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CUBICAL APPROXIMATION FOR DIRECTED TOPOLOGY

SANJEEVI KRISHNAN

Abstract. Topological spaces - such as classifying spaces, configuration spaces
and spacetimes - often admit extra temporal structure. Qualitative invariants
on such directed spaces often are more informative yet more difficult to calcu-
late than classical homotopy invariants on underlying spaces because directed
spaces rarely decompose as homotopy colimits of simpler directed spaces. Di-
rected spaces often arise as geometric realizations of simplicial sets and cubical
sets equipped with temporal structure encoding the orientations of simplices
and 1-cubes. In an attempt to develop calculational tools for directed ho-
motopy theory, we prove appropriate simplicial and cubical approximation
theorems. We consequently show that geometric realization induces an equiv-
alence between weak homotopy diagram categories of cubical sets and directed
spaces and that its right adjoint satisfies an excision theorem. Along the way,
we give criteria for two different homotopy relations on directed maps in the
literature to coincide.
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1. Overview

Spaces in nature often come equipped with temporal structure. Examples of such
structure include smooth choices of future-oriented tangent vectors on spacetimes,
orientations of morphisms in higher categories, and partial orders describing causal
relationships in a state space. Certain qualitative characteristics of computational
processes, spacetimes, and higher categories often arise as properties of spaces in-
variant under homotopy equivalences (=deformations) respecting extra temporal
structure [8, 9, 28]. Such spaces often admit combinatorial descriptions as cubi-
cal sets and topological descriptions as “directed topological spaces”; a “directed”
geometric realization functor translates from the combinatorial to the topological.
Beyond a 1-dimensional cubical approximation theorem [7, Theorem 4.1] and a
Seifert-van Kampen theorem for fundamental categories [14, Theorem 3.6], there
do not exist tools in the literature for extracting information about the directed

homotopy type of a directed space X from the combinatorics of a well-behaved
diagram having colimit X . We cannot hope for a general and useful theory of ho-
motopy colimits; maps almost never satisfy homotopy extension properties in our
directed setting. Nonetheless, we show that geometric realization defines an equiv-
alence between appropriate weak homotopy diagram categories of cubical sets and
directed spaces.

We fix a working category of “directed spaces” in §4. Just as nearness spaces [16],
proximity spaces [5], and topological spaces all models points equipped with spatial
structure, various formalisms [8, 14, 20] model topological spaces equipped with
some compatible temporal structure. A category S of streams, spaces equipped
with “cosheaves” preordering their open subsets [20], suffices for our purposes: the
category S is Cartesian closed [20, Theorem 5.13], the forgetful functor from S

to the category T of compactly generated spaces creates limits and colimits [20,
Proposition 5.8], and there exists an intuitive full and faithful embedding P →֒
S from the category P of connected and compact Hausdorff topological lattices
[Theorem 3.9].

We regard cubical sets and simplicial sets as combinatorial models of streams in
§5, §6, and §7. Canonical lattice operations on the vertices of combinatorial sim-
plices and combinatorial hypercubes linearly extend to continuous lattice operations
on topological simplices and topological hypercubes. Thus classical geometric real-
izations of our combinatorial models naturally admit cosheaves of preorders encod-
ing orientations of simplices and 1-cubes [Lemma 5.12]. Our resulting stream real-

izations send finite products of simplicial sets to finite products of streams [Lemma
5.11] and inclusions of cubical sets to closed embeddings of streams [Proposition
6.28]. Just as barycentric subdivisions respect classical geometric realization, ordi-
nal subdivision [6] sd and a cubical analogue cd respect stream realization. Just as
double barycentric subdivisions factor through polyhedral complexes [4], quadruple
cubical subdivisions “locally factor” through cubical complexes [Lemmas 6.15 and
6.16]. Triangulation [18] relates our cubical and simplicial constructions [Proposi-
tions 7.4, and 7.5].

Cubical sets equipped with extra structure can model higher categories [2, 15]. A
modification ex of the right adjoint to cd naturally fills in certain cubical analogues
of simplicial horns. We might think of natural inclusions C →֒ exC and retractions
exC → C to such inclusions as defining the identities and semistrict compositions
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of higher morphisms. However, we do not explore connections with related models
of higher categories [2, 15] in this paper.

We introduce homotopy theories of cubical sets, simplicial sets, and streams in
§8. Definitions of simplicial homotopies and cubical homotopies are standard [4, 18].
Different definitions of homotopy between maps in directed topology as continuous
parametrizations of stream maps by trivially [8] and totally [14] ordered unit inter-
vals induce identical homotopy relations in the setting of compact quadrangulable
streams [Theorem 8.13]. In classical homotopy theory, homotopy extension proper-
ties for inclusions of spheres into disks allow us to construct classical homotopies,
such as cellular approximations of continuous maps between CW complexes, one
cell at a time. We must instead construct directed homotopies, such as simplicial
and cubical approximations [Theorem 8.27 and Corollary 8.28] of maps between
stream realizations, all at once.

Homotopy equivalences of finite cubical sets admitting general cubical composi-

tions (=semistrict compositions up to cubical homotopies) and compact quadran-
gulable streams generalize to weak equivalences of cubical sets in §8.4 and streams
in §8.3. The category S admits the additional structure of a category of fibrant
objects [Proposition 8.17] and hence a localization h̄S with respect to its weak

equivalences. Our main point is that the category �̂ of cubical sets admits an
equivalent localization h̄�̂ with respect to its weak equivalences [Corollary 8.33].
We formulate and prove our main observations in the more general setting of G -
shaped diagrams of cubical sets and G -shaped diagrams of streams, for all small
categories G .

Corollary 6.21. For each small G , ↿−⇂⊣ sing induces an equivalence

h̄�̂G ⇆ h̄S G .

Corollary 6.24 (Excision). Fix G . The natural G -cubical function

singU ∪singU∩V singV → singX

is a weak equivalence for all G -streams U, V,X such that U(d), V (d) are substreams
of X(d) whose interors in X(d) cover X(d) for all G -objects d and U(γ), V (γ) are
restrictions and corestrictions of X(γ) for all G -morphisms γ.

2. Category theory

We fix some conventions and make some observations. Throughout the paper,
we allow general “categories” to admit hom-sets of inaccessible cardinalities [29],
although all of our localizations of diagram categories turn out to be locally small
[Proposition 8.17 and Corollary 8.34].

2.1. Conventions. We first fix some notation. We let k,m,m′, n, n′ denote natural
numbers and G , C , and D denote categories. We occassionally regard functors
d : G → C as “G -equivariant C -objects” and thus sometimes write F (d) for the
composites of such d with functors F : C → D . We write: ηGF : idC → GF and
ǫFG : FG→ idD for the unit and counit of an adjunction F : C ⇆ D : G;

∫ d

G

F (−, d, d) : C → D
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for the parametrized coend [23] of a functor F : C × G op × G → D for cocomplete

D and small G . We write Ĝ for the category of functors from G op to the category
of sets and functions, for each small G .

Example 2.1. Fix G . The presheaf category

Ĝ

is complete, cocomplete, and Cartesian closed. Limits, colimits, subobjects, quo-
tients, monos, and epis are just object-wise limits, colimits, subsets, quotient sets,
injections, and surjections. All monos are regular. Filtered colimits commute with
finite limits.

We write G [−] : G → Ĝ for the Yoneda embedding sending a G -object to the
corresponding representable presheaf, for each small G .

Example 2.2. The Yoneda embedding defines a natural isomorphism

id
Ĝ
∼=

∫ d

G

−(d) · G [d] : Ĝ → Ĝ .

We write G ↓ C for the category whose objects are Ĝ -morphisms of the form
G [∗] → C and whose morphisms are commutative triangles of the form

G [d] //

!!CC
CC

CC
CC

G [e]

}}||
||

||
||

C,

for each small G and Ĝ -object C.

Example 2.3. For each simplicial set C, ∆ ↓ C is its category of simplices.

We write colim η for the morphism colim X → colim Y induced from a natural
transformation X → Y ; ∅ for the initial object in a given category; X · g for the
copower, indexed by a set X , of an object g; a →֒ b for a mono whose definition is
clear from context; a ⊂ b to indicate that we are abusing notation and identifying
an object a with an implicitly defined mono a →֒ b; γ↾a : a → c for a composite

morphism of the form a →֒ b
γ
−→ c; ω for the ordinal of natural numbers; and ∆c

for the diagonal morphism idc × idc : c→ c2 of an object c.

2.2. Supports. We will often want to talk about the “support of a point in a geo-
metric realization,” the “carrier of a cube with respect to a subdivision operation,”
or the “carrier of a simplex under triangulation.” We therefore identify a parsimo-
nious setting under which we can generalize “supports” and “carriers.” We call a
category

⋂

-complete if it is closed under intersections of subobjects and a functor
⋂

-continuous if it preserves intersections of subobjects (and in particular preserves
monos.)

Example 2.4. Right adjoints are
⋂

-continuous.

Example 2.5. The Yoneda embedding G → Ĝ is
⋂

-continuous, for each small G .
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For each morphism γ in a given
⋂

-complete category, we write γ(a) for the image

of a under γ, the minimal subobject of g through which the composite of inclusion
a →֒ b followed by γ factors, for each morphism γ : b → c and a ⊂ b in a given
⋂

-complete category.. We write supp F (a, g) for the unique minimal subobject of
g such that F supp F (a, g) contains a ⊂ Fg for each

⋂

-complete C ,
⋂

-continuous
functor F from C , C -object g, and a ⊂ g.

Example 2.6. In the case F is geometric realization or barycentric subdivision,

suppF (a, g)

describes the “support” of a point (forming a singleton a) or the “carrier” of a
simplex (generating a subobject a) in a simplicial set g.

We formalize the observation that supp F (a, g) is often “atomic” in size when
a is “atomic” in size. A category is (infinitarily) extensive [3] if its coproducts
are stable under pullback, the natural maps from summands into coproducts are
monic, and intersections of distinct such summands are empty (=initial object). In
each extensive category, a morphism from an indecomposable object to a coproduct
factors through a summand of the coproduct and every object decomposes into a
coproduct of indecomposables [3]. An object p in a given category is indecomposable

if p is not the coproduct of more than one non-initial object and projective if C (p, ǫ)
is surjective for each epi ǫ. A category has enough projectives if each of its objects
is the codomain of an epi from a projective object. We call an object a in a given
category atomic if a is the codomain of an epi from a projective indecomposable
object and finite if it contains only finitely many atomic subobjects.

Example 2.7. Fix small G . The presheaf category

Ĝ

is
⋂

-complete, extensive, and has enough projectives. The atomic projective ob-
jects, up to isomorphism, are the representable presheaves.

Lemma 2.8. Fix extensive
⋂

-complete C having enough projectives. Then

suppF (a, g)

is atomic for all
⋂

-continuous functors F preserving epis and coproducts, C -objects

g, and atomic a ⊂ Fg.

Proof. We take g = suppF (a, g) without loss of generality. There exist epi γ : ĝ → g
from a projective ĝ because C has enough projectives and epi α : â → a from an
indecomposable projective â because a is atomic. There exists a small family C of
indecomposable projective objects such that

∐

C = ĝ because C is extensive. Let
ι = (a →֒ Fg). There exists morphism ι̂ : â → F ĝ such that F (γ)ι̂ = ια because
â is projective and Fγ is epi. There exists ĉ ∈ C such that ι̂(â) ⊂ F ĉ because â
is indecomposable, Fg =

∐

c∈C Fc, and C is extensive. Therefore a ⊂ (Fγ)(F ĉ) =
F (γ(ĉ)). Thus suppF (a, g) = γ(ĉ) by the minimality of suppF (a, g). �

2.3. Relations. We will later want to exploit when “transitive-reflexive closures”
of certain relations “commute with a given functor F .” In order to even articulate
such an observation [Lemma 2.9], we need to define transitive-closures of abstract
relations internal to an abstract category C ; for convenience, we take our C to
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be complete. A C -relation γ : a ⇀ b consists of the data of C -objects a, b and
graph(γ) ⊂ a× b. We write β ◦ α for the C -relation a ⇀ c such that

graph(β ◦ α) = graph(α)×b graph(β)

for all C -relations α : a ⇀ b and β : b ⇀ c. A C -relation γ : c ⇀ c is a preorder if
∆c(c), graph(γ

◦2) ⊂ graph(γ). The reflexive-transitive closure γ◦∞ of a C -relation
γ : c ⇀ c is the C -relation c ⇀ c such that graph(γ◦∞) is the supremum of ∆c(c)
and all subobjects in c2 of the form graph(γ ◦ · · · ◦ γ). Transitive-reflexive closures
are preorders.

Lemma 2.9. Fix complete C . For each C -relation γ : c ⇀ c,

F graph(γ◦∞) = graph((γF )◦∞),

where γF is the relation Fc ⇀ Fc defined by graph(γF ) = F graph(γ), for each

functor F from C preserving monos, finite limits, and suprema of subobjects.

A proof is straightforward and therefore left to the reader.

3. Order theory

The temporal structures on both discrete and topological spaces takes the form
of various preorders. We therefore review some definitions and fix some notation.
We often take “preorder” in the sense of §2.3 to mean “preorder in the category of
sets and functions.” A preordered set P is a set P equipped with preorder 6P on
it. A minimum in a preordered set P is an element m ∈ P such that m 6P p for
all p ∈ P ; we similarly define a maximum. A monotone function

φ : P → Q

is a functor from a preordered set P to a preordered set Q. We call a monotone
function φ : P → Q: extrema-preserving if it sends minima to minima and maxima
to maxima; convex if q ∈ φ(P ) whenever φ(p) 6Q q 6Q φ(r); and full if p 6P q
whenever φ(p) 6Q φ(q). We write Q for the category of preordered sets and
monotone functions. The isomorphisms in Q are the full monotone bijections.

Example 3.1. Every set P admits the trivial preorder =P such that

graph(=P ) = ∆P (P )

= {(p, p) | p ∈ P}.

A lattice is a set L equipped with a pair of commutative, associative, and idem-
potent multiplications L2 → L, which we write as ∨L,∧L, such that

p ∨L (q ∧L p) = p, p ∧L (q ∨L p) = p, p, q ∈ L.

We regard lattices L as preordered sets such that

graph(6L) = L×∆L,(((p,q) 7→q)×∨L) L
2

= {(p, q) | p ∨L q = q}.

For each lattice L having a minimum (maximum), the minimum (maximum) is
unique and we write this unique minimum of L as minL.

Example 3.2. A minimum of a lattice L is a (unique) point m ∈ L satisfying

m ∨L p = p, p ∈ L.



CUBICAL APPROXIMATION FOR DIRECTED TOPOLOGY 7

A lattice homomorphism is a function between lattices preserving the lattice
multiplications. Lattice homomorphisms are monotone functions, full if injective.
We write L for the category of lattices and lattice homomorphisms. The finite

ordinals, the preordered sets

[−1] = ∅, [n] = {0 6[n] 1 6[n] · · · 6[n] n}, n = 0, 1, . . . ,

are lattices and monotone functions between them are lattice homomorphisms. A
finite chain in a preordered set P is a preordered setM isomorphic to a finite ordinal
in Q such that M ⊂ P and graph(6M ) = graph(6P ) ∩M

2. Every preordered set
containing a minimum and maximum naturally is a colimit in Q of all of its maximal
finite chains and inclusions between them. Products in L are products in Q.

4. Directed topology

A single preorder does not often suffice in describing the local structure of time
in a topological state space. For example, we might write x 6S y to indicate
that a looping process can evolve from a state x to a state y, but the graph of
the resulting preorder is S × S and hence cannot distinguish between clockwise
and counterclockwise travels of the circular state space S. We therefore recall a
definition of temporal structure as a coherent preordering of all open subsets in a
topological space [20].

Definition 4.1. A circulation 6 on a space X is a function assigning each open
subset U ⊂ X a preorder 6U on U such that for each collection O of open subsets
of X , 6⋃

O is the preorder with smallest graph containing
⋃

U∈O

graph(6U ).

A stream X is a space equipped with a circulation on it, which we always write as
6.

We write Ẍ for a topological space X equipped with the trivial circulation as-
signing to each open subset U ⊂ X the trivial preorder on U .

Definition 4.2. Consider streams X and Y . A stream map

f : X → Y

is a continuous function X → Y satisfying f(x) 6U f(y) whenever x 6f−1U y, for
each open subset U ⊂ Y .

We write f̈ for the stream map Ẍ → Ÿ defined by a continous map f : X → Y .
The category of streams and stream maps is not Cartesian closed. Mimicking

[26], we wrinkle the definition of a stream in order to obtain categorically conve-
nient foundations for a homotopy theory. A k-circulation is a circulation which is
“compactly generated.”

Definition 4.3. The circulation 6 of a stream X is a k-circulation if for each open
subset U ⊂ X and pair x 6U y, there exist compact Hausdorff stream K, pair
x̃ 6K ỹ, and stream map k : K → X satisfying

k(K) ⊂ U, k(x̃) = x, k(ỹ) = y.

Proposition 4.4. [20, Proposition 5.4] All circulations on locally compact Haus-

dorff spaces are k-circulations.
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We henceforth redefine “space” to mean “weak Hausdorff k-space” and “stream”
to mean “weak Hausdorff k-space equipped with a k-circulation on it.” We write
S for the category of streams and stream maps and T for the category of spaces
and continuous functions.

Example 4.5. The indecomposable projective streams are precisely the singletons.

Consider a space X . Continuous functions from X into streams induce “initial”
circulations on X and continuous functions from streams into X induce “final”
circulations on X , in a sense made precise in the language of categorical topology
[1].

Proposition 4.6 ([20, Proposition 5.8]). The forgetful functor

(1) S → T

is topological.

In particular, the forgetful functor (1) creates limits and colimits [1, Proposition
7.3.8] and S is hence complete and cocomplete. We sometimes implicitly equip S

and T with the structures of Cartesian monoidal categories. The following propo-
sition describes how to construct the circulations of colimits and finite products as
“point-wise” colimits and products of preordered sets.

Proposition 4.7 ([20, Lemma 5.5, Proposition 5.11]). The forgetful functor

Γ : S → Q,

sending each stream X to its underlying set equipped with 6X , preserves colimits

and finite products.

An equalizer in S of a pair X ⇉ Y of stream maps is a stream map e : E → X
such that e defines an equalizer in T and e is a stream embedding.

Definition 4.8. A stream embedding e is a stream map Y → Z such that for all
stream maps f : X → Z satisfying f(X) ⊂ Y , there exists dotted stream map
making the following diagram commute.

X
f //

��

Y

Z

e

>>~~~~~~~

A stream map i from a stream X is a stream embedding precisely when its com-
posites ik with stream embeddings k from compact Hausdorff streams are stream
embeddings because the circulations on X are k-circulations. Open subspaces of
a stream X equipped with suitable restrictions of the circulation on X form sub-
streams. General stream embeddings are difficult to explicitly characterize. How-
ever, the following lemma gives us practical criteria for an inclusion of spaces to
define a stream embedding.

Lemma 4.9. Consider stream Y having topology OY . A stream map i : X → Y is

a stream embedding if i is an inclusion of spaces and for all open U ⊂ X,

graph(6U ) ⊃ U2 ∩
⋂

U⊂V ∈OY

graph(6U ).
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We leave the proof as an exercise for the reader.
We can also form “mapping streams”: the k-ification of the compact-open topol-

ogy and a natural k-circulation turn each hom-set S (X,Y ) into a stream Y X such
that for all streams X,Y, Z, there exist natural isomorphisms

Z(X×Y ) ∼= (ZX)Y .

Theorem 4.10 ([20, Theorem 5.13]). The category S is Cartesian closed.

The direct verification of the axioms for streams and stream maps can be tedious.
A topological lattice is a lattice topologized so that its lattice operations are jointly
continuous. Let P be the category of compact and connected Hausdorff topological
lattices and all continuous lattice homomorphisms between them. We can regard
such topological lattices as streams [20, Propositions 4.7, 5.4, 5.11], [27, Proposition
1, Proposition 2, and Theorem 5], [11, Proposition VI-5.12 (i)], [11, Proposition VI-
5.15].

Theorem 4.11. There exists a full, concrete, and product-preserving embedding

P →֒ S

sending each topological lattice L to a unique stream having the same underlying

space and having a circulation sending the entire space to the preorder on L.

Thus we have enlarged the category of compact Hausdorff connected topologi-
cal lattices to a category exhibiting categorical structure convenient for homotopy
theory. We henceforth regard such topological lattices as streams and lattice ho-
momorphisms between such topological lattices as stream maps.

We generalize streams to “streams equipped with actions of categories.”

Definition 4.12. Fix C . A C -stream is a functor of the form

C → S

and a C -stream map is a natural transformation between C -streams. A C -stream
X is compact if its colimit is compact and X(c) is compact for all C -objects c.

5. Simplicial theory

Simplicial sets share some of the flexibility of streams and some of the rigidity of
cubical sets. Thus simplicial sets provide an intermediate setting for cubical approx-
imation: we will later construct simplicial approximations of stream maps by direct
geometric constructions and then subsequently bootstrap a cubical approximation
theorem by combinatorics. We recall definitions in §5.1, recall a construction [6] of
ordinal subdivision in §5.2, and interpret simplicial sets as combinatorial models of
streams in §5.3.

5.1. Simplicial sets. We recall basic definitions of the del category and simplicial
sets, referring the reader elsewhere [19] for details. We write ∆ for the category of
finite non-empty ordinals and monotone functions between them. We sometimes

implicitly equip ∆̂ with the structure of a Cartesian monoidal category. Simplicial

sets are objects of ∆̂ and simplicial functions are ∆̂-morphisms. The dimension

of a simplicial set C is the minimal n such that the natural simplicial function
C[n] ·∆[n] → C is epi or ∞ if no such n exists.

Example 5.1. For each atomic simplicial set A, dimA <∞.
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An n-simplex in a simpliciall set C is an element of C[n] for each n. Every atomic
simplicial set has a natural “minimum” vertex. We write minA for the image of
the 0-simplex [0] → [n] sending 0 to 0 in ∆[dimA] under the [0]-component of the
natural simplicial function ∆[dimA] → A, for each atomic simplicial set A. For
each simplicial function ψ from an atomic simplicial set A,

ψ[0] minA = minψ(A).

Example 5.2. The m-simplices of ∆[n] are the monotone functions

[m] → [n].

We write sn for the nerve functor Q → ∆̂, defined on morphisms φ : P → Q by

Q(−, φ)↾∆op : Q(−, P )↾∆op → Q(−, Q)↾∆op .

Simplicial sets naturally admit intrinsic “simplicial preorders.” We write 6C for
the reflexive-transitive closure of the relation on C having graph

∫ [n]

∆

C[n] ·
(

∆[n]×sn∆[n],sn((p,q) 7→q))×∨[n]
sn[n]2

)

natural in simplicial sets C.

Example 5.3. For each n, graph(6∆[n]) = ∆[n]×sn∆[n],sn((p,q) 7→q))×∨[n]
sn[n]2.

We generalize simplicial sets to “simplicial sets equipped with actions of cate-
gories”.

Definition 5.4. Fix C . A C -simplicial set is a functor of the form

C → ∆̂

and a C -simplicial function is a natural transformation between C -simplicial sets.
A C -simplicial set C is finite if its colimit is finite and C(c) is finite for each C -object
c.

5.2. Subdivisions. Ordinal subdivision plays a role in directed topology analogous
to the role barycentric subdivision plays in topology. We recall a construction [6]
in terms of ordinal subdivision, the tensor ⊕ on the category ∆⋆ of finite ordinals
and monotone functions between them sending pairs [m], [n] of finite ordinals to
[m+ n+ 1] and pairs φ : [m] → [n], φ′ : [m′] → [n′] of monotone functions to

(φ ⊕ φ′)(k) =

{

φ(k), k = 0, 1, . . . ,m

φ′(k −m− 1), k = m+ 1,m+ 2, . . . ,m+m′

We write γ, γ̄ for the natural transformations id∆ → (−)⊕2 respectively defined by
id∆ ⊕ ([−1] → id∆) and ([−1] → id∆)⊕ id∆.

Example 5.5. The functions γ[1], γ̄[1] : [1] → [3] are defined by

γ[1](0) = 0, γ[1](1) = 1, γ̄[1](0) = 2, γ̄[1](1) = 3.

We write sd for the functor ∆̂ → ∆̂ induced from (−)⊕2 : ∆ → ∆. Ordi-
nal subdivision sd admits left and right adjoints [6] and hence is continuous, co-
continuous, and

⋂

-continuous. We abuse notation and write γ, γ̄ for the natural
transformations sd → id∆̂ induced from the respective natural transformations
γ, γ̄ : id∆ → id∆ ⊕ id∆.

Example 5.6. The composite sd2 is the functor induced from (−)⊕4 : ∆ → ∆.
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Double ordinal subidivison and double barycentric subdivision share certain sim-
ilar convenient properties in the restricted setting of 1-dimensional simplicial sets.
For example, the simplicial function γγ̄∆[1] pushes simplices carried near ∂∆[1] onto
∂∆[1].

Lemma 5.7. For the cases δ = δ−, δ+,

γγ̄∆[1] Star sd 2∆[1]{[3] → [0]
δ
−→ [1]} = ∆[δ](∆[0]).

Proof. Consider a 1-simplex φ : [7] → [1] in sd2∆[1] generating an atomic subobject
having as a 0-simplex the constant function [3] → [1] at δ(0). There exists k ∈ {0, 1}
such that φ(k) = φ(k + 2) = φ(k + 4) = φ(k + 6) = δ(0). For either case δ(0) = 0
or δ(0) = 1, φ(4) = φ(5) = δ(0) by monotonicity and hence

γγ̄sd2∆[1]φ = φγ̄γ

= φ(− + 4)

≡ δ(0).

�

Consequently, the behavior of γγ̄∆[1] on each atomic B ⊂ sd 2C reduces to the
behavior of γγ̄∆[1] on a projective retraction of B for all 1-dimensional simplicial
sets C. We write retCB for the subobject

B ∩ sd2





⋂

∅ 6=A⊂B

suppsd 2(A,C)



 ,

of a B ⊂ sd2C, for each simplicial set C. It suffices to record the particular behavior
of γγ̄C for just the case C = ∆[1].

Lemma 5.8. There exists a retraction

πB∆[1] : B → ret∆[1]B

and (γγ̄∆[1])↾B = (γγ̄∆[1])↾ret∆[1]BπB∆[1], for each atomic B ⊂ sd2∆[1].

Proof. In the caseB = ret∆[1]B, idB is our desired retraction π. It therefore suffices

to consider the case B ∩ sd2∆[0] non-empty and hence equal to sd2∆[0], the other
case B ∩ sd 2∆[δ+](∆[0]) 6= ∅ following similarly. Then γγ̄∆[1]B = sd 2∆[0] by

Lemma 5.7, hence γγ̄∆[1]B 6= sd 2∆[δ+](∆[0]), hence B ∩ sd 2∆[δ+](∆[0]) = ∅ by

Lemma 5.7, hence ret∆[1]B = sd 2∆[0], hence the object-wise constant simplicial

function B → sd2∆[0] is our unique desired retraction by Lemma 5.7. �

5.3. Stream realizations. Extra structure lurks behind classical geometric real-
izations of simplicial sets. The standard cosimplicial space is the functor∇ : ∆ → T

assigning to each [n] the topological n-simplex and assigning to each monotone func-
tion φ : [m] → [n] the linear map sending each point with kth barycentric coordinate
1 to the point with φ(k)th barycentric coordinate 1. Ceometric realization is the
cocontinuous and finitely continuous functor

| − | =

∫ [n]

∆

−([n]) · ∇[n] : ∆̂ → T .
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sending monos to closed embeddings. The functor | sn(−)| preserves finite products
and hence sends the lattice operations on [n] to lattice operations turning ∇[n] into

the stream [Theorem 4.11] ~∇[n], natural in [n]. We write ↿−⇂ for

∫ [n]

∆

−([n]) · ~∇[n] : ∆̂ → S .

We henceforth identify |C| with the underlying space of ↿C⇂ for each simplicial
set C by Proposition 4.6. The graph of the global preorder 6↿C⇂ on a stream of the
form ↿C⇂ is simplicial in the following sense.

Lemma 5.9. For each simplicial set C, graph(6↿C⇂) = | graph(6C)|.

Proof. The case C representable follows because |− | preserves finite pullbacks and

graph(6↿∆[n]⇂) = graph(6~∇[n]) = ∇[n]×∆∇[n],((p,q) 7→q,∨~∇[n])
∇[n]2.

The case for general simplicial sets C follows from Lemma 2.9 because 6↿C⇂ is
the reflexive-transitive closure of the relation on |C| having as its graph

∫ [n]

∆

C[n] · | graph(6∆[n])| =

∣

∣

∣

∣

∣

∫ [n]

∆

C[n] · graph(6∆[n])

∣

∣

∣

∣

∣

⊂ |C2| = |C|2

by the previous case and Proposition 4.7. �

Thus topological limits commute with inequalities in stream realizations.

Lemma 5.10. For all simplicial sets C, graph(6↿C⇂) is closed in |C| ×T |C|.

Proof. Lemma 5.9 implies the claim because | graph(6C)| is closed in |C2|. �

Stream realizations preserve finite products.

Lemma 5.11. The functor ↿−⇂ : ∆̂ → S preserves finite products.

Proof. Let mAB be the universal stream map ↿A×B ⇂→↿A⇂ × ↿B ⇂ natural in
simplicial sets A and B. Let M denote a finite chain in [m] × [n]. Consider m,n.
All pairs Γ ↿sn(M → [m]× [n])⇂, Γ ↿sn(M → [m]× [n])⇂ of lattice homomorphisms
induce all injective monotone functions, and hence all injective lattice homomor-
phisms, of the form (Γm∆[m]∆[n])↾Γ↿snM⇂ because Γ preserves finite products by
Proposition 4.7 and L -products are Q-products. Thus Γm∆[m]∆[n] is full because
it is the universal monotone function induced from injective lattice homomorphisms,
and hence full monotone functions, of the form (Γm∆[m]∆[n])↾Γ↿snM⇂. Thus mAB,
a homeomorphism of underlying spaces, is a full monotone bijection of underlying
preordered sets, hence an isomorphism of topological lattices, and hence a stream
isomorphism for the case A = ∆[m] and B = ∆[n] by Theorem 4.11 and hence the
general case because finite products preserve colimits in S by Theorem 4.10 and
in ∆̂. �

Stream realizations remember simplicial orientations.

Lemma 5.12. For all preordered sets P and pairs x 6↿snP⇂ y,

minΓ ↿supp|−|({x}, snP )⇂6P min Γ ↿supp|−|({y}, snP )⇂ .
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Proof. It suffices to consider the case P = [n] because 6↿sn P⇂ is transitive and
sn(P ) is the colimit of all inclusions between simplicial sets of the form snM for
finite chains M in P . Let tk be the kth barycentric coordinate of t for all t ∈ ∇[n]
and k ∈ [n]. Then

minΓ ↿supp|−|({x}, snP )⇂ = min{k ∈ [n] | xk = 1}

6[n] min{k ∈ [n] | yk = 1}

= minΓ ↿supp|−|({y}, snP )⇂

because xk ∨~∇[n] yk = (x ∨~∇[n] y)k for each k ∈ [n] by linearity of ∨~∇[n]. �

Prism decompositions [24] define piecewise linear homeomorphisms

ϕ∆[n] : | sd∆[n]| ∼= |∆[n]| = ∇[n],

natural in non-empty finite ordinals [n], characterized by the rule

|φ| 7→ 1/2|φ(0)|+ 1/2|φ(1)|, φ ∈ (sd∆[n])[0] = ∆([0]⊕ [0], [n]).

These homeomorphisms define lattice isomorphisms Γ ↿sd∆[n]⇂∼= Γ ↿∆[n]⇂ by
linearity of ∨~∇[n],∧~∇[n] and hence stream isomorphisms ↿sd∆[n]⇂∼=↿∆[n]⇂ [Theorem

4.11]. We write ϕ for the extension of {ϕ∆[n]}n∈N to a natural isomorphism

ϕ : ↿sd(−)⇂ ∼= ↿−⇂ : ∆̂ → S .

6. Cubical theory

Cubical sets are rigid and economical descriptions of state spaces [8, 12]. We
recall basic definitions in §6.1; investigate a cubical analogue of ordinal subdivision
in §6.2; introduce cubical models for higher categories in §6.3; and interpret cubical
sets as combinatorial models of streams in §6.4.

6.1. Cubical sets. We recall basic definitions of the box category and cubical sets,
referring the reader elsewhere [13, 18] for details. Let �1 be the subcategory of Q

generated by the function [1] → [0] and the functions δ− : [0] → [1] and δ+ : [0] → [1]
sending 0 to the respective points 0 and 1. Let � be the monoidal subcategory of
the Cartesian monoidal category Q generated by �1. We write ⊠ for the tensor on
�. The category � admits the following convenient characterization [13].

Lemma 6.1 ([13, Theorem 4.2]). The free monoidal category over �1 is �.

In particular, retractions to injective �-morphisms are unique because δ−, δ+
have unique retractions. A characterization of injective �-morphisms as inclusions
of intervals [18, §2] implies the following lemma.

Lemma 6.2. For every solid monotone function given in the diagram

[1]⊠m

δ

��
[1] //

φ

==

[1]⊠n,

there exist unique choices of minimal m, monotone function φ, and injective �-

morphism δ making the entire diagram commute. The function φ preserves extrema.
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We regard �̂ as a monoidal category with tensor ⊠ defined by

−1 ⊠−2 =

∫ ([1]⊠m,[1]⊠n)

�×�

−1([1]
⊠m) · −2([1]

⊠n) ·�[1]⊠m+n : �̂× �̂→ �̂.

Projections B⊠C → B and B⊠C → C induce monos B⊠C →֒ B×C natural in
cubical sets B and C allowing us to henceforth regard tensor products as subobjects
of categorical products.

Example 6.3. For all cubical sets C, C ⊠�[0] = C ×�[0].

Cubical sets are �̂-objects, oriented cubical complexes are cubical sets whose
atomic subobjects are projective, and cubical functions are �̂-morphisms. The
dimension of a cuboicall set C is the minimal n such that the natural cubical
function C[1]⊠n ·�[1]⊠n → C is epi or ∞ if no such n exists.

Example 6.4. For each atomic cubical set A, dimA <∞.

An inclusion between atomic cubical sets admits at most one retraction because
retractions in � are unique. We write ∂�[1]⊠n for the unique maximal proper
subobject of �[1]⊠n for each n. An n-cube in a cubical set C is an element of
C[1]⊠n for each n.

Example 6.5. The m-cubes of �[1]⊠n are the �-morphisms

[1]⊠m → [1]⊠n.

A cubical set C is connected if its underlying reflexive graph, the reflexive graph
having vertices C[0], edges C[1], and structure maps v 7→ C([1] → [0])(v) and
e 7→ {C(δ−)(e), C(δ+)(e)}, is connected. Every cubical function induces a map of
underlying reflexive graphs and hence maps connected subobjects onto connected
subobjects.

Example 6.6. Every non-empty cubical set of the form StarCV is connected.

Example 6.7. Every atomic cubical set C is connected because C = StarCC[0].

Example 6.8. The connected subobjects of �[1] are atomic.

Fix an atomic cubical set A. We write ̺A for the unique epi of the form�[1]⊠n →
A such that n is minimal and dimA for this minimal n. The epi ̺A does not identify
an n-cube θ which does not inhabit ∂�[1]⊠dimA with another distinct n-cube by
minimality of dimA. The cubical set A is projective if and only if ̺A is monic. For
each cubical function ψ : A→ B and epi cubical function ǫ : E → B, there exists a
dotted cubical function, monic if ψ is monic and E is an oriented cubical complex,
making the following diagram commute by projectivity of �[1]⊠dimA.

�[1]⊠ dimA //

̺A

��

E

ǫ

��
A

ψ
// B.

We generalize cubical sets to “cubical sets equipped with actions of categories.”
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Definition 6.9. Fix C . A C -cubical set is a functor of the form

C → �̂

and a C -cubical function is a natural transformation between C -cubical sets. A
C -cubical set C is finite if its colimit is finite and C(c) is finite for each C -object c.

We write cn for the functor Q → �̂ defined on morphisms φ : P → Q by

Q(−, φ)↾�op : Q(−, P )↾�op → Q(−, Q)↾�op .

6.2. Subdivisions. We define a cubical analogue to ordinal subdivision in terms
of the combinatorics of subdivided hypercubes instead of an operation on the box
category itself. Just as � models abstract hypercubes, a larger category models
abstract subdivided hypercubes. We write ⊞ for the smallest monoidal subcategory
of the Cartesian monoidal category Q containing the non-empty finite ordinals and
convex monotone functions between them. We abuse notation and write ⊠ for the
tensor on ⊞.

Example 6.10. All �-morphisms are ⊞-morphisms.

We can model cubical subdivision of abstract hypercubes as a monoidal functor
� → ⊞. We write [2] ⊗ − for the unique monoidal functor � → ⊞ sending δ to
the monotone functions [0] → [2] defined by the rule 0 7→ 2δ(0) for δ = δ−, δ+. We
abuse notation and write γ, γ̄ for the monoidal natural transformations [2]⊗ − →
[1] ⊗ − having as their [1]-components the respective convex monotone functions
max(−, 1) − 1,min(−, 1) : [2] → [1]. The following lemma justifies our abuse in
notation.

Lemma 6.11. For all n = 0, 1 and monotone functions φ : [n]⊕ [n] → [n],

φ = γ[n](φγ[n] + φγ̄[n])⊕ γ̄[n](φγ[n] + φγ̄[n]).

Lemma 6.12. For all n = 0, 1 and convex monotone functions φ : [n] → [2n],

φ = (γ[n]φ+ γ̄[n]φ)γ[n] + (γ[n]φ+ γ̄[n]φ)γ̄[n].

Proofs are straightforward verifications of function values and are therefore left
to the reader.

We abuse notation and also write �[−] for the
⋂

-continuous composite of the

Yoneda embedding ⊞→ ⊞̂ with the functor ⊞̂→ �̂ induced from inclusion � →֒ ⊞.

Example 6.13. For all ⊞-objects p, �[p] is an oriented cubical complex.

We write cd for the cocontinuous and
⋂

-continuous functor

∫ [1]⊠n

�

−([1]⊠n) ·�[2]⊠n : �̂→ �̂

and cx for its right adjoint. We abuse notation and also write γ, γ̄ for the monoidal
natural transformations cd→ id

�̂
induced from the monoidal natural transforma-

tions γ, γ̄ : [2]⊗− → − : �→ ⊞.

Example 6.14. There exists natural isomorphism cd�[−] ∼= �[[2]⊗−].
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The behavior of γγ̄C : cd 2C → C on each atomic B ⊂ cd 2C reduces to the
behavior of a projective retract retCB. We write retCB for

B ∩ cd2





⋂

∅ 6=A⊂B

supp cd2(A,C)



 ,

for each cubical set C and B ⊂ cd 2C. We define a cubical function πBC for each
cubical set C and atomic B ⊂ cd2C by the following lemma.

Lemma 6.15. Fix cubical set C. There exists a retraction

πBC : B → retCB

and (γγ̄C)↾B = (γγ̄C)↾retCBπBC , for each atomic B ⊂ cd2C.

We postpone a proof until §7, when we can bootstrap a proof for a simplicial
analogue of the lemma. We continue and list some consequences.

Lemma 6.16. For each cubical set C and atomic B ⊂ cd2C,

retCB

is isomorphic to a representable cubical set.

Proof. We take C to be atomic. There exists dotted mono making the diagram

�[1]⊠dim retCB
ι //

̺retCB

��

cd2�[1]⊠dimC

cd2̺C

��
retCB

�

� // cd2C

commute because �[1]⊠ dim retCB is projective. Then

ι(�[1]⊠ dim retCB) ∩ cd2∂�[1]⊠dimC = ∅

by minimality of retCB, hence cd2̺Cι = (retCB →֒ cd2C)̺retCB is monic, hence
̺retCB is monic, and hence retCB is projective. �

The retracts retCB are natural in in the sense of the following two lemmas.

Lemma 6.17. Fix cubical set D. For all atomic A ⊂ B ⊂ C ⊂ cd2D,

(πCD)↾retCA = (πCD)↾retCB(πBD)↾retCA.

Proof. Retractions to inclusions of atomic cubical sets are unique. �

Lemma 6.18. For each cubical function γ : C → C′,

cd2γ : cd2C → cd2C′

restricts and corestricts to a cubical function ret CB → ret C′(cd 2γ)(B) for each

atomic B ⊂ cd2C.

Proof. Let B′ = (cd2γ)(B). For each non-empty atomic A′ ⊂ B′, there exists non-
emptyA ⊂ B such that (cd2γ)A = A′ and γ suppcd2(A,B) ⊂ suppcd2((cd2γ)(A), γB) =
suppcd2(A′, B′) by minimality of suppcd2(A′, B′). �

The cubical function γγ̄C converts combinatorial neighhborhoods into atomic
subobjects of C.
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Lemma 6.19. Fix a cubical set C. For each V ⊂ (cd2C)[0],

γγ̄C Star cd2CV

is ∅ or atomic.

Proof. The cases C = �[0],�[1] follow because Star cd2CV , and hence its im-
age under γγ̄C , are connected and the only connected subobjects of �[0],�[1] are
atomic.

The case C representable thence follows from Lemma 6.1.
Consider the general case. For a minimal atomic A ⊂ C such that V ⊂ (cd2A)[0],

γγ̄C Star cd2CV = γγ̄C Star cd2AV(2)

= γγ̄A(cd
2̺A)(Star cd2�[1]⊠ dim A(̺A)

−1
[0] V )(3)

= ̺Aγγ̄A Star cd2�[1]⊠dim A(̺A)
−1
[0] V,(4)

(2) by Lemma 6.15, is atomic by the previous case. �

6.3. Extensions. An operation somewhat dual to cubical subdivision is the cubical
extension of a cubical set C to a cubical model of a higher category “presented by
C.” We define structure maps turning a cubical set into such a higher categorical
structure. Just as � models abstract hypercubes, a larger category models adjacent
abstract hypercubes. We write � for the smallest monoidal subcategory of Q having
[0] as a terminal object and containing the pushout square

[1] // [2]

[0]

δ+

OO

δ−

// [1]

OO

in Q; in particular, � ⊂ � ⊂ ⊞. We write ex for the endofunctor
∫ p

�

�̂(�[p],−) · cn p : �̂→ �̂.

Example 6.20. The cubical function

cn p → ex�[p],

natural in �-objects p, is an isomorphism.

We regard certain natural cubical functions C →֒ exC as the identity structure
maps for cubical sets C presenting cubical models of higher categories. We define
the natural transformation κ : id

�̂
→ ex by the following lemma.

Lemma 6.21. There exists a unique natural transformation

id
�̂
→ ex : �̂→ �̂

Proof. For each preordered set p, there exists unique cubical function �[p] → cn p
whose [0]-component is the identity function ⊞([0], p) = Q([0], p) because n-cubes
in cn p are determined by their composites with functions [0] → [1]⊠n. Thus the
unique cubical function �[0] ∼= cn[0] of terminal cubical sets uniquely extends to a

natural isomorphism �[−] ∼= cn[−] : � → �̂. The lemma follows by naturality. �
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We regard the cubical set exC as encoding the possible “pasting diagrams” of a
cubical set C. We thus define composition operators for cubical models of higher
categories.

Definition 6.22. Fix G . For each G -cubical set C, a strict composition

exC → C

on C is a retraction to κC .

Example 6.23. The cubical nerve of a small category C , the cubical set

Cat(−,C )↾�op ,

where we regard [1]⊠n as the n-fold categorical product of the free category gener-
ated by an arrow 0 → 1 for each n, admits a strict composition.

Example 6.24. A Kan cubical set [18] is a cubical set satisfying the right lifting
property with respect to all inclusions into �[1]⊠n of its largest subobject ⊔i[1]⊠n

not having [1]⊠i−1 ⊠ δ ⊠ [1]⊠n−i as its (n − 1)-cube for each n, δ = δ+, δ−, and
i = 1, 2, . . . , n. Kan cubical sets, the fibrant objects with respect to a Quillen model
structure [18] whose acyclic cofibrations include κC [Corollary 8.25], admit strict
compositions.

Our extension operator ex - not cx - serves a role in cubical directed homotopy
theory analogous to the role that the right adjoint to barycentric subdivision plays
in classical simplicial homotopy theory [4]. For example, ex - and not cx - turns
out to preserve weak homotopy types. We write ν for the natural transformation
cx→ ex induced from the functor [2]⊗− : �→ �.

6.4. Stream realizations. Extra structure lurks behind classical geometric real-
izations of cubical sets. The standard cocubical space @ : � → T is the unique
monoidal functor composing δ with {0, 1} →֒ [0, 1] for each δ = δ−, δ+. Geometric
realization is the monoidal, cocontinuous, and

⋂

-continuous functor

| − | =

∫ [1]⊠n

�

−([1]⊠n) · @[1]⊠n : �̂→ T .

sending monos to closed embeddings. We write starCV for the topological interior
of |StarCV | in |C| for each V ⊂ C[0] and |c| for the unique point in |C| for which
c ∈ supp |−|({|c|}, C)[0] for each c ∈ C[0].

Example 6.25. Consider a cubical set C. For each V ⊂ C[0],

starCV =
⋂

v∈V

starC{v}.

Thus for each cubical set C, the family of subsets {star CV | V ⊂ C[0]} forms an
open cover of |C| closed under finite intersections.

Example 6.26. For each cubical set C and 0-cube c of C,

|c| ∈ starC({c}).
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We write ~@ for the unique monoidal functor � → S sending δ to the stream
map 0 7→ δ(0) from {0} to ~@[1] for δ = δ−, δ+. We abuse notation and also write
↿−⇂ for the cocontinuous and monoidal functor

∫ [1]⊠n

�

−([1]⊠n) · ~@[1]⊠n : �̂→ S .

Topological limits commute with inequalities in stream realizations.

Lemma 6.27. For all cubical sets C, graph(6↿C⇂) is closed in |C|2.

Proposition 6.28. The functor ↿− ⇂ : �̂→ S sends monos to embeddings.

We postpone proofs until the end of the next section.

Definition 6.29. For each C , a C -stream X is quadrangulable if X is a composite

C //
�̂

↿−⇂ // S

up to natural isomorphism.

7. Triangulations

We write tri for the cocontinuous and
⋂

-continuous functor

∫ [1]⊠n

�

−([1]⊠n) · sn[1]⊠n : �̂→ ∆̂

and qua for its right adjoint. Triangulation behaves somewhat like classical geomet-
ric realization; both functors convert models of spaces into more flexible models of
spaces, induce equivalences of associated classical weak homotopy categories, and
admit right adjoints. The adjunction tri ⊣ qua also exhibits the following conve-
nient property.

Lemma 7.1. The composite qua◦ tri : �̂→ �̂ is cocontinuous.

Proof. Fix cubical set C. It suffices to show that the natural cubical function

∫ [1]⊠n

�

C[1]⊠n · quatri�[1]⊠n → quatriC,

monic because qua, tri, and hence the composite qua◦ tri are
⋂

-continuous, is also
epi.

Fix m and m-cube ψ : tri�[1]⊠m → triC in quatriC. Let G be the subcategory
of Q consisting of all maximal chains of [1]⊠m and inclusions between them.

Consider G -object M . Let σM and kM be the unique isomorphism and natural
number such that σM : [kM ] ∼= M . The cubical set CM = supp tri(ψ(snM))
is atomic by Lemma 2.8. Thus we can let πM = (CM →֒ C)̺CM

. There exists
monotone function λM , extrema-preserving by minimality of CM and Lemma 6.2,
making the top trapezoid in the diagram below commute because snM is projective
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and sn is full.

snM
snλM //

sn(M →֒M ′)

��

sn(M →֒C)
KK

KK
K

%%KK
KK

K

tri�[1]⊠ dimCM

triπM
qqqqqq

xxqqqqq

tri�[δMM′ ]

��

tri�[1]⊠m ψ // triC

snM ′
snλM′

//

sn(M ′ →֒C)
sssss

99ssss

tri�[1]⊠ dimCM′

triπM′MMMMMM

ffMMMMM

Consider another G -object M ′ ⊃ M . There exists injective �-morphism δMM ′

such that the right triangle commute because �[1]⊠dimCM is projective and CM ⊂
CM ′ . The monotone function λM ′σM preserves extrema and hence is not a kM -
simplex of tri∂�[1]⊠ dimM ′

by Lemma 6.2. Thus (triπM ′ )[kM ](λM ′σM ) has unique
preimage under (triπM ′ )[kM ]. Thus δMM ′λMσ = λM ′σM because

(triπM ′)[kM ](δMM ′λMσM ) = (triπM ′ )[kM ](λM ′σM )

by the commutativity of the trapezoids. We conclude δMM ′ preserves extrema
because λM , λM ′ , M →֒ M ′ preserve extrema. Thus δMM ′ = id�[1]⊠dim CM

by

Lemma 6.2 and we can therefore let

n = dimCM = dimCM ′ , θ = πM = πM ′ .

Our constructions of the form snλ∗ define a cocone Λ : sn↾G → tri �[1]⊠n.

The cocone I : sn↾G → tri �[1]⊠m defined by inclusions is universal. Thus there

exists simplicial function σ : tri �[1]⊠m → tri �[1]⊠n such that Λ = σI. Thus
ψI = (tri θ)Λ = (tri θ)σI by the commutativity of the diagram. We conclude
ψ = (triθ)σ. �

Triangulation and quadrangulation relate our various cubical and simplicial con-
structions with one another.

Lemma 7.2 ([18, Example 5]). There exists a natural isomorphism

cn ∼= qua◦ sn : Q → �̂.

Consequently, we can regard qua(tri C) as a particular stage in the extension
from a cubical set C to exC.

Lemma 7.3. There exists dotted natural transformation making the diagram

id
�̂

κ //

ηtri qua

��

ex

qua◦ tri

;;

commute.

Proof. We can make the identification

qua◦ tri∼=

∫ [1]⊠n

�

−[1]⊠n · cn[1]⊠n

by Lemmas 7.1 and 7.2. Our desired dotted natural transformation is then induced
from inclusion � →֒ �. �
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Triangulation relates our different subdivision operators.

Proposition 7.4. There exists a dotted natural isomorphism making

tri tri◦ cd

��

tri γ

%%LLLLLLLLLLL

tri γ̄oo

sd◦ tri γ
//

γ̄

eeLLLLLLLLLLL

tri

commute.

Proof. The simplicial function τ̂[m][n] : ⊞([m], [2]⊗ [n]) ·∆[m] → sd∆[n] defined by

(τ̂[m][n](α : [m] → [2n] · β : [k] → [m]))[k] = γαβ ⊕ γ̄αβ, k = 0, 1, . . .

is dinatural in �1-objects [m] and hence induces a simplicial function

τ[n] : tricd�[n] → sd∆[n],

epi by Lemma 6.11, monic by Lemma 6.12, and natural in �1-objects [n]. Plugging
in γ and γ̄ for the symbol η, we see that ηtri�[n]τ[n] = triη�[n] because

(η∆[n](τ̂[m][n](α : [m] → [2n] · β : [k] → [m])))[k] = (η∆[n])[k](γ[n]αβ ⊕ γ̄[n]αβ)

= (γ[n]αβ ⊕ γ̄[n]αβ)η[n]

= η[n]αβ.

for n = 0, 1. Thus the desired natural isomorphism exists because tri, cd, γ, and γ̄
are monoidal. �

Triangulation restricts and corestricts to an isomorphism between 1-dimensional
cubical sets and 1-dimensional simplicial sets. Thus we can make the identification

tri retCB = ret triC triB

for all 1-dimensional cubical sets C and B ⊂ cd2C. We can now bootstrap Lemma
5.8 to give a proof for Lemma 6.15.

Proof of Lemma 6.15. We assume C is atomic without loss of generality.
The case C = �[1] and hence also the case C = �[0] follow from Lemma 5.8 and

Proposition 7.4.
Consider epi ǫ from a representable cubical set C and atomic B ⊂ cd 2C. Let

ǫ′ = cd2ǫ; we abuse notation and also write ǫ′ for its restrictions and corestrictions.
There exists unique retraction πBC : B → retCB, and the back face of

B
(γγ̄C)↾B //

πBC

��

ǫ′

**TTTTTTTTTTTTT C
ǫ

''PPPPPPPPP

ǫ′B //
π(ǫ′B)(ǫC)

��

ǫC

retCB
(γγ̄C)↾retCB

//

ǫ′ ))TTTTTTTTTT C
ǫ

''OOOOOOOOO

ǫ′ retCB
(γγ̄ǫ(C))↾retǫCǫ′B

// ǫC,

commutes by the previous cases and Lemma 6.1. Moreover,

ǫ′ retCB = ret ǫCǫ
′B
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because ǫ′ is epi and ǫ supp cd2(A,C) = supp cd2(ǫ′A, epsilonC) for all A ⊂ B. It
therefore suffices to show the existence of a dotted cubical function making the left
face commute; it would follow that the front face commutes because ǫ′ is a quotient
cubical function and the rest of the diagram commutes.

We induct on dimC. The base case C ∼= �[0] follows from the previous case. Fix
k. Assume the claim holds for the case dimC < k, and consider the case dimC = k.
Consider n and n-cube θ in B. It suffices to show ǫ′πBCθ only depends on ǫ′θ and
therefore it suffices to consider the case θ not the unique preimage of ǫ′

[1]⊠nθ under

ǫ′
[1]⊠n ; in particular, there exists atomic B′ ⊂ B and proper atomic C′ ⊂ C such

that θ is an n-cube of B′ ∩ cd2C′. Then

(ǫ′πBC)[1]⊠n(θ) = ((ǫ′πBC)↾B′)[1]⊠n(θ)(5)

= (ǫ′πB′C′)[1]⊠n(θ)(6)

= (πǫ′B′ǫC′)[1]⊠nǫ′[1]⊠nθ,(7)

(5) by our choice of B′, (6) by minimality and hence equality πB′C′ = (πBC)↾B′ ,
and (7) by the inductive hypothesis. �

Triangulation relates our different stream realization functors.

Proposition 7.5. The following commutes up to natural isomorphism.

�̂
↿−⇂ //

tri
##FF

FF
FF

FF
FF

S

∆̂

↿−⇂

OO

Proof. It suffices to show that there exists a natural isomorphism

(8) ~∇↾�1
∼= ~@↾�1

: �1 → S

because ~@, tri, ↿−⇂: �̂ → S , and ↿−⇂: ∆̂ → S are monoidal [Lemma 5.11] and

colimits commute with tensor products in �̂ and finite products in S [Theorem
4.10].

Both Γ~@[δ] and Γ~∇[δ] send the unique point to the minimum for δ = δ− because

0 = ~@[δ−](0), |0| ∨~∇[1] t = t

for t = |0|, |1| and hence all t ∈ I by linearity of ∨~∇[1] and similarly send the unique

point to the maximum for the case δ = δ+. The linear homeomorphism ∇[1] → I
sending |0| to 0 and |1| to 1 hence defines the [1]-component of our desired natural
isomorphism (8) by linearity of ∨~∇[1], ∨~@[1] and Theorem 4.11. �

We can now prove that the global preorders of stream realizations of cubical sets
have closed graphs.

Proof of Lemma 6.27. Lemma 5.10 and Proposition 7.5 give the result. �

We abuse notation and also write ϕ for a natural isomorphism

ϕ :↿cd(−)⇂∼=↿−⇂: �̂→ S .

induced from ϕ :↿sd(−)⇂∼=↿−⇂ and natural isomorphisms claimed in Propositions 7.4
and 7.5. We can now prove that stream realization sends monic cubical functions
to stream embeddings.
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Proof of Proposition 6.28. Fix cubical sets B ⊂ C. Consider finite A ⊂ B. Let

Vn =
⋃

a∈A[0]

star cdnB{a}, n = 0, 1, ...

Consider an open subset U ⊂ |A|. It suffices to show that

graph(6U ) ⊃ U2 ∩

∞
⋂

n=0

graph(6U∩ϕnVn
).

We could then conclude that for each stream embedding k : K →֒↿B⇂ such that K
is compact Hausdorff, ↿supp |−|(k(K), B) →֒ B⇂ is a stream embedding by Lemma
4.9 and thus conclude that ↿B →֒ C⇂↾K is a stream embedding.

Consider x, y ∈ |A| such that x 
U y. For n≫ 0, ϕ−n
A x 
ϕ−n

A
U ϕ−ny, hence

|γγ̄cdnA|(ϕ
−n−2
A x) 
ϕ−n

A
U |γγ̄cdnA|(ϕ

−n−2
A y)

by Lemma 6.27 because ϕnA|γγ̄cdnA|ϕ
−n−2
A (∗) is close to ∗ for each ∗, hence

ϕ−n−2
A x 
(ϕ−n−2

A
U)∩Vn+2

ϕ−n−2
A y

because γγ̄cdnC(ϕ
−n−2
A U) ∩ Vn+2 ⊂ | cdnA| by Lemma 6.19, and hence

x 
U∩ϕn+2
A

Vn+2
y.

�

8. Homotopy theories

We present categorical definitions of homotopy theory in §8.1; construct weak
homotopy categories of streams in §8.3 and cubical sets in §8.4; and state and prove
our main results in §8.5.

8.1. Homotopies. We recall categorical axiomatizations [18] of cylinder objects,
equip categories of streams, simplicial sets, and cubical sets with such axiomatic
structure, and explore the strengths of the resulting homotopy theories. Cylinder
objects in practice amount to monoidal actions of �. We regard functor categories
of the form C C throughout as monoidal categories whose tensors are defined by
composition.

Definition 8.1. A �-module is a category C implicitly equipped with functor

⊗ : C ×�→ C

whose adjoint �→ C C is monoidal.

We spell out resulting definitions of homotopies and fibrations.

Definition 8.2. Fix a �-module C . Consider C -morphisms α, β : x → y. A
homotopy from α to β is a morphism η in C making the following commute.

(9) x
∐

C
x ∼= x⊗ [0]

∐

C
[0]x⊗ [0]

α,β //

−⊗δ−
∐

−⊗δ+

��

y

x⊗ [1]

η

55

For each C -object g, a g-fibration is a C -morphism satisfying the right lifting
property with respect to g ⊗ δ− and g ⊗ δ+.
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Fix �-module C . We write α  β if there exists a homotopy from α to β for
each pair α, β of parallel C -morphisms. We write! for the equivalence, and hence
congruence, on C , generated by  and hC for the quotient category C /!.

Example 8.3. Regarding T as a �-module such that

⊗ = −× @[−] : T ×�→ T ,

hC is the standard homotopy category of C .

We highlight a couple of straightforward properties of fibrations, useful for later
showing that diagram categories of streams are categories of fibrant objects.

Lemma 8.4. Fix �-module C . For each C -object g and g-fibration γ,

C (g, γ)

is surjective if hC (g, γ) is surjective.

Lemma 8.5. Fix �-module C . For each C -object g and g-fibration γ,

hC (g, γ)

is injective.

We axiomatize homotopical triviality as a generalization of convex structure on
topological vector spaces.

Definition 8.6. Fix �-module C . A C -object c is convex if both projections

c2 → c

exist and are!-equivalent to one another.

Standard facts about classical convex objects straighforwardly generalize.

Lemma 8.7. Parallel morphisms to convex objects in �-modules are!-equivalent.

A functor suitably respecting monoidal actions of � respects the associated ho-
motopy theories.

Definition 8.8. For all �-modules C and D , a lax �-module map

F : C → D

is a functor F : C → D equipped with natural transformation ⊗◦ (F ×�) → F ◦⊗,
which we write as η, such that η(c,[0]) is an isomorphism for each C -object c.

Lemma 8.9. Consider lax �-module map F of the form

F : C → D

preserving cosquares. The functor F passes to a functor hC → hD . If F is lax

Cartesian monoidal, then F preserves convex objects.

A proof is straightforward and therefore left to the reader.
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8.2. Homotopy for simplicial sets. Our starting point in investigating homo-
topy theories of “directed structures” is the observation that “simplicial lattices”
are convex. We henceforth regard functor categories of the form ∆̂C as �-modules
equipped with (−× sn)↾∆̂C×�; the resulting (strong) homotopy theory is standard

[4, ?]. All homotopical constructions in this paper originate from the following
observation.

Lemma 8.10. The L -simplicial set sn↾L is convex.

Proof. The unique functions ηL, η
′
L : [1]×L2 → L defined so that ηL(0,−), η′L(0,−)

respectively are projections onto first and second factors and ηL(1,−) = η′L(1,−) =
∧L are monotone for each lattice L. Then sn ηL and sn η′L define homotopies from
projections (snL)2 → snL to sn∧L. �

8.3. Homotopy for streams. We introduce a homotopy theory that intuitively
classifies streams up to deformation. We henceforth regard functor categories of
the form S C as �-modules equipped with −×S ~@[−]. The convexity of “simplicial
lattices” [Lemma 8.10] implies the convexity of topological lattices.

Lemma 8.11. The ∆-stream ~∇[−] and the �-stream ~@ are convex.

Proof. There exist natural isomorphisms ∆-stream ~∇[−] ∼=↿sn(−)⇂↾∆ and ~@[−] ∼=↿
sn(−) ⇂↾� by Proposition 7.5. It therefore suffices to note that the L -stream ↿
sn(−)⇂↾L , and hence all restrictions of it, are convex by Lemma 8.9 because ↿−⇂:

∆̂ → S is lax Cartesian monoidal by Lemma 5.11. �

We can now give a special case of simplicial approximation, for the natural
isomorphisms ϕC :↿cdC⇂∼=↿C⇂.

Proposition 8.12. The following ∆̂-stream maps are!-equivalent.

ϕ, ↿γ⇂, ↿γ̄⇂ : ↿sd(−)⇂→ ↿−⇂ .

Proof. The (∆̂×∆op ×∆)-stream maps

∆̂(∆[−2],−1) · ϕ∆[−3], ∆̂(∆[−2],−1)· ↿γ∆[−3]⇂, ∆̂(∆[−2],−1)· ↿γ̄∆[−3]⇂

are!-equivalent by Lemma 8.7 because ~∇[−] is convex by Lemma 8.11. We take
parametrized coends to conclude the claim. �

A topological enrichment [17] on diagram categories of topological catgories sug-
gests an alternative homotopy relation [8] on S G generally weaker than !. We
identify criteria for these homotopy relations to coincide.

Theorem 8.13. Fix small G . A pair of G -stream maps

f, g : X → Y

are !-equivalent if the colimit of X is compact, Y is quadrangulable, and there

exists G -stream map h : X × @̈[1] → Y such that h(−, 0) = f and h(−, 1) = g,

Proof. Let C be a cubical set; it suffices to suppose Y =↿cd4C⇂. Let ϕ′ =↿(γγ̄)2⇂.
We write XU (c) for the open substream of X(c) consisting of the preimage of an
open subset U of colimX under the natural stream map X(c) → colimX for each
G -object c.

There exists finite categoryO of open subsets covering colim X and all inclusions
betwen them, k, and real numbers 0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1 such
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that (colim h)(U × [ti, ti+1]) inhabits a set of the form star colim Y (∗) for each
O-object U and i = 0, 1, 2, . . . , k− 1 because colimX × @̈[1] is compact. It suffices
to consider k = 1 because! is transitive.

There exists minimal set of the form star C(c)(∗) containing (colim h)(U) be-
cause sets of the form star C(c)(∗) are closed under intersections, hence minimal
atomic subobject of C(c) whose geometric realization contains the image of such a
minimal set under |γγ̄C(c)| by Lemma 6.19, hence factorizations of

ϕ′
C(c)(fc)↾XU (c)

∐

ϕ′
C(c)(gc)↾XU (c),

as the composite of a stream map to a stream of the form ↿�[∗]⇂ followed by a
stream map of the form ↿∗ → C(c)⇂ by Lemmas 6.15 and 6.16, natural in O-object
U by Lemma 6.17 and G -object c by Lemma 6.18. Thus ϕ′

Cf! ϕ′
Cg by naturality

and convexity of ~@. Hence f! g by Proposition 8.12. �

We generalize homotopy equivalences between compact quadrangulable streams
to weak equivalences between general streams as follows.

Definition 8.14. Fix small G . A G -stream map f is a weak equivalence if

hS G (Q, f)

is a bijection and a fibration if it is an Q-fibration, for each compact quadrangulable
G -stream Q.

Example 8.15. Maps representing isomorphisms in hS G are weak equivalences.

We write WS G for the subcategory of S G consisting of the weak equivalences.
A standard compactness argument yields the following observation.

Proposition 8.16. For each G , WS G is closed under transfinite pushouts in S G .

For each small G , we write h̄S G for the localization of S G with respect to the
weak equivalences.

Proposition 8.17. For each small G , S G is a category of fibrant objects.

Proof. The diagram category S G has finite products and a terminal object because
S is complete by Proposition 4.6. Pullbacks of (acyclic) fibrations are (acyclic)
fibrations by (Lemma 8.5 and) the preservation of right lifting properties by pull-
backs. Every G -stream is fibrant because δ−, δ+, and hence G -stream maps of the
form Q⊗ δ−, Q⊗ δ+, have retractions. Path-objects exist by Proposition 8.16 and
a Quillen small object argument. �

Corollary 8.18. For each small G , h̄S G is locally small.

Corollary 8.19. For each small G , there exists a bijection

h̄S G (X,Y ) = hS G (X,Y )

natural in G -streams X having compact colimits and quadrangulable G -streams Y .
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8.4. Homotopy for cubical sets. We henceforth regard functor categories of the
form �̂C as �-modules equipped with − × ~@; the resulting (strong) homotopy
theory is standard [18]. A couple of our cubical constructions preserve homotopy
types.

Lemma 8.20. The �̂-simplicial functions

triηtriqua : tri⇆ tri◦ qua◦ tri : ǫtriqua tri

represent mutually inverse morphisms in h∆̂�̂.

Proof. The (�̂ ×�op ×�)-simplicial functions

�̂(�[−2],−1) · triη
triqua�[−3], �̂(�[−2],−1) · ǫ

triqua tri�[−3]

represent mutually inverse morphisms in h∆̂�̂×�op×� by Lemma 8.7 because tri�[−] =
sn↾� and tri ◦ qua ◦ tri�[−] are convex by Lemma 8.10 and Proposition 8.9. We
take parametrized coends to conclude the lemma. �

Lemma 8.21. The following �̂-cubical functions are!-equivalent.

κcd(−), νcd(−)η
cdexγ : cd→ ex◦ cd.

Proof. The (�̂ × �
op × �)-cubical functions

�̂(�[−2],−1) · κcd�[−3]↾�
, �̂(�[−2],−1) · νcd(−)η

cdexγ�[−3]↾�
)

are!-equivalent by Lemma 8.7 because cn↾� is convex by Lemma 8.10 and Propo-
sition 8.9. We take parametrized coends to conclude the lemma. �

We generalize homotopy equivalences between finite cubical sets admitting cu-
bical compositions to weak equivalences between general cubical sets.

Definition 8.22. Fix G . For each G -cubical set C, a cubical composition

exC → C

on C is a cubical function ǫC such that idC! ǫCκC .

Fix G and G -cubical set E. We write [C,E] for the limit of the diagram whose

arrows are all functions h�̂G (B,E) → h�̂G (A,E) induced from all possible inclu-
sions A →֒ B between finite subobjects of C for each G -cubical set C. We write
[ψ,E] for the induced function [D,E] → [C,E] for each cubical function ψ : C → D.

Definition 8.23. Fix small G . A G -cubical function ψ is a weak equivalence if

[ψ,C]

is a bijection for all G -cubical sets C admitting cubical compositions.

For each small G , we write h̄�̂G for the localization of �̂G with respect to the
weak equivalences; we show in the next section that h̄�̂G is in fact locally small.
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8.5. An equivalence. We establish a directed analogue of the classical equivalence
between homotopy categories of cubical sets and topological spaces. We first prove
that stream realizations of “directed anydone extensions” are homotopy equiva-
lences [Proposition 8.24]. We then show that certain stream maps between stream
realizations admit cubical approximations [Corollary 8.29]. We then conclude our
main results.

Proposition 8.24. The �̂-stream map ↿κ⇂ represents an isomorphism in hS �̂.

Proof. We identify cn with qua◦ sn by Lemma 7.2. We regard ↿�[p]⇂ as a convex
compact Hausdorff, connected sublattice of an ordered topological vector space
because ϕ�[n] and id↿�[n]⇂ induce isomorphisms of the form ϕ′

p :↿ �[p] ⇂∼= ~@[∗],
monoidal and natural in �-objects p, for n = 0, 1. We can thus let ηp :↿sn p⇂→↿�[p]⇂
be the piece-wise linear stream map, natural and monoidal in �-objects p because
all �-morphisms are composites of injections and projections, defined by ηp|p| = |p|
for all p ∈ p. The �-stream maps ↿κ�[−]↾�

⇂ : ↿�[−]⇂↾�→↿cn(−)⇂↾� and η ↿ǫtriqua⇂

represent mutually inverse morphisms in hS � because ↿cn(−)⇂↾� and ↿�[−]⇂↾�
are convex by Lemma 8.10 and Proposition 8.9. The �̂× �

op × �-stream map

�̂(�[−2],−1)· ↿κ�[−]⇂

therefore represents an isomorphism in hS �̂×�
op×�. We take parametrized coends

to conclude the result. �

Corollary 8.25. For each cubical set C, the continuous function

|κC | : |C| → | exC|

is a homotopy equivalence of spaces.

Corollary 8.26. The S -cubical set sing admits a S -cubical composition.

Theorem 8.27. Consider small G and commutative diagram on the left side of

(10) ↿A⇂

↿β⇂

��

↿α⇂ // ↿triC⇂ sdnA
γn−3γ̄γγ̄A //

sdnβ

��

A
α // triC

↿B⇂

f

99ssssssssssss
sdnB,

ψ

44

where α, β are G -simplicial functions, B is finite, and C is a G -cubical set. For

n≫ 0, there exist dotted G -simplicial function ψ such that the right side commutes

and ↿ψ⇂! fϕnB.

Proof. We abbreviate supp(∗, ∗) for supp |−|(∗, ∗). Let ϕ′ =↿(γγ̄)2 ⇂ ϕ−4. Let d
denote a G -object d.

There exists minimal set of the form starC(d)(∗) containing fdU because sets of
the form starC(d)(∗) are closed under intersections, hence minimal atomic subobject
of C(d) whose geometric realization contains the image of such a minimal set under
|γγ̄C(d)| by Lemma 6.19, hence stream map gd(σ) :↿∆[m]⇂→↿tri�[1]⊠n⇂ and cubical

function θd(σ) : �[1]⊠n → C, natural in d by Lemma 6.18 and (∆ ↓ sd nB(d))-
objects σ by Lemma 6.17, such that

ϕ′
Cfd ↿σ⇂=↿triθd(σ)⇂ gd(σ)
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by Lemmas 6.15 and 6.16. The function φd(σ) : [m] → [1]⊠n defined by

φd(σ)(v) = min supp |−|(gd(σ)|v|, tri�[1]
⊠n),

natural in d and (∆ ↓ sdnB(d))-objects σ, satisfies

(triθd(σ))[0](φd(σ)(v)) = triθd(σ[0] min supp(gd(σ)|v|, tri�[1]
⊠n)

= min supp(ϕ′
Cfϕ

n
B|σ[0]v|, triC)

= min supp(fϕn−4
B ↿ (γγ̄)2 ⇂ |σ[0]v|, triC)

= min supp(f |γn−4γγ̄γγ̄||σ[0]v|, triC)

= min supp(|αγn−3γ̄γγ̄σ(v)|, triC)

= αγn−3γ̄γγ̄σ(v)

for the case σ is of the form β ◦ (∆[n] → A(d)) and is monotone by Lemma 5.12.
Thus the snφd(σ)’s induce G -simplicial function ψ : sd nB → tri C such that the
right side of (10) commutes and fϕnB!↿ψ⇂ by naturality and convexity of ~@. �

Corollary 8.28. Consider small G and commutative diagram on the left side of

(11) ↿A⇂

↿β⇂

��

↿α⇂ // ↿quaC⇂ cdnA
γn−3γ̄γγ̄A //

cdnβ

��

A
α // quaC

↿B⇂

f

88rrrrrrrrrrrr
cdnB,

ψ

44

where α, β are G -cubical functions, B is finite, and C is a G -simplicial set. For

n ≫ 0, there exist dotted G -cubical function ψ such that the right side commutes

and ↿ψ⇂! fϕnB.

Proof. Let t= tri, q = qua, A′ = cdnA, B′ = cdnB. There exists τ such that

tA′
γn−3γ̄γγ̄ //

t(cdnβ)

��

tA
t(α) // tqC

tB′,

τ

44

commutes and ↿τ⇂! fϕnB by Theorem 8.27 and Proposition 7.4. Then

ψ = q ǫt
q
C
q τηt

q
B′ : B′ → qC

makes the right side of (13) commute by naturality. Inside

tq tB′ tq τ //

ǫt
q

tqB′

��

(tq)2C
tq ǫt

q
C //

ǫt
q

tq(C)

��

tqC

tB′

tηt
q

B′

77pppppppppppppp

idB′

// tB′
τ

// tqC,

idtqC

77oooooooooooo

the left triangle commutes by zig-zag identities, the middle square commutes by nat-
urality, and the right triangle commutes up to! because tq ǫt

q
C ! tq ǫt

q
C tηt

q
qCǫ

tq
tqC

by Lemma 8.20 and t q ǫt
q
C t ηt

q
qCǫ

tq

tqC
= ǫtq

tqC
by the zig-zag identities. We conclude

t ψ! τ . Hence ↿tψ⇂!↿τ ⇂! fϕnB because ↿−⇂ is a �-module map by Lemma
8.9. �
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Corollary 8.29. Consider small G and commutative diagram on the left side of

(12) ↿A⇂

↿β⇂

��

↿α⇂ // ↿C⇂ A
α //

β

��

C

↿B⇂

f

::uuuuuuuuuuu
B,

ψ

;;

where α, β are G -cubical functions, B is finite, and C admits a cubical composition.

There exist dotted G -cubical function ψ such that the right side commutes up to!

and ↿ψ⇂! f ↿γn⇂.

Proof. There exists n≫ 0 and dotted cubical function τ such that

(13) cdnA
γn−3γ̄γγ̄A //

cdnβ

��

A
α // C

η
tri qua
C // quatriC

cdnB,

τ

33

commutes and ↿ηtqC ⇂ fϕ
n
B!↿τ⇂ by Corollary 8.28. For brevity, we write

(∗)′′ = exn cdn(∗), (∗)′ = exn(∗), q t= qua◦ tri, γ′ = γn−3γ̄γγ̄.

Let ǫ be a retraction to C up to !. The cubical function ηquatriC factors κC
by Lemma 7.3 and thus admits a retraction π up to!. Let ψ be the appropriate
composite B → C of the arrows in the diagram

A
idA //

νAη
cdcx
A

KK

%%KK

β

��

A
α //

κA

LLL

%%LLL

C
idC //

νηcdcx
C

PPP

((PPP

ηt
q

C

��

C

A′′
γ′

A

//

β′′

��

A′
α′

// C′
idC′ //

ηt
q

C′

��

C′

ǫn
hh

B

νηcdcx
B

$$JJJJJJ q tC
κq tC ''OOOOOO

idq tC) // q tC

π

OO

B′′
τ ′

// (q tC)′
idq tC

// (q tC)′.

π′

OO

The top left rectangle commutes by Lemma 6.21, the front left rectangle commutes
by our choice of τ , the top right, back right, and front right rectangles commute up
to!, the other solid rectangles commute by naturality, and therefore ψ↾A! α.
In the diagram

↿cdnB⇂
τ //

↿κn
cdnB⇂

��

↿q tC⇂
idq tC //

↿κn
C⇂

��

↿q tC⇂
π // ↿C⇂

↿B⇂

ϕ−n
B

77ooooooooooooo

νn(ηcdcx
B )

// ↿B′′⇂
↿τ ′⇂

// ↿(q tC)′⇂,

↿µ⇂

66nnnnnnnnnnnn

the left triangle commutes up to! by Lemma 8.21, the middle square commutes
by naturality, the right triangle commutes up to!, and hence

↿ψ⇂ ! ↿πτ⇂ ϕ−n
B

! ↿πηtriquaC ⇂ f

! f.
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�

Corollary 8.30. Fix small G . The function ↿−⇂B′C passes to a function

(14) h�̂G (B′, C) → hŜ G (↿B′⇂, ↿C⇂),

bijective if B′ is finite and C admits a cubical composition, for all G -cubical sets

B′ and C.

Proof. The function ↿−⇂B′C passes to our desired function (14) because ↿−⇂ is a
lax �-module map by Lemma 8.9. Surjectivity and injectivity follow from applying
Corollary 8.30 to the respective cases A = ∅, B = B′ and A = B′

∐

B′, B =
B′ ⊗ [1]. �

Corollary 8.31. Fix small G . For all G -streams X, the G -stream map

ǫ↿−⇂sing
X : ↿singX⇂→ X

is a weak equivalence.

Proof. For each finite G -cubical set C and G -stream X , the left vertical arrow is
bijective [Corollaries 8.26 and 8.30] and hence the top horizontal arrow is bijective
in the commutative diagram

hS G (↿C⇂, ↿singX⇂)
hS

G (↿C⇂,ǫ↿−⇂sing
X

)
// hS G (↿C⇂, X)

h�̂G (C, singX) //

↿−⇂C singX

OO

hS G (↿C⇂, X)

whose bottom horizontal arrow is the bijection induced by the adjunction ↿−⇂⊢
sing. �

Corollary 8.32. Fix G . For each G -cubical set B, the G -cubical function

η↿−⇂sing
B : B → sing ↿B⇂

is a weak equivalence.

Proof. For each G -cubical set C admitting a cubical composition and finite A ⊂ B,
the vertical arrows are bijective [Corollary 8.30], the bottom arrow is bijective
[Corollary 8.31], and hence the top function is bijective in the following commutative
diagram.

h�̂G (sing ↿A⇂, C)

↿−⇂sing↿A⇂C

��

h�̂G (η↿−⇂sing
A

,C)
// h�̂G (A,C)

↿−⇂AC

��
hS G (↿sing ↿A⇂⇂, ↿C⇂) hS G (A, sing ↿C⇂)

hS
G (ǫ↿−⇂sing

A
,↿C⇂)

oo

�

Corollary 8.33. For each small G , ↿−⇂⊣ sing induces an equivalence

h̄�̂G ⇆ h̄S G .

Corollary 8.34. For each small G , h̄�̂G is locally small.
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Corollary 8.35. For each small G , there exists a bijection

h̄�̂G (B,C) = [B,C]

natural in G -cubical sets B having finite colimit and G -cubical sets C that happen

to admit cubical compositions.

Corollary 8.36 (Excision). Fix a small G . The natural G -cubical function

singU ∪singU∩V singV → singX

is a weak equivalence for all G -streams U, V,X such that U(d), V (d) are substreams

of X(d) whose interors in X(d) cover X(d) for all G -objects d and U(γ), V (γ) are
restrictions and corestrictions of X(γ) for all G -morphisms γ.

Proof. Fix finite G -cubical set C. In the commutative diagram

hS G (↿C⇂, ↿singU ∪singU∩V singV ⇂) // hS G (↿C⇂, ↿singX⇂)

limn hS
G (cdnC, singU ∪singU∩V singV )

OO

// limn hS
G (cdnC, singX),

OO

where the inverse limits are taken over G -cubical functions of the form

· · ·
γcdn+1(∗)
−−−−−−→ cdn(∗)

γcdn(∗)
−−−−−→ · · ·

γcd5(∗)
−−−−→ cd4(∗)

(γγ̄)2
∗−−−→ ∗,

the natural vertical arrows induced by the functor ↿−⇂ are bijective by Corollary
8.28, the d-component of every G -cubical function cdnC → singX maps cubes into
either sing U(d) or sing V (d) for each G -object d because |C| is compact, hence
the bottom horizontal function induced by inclusion is bijective, and hence the top
horizontal function is bijective. �

9. Conclusion

We have thus established a formal equivalence between directed homotopy the-
ories of streams and cubical sets, where quadrangulable streams and cubical sets
admitting cubical compositions serve as directed analogues of CW complexes and
Kan complexes, respectively. Thus we can study the directed homotopy types
of streams in nature in terms of the combinatorics of their quadrangulations. In
particular, the main results pave the way for the development of singular cubical
(co)homology theory for directed topology.
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Fundamenta Mathematicae, vol. 15, 1930, pp. 292-300.


	1. Overview
	2. Category theory
	2.1. Conventions
	2.2. Supports
	2.3. Relations

	3. Order theory
	4. Directed topology
	5. Simplicial theory
	5.1. Simplicial sets
	5.2. Subdivisions
	5.3. Stream realizations

	6. Cubical theory
	6.1. Cubical sets
	6.2. Subdivisions
	6.3. Extensions
	6.4. Stream realizations

	7. Triangulations
	8. Homotopy theories
	8.1. Homotopies
	8.2. Homotopy for simplicial sets
	8.3. Homotopy for streams
	8.4. Homotopy for cubical sets
	8.5. An equivalence

	9. Conclusion
	References

