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Stabilizers of Subspaces

under Similitudes of the Klein Quadric,

and Automorphisms of Heisenberg Algebras

Michael Gulde, Markus Stroppel

Abstract

We determine the groups of automorphisms and their orbits for nilpotent Lie algebras of

class 2 and small dimension, over arbitrary fields (including the characteristic 2 case).

Introduction

In [19], a conceptual approach has been given to the classification of Lie algebras L with

L′ := [L,L] ≤ z(L) for small values of dim(L/z(L)) and over an arbitrary field K (including

the case charK = 2). In the present paper, we use this to find all automorphisms of Lie

algebras L with L′ ≤ z(L) and dim(L/L′) = 4, clarify the structure of the group Aut(L), and

determine its orbits on L.

The restriction to the case dim(L/L′) = 4 is justified by the fact that the classification prob-

lem becomes wild for dim(L/L′) > 4, even if we assume that the ground field is algebraically

closed, cf. [2], [16].

One motivation for the study of Lie algebras over arbitrary fields comes from group theory.

If one wants to understand nilpotent groups, Lie methods are useful in many cases. For

instance, we have (cf. [8, VIII 9.16]): If G is a nilpotent group of class at most 2 in which

every element has a unique square root then x+ y := xy
√

[y, x] defines the addition of a Lie

ring (i.e., a Lie algebra over the ring Z of integers) g = (G,+, [·, ·]), and Aut(G) = Aut(g).
Moreover, this addition coincides with the multiplication on any cyclic subgroup of G. If the

group G has exponent p ∈ P (where p 6= 2 by our assumption on square roots) then the

Lie ring may also be considered as a Lie algebra over the field with p elements. Our present

work thus comprises a generalization of the results in [21]. See [22] for extensions in a more

group-theoretic manner, and [6] for an investigation of a similar class of nilpotent groups.
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1. Automorphisms of Heisenberg algebras

1.1 Definitions. A generalized Heisenberg algebra gh(V,Z, β) := (V ×Z, [·, ·]β) is given by vec-

tor spaces V and Z together with an alternating bilinear map β : V ×V → Z: the underlying

vector space is V × Z, and the Lie bracket is [(v, x), (w, y)]β := (0, β(v,w)).
If the image β(V × V ) generates Z, and {v ∈ V | ∀w ∈ V : β(v,w) = 0} = {0}, we call

gh(V,Z, β) a reduced Heisenberg algebra. These conditions mean that {0}×Z equals both the

center and the commutator algebra of gh(V,Z, β).
Using the universal property of the tensor product, we obtain a unique linear surjection

β̂ : V ∧ V → Z such that β̂(v ∧ w) = β(v,w) holds for all v,w ∈ V . If gh(V,Z, β) is reduced

then the kernel of β̂ satisfies

∀ v ∈ V r {0} : η({v} × V ) 6⊆ ker β̂ (∗)

where η(v,w) = v ∧ w. Conversely, every linear surjection γ : V ∧ V → Z satisfying condi-

tion (∗) yields a reduced Heisenberg algebra gh(V,Z, γ ◦ η)).

Every nilpotent Lie algebra of class 2 is isomorphic to the direct sum of a reduced Heisen-

berg algebra and an abelian Lie algebra, cf. [19, 6.2].

1.2 Proposition. Let gh(V,Z, β) be a reduced Heisenberg algebra, and let A be an abelian Lie

algebra. Let Σβ denote the group of all linear bijections of V onto itself such that σ(ker β̂) =

ker β̂. For σ ∈ Σβ, let σ′ denote the unique element of GL(Z) such that

∀u, v ∈ V : σ′(β(u, v)) = β(σ(u), σ(v)) . (∗∗)

Then the automorphisms of the Lie algebra gh(V,Z, β) ×A are precisely the maps

(v, z, a) 7→
(
σ(v), σ′(z) + τ(v) + ζ(a), α(a) + ξ(v)

)
,

where σ ∈ Σβ, τ ∈ Hom(V,Z), ζ ∈ Hom(A,Z), α ∈ GL(A), and ξ ∈ Hom(V,A).

Proof. An easy computation shows that the given maps are automorphisms. The center of

gh(V,Z, β)×A is {0}×Z×A, its commutator algebra is {0}×Z×{0}. Since these are invariant

subalgebras, there are no other automorphisms than the ones we have described.

For the case of reduced algebras this result has already been stated in [13, 4.4].

2. Tools from the classification of forms

The classification of Heisenberg algebras gh(V,Z, β) with dimV = 4 and our determination

of the corresponding groups of automorphisms and their orbits is based on the study of

restrictions of the Pfaffian form, see 3.3 below.

Aiming at applications later on, we present well known results here, mainly on forms in at

most four variables. For the reader’s convenience we indicate proofs and include a discussion

of quaternions over arbitrary fields.

2.1 The Arf Invariant. When dealing with quadratic forms over a field K with charK = 2
one has to distinguish between diagonalizable quadratic forms and non-diagonalizable ones.

Equivalence of the latter depends on Arf’s invariant δ (cf. [4, 8.11]): for a non-diagonalizable

form q in two variables given by q(v) := v′Mv this is just δ(q) := detM
(tr(iM))2

+ ℘, where
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℘ :=
{
x+ x2

∣∣ x ∈ K
}

. If we describe the same form by different matrices M and M̃ then

M−M̃ = ti for some t ∈ K and i =
(

0 1
−1 0

)
. Thus detM

(tr(iM))2 − det M̃
(tr(iM̃))2

= t
tr(iM) +

(
t

tr(iM)

)2 ∈ ℘

shows that δ is indeed an invariant of the form q.

It is easy to see that δ(q) does not change if we replace q by tq with t ∈ K×, or if we pass

to an equivalent form (replacing M by A′MA).

In order to understand the set of values of a non-diagonalizable form we multiply the form

with a scalar such that it assumes the value 1 at some v ∈ K2. Then the form is equivalent

to the form q given by q(v) = v′
(
1 t
0 d

)
v, and may be interpreted as the (multiplicative) norm

form of a suitable algebra, as follows.

We write u for the class of X modulo (X2 + tX + d) and consider the algebra K(u) :=
K[X]/(X2 + tX + d). Putting a+ bu := a + tb − bu we obtain an involutory automorphism

interchanging the two roots u and t− u of X2 + tX + d in K(u); the corresponding norm is

(a+ bu)(a+bu) = q(a, b). Clearly this norm is multiplicative. Moreover, a product in K(u) has

norm 0 only if one of the factors has norm 0, and K(u)× =
{
a+ bu ∈ K(u) | q(a, b) 6= 0

}
is

the group of units in K(u). Thus V1,d :=
{
a2 + abt+ b2d

∣∣ a, b ∈ K
}
r{0} =

{
vv | v ∈ K(u)×

}

is a subgroup of the multiplicative group K×.

2.2 Equivalence of Non-diagonalizable Forms in Characteristic Two. Let q and q̃ be non-

diagonalizable forms in two variables over a field K of characteristic 2. Then q and q̃ are

equivalent precisely if their Arf invariants are equal and the forms share a non-zero value, i.e.,

there exist non-zero vectors v,w such that q(v) = q̃(w).

A set of representatives for the equivalence classes of non-diagonalizable forms is obtained by

taking the forms described by the matrices in
{(

0 0
0 0

)}
∪
{
a
(
1 1
0 d

) ∣∣ d ∈ R℘, a ∈ Rd

}
where R℘

and Rd are sets of representatives of the cosets in K/℘ and K×/V1,d, respectively.

Proof. We already know from 2.1 that δ(q) and δ(q̃) coincide if q and q̃ are equivalent. Clearly,

equivalent forms share a value (indeed, they have the same range).

Now assume, conversely, that q and q̃ have the same Arf invariant and that they share a

non-zero value. Upon basis transformation we may assume that 0 6= a := q(1, 0) = q̃(1, 0).
Then the forms are represented by matrices a ( 1 x

0 c ) and a
(
1 w
0 d

)
, respectively, with x 6= 0 6= w

because the forms are not diagonalizable. Our assumption δ(q) = δ(q̃) yields the existence

of k ∈ K such that c
x2 + d

w2 = k2 + k. Computing

(
1 0
kw w/x

)(
1 x
0 c

)(
1 kw
0 w/x

)
=

(
1 kw + w
kw w2(k2 + k + c/x2)

)
=

(
1 kw +w
kw d

)

we see that the forms are equivalent.

In order to find the representatives we first choose a representative d ∈ R℘ for the Arf

invariant of a given form. Then the form is equivalent to the form described by k
(
1 1
0 d

)
for

any value k ∈ K× assumed by the form. It thus remains to choose a representative a for the

coset kV1,d.

2.3 Diagonal Forms in Characteristic Two. We continue to discuss forms in two variables

over a field K with charK = 2. If such a form is described by a diagonal matrix ( x 0
0 z ) a

change of basis will have the effect of changing this matrix to

(
a b
c d

)(
x 0
0 z

)(
a c
b d

)
=

(
a2x+ b2z acx+ bdz
acx+ bdz c2x+ d2z

)
.



4 Michael Gulde, Markus Stroppel

This matrix describes the same quadratic form as the diagonal matrix
(

a2x+b2z 0
0 c2x+d2z

)
. In

other words: every diagonalizable form is in fact diagonal, and the action of GL2K on the

space of diagonal forms is equivalent to the action on K2 given by

ω
(2)
K : GL2K×K2 → K :

((
a b
c d

)
,

(
x
z

))
7→

(
a2x+ b2z
c2x+ d2z

)
=

(
a2 b2

c2 d2

)(
x
z

)
.

The orbits under ω
(2)
K are the same as those under the natural action of GL2K on K2, where

K denotes the subfield consisting of all squares in K.

More generally, we consider a field extension L/K such that L ⊆ K (for instance, an

inseparable quadratic extension L/K, as in 5.6.b below). In that case let RK/L be a set of

representatives for the cosets in K/L , and let R
(2)
K/L be a set that contains precisely one

L -basis for each L -subspace of dimension 2 in K2. Then the orbits under the restriction

of ω
(2)
K to GL2L×K2 are represented by the elements of {(r, 0)′ | r ∈ RK/L } ∪R(2)

K/L .

2.4 Hermitian Forms and Quaternions. Let L/K be a separable quadratic extension, let

σ : L → L : x 7→ x denote the generator of the Galois group Gal(L/K). We will need the

norm NL/K : L → K : x 7→ xx and the subgroup NL/K(L
×) of K×.

A (σ-)hermitian form h : L2 → L will be described by its hermitian Gram matrix Mh

via h
(
( ax ) ,

(
b
y

))
= (a, x)Mh

(
b
y

)
. Forms h and g are equivalent precisely if there exists

A ∈ GL2L such that A′MhA = Mg where A is obtained from A by applying σ to each entry.

We will call the hermitian matrices equivalent in this case. Without loss, we may concentrate

on the case Mh 6= 0. Every hermitian matrix is equivalent to a diagonal one (necessarily,

with entries from the ground field K) but it is not easy to decide about equivalence of two

given diagonal matrices, in general.

If h is non-degenerate and isotropic then Mh is equivalent to ( 0 1
1 0 ). In particular, all non-

degenerate isotropic forms are equivalent to the one described by
(
1 0
0 −1

)
. Any degenerate

hermitian matrix is equivalent to ( a 0
0 0 ) for some a ∈ K, and ( a 0

0 0 ) and
(
b 0
0 0

)
are equivalent

precisely if aN(L×) = bN(L×).
It remains to understand the hermitian matrices describing anisotropic forms. Every such

matrix is equivalent to one of the shape ( a 0
0 c ) with determinant ac 6= 0; and two such matrices

can only be equivalent if their determinants are in the same coset modulo N(L×). However,

this condition is not sufficient for equivalence, in general.

For any anisotropic hermitian form h on L2 we define Vh := {h(X,X) | X ∈ L2 r {(0, 0)′}}.

The set

Hh
L/K := {A ∈ L2×2 | A′MhA =Mh detA}

forms a quaternion field, see [12] (and Section 6 below). Proportional forms lead to the

same quaternion field, of course. Conversely, equality H
g
L/K = Hh

L/K implies that there exists

t ∈ K× with g = th. Explicitly, we have for the form hc given by Mhc
:= ( 1 0

0 c ):

Hc
L/K := Hh

L/K =

{(
a −cx
x a

) ∣∣∣∣ a, x ∈ L

}
,

and mapping A =
(
a −cx
x a

)
∈ Hc

L/K to Ã :=
(

a cx
−x a

)
gives an anti-automorphism κ of Hc

L/K.

The map Nc : (H
c
L/K) → K : A 7→ detLA = ÃA is an anisotropic quadratic form (called the

norm of Hc
L/K). The restriction of the norm to (Hc

L/K)
× is a group homomorphism onto the

subgroup Vhc
of K×.
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We extend the definition to cover isotropic but non-degenerate forms, as well, considering

Hc
L/K =

{(
a −cx
x a

) ∣∣ a, x ∈ L
}

also in the cases where there exists (x, y)′ ∈ L2 r {(0, 0)′} with

xx + cyy = 0. Note, however, that in this case the algebra Hc
L/K is smaller than the full set

of matrices such that A′Mhc
A = Mhc

detA; for instance, the latter property is satisfied for(
0 x
0 y

)
whenever xx + cyy = 0. The norm Nhc

remains a multiplicative quadratic form but

0 ∈ Nhc

(
(Hc

L/K)
×
)

if the form hc is isotropic. Such a quaternion algebra will be called a split

quaternion algebra.

An element X ∈ Hc
L/K is invertible precisely if Nhc

(X) 6= 0; the inverse is 1
Nhc

(X)X̃. Thus

the algebra Hc
L/K is a skewfield if, and only if, the norm form is anisotropic.

In any case, we call tr(A) := Ã + A the trace of A ∈ Hc
L/K; this is just the usual trace of

A ∈ L2×2. Note that the trace describes the polar form fNhc
via fNhc

(X,Y ) = Nhc
(X + Y )−

Nhc
(X) −Nhc

(Y ) = X̃Y + Ỹ X = tr
(
Ỹ X

)
. Thus the elements perpendicular to the neutral

element 1 are just those with trace 0.

As usual, we identify the field K with the subring K1 of Hc
L/K; this is just the center of the

quaternion algebra. The embedding of L in Hc
L/K is slightly more delicate: we identify a ∈ L

with
(
a 0
0 a

)
.

2.5 Equivalence of Anisotropic Hermitian Forms. Let L/K be a separable quadratic ex-

tension, let σ be the generator of the Galois group Gal(L/K), and let g and h be anisotropic

σ-hermitian forms on L2, described by their hermitian Gram matrices Mg,Mh ∈ L2×2, respec-

tively. Then the following are equivalent:

a. The hermitian matrices (and thus the forms) are equivalent up to a scalar, i.e., there exists

A ∈ GL2L with KA′MgA = KMh.

b. There exists w ∈ L× such that detMg = NL/K(w) detMh.

c. The quaternion fields are conjugates, i.e., there is A ∈ GL2L with AHg
L/KA

−1 = Hh
L/K.

The forms are equivalent if, and only if, we have Vg = Vh and any one of the conditions a, b or c

is satisfied. A form h is, in particular, equivalent to −h precisely if −1 ∈ Nh(H
h
L/K).

A set of representatives of equivalence classes of hermitian matrices is obtained as

{(
0 0
0 0

)}
∪
{(

r 0
0 0

) ∣∣∣∣ r ∈ RN

}
∪
{(

1 0
0 −1

)}
∪
{(

t 0
0 tr

) ∣∣∣∣ r ∈ RN , t ∈ RNr

}

where RN ⊆ K× is a set of representatives for the cosets modulo NL/K(L
×) and RNr

⊆ K× is

a set of representatives for the cosets modulo Nhr

(
(Hr

L/K)
×
)

for the anisotropic form hr with

hermitian matrix ( 1 0
0 r ).

Proof. Picking orthogonal bases with respect to g or h we find a, b, c, d ∈ K× such that Mg is

equivalent to
(
a 0
0 b

)
and Mh is equivalent to

(
c 0
0 d

)
.

Condition a clearly implies b. If b is satisfied we have (ab)−1cd ∈ NL/K(L
×). Then

(
1 0
0 b/a

)

and
(

1 0
0 d/c

)
are equivalent, and a holds.

Finally, we note that conditions a and c are equivalent because the only σ-hermitian forms

invariant under H
g
L/K are the scalar multiples of h.

Every non-degenerate isotropic hermitian form on L2 is equivalent to the form h−1 de-

scribed by Mh−1
=

(
1 0
0 −1

)
. The rest of the assertions is clear because h ∈ Kg is equivalent

to g precisely if Vh = Vg.
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See 6.14 below for examples of quaternion fields with different behavior with respect to

the quotient K×/Nh

(
(Hh

L/K)
×
)

and also regarding the question whether −1 belongs to the

group Nh

(
(Hh

L/K)
×
)

of norms.

Inner automorphisms of quaternion fields and similitudes of the norm form

2.6 Conjugacy in Quaternion Fields. Let H = Hc
L/K be a quaternion field over a field of

arbitrary characteristic, with norm form N = Nhc
and involution κ : x 7→ x̃.

a. For v, x ∈ H there exists a ∈ H× with ava−1 = x precisely if v and x have the same norm

and the same trace. In particular, pure quaternions (i.e., quaternions with vanishing

trace) are conjugates if, and only if, they have the same norm.

b. Now consider v,w, x, y ∈ H such that w /∈ Kv and y /∈ Kx. There exists a ∈ H× such

that ava−1 = w and axa−1 = y if, and only if, we have N(v) = N(x), N(w) = N(y),
tr(v) = tr(w), tr(x) = tr(y), and fN (v,w) = fN (x, y).

c. There exist a, b ∈ H× with avãN(b) = x if, and only if, there exists z ∈ H such that

N(x) = N(v)N(z)2 and tr(x) = tr(v)N(z).

Proof. Multiplicativity of the norm form yields that conjugation with a induces an orthogonal

map on H. It remains to prove the non-trivial implications, i.e., those asserting conjugacy.

Assume N(v) = N(x) and tr(v) = tr(x). If x 6= ṽ then a := x − ṽ satisfies ã = x̃ − v =
tr(x) − x − v = −x + ṽ = −a and we compute ava−1 = (x − ṽ)va−1 = (xv − N(v))a−1 =
(xv −N(x))a−1 = x(v − x̃)a−1 = v. If x = ṽ we pick a ∈ {1, v}⊥ r {0}. Then 0 = fN (a, v) =
ãv + ṽa = −av + ṽa gives ava−1 = ṽ. This proves assertion a.

Under the assumptions made in b, we may also assume x = v because of assertion a. It

suffices to consider the case w 6= y. Then c := y −w satisfies c̃ = (tr(y)− y)− (tr(w)−w) =
w− y = −c, and we compute cwc−1 = (w̃− ỹ)wc−1 = (N(w)− ỹw)c−1 = (N(y)− ỹw)c−1 =
ỹ. On the other hand, we use ṽw + w̃v = fN (v,w) = fN (x, y) = fN (v, y) = ṽy + ỹv to

compute cvc−1 = (w̃ − ỹ)vc−1 = (w̃v − ỹv)c−1 = (ṽy − ṽw)c−1 = ṽ. It remains to pick

b ∈ {1, v, y}⊥ r {0}; then bṽb−1 = v and bỹb−1 = y complete the proof of assertion b.

If x = avãN(b) then N(x) = N(v)N(ab)2 and tr(x) = tr(ava−1N(a)N(b)) = tr(v)N(ab).
Conversely, assume that there is z ∈ H× such that N(x) = N(v)N(z)2 and tr(x) = tr(v)N(z).
Then x and vN(z) have the same norm and the same trace, and assertion a yields a ∈ H×

such that x = avN(z)a−1 = avãN(z)N(a)−1 = avãN(za−1).

2.7 Remark. The assertions of 2.6 do not remain valid if we consider a split quaternion

algebra. In fact, such an algebra will contain divisors of zero, and the element a := x − ũ
used in the proof of 2.6.a might be non-invertible although x 6= ũ. It is known that every

split quaternion algebra is isomorphic to the algebra of 2× 2 matrices over the ground field,

with the usual determinant playing the role of the norm form. The example of
(
0 −1
1 2

)
and

( 1 0
0 1 ) shows that indeed 2.6.a does not extend to the split case without modification.

If charK 6= 2 it remains true that pure elements (i.e., matrices with vanishing trace) are

conjugates if, and only if, they have the same norm because the trace of a non-trivial central

element is non-zero. If charK = 2, however, our example consist of pure elements.

The following result contains a special case of the Skolem–Noether Theorem for central

simple algebras (e.g., cf. [15, 8.4.2]).

2.8 Theorem. Let H be a quaternion field over a field K of arbitrary characteristic. Then the

group Aut(H) of K-linear automorphisms acts faithfully on the orthogonal space Pu(H) :=
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{
x ∈ H | tr(x) = 0

}
= 1⊥, inducing the group SO(N |Pu(H)). Every element of Aut(H) is an

inner automorphism.

Proof. For any x ∈ H the assumption x2 ∈ K implies N(x) + x2 = tr(x)x ∈ K and then

x ∈ K∪Pu(H). Together with the fact that the center of H is just K, the equality K∪Pu(H) ={
x ∈ H

∣∣ x2 ∈ K
}

now yields that Pu(H) is invariant under Aut(H).

Pick x ∈ Pu(H) r K and y ∈ Pu(H) r 〈1, x〉K. Then 〈1, x〉K is a subfield of H and xy /∈
〈1, x, y〉K because xy = r + sx + ty with r, s, t ∈ K implies that (x − t)y ∈ 〈1, x〉K and then

y ∈ (x − t)−1 〈1, x〉K = 〈1, x〉K, a contradiction. Therefore, the set Pu(H) generates the

quaternion field as a K-algebra, and Aut(H) acts faithfully on Pu(H); in fact, the stabilizer

of x and y is trivial.

Since N(x) = −x2 holds for x ∈ Pu(H) the group Aut(H) acts by orthogonal maps

on Pu(H). Choosing a suitable K-basis for H one easily sees that the K-determinant of any

left multiplication x 7→ ax is the square of N(a). The right multiplication x 7→ xa = ˜̃ax̃ then

has determinantN(ã) = N(a), and every inner automorphism has determinant 1. Therefore,

Aut(H) is a subgroup of SO(N) and induces a subgroup of SO(N |Pu(H)).

According to 2.6.b the group of inner automorphisms acts transitively on any set of two-

dimensional subspaces of given isometry type in Pu(H). The elements x and y above were

chosen outside the radical1 of the restriction of the polar form fN to Pu(H). Therefore

the stabilizer of x and y (as above) is trivial even in the group SO(N |Pu(H)), and the tran-

sitivity assertion from 2.6.b yields that the group of inner automorphisms coincides with

SO(N |Pu(H)).

If charK 6= 2 it remains to show that no element of the coset O(NPu(H)) r SO(NPu(H))
is induced by an element of Aut(H). As the involution x 7→ x̃ is not an automorphism but

represents the coset this is another consequence of the fact that each element of SO(N |Pu(H))
is induced by an inner automorphism.

Similitudes of quadratic forms

2.9 Definition. Let q : V → K be a quadratic form. A similitude of q with multiplier r is a

linear bijection λ : V → V such that q(λ(v)) = rq(v) holds for each v ∈ V . The set GO(q) of

all similitudes forms a subgroup of GL(V ).

If q 6= 0 then every multiplier is non-zero. In this case, mapping λ ∈ GO(q) to its multi-

plier µλ gives a group homomorphism µ : GO(q) → K× called the multiplier map.

The range of the multiplier map contains K× because s id is a similitude with multiplier s2.

Every diagonalizable quadratic form q : V → K over a field K of characteristic 2 is additive.

Regarding K as a vector space over K we may then view q as a semilinear map with respect

to the field isomorphism ϕ : K → K : x 7→ x2. The form q is non-degenerate if, and only if,

the kernel of this semilinear map is trivial. Thus the form is non-degenerate precisely if it is

anisotropic.

2.10 Theorem. Let q : V → K be a diagonalizable non-degenerate quadratic form over a field K

with charK = 2.

a. The form q is anisotropic and O(q) is trivial.

b. The subset {0} ∪ GO(q) of EndK(V ) is a field, and the multiplier map µ extends to an

isomorphism onto the subfield M := {0} ∪ {µ(λ) | λ ∈ GO(q)} of K.

1 This precaution is only relevant if charK = 2.
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c. We have K ≤ M and M/K is a purely inseparable extension.

d. If dimK V is finite then dimK V = (dimM V )(dimK M) and dimK M is a power of 2.

e. In particular, if dimK V is odd then GO(q) = K× id = µ−1(K×).
f. In any case, the group GO(q) acts regularly on V r {0}. In particular, if G ≤ GO(q) is

transitive on V r {0} then G = GO(q).

Proof. Every isotropic vector belongs to the kernel of the semi-linear map q. This kernel

coincides with the radical of q because the form is diagonal. Thus q is an injective map. This

yields that O(q) is trivial, as claimed.

For similitudes λ, σ ∈ GO(q) and v ∈ V we compute q ((λ+ σ)(v)) = q (λ(v)) + q (σ(v)) =
µ(λ) q(v) + µ(σ) q(v) = (µ(λ) + µ(σ)) q(v). This shows that λ+ σ is a similitude with multi-

plier µ(λ) + µ(σ) unless µ(λ) = µ(σ). In the latter case we have λσ−1 ∈ O(q) and λ = σ by

assertion a. Thus {0} ∪ GO(q) ⊆ EndK(V ) is additively closed and µ extends to an additive

map onto M. Since µ is multiplicative anyway, this extension is a field isomorphism.

The similitudes in K× id are mapped to the elements of K× under µ. For every m ∈ M the

minimal polynomial over K divides X2 −m2 ∈ K [X], and assertion c is proved.

From assertion c we infer that every intermediate field between K and M either has

infinite degree over K or that degree is a power of 2. This gives the last two assertions d

and e.

The last assertion follows from the fact that O(q) is trivial.

2.11 Example. Let L/K be a purely inseparable extension with charK = 2. Then L ≤ K

and the norm NL/K(x) : L → K : x 7→ x2 is a quadratic form. This form is diagonal, and

GO(NL/K) = L× by 2.10.f. Forms of this type will occur in Section 6 below.

The following observation will be useful because it constrains the orbits under groups of

similitudes.

2.12 Lemma. Let q : V → K be a non-degenerate quadratic form, and assume that dimV is

odd. Then every multiplier is a square, and GO(q) = K× SO(q).

Proof. Assume first that charK 6= 2. Then the set of all determinants of Gram matrices for q
is a square class which we denote by disc q, and a similitude λ with multiplier s will multiply

disc q by (detλ)2. On the other hand, we have disc(sq) = sdimV disc q. Since dimV is odd,

we immediately obtain that s is a square.

If charK = 2 and the form is not diagonalizable then the Gram matrix cannot be chosen

in such a way that this choice is invariant under linear transformations. However, the polar

form fq is alternating in that case, and has even rank. The radical V ⊥ of the polar form is

invariant under any similitude, and has odd dimension because dimV is odd. The restriction

of q to V ⊥ is diagonalizable, and we know from 2.10 that s is a square in this case, too.

For any µ ∈ GO(q) with multiplier s2 we note that s−1µ belongs to O(q), and O(q) =
SO(q) ∪ (−id) SO(q). Thus the last assertion follows.

If dimV is even, the situation is more involved: depending on the form and the field in

question, non-squares may occur as multipliers.

2.13 Corollary. For any quaternion field H we have

GO(N |Pu(H)) = K×SO(N |Pu(H)) =
{
(x 7→ saxa−1)

∣∣ a ∈ H×, s ∈ K×
}

=
{
(x 7→ saxã)

∣∣ a ∈ H×, s ∈ K×
}
.
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3. Classification of reduced Heisenberg algebras

We need some explicit notation for the action of GLnK on Kn ∧Kn.

3.1 Notation. Let K be a field, and let b0, . . . , bn−1 denote the standard basis for Kn. We

will think of elements v =
∑

j<n vjbj ∈ Kn as columns, the transpose is written v′ :=
(v0, . . . , vn−1). For v,w ∈ Kn we obtain the decomposable tensor v ⊗ w := vw′ = (vjwk)j,k<n.

The elements bj ⊗ bk, with j, k < n, form the standard basis for the space Kn×n of (n × n) –

matrices with entries from K.

The set of alternating tensors is the linear span Kn∧Kn of the elements of the form v∧w :=
v⊗w−w⊗v. These are the skew-symmetric matrices with zero diagonal (the latter condition

follows from the former unless charK = 2). The elements Sj
k := bj ∧ bk with 0 ≤ j < k < n

form a basis for Kn ∧ Kn. With the bilinear map η : Kn × Kn → Kn ∧ Kn : (v,w) 7→ v ∧ w,

we have (Kn ∧ Kn, η) as an explicit model for the exterior product, satisfying the universal

property: for every alternating bilinear map β : V × V → Z, there is a unique linear map

β̂ : Kn ∧Kn → Z such that β = β̂ ◦ η.

The linear action of the group GLnK on Kn induces a linear action on the tensor product:

ω : GLnK× (Kn ⊗Kn) → Kn ⊗Kn : (A,M) 7→ AMA′ .

Obviously, the set Kn ∧Kn is invariant under this action. We write A.X := AXA′.

3.2 More Notation. The space K2 ∧K2 is spanned by i :=
(

0 1
−1 0

)
= (1, 0)′ ∧ (0, 1)′. We will

use this notation for blocks in elements of K4 ∧ K4 later on. By Ej we denote the identity

matrix in Kj×j.

3.3 The Pfaffian Form and the Klein Quadric. We will be interested in the Grassmann

space Gr∧d,4 of d-dimensional subspaces of K4 ∧K4, where d ∈ {1, 2, 3, 4, 5}. Note that ω
induces an action on each one of the Grassmann spaces. The following belongs to classical

line geometry; details and proofs may also be found in [19].

The group GL4K acts with exactly three orbits on K4 ∧ K4, represented by 0, S0
1 and

S0
1 + S2

3 . Therefore, there are two orbits on Gr∧1,4. The orbit of 〈S0
1〉K consists of subspaces

〈X〉K with X ∈ K4 ∧ K4 r {0} and detX = 0. We use the basis S0
1 , S

0
2 , S

0
3 , S

1
2 , S

1
3 , S

2
3 to

introduce homogeneous coordinates [x0, . . . , x5] for 〈X〉K, where

X = x0S
0
1 + x1S

0
2 + x2S

0
3 + x3S

1
2 + x4S

1
3 + x5S

2
3 =




0 x0 x1 x2
−x0 0 x3 x4
−x1 −x3 0 x5
−x2 −x4 −x5 0


 .

The orbit of 〈S0
1〉K may then be described as the quadric Q (known as the Klein quadric)

defined by the Pfaffian form pf(x0, x1, x2, x3, x4, x5) := x0x5 − x1x4 + x2x3, cf. [3, §5, no. 2].

This is a quadratic form of Witt index 3 on K4∧K4. The complement of Q is the second orbit

in Gr∧1,4.

We re-arrange the basis, using S0
1 , S

0
2 , S

0
3 , S

2
3 ,−S1

3 , S
1
2 . With respect to the new basis, the

Pfaffian form itself may be described as pf(v) = v′Mpfv, and the polar form fpf becomes

fpf(v,w) = v′Jw with the Gram matrix J , where Mpf , J ∈ K6×6 are defined as Mpf :=
(
0 E3

0 0

)

and J :=Mpf +M ′
pf :=

(
0 E3

−E3 0

)
.

The group GL4K acts by similitudes with respect to pf. This yields a homomorphism δ from

GL4K to GO(pf) with kernel {id,−id}. We will use the induced groups PGL4K and PGO6K
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on the projective spaces (or on the quadric): the homomorphism δ induces an isomorphism

from PGL4K onto a subgroup PGO+(pf) of index 2 in PGO(pf), see [19, 3.11].

The Klein quadric provides a model for the space L of lines in the 3-dimensional projective

space over K via the bijection λ : L → Q : 〈u, v〉K 7→ 〈u∧v〉K. This can be used to understand

the action of GL4K as PGO+(pf), cf. [19, 3.4 ff]:

3.4 Lemma. a. The group GL4K acts with precisely three orbits on the set of pairs of lines,

represented by the pairs (L0, L0), (L0,K0), and (L0,K1), where L0 := 〈b0, b1〉K and

Kj := 〈b0 + jb2, b3〉K.

b. Two lines K,L ∈ L share a point if, and only if, their images λ(K) and λ(L) are orthogo-

nal with respect to q.
c. The maximal totally singular subspaces with respect to q are just the images of maxi-

mal sets of pairwise confluent lines. There are two types of such sets: pencils Lp :={
L ∈ L | p < L

}
and, dually, line sets of planes LP :=

{
L ∈ L | L < P

}
.

d. The action of GL4K on the set M3 of maximal totally singular subspaces has two orbits,

represented by λ(Lp) = 〈S0
1 , S

0
2 , S

0
3〉K and J(λ(Lp)) = λ(LP ) = 〈S1

2 , S
1
3 , S

2
3〉K, where

p = 〈b0〉K, and P = 〈b1, b2, b3〉K.

e. The group GL4K acts transitively on the set M2 of 2-dimensional maximal totally singular

subspaces. We may use λ(Lp) ∩ λ(LP ′) = 〈S0
1 , S

0
2〉K as a representative.

The orbits on Gr∧2,4, Gr∧3,4, Gr∧4,4 and Gr∧5,4 (i.e., on the sets of lines, planes, three-spaces,

and hyperplanes, respectively, in the projective space P coordinatized by K4 ∧ K4) may be

described using the Klein quadric Q. We introduce some more notation.

3.5 Definitions. We consider the following lines in P:

E := 〈S0
1 , S

0
2〉K, T := 〈S0

1 , S
0
3 + S1

2〉K, and S := 〈S0
1 , S

2
3〉K .

The orthogonal spaces (with respect to q) are

E⊥ = 〈S0
1 , S

0
2 , S

0
3 , S

1
2〉K ,

T⊥ = 〈S0
1 , S

0
2 , S

0
3 − S1

2 , S
1
3〉K

and S⊥ = 〈S0
2 , S

0
3 , S

1
2 , S

1
3〉K , respectively.

We will also use the planes

F := 〈S0
1 , S

0
2 , S

0
3〉K , E + T := 〈S0

1 , S
0
2 , S

0
3 + S1

2〉K ,
E + S := 〈S0

1 , S
0
2 , S

2
3〉K , T + S := 〈S0

1 , S
0
3 + S1

2 , S
2
3〉K .

With respect to the given bases, the restriction of pf to the subspace X may be described by

an upper triangular matrix mX , where

mE =

(
0 0
0 0

)
, mT =

(
0 0
0 1

)
, mS =

(
0 1
0 0

)
, mF =




0 0 0
0 0 0
0 0 0


 ,

mE+T =




0 0 0
0 0 0
0 0 1


 , mE+S =




0 0 1
0 0 0
0 0 0


 , mT+S =




0 0 1
0 1 0
0 0 0


 ,
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mE⊥ =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , mT⊥ =




0 0 0 0
0 0 0 −1
0 0 1 0
0 0 0 0


 , mS⊥ =




0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0


 .

Note that the Gram matrix for the polar form of the restriction is mX + (mX)′.

In order to describe certain subspaces that have only a small intersection with the Klein

quadric, we use

P t
a,c :=

〈
S0
1 + aS2

3 , S
0
3 + cS1

2 + tS2
3

〉
K

P t
a,b,c :=

〈
S0
1 + aS2

3 , S
0
2 − bS1

3 , S
0
3 + cS1

2 + tS2
3

〉
K
.

The following has been proved in [19, 5.6].

3.6 Theorem. a. The GL4K-orbits in Gr∧1,4 are represented by 〈S0
1〉K and 〈S0

1 + S2
3〉K.

b. The GL4K-orbits in Gr∧2,4 are represented by a set {E,T, S} ∪ P1, where P1 denotes a

(possibly empty) set of nonsingular lines.

c. The GL4K-orbits in Gr∧3,4 are represented by a set {F, J(F ), E+T,E+S, T+S}∪P2∪P3,

where P2 denotes a (possibly empty) set of nonsingular planes, and P3 is a (possibly

empty) set of planes of the form 〈S0
2〉K + ℓ, where ℓ is a nonsingular line contained in

(S0
2)

⊥.

d. The GL4K-orbits in Gr∧4,4 are represented by U⊥ := {U⊥ | U ∈ U}, where U is an arbi-

trary set of representatives in Gr∧2,4.

e. The GL4K-orbits in Gr∧5,4 are represented by 〈S0
1〉⊥K and 〈S0

1 + S2
3〉⊥K .

For ker β̂ ∈ {F,E⊥, 〈S0
1〉⊥K} the Heisenberg algebra gh(K4, (K4 ∧K4)/ ker β̂, β) is not reduced.

If ker β̂ runs over the remaining representatives we obtain a complete system of pairwise non-

isomorphic reduced Heisenberg algebras of dimension 4 modulo their center.

3.7 Remarks. One may always choose P1 ∪ P2 ∪ P3 using members from the collection of

spaces P t
a,c or P t

a,b,c (in fact, we could choose all our representatives to be of this form, but

prefer E, S and T ). We indicate some special cases, cf. [19, 5.3]:

a. If K is a euclidean field (e.g. K = R) we may choose P1 := {P 0
1,1}, P2 := {P 0

1,1,1}, and

P3 := {P 0
1,0,1}.

b. Let d, t be chosen such that the restriction of pf to P t
1,d is anisotropic. ThenX2+tX+d is

an irreducible polynomial over K. The Heisenberg algebras corresponding to the spaces(
P 0
1,d

)⊥
= 〈S0

2 , S
1
3 , S

0
1 −S2

3 , S
0
3 − dS1

2〉K and
(
P 1
1,d

)⊥
= 〈S0

2 , S
1
3 , S

0
1 −S2

3 −S1
2 , S

0
3 − dS1

2〉K
may be interpreted as Heisenberg algebras of dimension 3 over the field extension L

obtained by adjoining a root of X2+ tX+d to K, cf. [19, 8.3]. In 5.3 below we give an

explicit construction, starting from an embedding of L into the ring K2×2 and such that

the corresponding embedding of GL2L by block matrices in GL4K leaves a suitable

element of the orbit of P t
1,d invariant. This explicit description also helps to understand

the elements of P3, see 5.4 below.

c. There is a connection between nonsingular subspaces of dimension 3 and Heisenberg

algebras defined using a quaternion field over K, see [19, 8.4] and Section 6 below. If

charK 6= 2 then every anisotropic subspace of dimension 3 in K4 ∧ K4 belongs to the

orbit of P 0
1,u,v for suitable u, v ∈ K (see [19, 8.6]), and thus to the orbit of ker β̂H for

the quaternion field H := H
u,v
K . This connection allows to describe the relevant part of

the automorphism groups of these Heisenberg algebras, see 6.6 and 6.10 below.
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d. If K is quadratically closed (e.g., if K = C) then there are no nonsingular lines, and

each of the sets Pj is empty.

e. If K is finite we may chose P1 = {P t
1,d}, P2 := ∅, and P3 := {P t

1,0,d}, for any irreducible

polynomial X2 + tX + d over K.

4. The cases where Σβ can be computed directly

In order to determine Aut(gh(V,Z, β)) for a reduced Heisenberg algebra gh(V,Z, β) it suf-

fices to determine Σβ. This is comparatively easy if V = K4 and the kernel of β̂ is one of

the “generic” subspaces2 of K4 ∧K4, i.e., belongs to the orbit of 〈S0
1〉K, 〈S0

1 + S2
3〉K, E, T , S,

J(F ), E + T , E + S, T + S, or the orthogonal space of one of 〈S0
1〉K, 〈S0

1 + S2
3〉K, E, T , or S.

In fact, each of these spaces (except 〈S0
1 +S2

3〉K) has considerable intersection with the Klein

quadric, and this intersection is invariant under the stabilizer Σβ. The resulting conditions

mean that Σβ ≤ GL4K fixes a certain system of lines of the 3-dimensional projective space

in each of these cases; and this allows to determine Σβ. Details are given in this section.

The situation is more complicated if β̂ meets the Klein quadric in only a few points, or

none at all. This situation requires the existence of anisotropic forms in 2 or 3 variables; thus

it only occurs for specially chosen fields, and is not “generic”. We postpone the discussion of

these cases to Sections 5 and 6 where we will use field extensions and quaternion algebras

associated to these anisotropic forms to determine Σβ.

For any subspace X ≤ K4 ∧ K4 the orthogonal space X⊥ has the same stabilizer because

GL4K acts by similitudes. In most of the following cases, the transitivity assertions that

are implicit in the statements about the orbit representatives are easy to check by a direct

computation: one has to apply the respective stabilizer to the given representatives.

4.1 Proposition. The stabilizer of 〈S0
1〉K is the stabilizer of the line 〈b0, b1〉K = λ−1(S0

1):

(GL4K)〈S0

1
〉
K

=

{(
A B
0 C

) ∣∣∣∣ A,C ∈ GL2K, B ∈ K2×2

}
= (GL4K)〈S0

1
〉⊥
K

.

The orbits of this stabilizer on K4 are represented by 0, b0, b2, those on (K4 ∧ K4)/〈S0
1 〉K by

〈S0
1〉K, S0

2 + 〈S0
1〉K, S0

2 + S1
3 + 〈S0

1〉K, S2
3 + 〈S0

1〉K and those on (K4 ∧ K4)/〈S0
1〉⊥K by 〈S0

1〉⊥K,

S2
3 + 〈S0

1〉⊥K .

The space 〈S0
1 + S2

3〉K will be considered next. This describes a point outside the Klein

quadric Q but the orthogonal space 〈S0
1 +S2

3〉⊥K has large intersection with Q. The treatment

will be complicated; this is due to the fact that we discuss the representation of Sp4K as a

group of orthogonal transformations on a space of dimension 5 (which is, indeed, the space

〈S0
1+S

2
3〉⊥K). This representation gives rise to one of the interesting exceptional isomorphisms

between classical groups, corresponding to the isomorphism of simple Lie algebras of types

C2 and B2.

4.2 Proposition. The stabilizer of 〈S0
1 + S2

3〉K is a conjugate of that of N := 〈S0
2 + S1

3〉K, and

(GL4K)N =





(
A B
C D

) ∣∣∣∣∣∣

A,B,C,D ∈ K2×2,
AB′ −BA′ = 0 = CD′ −DC ′

∃s ∈ K× : AD′ −BC ′ = sE2



 = (GL4K)N⊥ .

2We only consider subspaces that belong to reduced Heisenberg algebras, and ignore F , E⊥, 〈S0

1〉
⊥

K , cf. 3.6.
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This is the group GSp4K of all similitudes of the non-degenerate alternating form mapping

(x, y) ∈ K4 × K4 to x′(S0
2 + S1

3)y. The group GSp4K acts transitively both on K4 r {0}
and on

(
(K4 ∧K4)/N⊥

)
r {0}. In order to describe the orbits on N , on the orthogonal space

N⊥ = 〈S0
1 , S

0
2 −S1

3 , S
0
3 , S

2
3 , S

1
2〉K, and on (K4 ∧K4)/N we choose a set R∗ of representatives for

the cosets forming the multiplicative group K×/K× of square classes; here K× := {s2 | s ∈ K×}
is the multiplicative group of squares. If charK = 2 we need to pick a set R+ of representatives

for the orbits of K× on the additive group K/K where K := {x2 | x ∈ K} is the subfield of

squares, and a set R℘ of representatives for the cosets in the additive group K/℘, cf. 2.1.

We have to distinguish cases:

a. If an orbit of GSp4K on K4 ∧ K4 contains an element X with q(X) 6= 0 then q assumes

on that orbit only values from a single square class.

b. If charK 6= 2 then the orbits on (K4 ∧ K4)/N are represented by the elements of the set

R∗ := {N} ∪ {S0
1 + rS2

3 +N | r ∈ R∗ ∪ {0}}.

c. If charK = 2 then the orbits in N⊥/N are represented by the elements of R+ := {N} ∪{
(S0

1 + rS2
3) +N

∣∣ r ∈ R+

}
, and those in

(
(K4 ∧K4)/N

)
r
(
N⊥/N

)
are represented by

R℘ := {S1
3 +N} ∪

{
S1
3 + (S0

1 + rS2
3) +N

∣∣ r ∈ R℘

}
.

d. In any case, the orbits on N are represented by
{
r(S0

2 + S1
3)

∣∣ r ∈ R∗ ∪ {0}
}

.

Note that R+ is an infinite set whenever K is not a perfect field: the additive group of K

forms a vector space over the subfield K of squares; in the corresponding affine space the set

R+ represents the line K 1 and the K -planes through that line.

The set R℘ can be chosen inside K because r2 belongs to r + ℘.

Proof. Only the assertions about the orbits need a proof. For the sake of easy reference later

on, we note that the stabilizer of N contains the subgroups

∆ :=

{(
aA 0
0 (A−1)′

) ∣∣∣∣
A ∈ GL2K

a ∈ K×

}
, Λ :=

{(
E2 0
X E2

) ∣∣∣∣
X ∈ K2×2

X ′ = X

}
, Υ := Λ′ .

It is well known3 that Sp4K acts transitively on K4 r {0}. We offer a direct argument: let

x, y ∈ K2 and assume that not both of these vectors are 0. Our claim then is that there exists(
A B
C D

)
∈ Sp4K ⊆ GSp4K mapping ( xy ) to (1, 0, 0, 0)′ . If y = 0 we choose A ∈ GL2K with

Ax = ( 10 ), put D := (A′)−1 and B = 0 = C. If y 6= 0 we find B ∈ GL2K such that By = ( 10 ),
and a symmetric matrix S ∈ K2×2 with S ( 10 ) = −(B′)−1x. Now A := 0, C := −(B′)−1 and

D := −SB yields an element of Sp4K with the required properties.

The cosets in (K4∧K4)/N⊥ are represented by elements of 〈S0
2〉K; the nontrivial represen-

tatives are in a single orbit under the subgroup
{(

sE2 0
0 E2

) ∣∣∣ s ∈ K×
}

of GSp4K. The same

subgroup also shows that
{
r(S0

2 + S1
3)

∣∣ r ∈ R∗ ∪ {0}
}

contains a set of representatives for

the orbits on N . Different elements of this set can not be fused into the same orbit because

the values q(r(S0
2+S

1
3)) = −r2 all belong to the same square class; and assertion d is proved.

We note that this observation also implies assertion a: On each GSp4K-orbit on K4 ∧K4 the

form q assumes only values from a single square class, or only the value 0.

It remains to determine the orbits on (K4 ∧ K4)/N . We consider an arbitrary element

M =
(

ai B
−B′ ci

)
of K4 ∧ K4. Note that q(M) = ac − detB. Assume first M ∈ N⊥; then

B ∈ K2×2 has trace 0 and −B′i is symmetric. We search for a representative with B = 0 in

the orbit of M , so assume B 6= 0.

3From Witt’s Theorem, see [15] §9 or [5] § 11, p. 21 and § 16, p. 35, cf. [20] 7.4 or [1] Thm. 3.9 for charK 6= 2.
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If a 6= 0 we use
(

E2 0
−a−1B′i E2

)
∈ Λ to transform M into

(
ai 0
0 di

)
, where d = c − a−1 detB.

A suitable element of ∆ maps this into an element of
{
S0
1 + rS2

3

∣∣ r ∈ R∗ ∪ {0}
}

. The case

a = 0 6= c is reduced to the previous one by an application of
(

0 E2

−E2 0

)
∈ GSp4K.

If a = 0 = c we may assume that B is not a scalar multiple of E2 because otherwise M
belongs to 0+N ∈ R∗. We pick a symmetric matrix X such that BX is not symmetric. Then(

E2 X
0 E2

)
∈ Υ can be used to transform M into a matrix with a 6= 0.

Thus we have shown that R∗ contains a full set of representatives for the orbits of cosets

of elements in (N⊥ +N)/N .

If charK 6= 2 then the orthogonal space is a complement to N and of course invariant

under the stabilizer of N . Different elements of R∗ belong to different orbits because their

images under q belong to different square classes (cf. assertion a), and assertion b of the

theorem is established.

The situation changes in two respects if charK = 2: since N ≤ N⊥ it is possible that

different elements of R∗ belong to the same orbit, and we have to consider representatives

outside N⊥ as well.

We apply
(

E2 0
a2i E2

)
∈ Λ to (S0

1 + rS
2
3)+N and obtain (S0

1 +(r+a2)S2
3)+a(S

0
2 +S

1
3)+N =

(S0
1 + (r + a2)S2

3) +N . This shows that the orbits in N⊥/N are represented by the elements

of {N} ∪
{
(S0

1 + rS2
3) +N

∣∣ r ∈ R+

}
, as claimed.

In order to treat orbits without representatives in N⊥ we consider M =
(

ai T
−T ′ ci

)
where

the trace t of T is different from 0. We write p := ( 0 0
0 1 ) and find that B := T − tp has trace 0;

thus Bi is symmetric.

If a 6= 0 we use
(

E2 0
−a−1B′i E2

)
∈ Λ to find

(
ai tp
−tp di

)
in the orbit of M . Now we use

A :=
(

t−1 0
0 t−1a

)
∈ GL2K and

(
tA 0
0 A

)
∈ ∆ to transform

(
ai tp
−tp di

)
to

(
i p

−p si

)
with s = t−2ad.

As above, the cases with a = 0 are reduced to this case; note that T /∈ KE2.

It remains to identify sets of representatives from T+ :=
{
(S0

1 + rS2
3) +N

∣∣ r ∈ K
}

and

T℘ := {S1
3 + N} ∪

{
S1
3 + (S0

1 + rS2
3) +N

∣∣ r ∈ K
}

. Since N⊥ is invariant under the action,

we know that an element of T+ is never in the orbit of an element of T℘.

We compute q
(
aS1

3 + (S0
1 + rS2

3) +N
)
=

{
r + u2 + au

∣∣ u ∈ K
}

. Since GSp4K can change

the values of the Pfaffian form only by square factors we know that aS1
3 + (S0

1 + rS2
3) + N

and aS1
3 + (S0

1 + tS2
3) +N can only belong to the same orbit if there exists v ∈ K× such that

v2t = r + u2 + au.

If a = 0 we apply the element
(

E2 0
0 vE2

)
∈ ∆ to see that indeed the elements (S0

1+rS
2
3)+N

and (S0
1 + tS2

3) + N belong to the same orbit if s ∈ K×(r + K ). Thus we have proved that

R+ represents the orbits inside T+.

If a = 1 we use F :=
(

E2 0
ui E2

)
which belongs to Λ because charK = 2, and observe

F
(
S1
3 + (S0

1 + rS2
3)
)
F ′ = S1

3 + S0
1 + (r − u2)S2

3 + u(S0
2 + S1

3) = S1
3 + S0

1 + tS2
3 + u(S0

2 + S1
3)

as required.

Finally, assume that S1
3 + (S0

1 + rS2
3) + N and S1

3 + (S0
1 + tS2

3) + N belong to the same

orbit under the stabilizer of N . Then there exists a multiplier u2 ∈ K× such that r + ℘ =
q
(
S1
3 + (S0

1 + rS2
3) +N

)
= u2 q

(
S1
3 + (S0

1 + tS2
3) +N

)
= u2t + u2℘. This yields ℘ = u2℘.

We claim that u = 1 if r + ℘ 6= t+ ℘. In fact, for each x ∈ K we have u2(x2 + x) ∈ u2℘ = ℘
and then (u + 1)ux = u2(x2 + x) +

(
(ux)2 + (ux)

)
∈ ℘ + ℘ = ℘. Thus (u + 1)uK ⊆ ℘, and

(u + 1)u = 0 follows because r + ℘ 6= t + ℘ implies ℘ 6= K. Now u = 1 is the only solution

for (u+ 1)u = 0 in K×.
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4.3 Proposition. The stabilizer (GL4K)E of E coincides with the stabilizer of the point-plane

flag (〈b0〉K, 〈b0, b1, b2〉K). Thus

(GL4K)E =








a b′ c
0 D e
0 0 f




∣∣∣∣∣∣
a, c, f ∈ K, af 6= 0,
b, e ∈ K2, D ∈ GL2K



 = (GL4K)E⊥ .

The orbits on K4 are represented by 0, b0, b1, b3, those on (K4 ∧ K4)/E are represented by E,

S0
3 +E, S1

2 + E, S1
3 + E, and those on (K4 ∧K4)/E⊥ by E⊥, S1

3 + E⊥.

Proof. The statement about the stabilizer follows from the fact that E corresponds (via λ,

see 3.4.e) to the set of lines passing through 〈b0〉K and lying in the plane 〈b0, b1, b2〉K.

4.4 Proposition. The stabilizer (GL4K)T of T is

(GL4K)T =

{(
A B
0 cσAσ

) ∣∣∣∣
A ∈ GL2K, B ∈ K2×2,
c ∈ Kr {0}

}
= (GL4K)T⊥ ,

where σ =
(
1 0
0 −1

)
. The orbits on K4 are represented by 0, b0, b3, those on (K4 ∧ K4)/T are

represented by T , S0
2+T , S0

3+T , S1
3+T , and those on (K4∧K4)/T⊥ by T⊥, S0

3+T
⊥, S2

3+T
⊥.

Proof. The intersection of T with the Klein quadric is the single point 〈S0
1〉K. Thus the stabi-

lizer of T leaves the line 〈b0, b1〉K invariant, and

(GL4K)T ≤
{(

A B
0 C

) ∣∣∣∣ A,C ∈ GL2K, B ∈ K2×2

}
.

Evaluating the requirement
(
A B
0 C

)
.(S0

3 + S1
2) =

(
A B
C D

)
∈ 〈S0

1 , S
0
3 + S1

2〉K

gives the condition C ∈ K×σAσ, as claimed. In order to see that the orbits of S0
3 + T⊥ and

S2
3 + T⊥ are large enough, it is helpful to observe

(
A 0
0 σAσ

)
.S0

3 ∈ (detA)S0
3 + T⊥, and to use

B =
(
f 0
0 0

)
σAσ.

4.5 Proposition. The stabilizer (GL4K)S of S is

(GL4K)S =

{(
A 0
0 B

) ∣∣∣∣ A,B ∈ GL2K

}
∪
{(

0 A
B 0

) ∣∣∣∣ A,B ∈ GL2K

}
= (GL4K)S⊥ .

The orbits on K4 are represented by 0, b0, b0 + b2, those on (K4 ∧ K4)/S are represented by S,

S0
2 + S, S0

2 + S1
3 + S, and those on (K4 ∧K4)/S⊥ by S⊥, S0

1 + S⊥, S0
1 + S2

3 + S⊥.

Proof. The description of the stabilizer follows immediately from the observation that S
meets the Klein quadric in exactly two points, corresponding to the two lines 〈b0, b1〉K and

〈b2, b3〉K, respectively.

4.6 Proposition. The stabilizer (GL4K)J(F ) of J(F ) = 〈S1
2 , S

1
3 , S

2
3〉K coincides with the stabi-

lizer of the plane (〈b1, b2, b3〉K). Thus

(GL4K)J(F ) =

{(
a 0
b C

) ∣∣∣∣ a ∈ Kr {0}, b ∈ K3, C ∈ GL3K

}
.

The orbits on K4 are represented by 0, b1, b0, and those on (K4 ∧ K4)/J(F ) are represented by

J(F ), S0
1 + J(F ).
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Proof. This follows from the fact (see 3.4.d) that J(F ) corresponds to the set of all lines in

the plane P = 〈b1, b2, b3〉K.

4.7 Proposition. The stabilizer of E + T is

(GL4K)E+T =








a b′ c
0 D e
0 0 1

a detD




∣∣∣∣∣∣
a, c ∈ K, a 6= 0,
b, e ∈ K2, D ∈ GL2K



 .

The orbits on K4 are represented by 0, b0, b1, b3, and the orbits on (K4 ∧ K4)/(E + T ) are

represented by E + T , S0
3 + (E + T ), S1

3 + (E + T ).

Proof. The intersection of E + T with the Klein quadric is just E. Thus (GL4K)E+T is con-

tained in (GL4K)E , see 4.3. Evaluating the condition




a b′ c
0 D e
0 0 f


 .(S0

3 + S1
2) =




a b′ c
0 D e
0 0 f







0 0 1
0 i 0
−1 0 0







a 0 0
b D′ 0
c e′ f


 ∈ E + T

we obtain the description of the stabilizer.

4.8 Proposition. The stabilizer (GL4K)E+S of E + S is

(GL4K)E+S =








a b 0 c
0 d 0 0
0 e f g
0 0 0 h




∣∣∣∣∣∣∣∣

a, d, f, h ∈ K×

b, c, e, g ∈ K




∪








0 c a b
0 0 0 d
f g 0 e
0 h 0 0




∣∣∣∣∣∣∣∣

b, d, e, h ∈ K×

a, c, f, g ∈ K




.

This group has 5 orbits on K4, represented by 0, b0, b0 + b2, b0 + b2 + b3, b1 + b3, and 4 orbits

on (K4 ∧K4)/(E + S), represented by E + S, S0
3 + (E + S), S1

3 + (E + S), S0
3 + S1

2 + (E + S).

Proof. The plane E + S meets the Klein quadric in two lines, namely E and 〈S0
2 , S

2
3〉K. Thus

the stabilizer fixes their intersection point 〈S0
2〉K which corresponds to the line 〈b0, b2〉K while

the planes 〈b0, b1, b2〉K and 〈b0, b2, b3〉K are either swapped or left invariant. Now easy calcu-

lations yield the stabilizer.

Instead of T +S, we consider a different representative of the orbit GL4K.(T +S), namely

K := 〈S0
2 , S

0
3 + S1

2 , S
1
3〉K =

{(
0 X

−X 0

) ∣∣ X ∈ K2×2,X ′ = X
}

. Note that the orthogonal spaces

(T + S)⊥ and K⊥ = 〈S0
1 , S

0
3 − S1

2 , S
2
3〉K belong to the orbit of T + S, as well.

4.9 Proposition. The stabilizer (GL4K)T+S of T +S is a conjugate of (GL4K)K = Φ∆, where

Φ :=








a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d




∣∣∣∣∣∣∣∣

(
a b
c d

)
∈ GL2K




, ∆ :=

{(
A 0
0 A

) ∣∣∣∣ A ∈ GL2K

}
.

Note that Φ and ∆ centralize each other, their intersection is the center of GL4K, and each of

these factors is isomorphic to GL2K.

The orbits of Φ∆ on K4 are represented by 0, b0, b0 + b3. In order to understand the orbits

on (K4 ∧ K4)/K, we have to consider the multiplicative group K× of squares, pick a set R∗ of

representatives for the group K×/K× of square classes, and distinguish the cases:
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a. If charK 6= 2 then the orbits on (K4 ∧K4)/K are represented by the elements of the set

{0} ∪
{
S0
2 + rS1

3 +K
∣∣ r ∈ R∗ ∪ {0}

}
.

b. If charK = 2 we also need a set R℘ of coset representatives for the additive group K/℘,

cf. 2.1. The orbits on (K4 ∧K4)/K are represented by the elements of the set

{0} ∪
{
S0
2 + rS1

3 +K
∣∣ r ∈ R∗ ∪ {0}

}
∪
{
S0
1 + S0

3 + cS2
3

∣∣ c ∈ R℘

}
.

Proof. First of all, we remark that




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


 and




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




map T + S to K and K⊥, respectively. It is easy to check that Φ and ∆ are subgroups of

(GL4K)K . The plane K intersects the Klein quadric in the non-degenerate conic

C :=
{〈(

0 X
−X 0

)〉
K

∣∣ X ′ = X 6= 0,detX = 0
}
.

The group Φ∆ acts on C via
(
a b
c d

)(
A 0
0 A

)
.

(
0 X

−X 0

)
= (ad− bc)

(
0 AXA′

−AXA′ 0

)
.

It is easy to see that this action of ∆ on C is sharply 3-transitive; in fact, we have given here

an explicit representation of PGL2K as the group of similitudes of the quadratic form det on

the space of symmetric 2× 2 matrices yielding a sharply 3-transitive action on the conic.

The stabilizer of the three points 〈S0
2〉K, 〈S1

3〉K, and 〈S0
2 + S0

3 + S1
2 + S1

3〉K in (GL4K)K is

the group Φ. Thus we have (GL4K)K = Φ∆, as claimed.

In order to understand the action of Φ∆ on (K4∧K4)/K, we first describe quadratic forms

on K2 by upper matrices: For X := ( r s
t u ) we put qX : v 7→ v′Xv and X̂ :=

(
r s+t
0 u

)
. Clearly

we have qX = q
X̂

, and a basis transformation v 7→ Bv transforms qX to qB′XB .

For the cosets in (K4 ∧K4)/K we use representatives of the form

ρ ( x y1
y2 z ) := xS0

1 + (y1 + y2)S
0
3 + zS2

3 =




0 x 0 y1 + y2
−x 0 0 0
0 0 0 z

−y1 − y2 0 −z 0


 .

Note that ρ(X) = ρ(X̂) holds for each X ∈ K2×2. A straightforward computation gives

(B,A).X̂ − det(A) B̂XB′ ∈ K for each pair (B,A) ∈ Φ × ∆. Thus the action of Φ∆ on

(K4 ∧K4)/K is equivalent to the action on the space of quadratic forms on K2.

If charK 6= 2 every quadratic form qX is diagonalizable: i.e., there exists B ∈ GL2K with

B̂XB′ = ( r 0
0 u ) with r, u ∈ K. If the form is non-zero, we may also assume r 6= 0. Replacing

the second basis vector by a scalar multiple just multiplies u by the square of that factor.

Choosing A such that detA = r−1 gives the assertion for charK 6= 2.

If charK = 2 we have to distinguish between diagonalizable forms (where the equivalence

classes are again described by the square classes) and non-diagonalizable forms. Since the

action of Φ∆ allows to pick representatives that assume the value 1, the latter orbits are

characterized by the Arf invariant, see 2.2. This yields the assertion for charK = 2.
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For the case where charK 6= 2, we obtain an alternative description of (GL4K)T+S in 6.15

below, in terms of the split quaternion algebra.

4.10 Remark. For a finite field F of characteristic 2, we have |K/℘(K)| = 2. Anything may

happen in the infinite case, even if K is a perfect field.

5. Examples involving field extensions

Subspaces that meet the Klein quadric in only few points (or even no points at all) present

particular problems when classifying them or when determining the automorphism groups

of the corresponding Heisenberg algebras. Therefore, we will now discuss connections be-

tween anisotropic subspaces, quadratic extension fields, and (in Section 6) quaternion fields,

together with constructions of Heisenberg algebras related to these structures.

5.1 Example. An explicit model for the (unique) isomorphism type of reduced Heisenberg

algebra gh(V,Z, β) with dimV = 2 and dimZ = 1 is gh(K2,K,det), where det(v,w) is the

usual determinant of the 2 × 2 matrix with columns v,w. This algebra is the Heisenberg

algebra used to explain the uncertainty principle.

5.2 Example. Among the reduced Heisenberg algebras gh(V,Z, β) with dimV = 4 and

dimZ = 2, we find the direct product gh(K2,K,det)×gh(K2,K,det). This algebra is isomor-

phic to gh(K4,K2, β), where the kernel of β̂ is S⊥ = 〈S0
2 , S

0
3 , S

1
2 , S

1
3〉K, see 3.5.

5.3 Examples from Quadratic Extensions. Let L = K(u) be a quadratic extension field of K,

where the minimal polynomial of u over K is X2 + tX + d. As a K-algebra, the Heisenberg

algebra gh(L2,L,det) is then isomorphic to gh(K4,K2, βu), where the kernel of β̂u belongs

to the orbit of (P t
1,d)

⊥, cf. 3.7.

Note that we may choose t ∈ {0, 1}, and that t = 1 is only needed if charK = 2 and the

extension is a separable one (cf. [15, 8.11, p. 313]).

Here is a more explicit way to describe the action of GL2L on ker β̂u: We identify L with{(
x −yd
y x+yt

) ∣∣∣ x, y ∈ K
}

and L2×2 with the set
{(

A B
C D

) ∣∣ A,B,C,D ∈ L
}

of block matrices.

Thus u is identified with
(
0 −d
1 t

)
=

(
0 −d
1 −t

)
.

For δ :=
(
d 0
0 −1

)
we observe δA′ = Aδ for all A ∈ L. Now the set

PL :=
{(

0 Xδ
−Xδ 0

) ∣∣ X ∈ L
}
=

〈
dS0

2 − S1
3 , dS

0
3 + dS1

2 − tS1
3

〉
K

is a subspace of K4 ∧ K4, belongs to the orbit of P t
1,d and is invariant under the action of

GL2L ≤ GL4K. Using i =
(

0 1
−1 0

)
we obtain the orthogonal space as

P⊥
L =

{(
xi Y i

−(Y i)′ zi

) ∣∣∣ x, z ∈ K, Y ∈ L
}
= 〈S0

1 , dS
0
2 + S1

3 + tS1
2 , S

0
3 − S1

2 , S
2
3〉K .

Of course the orthogonal space P⊥
L is also invariant under GL2L; this space serves as a model

for ker β̂u. For X ∈ L we observe iX ′i−1 = X , where r + su := r − su + st. This helps to

verify invariance of P⊥
L explicitly; here we use the fact that t 6= 0 only occurs if charK = 2.

The intersection of the projective 3-space coordinatized by P⊥
L with the Klein quadric is

the ellipsoid

O :=

{〈(
xi Y i

−(Y i)′ zi

)〉

K

∣∣∣∣ x, z ∈ K, Y ∈ L, Y Y = xzE2

}
.
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It is easy to see that ( 0 1
1 0 ) ∈ GL2L interchanges S0

1 = ( i 0
0 0 ) with S2

3 = ( 0 0
0 i ), and that the

orbit
{〈(

BBi Bi
−(Bi)′ i

)〉
K

∣∣∣ B ∈ L
}

of
〈
S2
3

〉
K

under the stabilizer
{(

A B
0 D

) ∣∣ A,D ∈ L×, B ∈ L
}

of
〈
S0
1

〉
K

in GL2L equals O r {
〈
S0
1

〉
K
}.

5.4 Corollary. The representatives in P1 may be chosen in the form P⊥
L , and those in P3 may

be chosen from the collection of spaces of the form P 0
L := PL ⊕ 〈S0

1〉K. Here L and PL are

constructed as in 5.3 using an irreducible polynomial X2 + tX + d over K with 2t = 0.

5.5 Lemma. Let X2 + tX + d be irreducible over K, with 2t = 0. As in 5.3 we choose L and PL

and write i :=
(

0 1
−1 0

)
and δ :=

(
d 0
0 −1

)
.

a. If the extension L/K is separable then K2×2 = Li⊕ Lδ. In this case the orthogonal space

P⊥
L is a vector space complement to PL in K4 ∧K4.

b. If the extension L/K is inseparable then Li = Lδ. In this case the polar form vanishes

on PL, and PL ⊂ P⊥
L .

c. If t = 0 then K2×2 = L⊕ Lδ.
d. If t = 1 then K2×2 = L⊕ Li.
e. If d = 1 = t then L = Lδ.
f. If d = 1 and t = 0 then L = Li.

Proof. For X :=
(
a −bd
b a+bt

)
and Y :=

(
x −yd
y x+yt

)
in L we compute Xi =

(
bd a

−a−bt b

)
and Y δ =

(
xd yd
yd −x−yt

)
. Equality Xi = Y δ thus implies b = x, a = yd and then −bt = 2a, 2x = −yt. If

the extension is separable, we have charK 6= 2 or t 6= 0. In either case, we infer A = 0 = X.

This means Li ∩ Lδ = {0}. Using −(Xi)′ = iX ′ = Xi and −(Y δ)′ = −δY ′ = −Y δ we infer

K4 ∧K4 =
{(

ai Xi
Xi ci

) ∣∣∣ a, c ∈ K,X ∈ L
}
⊕

{(
0 Y δ

−Y δ 0

) ∣∣ Y ∈ L
}
= P⊥

L ⊕ PL as claimed.

The extension L/K is inseparable if charK = 2 and t = 0. In this case the sets in question

coincide: Li =
{(

bd a
a b

) ∣∣ a, b ∈ K
}
= Lδ.

5.6 Theorem. Let X2 + tX + d be irreducible over K, with 2t = 0. We choose L and PL as

in 5.3 and put P 0
L := PL ⊕ 〈S0

1〉K. Moreover, we write ξ :=
(
1 t
0 −1

)
and Ξ :=

(
ξ 0
0 ξ

)
∈ GL4K.

Then conjugation by ξ induces the (possibly trivial) generator of Gal(L/K) on L, and

(GL4K)P
L
= GL2L 〈Ξ〉 = (GL4K)P⊥

L

where GL2L =

{(
A B
C D

) ∣∣∣∣
A,B,C,D ∈ L,
AD −BC 6= 0

}
,

(GL4K)P 0

L

=

{(
A B
0 D

) ∣∣∣∣ A,D ∈ L×, B ∈ K2×2

}
〈Ξ〉 .

The group (GL4K)P
L

acts with 2 orbits on K4, represented by 0 and b0, and with 2 orbits on

(K4 ∧ K4)/P⊥
L , represented by PL and any other coset of PL. The orbits on (K4 ∧ K4)/PL are

more complicated, we have to distinguish cases:

a. If the extension L/K is separable (in particular, if charK 6= 2) then the action of GL2L on

(K4 ∧K4)/PL is equivalent to the action on the space of hermitian 2× 2 matrices, cf. 2.5.

Here Ξ acts as −id on the set of diagonal matrices, and an orbit under GL2L 〈Ξ〉 is the

union of two different GL2L-orbits if, and only if, the norm group of the corresponding

quaternion field does not contain −1.

b. Now assume that L/K is an inseparable extension. Then the action of GL2L on P⊥
L /PL

is equivalent to the action of GL2L ≤ GL2K on K2. The orbits under that action are

represented by the elements of {(r, 0)′ | r ∈ RK/L } ∪R(2)
K/L (see 2.3).
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The GL2L-orbits on
(
(K4 ∧K4)/PL

)
r

(
P⊥
L /PL

)
are represented by the elements of the

set
{
ρz + PL | z ∈ R#

}
where ρz :=

(
i E2

E2 zi

)
and R# is a set of representatives for the

orbits under the action

#: SL2L×K2 → K2 :

((
A B
C D

)
,

(
x1
x2

))
7→

(
A2x1 +B2x2 + (AB + (AB)′)i
C2x1 +D2x2 + (CD + (CD)′)i

)
.

Note that no point is fixed under this action of SL2L by affine transformations of K2

(viewed as an affine space over L ≤ K).

c. In any case (separable or not), the orbits of (GL4K)P 0

L

on K4 are represented by 0, b0, b2.

d. For the orbits on (K4 ∧K4)/P 0
L we pick a set RN ⊆ K× of representatives for the cosets

modulo NL/K(L
×) 〈−1〉. Then the orbits on (K4∧K4)/P 0

L are represented by the elements

of {P 0
L , (S

0
2 + S1

3) + P 0
L} ∪

{
cS2

3

∣∣ c ∈ RN

}
— again, irrespective of separability.

Proof. Clearly the group GL2L =
{(

A B
C D

)
∈ GL4K

∣∣ A,B,C,D ∈ L, AD −BC 6= 0
}

is con-

tained in (GL4K)P
L

and acts transitively on the intersection O of the Klein quadric with the

projective 3-space coordinatized by PL r {0}⊥, cf. 5.3. Thus it remains to determine the

stabilizer of 〈S0
1〉K in (GL4K)P

L
. Evaluating the condition

(
A B
0 D

)(
0 Xδ

−Xδ 0

)(
A′ 0
B′ D′

)
=

(
AXδB′ −BXδA′ AXδD′

−DXδA′ 0

)
∈ PL

we find that for each X ∈ L× there exists LX ∈ L× such that AXδD′ = LXδ. Specializing

X = 1 ∈ L we obtain δD′ = A−1L1δ and then AXA−1 = LXL
−1
1 ∈ L. Thus A belongs to

the normalizer of L in GL2K. According to Schur’s Lemma (e.g., see [9, 3.5, p. 118] or [11,

Ch. XVII, Prop. 1.1]), this normalizer is L×Gal(L/K) = L× 〈ξ〉. As Ξ belongs to (GL4K)P
L

we may assume A ∈ L× from now on. Then D = δ(A−1L1)
′δ−1 = A−1L1 also lies in L×.

There remains the condition that BXδA′ is symmetric for each X ∈ L. Specializing X = 1
and X = u =

(
0 −d
1 t

)
we find BA ∈ L and therefore B ∈ L. We have thus proved that

(GL4K)P
L
= GL2L 〈Ξ〉.

The stabilizer of P 0
L in (GL4K) fixes 〈S0

1〉K because this is the only intersection point

of the Klein quadric with the plane coordinatized by P 0
L . Thus (GL4K)P 0

L

is contained in{(
A B
0 D

) ∣∣ A,D ∈ GL2K, B ∈ K2×2
}

. The elements of the stabilizer are characterized by the

condition (
AXδB′ −BXδA′ AXδD′

−DXδA′ 0

)
∈ P 0

L .

As in the case discussed before, the upper right entry yields A ∈ L× 〈ξ〉; we may assume

A ∈ L, and then D ∈ L follows. However, the entry on the upper left does not mean any

restriction now, and we obtain (GL4K)P 0

L

=
{(

A B
0 D

) ∣∣ A,D ∈ L×, B ∈ K2×2
}
〈Ξ〉, as claimed.

The assertions about orbits on K4 are easily verified for both stabilizers. In order to

understand the orbits on (K4 ∧ K4)/P⊥
L we pick a vector space complement W for P⊥

L

in K4 ∧ K4. In the separable case we may use W = PL =
{(

0 Xδ
−Xδ 0

) ∣∣ X ∈ L
}

while

W =
{(

0 X
X′ 0

) ∣∣ X ∈ L
}

is a suitable choice in the inseparable case. In both cases it is easy

to see that the action of M ∈ GL2K on W is given by multiplication of X with detLM .

Therefore, the action on the set of non-trivial cosets in (K4 ∧K4)/P⊥
L is transitive.

If the extension is separable then the action of GL2L 〈Ξ〉 on (K4 ∧K4)/PL is equivalent to

the action on the invariant orthogonal complement P⊥
L . Using 5.5 we see that this action is
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equivalent to the action on the space
{(

a X
X c

) ∣∣∣ a, c ∈ K,X ∈ L
}

of hermitian 2×2 matrices:

(
A B
C D

)
.

(
a X

X c

)
:=

(
A B
C D

)(
a X

X c

)(
A C

B D

)
.

The orbit structure on (K4∧K4)/PL thus corresponds to the classification of hermitian forms

over L, cf. 2.5. An easy computation shows that Ξ acts as −id on the diagonal forms. The

assertion about fusion of GL2L-orbits under 〈Ξ〉 now also follows from 2.5.

If L/K is inseparable (i.e., if charK = 2 and t = 0) we note that
{(

xi Y
Y ′ zi

) ∣∣ x, z ∈ K, Y ∈ L
}

is a vector space complement for PL =
{(

0 Y δ
Y δ 0

) ∣∣ Y ∈ L
}

. The action of GL2L on P⊥
L /PL

is described by

(
A B
C D

)(
xi 0
0 zi

)(
A′ C ′

B′ D′

)
=

(
(A2x+B2z)i 0

0 (C2x+D2z)i

)
.

This looks like the usual action on diagonalizable quadratic forms (cf. 2.3) but with the group

GL2L replacing GL2K: if x and z are linearly independent over L then the orbit of (x, z)′

consists of all bases for 〈x, y〉L . If x and z are linearly dependent over L then the orbit

of (x, z)′ contains (y, 0)′ where 〈y〉L = 〈x, z〉L . This gives the assertion about the orbits in

P⊥
L /PL.

For A,B ∈ L there exists b ∈ K with B′ −B = bi, and both AB′ −AB = A(B −B′) = bAi
and AB′ + BA′ − (AB + (AB)′) = b(A − A)i belong to Li. Thus

(
A B
C D

)
∈ GL2L maps(

xi Y
Y ′ zi

)
+ PL to

(
(A2x+B2z)i+AY B + (AY B)′ (AD −BC)Y

Y ′(AD −BC)′ (C2x+D2z)i+ CYD + (CY D)′

)
+ PL .

From 5.5.c and 5.5.b we know K2×2 = L ⊕ Lδ and Li = Lδ. Thus each GL2L-orbit on(
(K4 ∧K4)/PL

)
r
(
P⊥
L /PL

)
contains a representative of the form ρv+PL where v = (v1, v2) ∈

K2 and ρv :=
(

v1i E2

E2 v2i

)
. Since ρw + PL =

(
A B
C D

)
ρv + PL implies AD − BC = 1, we are left

with the action # of SL2L, as claimed.

It remains to determine the orbits of (GL4K)P 0

L

on (K4 ∧K4)/P 0
L . If L/K is separable then

K2×2 = Lδ ⊕ Li and we may choose representatives for cosets modulo P 0
L from the vector

space complement
{(

0 Xi
iX′ ci

) ∣∣ c ∈ K,X ∈ L
}

to P 0
L =

{(
ai Xδ

−Xδ 0

) ∣∣ a ∈ K,X ∈ L
}

. If X 6= 0

then the orbit of
(

0 Xi
iX′ 0

)
contains S0

2+S
1
3 =

(
0 E2

E2 0

)
. If c 6= 0 then

(
E2 −c−1X
0 D

)
∈ (GL4K)P 0

L

maps
(

0 Xi
iX′ ci

)
+ P 0

L to
(

0 0
0 DDci

)
+ P 0

L . We may achieve DDc ∈ RN and assertion d follows

from the fact that Ξ ( 0 0
0 ci ) Ξ

′ =
(
0 0
0 −ci

)
.

If, finally, the extension is inseparable then Lδ = Li has trivial intersection with L. Thus

we may use the complement
{(

0 X
−X′ ci

) ∣∣ c ∈ K,X ∈ L
}

. It is easy to see that S0
2+S

1
3 belongs

to the orbit of
(

0 X
−X′ 0

)
if X ∈ L×. For c 6= 0 we use

(
E2 c−1Xi
0 D

)
∈ (GL4K)P 0

L

in order to map
(

0 X
X′ ci

)
+ P 0

L to
(

0 0
0 DDci

)
+ P 0

L . Now we may achieve DDc ∈ RN . This gives assertion d

also in the inseparable case.

5.7 Remark. For the case charK 6= 2 the assertion about Σβu
= (GL4K)P

L
in 5.6 is just a

special case of [6, Th. 1.1.1]. In fact, since automorphisms of the group GH(L2,L,det) are

considered in [6] the cited result yields all automorphisms of the Lie ring ghZ(L
2,L,det):
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apart from the automorphisms of ghK(L
2,L,det) we also have the automorphisms induced

by arbitrary field automorphisms of L, and not only those from Gal(L/K). Moreover, we

have to add arbitrary additive maps τ from L2 to L, and not only the K-linear ones. See

also 8.1.

6. Examples involving quaternion algebras

We will use quaternion algebras to describe the alternating maps β : K4 × K4 → K3 where

ker β̂ ∈ P2 describes an anisotropic plane, having no point in common with the Klein quadric.

Our construction and our results will not depend critically on charK up to the point where

we investigate the action on (K4 ∧K4)/ ker β̂ in 6.7 and 6.8.

6.1 Anisotropic planes and quaternions. We recall from 3.7 that the orbit of any member

of P2 contains a representative of the form P t
1,c,d with 2t = 0. A cyclic permutation of the

basis vectors b0, b1, b2 shows that this orbit also contains

W :=W t
c,d :=

〈
S0
3 − S1

2 , cS
0
1 − S2

3 , S
1
3 + dS0

2 + tS0
3

〉
K
=

{(
xci Y i

Y i −xi

) ∣∣∣∣ x ∈ K, Y ∈ L

}

for L :=
{(

x −yd
y x+yt

) ∣∣∣ x, y ∈ K
}

. Since the restriction of the Pfaffian form to W is assumed to

be anisotropic the polynomial X2+tX+d is irreducible in K[X]. The subalgebra L of K2×2 is

isomorphic to the extension field K[X]/(X2+ tX+d), cf. 5.3. We also recall that conjugation

by ξ :=
(
1 t
0 −1

)
induces the (possibly trivial) generator of the Galois group Gal(L/K) on L,

mapping A :=
(

x −yd
y x+yt

)
to A :=

(
x+yt yd
−y x

)
. We use the root u :=

(
0 −d
1 t

)
of X2+ tX+d in L;

note that u = t− u.

If the extension L/K is separable then the hermitian matrix ( 1 0
0 c ) describes an anisotropic

hermitian form h on L2, and H := Hc
L/K =

{(
A −cB

B A

) ∣∣∣ A,B ∈ L
}

is a quaternion field,

cf. 2.4. We identify A ∈ L with
(

A 0
0 A

)
and put I :=

(
0 −cE2

E2 0

)
; then H = L⊕ IL.

The matrices in H may be considered as matrices for left multiplications λa : x 7→ ax. In

fact, with respect to the basis

(
E2 0
0 E2

)
,

(
u 0
0 u

)
,

(
0 −cE2

E2 0

)
,

(
0 −cu
u 0

)

we find that λA+IB is described by
(

A −cB

B A

)
. Applying Schur’s Lemma (cf. [9, 3.5, p. 118]

or [11, Ch. XVII, Prop. 1.1]) we infer that the centralizer Hρ of H× in GL4K consists of the

matrices for right multiplications ρa : x 7→ xa, with respect to the same basis. A straight-

forward computation yields that ρA+IB is described by the matrix
(

A −cBξ
Bξ A

)
. Thus Hρ =

{(
A −cBξ
Bξ A

) ∣∣∣ (A,B) ∈ L2 r {(0, 0)}
}

.

If L/K is inseparable then ξ is the identity matrix, and H :=
{(

A −cB
B A

) ∣∣ A,B ∈ L
}

be-

comes a commutative field which (again by Schur’s Lemma) coincides with its centralizer,

indeed H× = Hρ in that case.

In any case, we define ã :=
(

A cB
−B A

)
for a =

(
A −cB

B A

)
and obtain an anti-automorphism

of H. Note that this anti-automorphism is the identity if L/K is inseparable. We use the norm

N : H → K : a 7→ ãa.
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6.2 Definition. If L/K is separable then Pu(H) := {X ∈ H | X̃ = −X} = 1⊥. For charK = 2
we have 1 ∈ Pu(H) and Pu(H) = K ⊕ IL. In the inseparable case the norm form on H

has trivial polar form, and 1⊥ = H. We extend the definition of Pu(H) to this case quite

arbitrarily, putting Pu(H) := K⊕ IL as in the remaining cases where charK = 2.

In any case, we find that the restriction N |Pu(H) of the norm is equivalent to −pf|W .

6.3 Lemma. a. If the extension L/K is separable then GO(N |Pu(H)) = K× SO(N |Pu(H)) ={
(x 7→ saxã) | a ∈ H×, s ∈ K×

}
and SO(N |Pu(H)) =

{
(x 7→ axa−1)

∣∣ a ∈ H×
}

.

b. In the inseparable case each one of the groups O(pf|W ), O(N), O(N |Pu(H)) is trivial; note

that Pu(H) = K ⊕ IL by definition 6.2. The groups GO(pf|W ) and GO(N |Pu(H)) of

similitudes coincide with K× id but GO(N) = H×.

Proof. For a separable extension L/K the assertion has been proved in 2.13, cf. 2.8.

Now assume that the extension L/K is inseparable. For x = x0 + x1u + I(x2 + x3u) with

x0, x1, x2, x3 ∈ K the norm is given by N(x) = x2 = x20 + dx21 + cx22 + cdx23. Thus it is

diagonalizable and anisotropic, and the assertion follows from 2.10 and 2.12.

6.4 Lemma. The space W is invariant under H× and under Hρ. Both the action of H× on W
and the action via (a,X) 7→ aXã on Pu(H) (see 6.2) are equivalent to that on K× L given by

((
A −cB
B A

)
, (x, Y )

)
7→

(
(AA− cBB)x−ABY −ABY , 2cABx+A2Y − cB2Y

)
.

Any element ρa ∈ Hρ induces the multiplication by its norm ãa on W . Thus the action of H×Hρ

on W is equivalent to an action by similitudes of the quadratic form N |Pu(H).

Proof. Choose j ∈ L r {0} with j = −j in the separable case, and put j := 1 if L/K is

inseparable. A straightforward calculation shows that mapping (x, Y ) to
(

cxi Y i

Y i −xi

)
∈ W or

to
(

xj Y j

c−1Y j −xj

)
∈ Pu(H), respectively, gives equivalences as claimed. For the rest of the

assertion, it remains to compute

(
A −cBξ
Bξ A

)(
cxi Y i

Y i −xi

)(
A′ (Bξ)′

−(cBξ)′ A′

)
= (AA+ cBB)

(
cxi Y i

Y i −xi

)
.

6.5 Lemma. If M ∈ GL4K fixes b0 and induces a scalar multiple of id on W then M = id.

Proof. We consider an element M =
(
A B
C D

)
of the stabilizer of b0 in GL4K; then A =

(
1 b
0 a

)
,

C =
(
0 x
0 y

)
and B,D ∈ K2×2. Moreover, we assume that M induces α id on W .

Evaluating the condition (C1): M
(
ci 0
0 i

)
M ′ =

(
αci 0
0 αi

)
we find α = detD and B = ( z w

0 0 );
then a = detA = α follows.

The condition (C2): M
(
0 i
i 0

)
M ′ =

(
0 αi
αi 0

)
yields z = 0. Putting this into (C1) we find that

the second column of C equals c−1w times the first column of D.

Finally, we evaluate (C3): M
(

0 ui
ui 0

)
M ′ =

(
0 αui

αui 0

)
. From 0 = BuiA′+AuiC ′ = −wαi we

infer w = 0. Thus both B and C are zero, and there remain the conditions A(ui)D′ = αui
from (C3) and AiD′ = αi from (C2). Now iD′i−1 = D−1 detD = D−1α and the latter

equality give A = D. The first equality then yields that A centralizes u. But this means

A =
(
1 b
0 a

)
∈ L, and A = ( 1 0

0 1 ) follows.

6.6 Theorem. For H, Hρ and W as in 6.1 we have ΣW = H×Hρ.
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Proof. We know from 6.4 that the multiplicative group H×Hρ is contained in the stabilizer

(GL4K)W . The subgroup
{
λaρ

−1
a

∣∣ a ∈ H×
}

of H×Hρ induces the full group SO(N |Pu(H))
on W and GO(N |Pu(H)) = K× SO(N |Pu(H)), cf. 6.3. Thus it suffices to consider elements

M ∈ GL4K that induce scalar multiples of the identity on W . Adapting M by a further

element of Hρ (which induces a scalar multiple of the identity on W by 6.4) we may assume

that M fixes b0. Now the result follows from 6.5.

It remains to understand the action of ΣW = H×Hρ on (K4 ∧ K4)/W . Straightforward

computations yield:

6.7 Lemma. If L/K is a separable extension then the action of the group H×Hρ on W⊥ ={(
cxi Y δ
Y δ xi

) ∣∣ x ∈ K, Y ∈ L
}

is quasi-equivalent to that on W ; indeed G :=
(

E2 0
0 ξ

)
∈ GL4K

satisfies GH×G−1 = Hρ and GWG′ =W⊥.

If charK 6= 2 then 6.7 describes the action on (K4 ∧K4)/W because W⊥ is a vector space

complement to W in K4 ∧K4. The remaining case charK = 2 is more involved. We treat the

inseparable case, as well.

6.8 Lemma. Assume charK = 2 and P t
1,c,d ∈ P2. We write W := W t

c,d and H := H
−d,−c
K if

t = 1 and H := K(
√
d,
√
c) otherwise. In any case, put L := K[X]/(X2 + tX + d). The action

ω : (H×Hρ)× (K4 ∧K4)/W → (K4 ∧K4)/W can be described as follows.

a. If t = 1 then the action ω is equivalent to the action ω1 : (H
×Hρ) × (K × L) → K × L

given by

ω1

(
λA+IB, (x, Y )

)
= N(A+ IB) (x, Y ) ,

ω1

(
ρC+ID, (x, Y )

)
=

(
N(C + ID)x,CDu−1x+ C2Y + (1 + u−1)D2Y

)
.

b. If t = 0 then H is commutative, H×Hρ = H× and the action ω is equivalent to the action

ω0 : H
× × (K× L) → K× L given by

ω0

(
λA+IB , (x, Y )

)
= (A+ IB)2(x, Y ) .

Proof. Assume t = 1. Then
{(

xi Y δ
Y δ 0

) ∣∣ x ∈ K, Y ∈ L
}

is a vector space complement to W
because the extension is separable. Using u =

(
0 −d
1 1

)
and the relations ξi = u−1δ, ξδξ′ =

(1 + u−1)δ we compute

(
A cB

B A

)((
xi Y δ
Y δ 0

)
+W

)(
A′ B′

cB
′
A

′

)
= (AA+ cBB)

(
xi Y δ
Y δ 0

)
+W

and

(
C cDξ
Dξ C

)((
xi Y δ
Y δ 0

)
+W

)(
C ′ (Dξ)′

(Dξ)′ C ′

)

=

(
(CC + cDD)xi

(
CDu−1x+ C2Y + c(1 + u−1)D2Y

)
δ(

CDu−1x+ C2Y + c(1 + u−1)D2Y
)
δ 0

)
+W .

Mapping
(

xi Y δ
Y δ 0

)
+W to (x, Y ) is a bijection from (K4 ∧ K4)/W onto K × L that gives the

equivalence to the action ω1.
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Now assume t = 0. Then i /∈ L and K2×2 = L ⊕ Li yields that {
(
xi Y
Y ′ 0

)
| x ∈ K, Y ∈ L} is

a vector space complement to W . Using Z ′ ∈ Z +Ki and iZ ′ = Zi we compute

(
A cB
B A

)(
xi Y
Y ′ 0

)(
A′ B′

cB′ A′

)
=

(
A2xi+ c(BY ′A′ +AY B′) ABxi+AY A′ + cBY ′B′

ABxi+AY ′A′ + cBY B′ B2xi+AY ′B′ +BY A′

)

∈
(
(A2 + cB2)xi+ cψ(A,B, Y ) (A2 + cB2)Y(

(A2 + cB2)Y
)′

0

)
+W

for ψ(A,B, Y ) := BY ′A′ + AY B′ + AY ′B′ + BY A′ = B(Y + Y ′)A′ + A(Y + Y ′)B′ =
ByiA′ +AyiB′ = 0. It remains to note (A+ IB)2 = A2 + I2B2 = A2 + cB2.

In marked contrast to the case where charK 6= 2 (cf. 6.7 and 6.4) the action ω1 in 6.8 is not

(quasi-) equivalent4 to the action ω2 : (H
×Hρ) × Pu(H) → Pu(H) given by ω2 ((λa, ρb), x) =

N(b)axã: the subspace {0}×L is invariant under ω1 but there is no two-dimensional invariant

subspace under ω2. However, we have the following.

6.9 Lemma. The restriction of ω1 to {0} × L is equivalent to the action induced by ω2 on the

quotient Pu(H)/K modulo the subspace K which is invariant under ω2.

The orbits in {0} × L are represented by a set RW⊥ ⊆ Pu(H) such that {x2 | x ∈ RW⊥}
represents the orbits v2N(H×) +K of the group N(H×) on {v2 +K | v ∈ Pu(K)}.

The orbits in K× × L are represented by RH× × {0} where RH× is a set of representatives for

the cosets in the multiplicative group K×/N(H×).

Proof. Applying the element G from 6.7 to (W + W⊥)/(W ∩ W⊥) interchanges the two

irreducible summands W/(W ∩W⊥) and W⊥/(W ∩W⊥).
From 2.6 we infer that x, v ∈ Pu(H) (i.e., both with trace 0) represent cosets x+K and v+K

in the same ω2-orbit precisely if there exists z ∈ H× such that {N(x+ k) | k ∈ K} = x2 +K

has nonempty intersection with {N(v + k)N(z2) | k ∈ K} = v2N(z2) +K .

For any x ∈ K× the orbit {(x,CDu−1x) | (C,D) ∈ L2 r {(0, 0)}} of (x, 0) meets each one

of the cosets K × {Y }. Therefore, it suffices to consider the action on the quotient modulo

{0} × L to prove the last claim.

6.10 Theorem. The orbit of ker β̂ ∈ P2 under GL4K contains an element of the form P t
1,c,d and

then also W := W t
c,d as in 6.1. We identify K4 with H := H

−d,−c
K if X2 + tX + d is separable

and H := K(
√
d,
√
c) otherwise.

a. In any case the group ΣW = H×Hρ acts with two orbits on H, represented by 0 and 1.

b. If charK 6= 2 then the orbits of ΣW on (K4∧K4)/W are represented by a set RH ⊆ Pu(H)
such that for each coset of N(H×)/N(H×) there is exactly one element in RH.

c. If charK = 2 and t = 1 then the action of ΣW is described in 6.8.a. The orbits on

(K4 ∧K4)/W are represented by RH× ∪RW⊥ as in 6.9.

d. If charK = 2 and t = 0 then the orbits of ΣW on (K4∧K4)/W are represented by the ele-

ments of {rZ | r ∈ RH ∪ {0}, Z ∈ RW} where RH and RW are sets of representatives for

the cosets in H×/H× and for the one-dimensional subspaces of (K4 ∧K4)/W , respectively.

Thus the number of orbits equals the cardinality of the (infinite) field K.

Proof. According to [19, 8.6] (cf. 3.7.c) we find an element of the form P t
1,c,d the orbit of

ker β̂. The rest follows from 6.6, 6.7, 2.6, 6.8, and 6.9.

4 The situation is different in the inseparable case where ω0 = ω2 because the multiplication is commutative

and N(a) = a
2.
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6.11 Remark. If charK 6= 2 one can give a very nice description of an alternating map

β with ker β̂ = W 0
c,d. Writing H := Hc

L/K for L = K(
√
−d) and x 7→ x̃ for the standard

involution on H we obtain the alternating map βH : H × H → Pu(H) : (x, y) 7→ x̃y − ỹx.

Evaluating this map at pairs of the basis elements b0 = −h3, b1 = 1, b2 = h1, b3 = h2 one

finds ker β̂H = 〈S0
1 + S2

3 , S
0
2 + dS1

3 , S
0
3 − cS1

2〉K = P 0
1,−d,−c, and ker β̂H lies in the orbit of W 0

c,d.

For the classical quaternion field H = H1
C/R over the field R the group Aut(gh(H, P, βH))

acts with only three orbits on gh(H, P, βH). In that case the Heisenberg algebra gh(H, P, βH)
is almost homogeneous (in the sense of [17], [18] and [7] where gh(H, P, βH) occurs as H4

H).

For a general quaternion field, the group ΣβH
still acts transitively but there may be more

than two orbits on P , cf. 6.14.

We will interpret our result 6.10 for several cases explicitly in 6.14 and 6.15 below. We

introduce some more notation (which appears to be quite standard for quaternion algebras

if char 6= 2).

6.12 Notation. Let L/K be a quadratic field extension where L ∼= K[X]/(X2 + tX + d) for

some irreducible polynomial X2 + tX + d ∈ K[X], and pick c ∈ K×. In order to indicate

briefly the construction of L we will denote the quaternion algebra H
c
L/K also by H

−d,−c
K .

The K-algebra H
−d,−c
K can also be described using a basis h0 = 1, h1, h2, h3 = h2h1 where

h1 ∈ L is a root of X2 + tX + d and h2 ∈ L⊥ is a root of X2 + c; then h1h2 = th2 − h3. This

description does not depend on the fact that L = K[X]/(X2 + tX + d) is a field; we will use

the notation H
−d,−c
K for any pair (d, c) ∈ (K r {0})2 to denote a 4-dimensional associative

K-algebra with a basis h0 = 1, h1, h2, h3 satisfying h21 = −th1 − d, h22 = −c, h2h1 = h3,
h1h2 = th2 − h3 for t = 0 if charK 6= 2 and t = 1 if charK = 2.

Such a quaternion algebra is a quaternion field precisely if its norm form is anisotropic; in

all other cases it is isomorphic to H
1,1
K .

6.13 Examples. For a quaternion algebra H = H
−d,−c
K the set H× need not be closed un-

der multiplication (the interesting set for us is indeed N(H×) = {N(x)2 | x ∈ H×} which is

closed under multiplication). For example, we have −2 = h21 and −3 = h22 in (H−1,−1
Q )× but

their product 6 = (−2)(−3) does not belong to (H−1,−1
Q )× because {x2 | x ∈ Pu(H−1,−1

Q )} ⊆
{q ∈ Q | q ≤ 0} and {x ∈ H

−1,−1
Q | x2 ∈ Q} = Q ∪ Pu(H−1,−1

Q ) while 6 /∈ Q×.

As a second interesting example we mention R2×2 ∼= H
1,1
R (see 6.15 below); here

(
−1 2
0 −1

)

is not a square but
(
−1 2
0 −1

)
=

(
0 −1
1 0

)2 ( 1 −1
0 1

)2
.

6.14 Examples. We consider H = H
−d,−c
K and N(H×)/N(H×) for different explicit choices

of K and (−d,−c):
a. For K = R and (−d,−c) = (−1,−1) we find N(H×) =

{
r ∈ R | r > 0

}
= N(H×) and

|N(H×)/N(H×)| = 1.

b. For K = Q and (−d,−c) = (−1,−1) we have N(H×) =
{
r ∈ Q | r > 0

}
by Lagrange’s

four-square theorem (cf. [14, II.8.3]). The group Q× is isomorphic to a direct sum of

Z/2Z and countably many infinite cyclic groups. The norm group N(H×) is the unique

subgroup of index 2 and the quotient N(H×)/N(H×) is an elementary abelian group of

countably infinite rank.

c. According to Fermat’s theorem on sums of two squares (cf. [14, II.8.1]) an odd prime

number p is the sum of two squares of integers precisely if p ≡ 1 (mod 4). For K = Q

and (−d,−c) = (−1,−c) with any c ∈ Q× this implies that the group N(H×) contains

infinitely many primes. ThusN(H×)/N(H×) is countably infinite in these cases, as well.
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d. Let p > 2 be a prime number, and let K be a finite extension of the field Qp of p-
adic numbers. Then there exists, up to isomorphism, precisely one quaternion field H

over K, and K× = N(H×), cf. [10, VI 2.10]. There are four square classes in K×

(see [10, VI, 2.22]), and N(H×)/N(H×) = K×/K×∼= (Z/2Z)2.

e. Now let K be a finite extension of the field Q2 of 2-adic numbers, of degree e. Again,

there exists precisely one quaternion field H over K (up to isomorphism), and K× =
N(H×). However, there are 2e+2 square classes in K×, and N(H×)/N(H×) = K×/K×∼=
(Z/2Z)e+2, cf. [10, VI 2.23].

6.15 Split Quaternions in Odd Characteristic. Let K be any field with charK 6= 2. It

is well known that then the quaternion algebra H
1,1
K splits, and is therefore isomorphic to

the algebra K2×2; the multiplicative form is then N(x) = det(x). See [19, 8.7], where an

explicit isomorphism is given to show that ker β̂K2×2 belongs to the orbit of T + S under

the group GL4K. The automorphisms can be read off from 6.6 or from 4.9. Note that the

multiplicative group of the split quaternion algebra is (isomorphic to) GL2K; the subgroup

SL2K induces a group isomorphic to PSL2K on P , acting as the group of proper hyperbolic

motions with respect to the form N |P .

We translate our result 4.9 into the description using split quaternions:

6.16 Theorem. If charK 6= 2 then there are three orbits of Σβ
K2×2

on K2×2; characterized by

the rank of their members. Representatives for the orbits are thus ( 0 0
0 0 ), (

1 0
0 0 ), and ( 1 0

0 1 ).
Each orbit on P (i.e., on the set of matrices with vanishing trace) is obtained by fusion

of a conjugacy class with all its images under multiplication with scalars. These orbits are

represented by the elements of the set {0} ∪
{(

0 −d
1 0

) ∣∣ d ∈ R∗ ∪ {0}
}

where R∗ is, again, a set

of representatives for the cosets in K×/K×.

Proof. The orbits on K2×2 are clear from 6.6 or from 4.9. Those on P can be read off from 6.6

and 2.6: we have N(x) = detx and the elements of P are those with trace 0. Thus elements

of P are conjugates if, and only if, they have the same norm, and belong to the same orbit

under Σβ
K2×2

if their determinants differ by a square in K×.

Now charK 6= 2 yields that 0 is the only scalar multiple of the identity matrix in P . For

every other element x ∈ P we may choose a representative for the orbit of x in Frobenius

normal form Xd :=
(
0 −d
1 0

)
, where d ∈ R∗ is the representative of det(x)K .

7. Results

Let H := gh(V,Z, β) be a reduced Heisenberg algebra with dimV = 4. From 1.2 we know

that the orbits of Aut(gh(V,Z, β)) are controlled by the orbits of Σβ on V and on Z, respec-

tively. In particular, we find ω(gh(V,Z, β)) = ωV + ωZ + 1 where ωV denotes the number of

orbits in HrZ and ωZ the number of those in Zr{0}. The numbers ωV and ωZ can be read

off from our discussion of the possible cases for ker β̂ in Sections 4, 5 and 6 above. Table 7.1

collects these results; the column “reference” indicates the place where the corresponding

result is proved.
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7.1 Numbers of Orbits under Automorphisms of Reduced Heisenberg Algebras.

ker β̂ ωV ωZ ω References

〈S0
1〉K 2 3 6 4.1

〈S0
1 + S2

3〉⊥K 1 1 3 4.2

〈S0
1 + S2

3〉K, charK 6= 2 1 1 + |R∗| 3 + |R∗|
〈S0

1 + S2
3〉K, charK = 2 1 2 + |R+|+ |R℘| 4 + |R+|+ |R℘|
E 3 3 7 4.3

T 2 3 6 4.4

T⊥ 2 2 5

S 2 2 5 4.5

S⊥ 2 2 5

J(F ) 2 1 4 4.6

E + T 3 2 6 4.7

E + S 4 3 8 4.8

T + S, charK 6= 2 2 1 + |R∗| 4 + |R∗| 4.9,6.6

T + S, charK = 2 2 1 + |R∗|+ |R℘| 4 + |R∗|+ |R℘|
P⊥
L ∈ P⊥

1 1 1 3 5.6

PL ∈ P1,L/K sep. 1 HF(L/K) 2 + HF(L/K)

PL ∈ P1,L/K insep. 1 |R
K/L |+ |R(2)

K/L |
+ |R#| − 1

|R
K/L |+ |R(2)

K/L |
+ |R#|+ 1

W 0
c,d ∈ P2, charK 6= 2 1 |N(H×)/N(H×)| 2 + |N(H×)/N(H×)| 6.10

W 1
c,d ∈ P2, charK = 2 1 |RH× |+ |RW⊥ | 2 + |RH× |+ |RW⊥ |

W 0
c,d ∈ P2, charK = 2 1 |RH |+ |RW | 2 + |RH |+ |RW | = |K|

P 0
L ∈ P3 2 1 + |RN | 4 + |RN | 5.6

7.2 Notation. In Table 7.1 we use the following notation.

R∗ denotes a set of coset representatives for the classes in K×/K×.

R+ is a set of representatives for the orbits of K× on the additive group K/K .

R℘ is (if charK = 2) a set of coset representatives for the additive group K/℘ where ℘ :={
x+ x2

∣∣ x ∈ K
}

, cf. 2.1.

HF(L/K) denotes the number of equivalence classes of non-zero hermitian forms on L2,

cf. 2.5.

RK/L and R
(2)
K/L represent the two kinds of orbits under the action of GL2L on K2, see 2.3.

R# represents the orbits under the action # of SL2L on K2, see 5.6.

RH× is a set of representatives for K×/N(H×) where H = H
−d,−c
K .

RW⊥ ⊆ Pu(H) is (for a quaternion field H over K with charK = 2) a set such that the set

{x2 | x ∈ RW⊥} represents the orbits v2N(H×)+K ofN(H×) on {v2 +K | v ∈ Pu(K)}.

RH is (if H = K(
√
d,
√
c) is a purely inseparable extension of degree 4) a set of coset repre-

sentatives for H×/H×.

RW is a set of representatives for the one-dimensional subspaces of (K4 ∧K4)/W , see 6.10.

RN is a set of coset representatives for the multiplicative group K×/(NL/K(L
×) 〈−1〉), cf. 5.6.
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8. Open problems

8.1 Problem. How is Aut(ghZ(V,Z, β)) related to Aut(gh(V,Z, β)), or, more generally, how

is the automorphism group Aut(n) of a nilpotent Lie algebra n over K related to the auto-

morphism group AutZ(n) of the Lie ring? Definitely, the subgroup

H :=

{
(v, z, a) 7→ (v, z + τ(v), α(a) + ζ(v, z))

∣∣∣∣
τ ∈ Hom(V,Z), α ∈ GL(A),

ζ ∈ Hom(V × Z,A)

}

from 1.2 has to be enlarged to

HZ :=

{
(v, z, a) 7→ (v, z + τ(v), α(a) + ζ(v, z))

∣∣∣∣
τ ∈ HomZ(V,Z), α ∈ AutZ(A),

ζ ∈ HomZ(V × Z,A)

}
;

we must use arbitrary additive homomorphisms instead of K-linear ones. Is it true that

Aut(ghZ(V,Z, β)) equals Aut(K)⋉ (Aut(gh(V,Z, β)) ·HZ) ?

A positive partial answer is known: according to [6, 1.1.1], the assertion is true for

gh(V,Z, β) = gh(K2,K,det).

8.2 Problem. A deeper understanding of the action #: SL2L × K2 → K2 in 5.6 would be

very welcome.

8.3 Problem. Our results allow to identify the cases where ω(gh(V,Z, β)) is finite (depend-

ing on the ground field K), and then those where the invariant ω takes on values that are

particularly small. It appears that these algebras merit deeper study.

8.4 Acknowledgements. The authors owe Norbert Knarr at least one cup of coffee for the
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cancellation and the Skolem–Noether Theorem).
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[16] V. V. Sergĕıčuk, The classification of metabelian p-groups, in Matrix problems (Russian),

pp. 150–161, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1977.

MR 0491938 (58 #11109) Zbl 0444.20018

[17] M. Stroppel, Homogeneous symplectic maps and almost homogeneous Heisenberg groups,

Forum Math. 11 (1999), no. 6, 659–672, ISSN 0933-7741,

doi:10.1515/form.1999.018. MR 1724629 (2000j:22006) Zbl 0928.22008

http://www.ams.org/mathscinet-getitem?mr=0072144
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0221.20056&format=complete
http://www.emis.de/journals/BAG/vol.49/no.1/1.html
http://www.ams.org/mathscinet-getitem?mr=2410562
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:05241751&format=complete
http://www.emis.de/journals/JLT/vol.13_no.2/14.html
http://www.ams.org/mathscinet-getitem?mr=2003153
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:1030.22002&format=complete
http://www.ams.org/mathscinet-getitem?mr=650245
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0477.20001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1009787
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0694.16001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2104929
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:1068.11023&format=complete
http://www.ams.org/mathscinet-getitem?mr=1878556
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0984.00001&format=complete
http://dx.doi.org/10.1007/s005910050055
http://www.ams.org/mathscinet-getitem?mr=1681303
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0937.11055&format=complete
http://dx.doi.org/10.1023/A:1005090519480
http://www.ams.org/mathscinet-getitem?mr=1484565
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0890.20025&format=complete
http://www.ams.org/mathscinet-getitem?mr=0506372
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0292.10016&format=complete
http://www.ams.org/mathscinet-getitem?mr=770063
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0584.10010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0491938
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0444.20018&format=complete
http://dx.doi.org/10.1515/form.1999.018
http://www.ams.org/mathscinet-getitem?mr=1724629
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0928.22008&format=complete


Stabilizers of Subspaces, and Automorphisms of Heisenberg Algebras 31

[18] M. Stroppel, Embeddings of almost homogeneous Heisenberg groups, J. Lie Theory 10

(2000), no. 2, 443–453, ISSN 0949-5932,

http://www.emis.de/journals/JLT/vol.10_no.2/14.html.

MR 1774872 (2001g:22013) Zbl 0955.22009

[19] M. Stroppel, The Klein quadric and the classification of nilpotent Lie algebras of class

two, J. Lie Theory 18 (2008), no. 2, 391–411, ISSN 0949-5932,

http://www.heldermann-verlag.de/jlt/jlt18/strola2e.pdf.

MR 2431124 (2009e:17016) Zbl 1179.17013

[20] D. E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics 9,

Heldermann Verlag, Berlin, 1992, ISBN 3-88538-009-9. MR 1189139 (94d:20028)

Zbl 0767.20001
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