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Abstract. If G is a group of permutations of a set Ω, then the

suborbits of G are the orbits of point-stabilisers Gα acting on Ω.

The cardinalities of these suborbits are the subdegrees of G. Every

infinite primitive permutation group G with finite subdegrees acts

faithfully as a group of automorphisms of a locally-finite connected

vertex-primitive directed graph Γ with vertex set Ω, and there is

consequently a natural action of G on the ends of Γ.

We show that if G is closed in the permutation topology of

pointwise convergence, then the structure of G is determined by

the length of any orbit of G acting on the ends of Γ.

Examining the ends of a Cayley graph of a finitely generated

group to determine the structure of the group is often fruitful. B.

Krön and R. G. Möller have recently generalised the Cayley graph

to what they call a rough Cayley graph, and they call the ends of

this graph the rough ends of the group.

It transpires that the ends of Γ are the rough ends of G, and

so our result is equivalent to saying that the structure of a closed

primitive group G whose subdegrees are all finite is determined by

the length of any orbit of G on its rough ends.
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1. Introduction

A transitive group of permutations G of a set Ω is called primitive if

the only G-invariant equivalence relations on Ω are the universal and

trivial relations.

Often, to say something useful about an infinite structure, one must

first impose some finiteness condition upon it. In this paper we concern

ourselves with infinite primitive groups whose point stabilisers have

only orbits of finite length in Ω. These orbits are called the suborbits of

a group, and the cardinalities of these orbits are called the subdegrees.

If the subdegrees of a group are all finite, the group is called subdegree

finite. Thus, in this paper we examine infinite subdegree finite groups;

such groups have been the subject of much research (see [1], [8] and

[12] for example).

Associated with any permutation group G there are directed graphs,

called the orbital digraphs of G, which represent G and its action on Ω

in a very natural way. If α, β ∈ Ω the set (α, β)G = {(αg, βg) | g ∈ G}

is called an orbital of G. It is diagonal if α = β. An orbital digraph of

G is a digraph whose vertex set is Ω and whose set of directed edges (or

arcs as they are usually called) is an orbital of G. Orbital digraphs of

subdegree finite primitive groups are locally finite; that is, every vertex

is adjacent to only finitely many vertices. Our digraphs are without

loops and multiple edges, and unless otherwise stated the terms path

and distance are used instead of the cumbersome undirected path and

undirected distance. A digraph Γ is connected if there is a path in Γ

between any two distinct vertices. A connected component of Γ is a

maximally connected subdigraph. Because the connected components

of a digraph Γ induce an equivalence relation on the set of vertices of Γ,

an equivalence relation that is invariant under automorphisms of Γ, the

non-diagonal orbital digraphs of a primitive group G are connected.



ROUGH ENDS OF INFINITE PRIMITIVE GROUPS 3

For locally finite graphs and digraphs, an end is an equivalence class

of rays (one-way infinite cycle-free paths), where two rays are equivalent

if and only if they have infinitely many vertices in common with a third

ray. Intuitively, one may think of them as the “points of infinity” of a

graph or digraph. An end is thin if any pairwise disjoint set of rays in it

is finite; otherwise it is thick. It was shown in [10] that the ends of any

two non-diagonal orbital digraphs of the same subdegree finite primitive

group are essentially the same (they are homeomorphic as topological

spaces). This is a special case of a deep property of compactly generated

totally disconnected locally compact groups, detailed in [6].

Our main result, presented in Section 3, shows that the structure of

an infinite subdegree finite primitive group is determined by the length

of any end orbit.

Theorem 4.3. Let G be a subdegree finite primitive group of permuta-

tions of an infinite set Ω that is closed in the natural complete topology

of Sym (Ω). If ǫ is an end of any connected orbital digraph of G then

precisely one of the following holds,

(i) |ǫG| = 1 and G = Gǫ;

(ii) |ǫG| = ℵ0 and G ∼= Gα ∗Gα,ǫ
Gǫ;

(iii) |ǫG| = 2ℵ0 and G ∼= Gα ∗Hα
H, for some group H satisfying

Gα,ǫ < H < G.

In [6] B. Krön and R. G. Möller extend the notion of a Cayley graph

of a finitely generated group to compactly generated totally discon-

nected locally compact groups, and they call these graphs rough Cay-

ley graphs. The ends of any two Cayley graphs of a finitely generated

group are the same, and this is also true of rough Cayley graphs. A

discussion of their impressive paper is beyond the scope of this short

note; it suffices to observe that an infinite primitive permutation group

G whose subdegrees are all finite has a rough Cayley graph. In fact, any
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non-diagonal orbital digraph of G is rough Cayley graph of G. Con-

sequently, the ends of any non-diagonal orbital digraph of G are the

rough ends of G. In Section 4 we briefly discuss rough Cayley graphs

and their ends, and restate our theorem in terms of a primitive group

and its action on its rough ends.

2. Preliminaries

It is well-known (see for example [1, Remark 29.8]) that if G is a

subdegree finite primitive group of permutations of an infinite set Ω,

then Ω is countably infinite. And since Ω is countable, there is a

natural complete topology on the symmetric group Sym (Ω), that of

pointwise convergence. If we enumerate the set Ω as {γ1, γ2, γ3, . . .},

then a sequence of permutations (gn) tends to the limit g if and only

if, for any k ≥ 1, we have γ
gn
k = γ

g
k and γ

g−1
n

k = γ
g−1

k for all sufficiently

large n. A basis for the open sets in this topology consists of all cosets

of pointwise stabilisers of finite sets. If G ≤ Sym (Ω), the closure of G

is the intersection of all closed subgroups of Sym (Ω) that contain G,

and is denoted by G.

When examining actions on finite subsets of Ω, there is no difference

between a group G and its closure G.

Theorem 2.1. ([2, Proposition 2.6]) If G ≤ Sym (Ω) then G and its

closure G have the same orbits on n-tuples of Ω for all n ≥ 1. �

The following result due to D. M. Evans in [3] will be fundamental

to our argument; here we give the statement of this result as given in

[2].

Theorem 2.2. ([2, Theorem 2.8]) If G and H are closed subgroups of

Sym (Ω), where Ω is a countable set and H ≤ G, then either |G : H| ≤

ℵ0 or |G : H| = 2ℵ0. The former holds if and only if H contains the

pointwise stabiliser in G of some finite subset of Ω. �
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We will denote the stabiliser of any point α ∈ Ω in G by Gα, and the

setwise and pointwise stabilisers of a subset Λ ⊆ Ω by G{Λ} and G(Λ)

respectively. This notation will be extended to ends, with Gǫ used to

denote the stabiliser in G of the end ǫ.

It was shown in [10, Theorem 3.11] that if G is an infinite subdegree

finite primitive group with an orbital digraph with more than one end,

then there exists a canonical orbital digraph Γ of G that has a very

simple, tree-like structure.

Like a tree, every vertex in Γ is a cut vertex; that is, removing any

vertex from Γ results in a disconnected digraph (such digraphs are said

to have connectivity one). But, unlike a tree, Γ contains non-trivial

lobes: subdigraphs Λ that are maximal subject to the condition that

no vertex in Λ is a cut vertex of Λ. The lobes of Γ are all pairwise

isomorphic, have at least three vertices and at most one end. Each

lobe of Γ is itself a primitive digraph, and any two vertices of Γ lie in

the same number m of lobes. It was shown in [10, Theorem 4.5] that

this canonical orbital digraph of G is essentially unique, and as such

can be denoted by Γ(m,Λ).

Intuitively, one may think of Γ(m,Λ) as the digraph obtained by

glueing together infinitely many copies of Λ such that no two copies

share more than one vertex, and every vertex of Γ(m,Λ) lies inm copies

of Λ.

In [5] H. Jung and M. Watkins characterise primitive graphs with

connectivity one; this was extended to primitive digraphs with connec-

tivity one in [11]. These graphs and digraphs all share this tree-like

structure.

Theorem 2.3. ([11, Theorem 3.3 & Theorem 3.5]) If Γ is a vertex-

transitive digraph with connectivity one, then it is primitive if and only

if the lobes of Γ are primitive, pairwise isomorphic digraphs that are
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not directed cycles of odd prime length, and each lobe has at least three

vertices.

Thus, any locally finite primitive digraph with connectivity one may

be written as Γ(m,Λ), where m ≥ 2 and Λ is some primitive digraph

that is not a directed cycle of odd prime length. In particular, note

that such graphs have infinitely many ends.

We associate with any connectivity-one digraph Γ a bipartite digraph

T , whose vertices are coloured violet or blue. The violet vertices are

the vertices of Γ, and the blue vertices are the lobes of Γ. A violet

vertex v is adjacent to a blue vertex b in T if and only if v lies in b in

Γ. Adjacent vertices in T are joined by two arcs, one in each direction.

This construction yields a tree, which is known as the block-cut-vertex

tree of Γ.

Applying the Bass-Serre theory of groups acting on trees ([9]), one

obtains the following.

Theorem 2.4. ([10, Theorem 5.2]) If G is an subdegree finite primitive

group of permutations with an orbital digraph with more than one end,

then G has a canonical orbital digraph Γ(m,Λ) and

G ∼= Gα ∗Gα,{Λ}
G{Λ},

where α ∈ V Λ, and Gα,{Λ} is a non-trivial maximal proper subgroup of

G{Λ} that fixes no element in V Λ \ {α}.

Of course not every group acting transitively on a digraph of the form

Γ(m,Λ) is primitive, and often one needs a quick test for imprimitivity.

Theorem 2.5. [11, Theorem 2.5] Let G be a vertex-transitive group

of automorphisms of a connectivity-one digraph Γ whose lobes have at

least three vertices, and let T be the block-cut-vertex tree of Γ. If there

exist distinct vertices α, β ∈ V Γ such that, for some vertex x ∈ (α, β)T ,

Gα,x = Gβ,x,
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then G does not act primitively on V Γ. �

Associated with each orbital ∆ = (α, β)G is its pair ∆∗ := (β, α)G,

and associated with each suborbit ∆(α) := {γ | (α, γ) ∈ ∆} is its pair

∆∗(α) := {γ | (α, γ) ∈ ∆∗}. In the orbital digraph (Ω,∆), the suborbit

∆(α) is the set of all vertices γ that are adjacent to α with an arc from

α to γ. Similarly, the suborbit ∆∗(α) is the set of all vertices γ that

are adjacent to α with an arc from γ to α. Thus, the out-valency of α

in (Ω,∆) is |∆(α)|, and the in-valency of α in (Ω,∆) is |∆∗(α)|.

In a locally finite orbital digraph of an infinite primitive group the

in-valency and the out-valency of the digraph must be equal. This is a

consequence of a lovely theorem by C. E. Praeger.

Theorem 2.6. ([8]) Let Γ′ be an infinite connected vertex- and edge-

transitive directed graph with finite but unequal in-valency and out-

valency. Then there is an epimorphism ϕ from the vertex set of Γ′ to

the set of integers Z such that (α, β) is an edge of Γ′ only if ϕ(β) =

ϕ(α) + 1. �

Corollary 2.7. Suppose G′ is a primitive group of permutations of an

infinite set Ω, and every suborbit of G′ is finite. If α ∈ Ω and ∆(α)

and ∆∗(α) are paired α-suborbits then |∆(α)| = |∆∗(α)|. �

3. Orbits on ends

Suppose G is an infinite primitive subdegree finite group of per-

mutations with canonical orbital digraph Γ(m,Λ), and let T be the

block-cut-vertex tree of Γ. Finally, assume that G is closed, and recall

that a group and its closure have the same orbits on n-tuples of Ω, for

all n ≥ 1.

Using the following three lemmas, it is possible to scrutinise the

action of G on the thin ends of any connected orbital digraph of G.
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Lemma 3.1. For any thin end ǫ of Γ, if α is an n-tuple of vertices

with Gα ≤ Gǫ, then Gα ≤ Gǫ.

Proof. Enumerate the set V Γ as {γ1, γ2, γ3, . . .}, and recall that an

element g ∈ G is the limit of a sequence of permutations (gn) of V Γ if

and only if, given k ≥ 1, there exists an integer Nk such that, for all

n ≥ Nk we have γ
gn
i = γ

g
i and γ

g−1
n

i = γ
g−1

i whenever 1 ≤ i ≤ k.

Suppose Gα ≤ Gǫ but Gα 6≤ Gǫ, and fix g ∈ Gα \ Gǫ. Since g ∈ Gǫ,

there exists a sequence (gn) of permutations in Gǫ such that gn →

g. If α = (α1, . . . , αn) then choose k ≥ 1 such that {α1, . . . , αn} ⊆

{γ1, . . . , γk}. Since gn → g, there exists an integer Nk such that, for all

n ≥ Nk we have γ
gn
i = γ

g
i whenever 1 ≤ i ≤ k. Hence, for all n ≥ Nk,

αgn = α.

Recall T is the block-cut-vertex tree of Γ, and let [α1, ǫ)T be the

unique half-line of T rooted at α1 lying in the end ǫ. For all n ≥ Nk

we have gn ∈ Gα1,ǫ, therefore gn fixes every vertex on [α1, ǫ)T . Since

g lies in Gα1
but not Gǫ, there exists x ∈ [α1, ǫ)T such that xg 6= x;

furthermore, if y ∈ [x, ǫ)T then yg 6= y. Therefore, we may choose

β ∈ [x, ǫ)T ∩ V Γ such that βg 6= β. Since β ∈ V Γ, there is an integer

k′ such that β = γk′. And because gn → g, there exists Nk′ ≥ 1

such that for all n ≥ Nk′ we have γ
gn
k′ = γ

g
k′. Fix N := max(Nk, Nk′).

For all n ≥ N , we have gn ∈ Gα but βgn = βg 6= β, so gn 6∈ Gǫ, a

contradiction. �

Lemma 3.2. If there is an end ǫ of Γ and an n-tuple α = (α1, . . . , αn)

of vertices of Γ such that Gα ≤ Gǫ, then, for 1 ≤ i ≤ n, the orbit ǫGαi

is finite.

Proof. Suppose Gα ≤ Gǫ. Then, for all i satisfying 1 ≤ i ≤ n we have

Gα ≤ Gαi,ǫ. Therefore

|Gαi
: Gα| = |Gαi

: Gαi,ǫ||Gαi,ǫ : Gα| = |ǫGαi ||Gαi,ǫ : Gα|.
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Observe

|Gα1
: Gα| =

n−1∏

m=1

|Gα1...αm
: Gα1...αm+1

| =
n−1∏

m=1

|α
Gα1...αm

m+1 |.

Since G is subdegree finite, each orbit |α
Gα1...αm

m+1 | is finite, so |Gα1
:

Gα| is finite. A similar argument shows |Gαi
: Gα| is finite for each i

satisfying 1 ≤ i ≤ n. We have already seen that

|Gαi
: Gα| = |ǫGαi ||Gαi,ǫ : Gα|,

so one may deduce that |ǫGαi | is finite. �

Lemma 3.3. If ǫ is a thin end of Γ with |ǫG| < 2ℵ0 then, for all

α ∈ V Γ, the orbit ǫGα is finite.

Proof. Let ǫ be a thin end of Γ, and let H := Gǫ. Now

|ǫG| = |G : Gǫ| = |G : H||H : Gǫ|.

If |ǫG| < 2ℵ0 , then |G : H| < 2ℵ0 , and, since G and H are both closed,

we may apply Theorem 2.2 to deduce that there exists an n-tuple of

vertices α such that Gα ≤ H , and |G : H| ≤ ℵ0.

Suppose |ǫG| < 2ℵ0 and α = (α1, . . . , αn) is an n-tuple of vertices of Γ

such that Gα ≤ Gǫ. By Lemma 3.1 we have Gα ≤ Gǫ. Fix α ∈ V Γ and

let α′ := (α, α1, . . . , αn); then Gα′ ≤ Gα ≤ Gǫ, and so, from Lemma 3.2,

the orbit ǫGα is finite. �

We now prove our main result.

Theorem 3.4. Let G be a subdegree finite primitive group of permuta-

tions of an infinite set Ω that is closed in the natural complete topology

of Sym (Ω). If ǫ is an end of any connected orbital digraph of G then

precisely one of the following holds,

(i) |ǫG| = 1 and G = Gǫ;

(ii) |ǫG| = ℵ0 and G ∼= Gα ∗Gα,ǫ
Gǫ;
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(iii) |ǫG| = 2ℵ0 and G ∼= Gα ∗Hα
H, for some group H satisfying

Gα,ǫ < H < G.

Proof. If an orbital digraph of G has precisely one end, then all non-

diagonal orbital digraphs of G have just one end and (i) holds. So,

suppose G has an orbital digraph with more than one end. By The-

orem 2.4, G has a canonical orbital graph Γ = Γ(m,Λ), and we may

write G ∼= Gα ∗Gα,{Λ}
G{Λ}. Furthermore, since the ends of any two

connected orbital digraphs of G are the same, we may assume ǫ is an

end of Γ.

If ǫ is a thick end of Γ, then ǫ must be the end of some lobe Λ′

of Γ. Since G permutes the lobes of Γ transitively (because G acts

transitively on the arc set of Γ), the subgroups G{Λ} and G{Λ′} are

isomorphic; every lobe contains precisely one end (which is thick); and

Gǫ
∼= G{Λ}. There are countably many lobes in Γ, so |ǫG| = ℵ0 and (ii)

holds.

Finally, suppose ǫ is a thin end of Γ, and |ǫG| < 2ℵ0 . Let T be the

block-cut-vertex tree of Γ. Since ǫ is a thin end of Γ, it is an end of T .

By Lemma 3.3, if |ǫG| < 2ℵ0 then for all α ∈ V Γ, the orbit ǫGα is finite.

Fix α ∈ V Γ. Since ǫGα is finite, there exists a vertex α′ ∈ V Γ that lies

in [α, ǫ)T such that Gα,α′ ≤ Gǫ. Put m := |α′ Gα|, and note m = |ǫGα|.

By Corollary 2.7, |αGα′ | = m.

Now choose β ∈ (α′, ǫ)T . A similar argument shows there exists

β ′ ∈ (β, ǫ)T such that Gβ,β′ ≤ Gǫ.

By choosing β and β ′ in this way, we ensure that Gα,β′ ≤ Gβ,β′ and

|β ′Gα| = |ǫGα| = m. We again apply Corollary 2.7 to deduce |αGβ′ | = m.

Hence

m = |αGβ′ |

= |Gβ′ : Gα,β′|

= |Gβ′ : Gβ,β′||Gβ,β′ : Gβ′α|.
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If |Gβ,β′ : Gβ′α| = 1 then Gβ,β′ ≤ Gα and so Gα,α′ ≤ Gβ,β′ and

Gβ,β′ ≤ Gα,α′, with α′, β ∈ (α, β ′)T and [α, α′]T ∩ (β, β ′]T = ∅. Ap-

plying Theorem 2.5 we see G is not primitive, which contradicts our

original assumption; thus, we must have |Gβ,β′ : Gβ′α| > 1. This im-

plies |Gβ′ : Gβ,β′| < m; that is, |βGβ′ | < m. However, |βGβ′ | = |β ′Gβ |

by Corollary 2.7; furthermore, β and β ′ we chosen so that Gβ,β′ ≤ Gǫ.

Hence |ǫGβ | < m.

Since α was chosen arbitrarily, we may now set α := β and repeat

the above argument. Eventually, we find a vertex α such that |ǫGα| = 1.

However, this is also a contradiction. Indeed, let x be the vertex of T

that is adjacent to α in [α, ǫ)T . This vertex corresponds to some lobe Λ

of Γ that contains α. By Theorem 2.4, the group Gα,{Λ} fixes no vertex

in V Λ \ {α}, and therefore cannot fix the half-line [α, ǫ)T . Whence, we

must have |ǫG| = 2ℵ0.

Furthermore, since x is the vertex of T adjacent to α in [α, ǫ)T ,

Gα,ǫ ≤ Gx.

The vertex x corresponds to some lobe of Γ, and so Gx
∼= G{Λ}. Finally,

we note that Gα,ǫ 6= Gx because |ǫG| = 2ℵ0 . Taking H = Gx we have

G ∼= Gα ∗Hα
H , with Gα,ǫ < H < G by Theorem 2.4. �

As the following three examples show, this theorem cannot be im-

proved upon. Indeed, the result fails if one does not require G to be

closed; it also fails if one does not require G to be primitive. Further-

more, there are infinite imprimitive subdegree finite closed permutation

groups that satisfy the conclusions of the theorem.

Example 3.5. Given any group G of permutations of a countable set

Ω, one can find a subgroup H of G that is countable with the same

orbits on tuples of Ω as G, using a method described in [2].

Since Ω is countable, the set of all tuples of Ω is a countable union

of countable sets, and is therefore countable. Enumerate pairs (αn, βn)
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of tuples for which αn and βn lie in the same orbit of G. For each

natural number n choose gn ∈ G such that αn
gn = βn, and let H

be the subgroup of G generated by the elements gn. This group is

countable, and has the same orbits on tuples as G.

If G is taken to be a closed arc-transitive primitive group of auto-

morphisms of a locally finite orbital digraph Γ with more than one end,

and H is constructed as described, then the orbit of G on any thin end

ǫ of Γ with have length 2ℵ0 by Theorem 4.3, while the length of the

orbit of H on ǫ will be at most ℵ0. Furthermore, because G and H have

the same orbits on tuples, their orbital digraphs must be the same. In

particular, all non-diagonal orbital digraphs of H must be connected,

and so H is primitive by D. G. Higman’s famous result ([4]). The

group H fails to satisfy the conclusions of Theorem 4.3 because H is

not closed.

Example 3.6. Let S2 be the symmetric group on two letters, and let

S3 be the symmetric group on three letters, and let G = S2 ∗ S3 be

the free product of S2 and S3. This group acts without inversion on a

bivalent tree T in which one part of the natural bipartition of T has

valency two and the other has valency three, and G acts transitively

on each part of the bipartition. Colour the vertices with valency two

violet, and the vertices with valency three blue. Let V be the set of

violet vertices of T , and let Γ be the orbital digraph (V, (α, β)G), where

α, β ∈ V are at distance two in T .

If x ∈ T is the vertex lying between α and β, then Gx acts like

S3 on the vertices in T adjacent to x. Whence, Γ has connectivity

one, and the lobes of Γ are isomorphic to K3, the complete digraph on

three vertices, with each vertex in Γ lying in precisely two lobes. Thus,

Γ = Γ(2, K3), with block-cut-vertex tree T .

Now Γ(2, K3) is an orbital digraph of G acting on V . The stabiliser

Gα is isomorphic to S3 and is therefore finite. Whence Gα is closed
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in the permutation topology, so we now replace G with its closure and

assume henceforth that G is closed.

Again since Gα is finite, by Theorem 2.5, the group G does not

act primitively on Γ(2, K3), although the full automorphism group of

Γ(2, K3) is primitive by Theorem 2.3. If ǫ is any thin end of Γ, then

the end orbit ǫG has at most countably infinite length.

The closed group G fails to satisfy the conclusions of Theorem 4.3

because G is not primitive.

Example 3.7. Let C5 denote a directed cycle on five vertices, and let

Γ be the digraph Γ(3, C5). The group Aut Γ acts imprimitively on V Γ

by Theorem 2.3, but satisfies the conclusions of Theorem 4.3 (in fact

the group Aut Γ is of type (iii)).

4. rough ends

In this section we relate Theorem 4.3 to the exciting work of B. Krön

and R. G. Möller ([6]).

Recall that any permutation group G of a countable set can be con-

sidered a topological group by imposing upon it the permutation topol-

ogy. A basis for the open sets of this topology are the cosets of point-

wise stabilisers of finite sets. It is a simple exercise to check that if G

is closed then the pointwise stabiliser of a single element in Ω is also

closed.

If G is a topological group, then a connected graph Γ is said to be a

rough Cayley graph of G if G acts transitively on Γ and the stabilisers

of vertices are compact open subgroups of G.

If G has a rough Cayley graph then the ends of any two rough Cayley

graphs are homeomorphic and can therefore be considered to be the

same ([6, Theorem 2.7 and Section 3.1.1 ]). The rough ends of G are

defined to be the ends of a rough Cayley graph of G ([6, Definition

3.12]).
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Theorem 4.1. ([7, Corollary 1]) If G acts as a group of automorphisms

of a locally finite connected graph Γ such that G is transitive on the

vertex set of Γ and the stabilisers of the vertices in Γ are compact and

open, then G is compactly generated.

Lemma 4.2. ([13, Lemma 2]) If Γ is a vertex transitive infinite con-

nected locally finite graph then the closure (in the permutation topology)

of any subset U ⊆ Aut (Γ) is compact if and only if the orbit αU is finite

for all α ∈ V Γ.

Thus, if G is a closed primitive group of permutations of a countable

set, and the subdegrees of G are all finite, then G acts transitively on

a non-diagonal orbital digraph Γ, which is necessarily connected, and

the stabilisers of vertices in Γ are open and compact. Whence Γ is a

rough Cayley graph of G, and the rough ends of G are the ends of Γ.

We conclude by restating our main result as a theorem about a prim-

itive group and its rough ends.

Theorem 4.3. Let G be a subdegree finite primitive group of permuta-

tions of an infinite set Ω that is closed in the natural complete topology

of Sym (Ω). If ǫ is a rough end of G then precisely one of the following

holds.

(i) |ǫG| = 1 and G = Gǫ;

(ii) |ǫG| = ℵ0 and G ∼= Gα ∗Gα,ǫ
Gǫ;

(iii) |ǫG| = 2ℵ0 and G ∼= Gα ∗Hα
H, for some group H satisfying

Gα,ǫ < H ≤ G.
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