 9.2. Every element of KOR(CONNPROLIE) is contained in the center of
a connected pro-Lie group (namely, G) and thus contained in some connected abelian
pro-Lie group, cf. [23, 12.90]. From 6.3 we thus infer

CONNABPROLIE ⊂ KOR(CONNPROLIE) ⊆ S(CONNABPROLIE) .

A discrete abelian group belongs to KOR(CONNPROLIE) precisely if it is finitely gener-
ated (and thus lies in CGAL), see 6.6.

2 The discussion of Aut(L(SO3R)) in [22, p. 252] contains an error; indeed O3RrSO3R * Aut(L(SO3R)).
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9.3 Problems.

(a) Is KOR(CONNPROLIE) closed under Q̂ ?
(b) Is KOR(CONNPROLIE) closed under S ?

Comments on 9.3. We know that KOR(CONNPROLIE) is not closed under Q because
the group RR belongs to KOR(CONNPROLIE) but has a quotient which is not complete
(cf. [23, 4.11]), and thus does not lie in KOR(CONNPROLIE) ⊆ ABPROLIE.

From 3.6 we know that KOR(CONNPROLIE) is closed under quotients modulo locally
compact groups.

9.4 Problem. What about KOR(G) if G is an almost connected pro-Lie group, or an
almost connected locally compact group?

Comments on 9.4. The conclusion of 3.4 breaks down if we drop the assumption of con-
nectedness, cf. 5.2. In many questions about the structure of pro-Lie groups it is possi-
ble to weaken a connectedness hypothesis to “almost connected” (i.e., compactness of
G/G0). For instance, almost connected locally compact groups are pro-Lie groups while
for arbitrary disconnected locally groups the homomorphisms into Lie groups need not
separate the points. We have seen in 4.8 that KOR(ALMCONNLIE) = KOR(CONNLIE)
is very well behaved.

The examples in 5.2 fail to be almost connected, and also fail to be pro-Lie groups.
The same applies to most of our examples of groups G ∈ LCG with KOR(G) = G. Note
that the discrete examples are in LIE ⊂ PROLIE.

9.5 Problems. For G ∈ {LCG, PROLIE} we ask:
(a) Is CA completely contained in KOR(G) ?
(b) Is LCA completely contained in KOR(G) ?
(c) Which part of CG is contained in KOR(G) ?
(d) Which discrete groups are in KOR(G) ?
(e) What is KOR(G) ?

Comments on 9.5. If we drop all connectedness assumptions on G we obtain examples G
where KOR(G) is not abelian. However, the inclusion KOR(G) ⊂ G falls far from being
an equality. The class KOR(G) appears to be complicated and not accessible to an easy
“constructive” description (such as: “take the following basic examples and use certain
constructions like products or quotients”).

Definitely, the class CG is not completely contained in KOR(G). For instance, we
know that CG ∩ KOR(G) is not closed under S or Q, see 8.3.

It is also open whether arbitrary discrete groups are in KOR(PROLIE).

10 Appendix: linear groups

We collect some known facts regarding the question whether a given group is linear,
i.e., admits a faithful ordinary representation. In our present terminology, this means
that the trivial group is a member of {ker ρ | ρ ∈ OR(G)}. Examples like the additive
group Zp of p-adic integers or any infinite elementary abelian group show that this
condition is, in general, much stronger than the condition that KOR(G) is trivial.
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By way of contraposition, we use the criteria for linearity in certain examples in order
to determine KOR(G) or to even show KOR(G) = G. See 10.8 but also 4.2, 4.3, 5.7.

10.1 Theorem (Mal′tsev [33], see [13]). Let G be a connected Lie group.
(a) The group G is linear if, and only if, its solvable radical and its maximal semisimple

subgroups are linear.
(b) If G is semisimple and linear and Z is a discrete normal (i.e., central) subgroup of G then

G/Z is linear, as well.
(c) If G is solvable then it is linear if, and only if, it is the semidirect product of a maximal

compact subgroup and a simply connected normal subgroup. �

10.2 Theorem (Nahlus [36]). Let G be a connected Lie group with Lie algebra g := L(G),
let r be the solvable radical of the commutator algebra g′, and let z be the center of g. Choose a
maximal torus T of the solvable radical of G and a maximal semisimple subgroup S. Then G is
linear precisely if r∩ z∩ L(T) = {0} and S is linear. �

We have seen that the structure of KOR(G) for a connected Lie group G may depend
essentially on the choice of G as a quotient of its simply connected covering G̃. This
raises the problem of characterizing those Lie algebras whose associated Lie groups are
all linear.

10.3 Theorem (Moskowitz [35]). Let g be a Lie algebra of finite dimension over R, let r
be the solvable radical of the commutator algebra g′, let z be the center of g, and let s be a
maximal semisimple subalgebra of g. Then every connected Lie group with Lie algebra g is
linear precisely if the simply connected group associated to s is linear and r∩ z = {0}. �

10.4 Examples. Among the connected Lie groups with simple Lie algebra, the most
obvious non-linear examples are those with infinite center. These are precisely those
connected Lie groups with simple Lie algebra where the maximal compact subgroups
have centralizers of positive dimension. Cf. [14, Ch. VIII, § 6; Ch. X, § 6].

10.5 Theorem (Lee and Wu [31]). Assume that G is a connected Lie group, and that G is
linear. Then the holomorph Aut(G) ⋉G is linear if, and only if, one of the following holds:

(a) The nilradical of G is simply connected.
(b) The group G is perfect (i.e., coincides with its commutator subgroup).
(c) The quotient G/G′ is isomorphic to R/Z. �

10.6 Theorem (Burnside [7], cf. [50, Ch. 2, 2.1, Cor. B and C, pp. 138 f]).
(a) If G ≤ GLnC has finite exponent (i.e. if there exists m ≥ 1 such that {gm | g ∈ G} is

trivial) then G is a finite group.
(b) If H ≤ GLnC contains only finitely many conjugacy classes then H is finite. �

10.7 Theorem (Schur [43]). If G ≤ GLnC is a torsion group (i.e., if every element of G has
finite order) then every finitely generated subgroup of G is finite. �

10.8 Examples. Using Burnside’s results we provide examples of (discrete) simple non-
abelian groups in KOR(LIE) or even in KOR(SEPLIE) — separability just means count-
ability here.
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(a) For each infinite field F of positive characteristic p the simple group PSL2F does
not admit any non-trivial ordinary representation because it contains an infinite
group of exponent p, cf. 10.6(a). Thus KOR(PSL2F) = PSL2F.

(b) There exists a countably infinite group H such that every non-trivial element of H
has infinite order, and all these elements form a single conjugacy class, see [16].
Clearly this group H is simple, and KOR(H) = H follows from 10.6(b).

(c) If p is a sufficiently large prime then there exists a countably infinite group Olmp

such that every proper subgroup of Olmp has order p and any such subgroup
contains a set of representatives for the conjugacy classes, see [37, § 19]. We may
conclude KOR(Olmp) = Olmp from any one of Burnside’s results as stated in 10.6,
and also from 10.7.
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[10] J. Dieudonné, On the automorphisms of the classical groups, Memoirs of the American
Mathematical Society 2, American Mathematical Society, Providence, R.I., 1980,
ISBN 0-8218-1202-5. MR 606555 (82c:20079) Zbl 0042.25603

[11] P. R. Halmos and H. Samelson, On monothetic groups, Proc.
Nat. Acad. Sci. U. S. A. 28 (1942), 254–258, ISSN 0027-8424,
http://www.pnas.org/content/28/6/254.full.pdf. MR 0006543 (4,2f)
Zbl 0063.01893

[12] Harish-Chandra, Faithful representations of Lie algebras, Ann. of Math (2) 50

(1949), 68–76, ISSN 0003-486X, doi:10.2307/1969352. MR 0028829 (10,504a)
Zbl 0032.25201

[13] Harish-Chandra, On faithful representations of Lie groups, Proc. Amer. Math.
Soc. 1 (1950), 205–210, ISSN 0002-9939, http://www.jstor.org/stable/2031923.
MR 0034396 (11,579h) Zbl 0039.02004

[14] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Ap-
plied Mathematics 80, Academic Press Inc., New York, 1978, ISBN 0-12-338460-5.
MR 514561 (80k:53081) Zbl 0993.53002

[15] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, Grundlehren der Math-
ematischen Wissenschaften 115, Springer-Verlag, Berlin, 2nd edn., 1979, ISBN 3-
540-09434-2. MR 551496 (81k:43001) Zbl 0837.43002

[16] G. Higman, B. H. Neumann, and H. Neumann, Embedding theorems
for groups, J. London Math. Soc. 24 (1949), 247–254, ISSN 0024-6107,
doi:10.1112/jlms/s1-24.4.247. MR 0032641 (11,322d) Zbl 0034.30101

[17] K. H. Hofmann, Analytic groups without analysis, in Symposia Mathematica, Vol. XVI
(Convegno sui Gruppi Topologici e Gruppi di Lie, INDAM, Rome, 1974), pp. 357–374,
Academic Press, London, 1975. MR 0409722 (53 #13474) Zbl 0319.22021

[18] K. H. Hofmann and S. A. Morris, Free compact groups. I. Free compact
abelian groups, Topology Appl. 23 (1986), no. 1, 41–64, ISSN 0166-8641,
doi:10.1016/0166-8641(86)90016-7. MR 849093 (88a:22011) Zbl 0589.22003

[19] K. H. Hofmann and S. A. Morris, Correction: “Free compact groups. I. Free
compact abelian groups” [Topology Appl. 23 (1986), no. 1, 41–64; MR0849093
(88a:22011)], Topology Appl. 28 (1988), no. 1, 101–102, ISSN 0166-8641,
doi:10.1016/0166-8641(88)90040-5. MR 927286 (89a:22008)

[20] K. H. Hofmann and S. A. Morris, Weight and c, J. Pure Appl. Algebra 68

(1990), no. 1-2, 181–194, ISSN 0022-4049, doi:10.1016/0022-4049(90)90142-5.
MR 1082789 (92g:22011) Zbl 0728.22006

23

http://www.jstor.org/stable/1994605
http://www.ams.org/mathscinet-getitem?mr=0214697
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0166.29602&format=complete
http://www.ams.org/mathscinet-getitem?mr=606555
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0042.25603&format=complete
http://www.pnas.org/content/28/6/254.full.pdf
http://www.ams.org/mathscinet-getitem?mr=0006543
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0063.01893&format=complete
http://dx.doi.org/10.2307/1969352
http://www.ams.org/mathscinet-getitem?mr=0028829
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0032.25201&format=complete
http://www.jstor.org/stable/2031923
http://www.ams.org/mathscinet-getitem?mr=0034396
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0039.02004&format=complete
http://www.ams.org/mathscinet-getitem?mr=514561
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0993.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=551496
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0837.43002&format=complete
http://dx.doi.org/10.1112/jlms/s1-24.4.247
http://www.ams.org/mathscinet-getitem?mr=0032641
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0034.30101&format=complete
http://www.ams.org/mathscinet-getitem?mr=0409722
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0319.22021&format=complete
http://dx.doi.org/10.1016/0166-8641(86)90016-7
http://www.ams.org/mathscinet-getitem?mr=849093
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0589.22003&format=complete
http://dx.doi.org/10.1016/0166-8641(88)90040-5
http://www.ams.org/mathscinet-getitem?mr=927286
http://dx.doi.org/10.1016/0022-4049(90)90142-5
http://www.ams.org/mathscinet-getitem?mr=1082789
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0728.22006&format=complete


Markus Stroppel Kernels of linear representations of . . . pro-Lie groups

[21] K. H. Hofmann and S. A. Morris, The structure of abelian pro-Lie groups, Math.
Z. 248 (2004), no. 4, 867–891, ISSN 0025-5874, doi:10.1007/s00209-004-0685-5.
MR 2103546 (2005i:22007) Zbl 1058.22003

[22] K. H. Hofmann and S. A. Morris, The structure of compact groups, de Gruyter Studies
in Mathematics 25, Walter de Gruyter & Co., Berlin, augmented edn., 2006, ISBN
978-3-11-019006-9; 3-11-019006-0. MR 2261490 (2007d:22002) Zbl 1139.22001

[23] K. H. Hofmann and S. A. Morris, The Lie theory of connected pro-Lie groups, EMS
Tracts in Mathematics 2, European Mathematical Society (EMS), Zürich, 2007,
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