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CELLS IN COXETER GROUPS I

MIKHAIL V. BELOLIPETSKY AND PAUL E. GUNNELLS

1. Introduction

In their seminal paper [KL1] Kazhdan and Lusztig introduced the notion of cells.
These are equivalence classes in a Coxeter group W and corresponding Hecke algebra
H that can be defined combinatorially and that have deep connections with repre-
sentation theory. Since then there has been considerable interest in cells and related
topics: we can mention the famous papers by Lusztig on cells in affine Weyl groups,
research of J.-Y. Shi on the combinatorics of cells, the work of Bezrukavnikov and
Ostrik on geometry of unipotent conjugacy classes of simple complex algebraic groups
among the numerous other contributions. See [G] for references. Even a short survey
of related results would take us far beyond the scope of this paper.

The purpose of this article is to shed new light on the combinatorial structure of cells
in infinite Coxeter groups. Our main focus is the set D of distinguished involutions
in W , which was introduced by Lusztig in [L2]. We conjecture that the set D of
an arbitrary Coxeter group has a simple recursive structure and can be enumerated
algorithmically starting from the distinguished involutions of finite Coxeter groups.
Moreover, to each element of D we assign an explicitly defined set of equivalence
relations on W that altogether conjecturally determine the partition of W into left
(right) cells. We are able to prove these conjectures only in a special case, but even
from these partial results we can deduce some interesting corollaries. For example, we
show that many non-affine infinite Coxeter groups contain infinitely many one-sided
cells. This was known before only for a special class of right-angled Coxeter groups
[Bel] and several other hyperbolic examples [Bed].

In a forthcoming article [BG2] we will present the experimental support for the
conjectures. In particular, we will show that the conjectures hold for infinite affine
groups of small rank (see also [BG1] for the affine groups of rank 3) and for large
subsets of hyperbolic triangle groups. Some of the experimental results were first
presented in [G]. The results of the current article and [BG2] were announced in
[BG1].

The paper is organized as follows. In §2 we introduce our main conjectures and
show that if valid, these conjectures indeed determine the partition of W into cells
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(see Theorem 2.7). Section 3 provides a proof of the conjectures in a special case
when reduced expressions of the elements of W satisfy certain restrictions. Here we
make extensive use of some unpublished results of Lusztig and Springer. In §4 we
present some corollaries and applications of the results.

Acknowledgements. We would like to thankW. Casselman, J. Humphreys, N. Libedin-
sky and D. Rumynin for helpful discussions.

2. Conjectures

Let (W,S) be a Coxeter system. We will usually denote general elements of W by
v, w, x, y, z, and simple reflections from S by s, t. For x, y ∈ W , by z = x.y we mean
that z = xy and l(z) = l(x) + l(y), where l : W → Z is the length function in (W,S).

Throughout the paper we use the terminology of [KL1, L1, L2]. Thus, let H denote
the Hecke algebra of W over the ring A = Z[q1/2, q−1/2] of Laurent polynomials in
q1/2. Along with the standard basis (Tw)w∈W of H we have the basis (Cw)w∈W of
[KL1], where Cw =

∑
y≤w(−1)l(w)−l(y)ql(w)/2−l(y)Py,w(q

−1)Ty and

Py,w = µ(y, w)q
1
2
(l(w)−l(y)−1) + lower degree terms

are the so-called Kazhdan-Lusztig polynomials introduced in [KL1]. Considering the
multiplication of the basis elements in H we see that there exist hx,y,z ∈ A such that
CxCy =

∑
z hx,y,zCz. The value of a(z) is defined to be the smallest integer such that

q−
a(z)
2 hx,y,z ∈ Z[q−

1
2 ] for all x, y ∈ W , or to be infinity if such an integer does not

exist. If the function a on W takes only finite values (which is conjecturally true for
any group W ), then for every x, y, z ∈ W we can write

hx,y,z = γx,y,zq
a(z)
2 + δx,y,zq

a(z)−1
2 + lower degree terms.

This formula defines the constants γx,y,z and δx,y,z that we will need later.

Using the polynomials Py,w one can define preorders ≤L, ≤R, ≤LR and the associ-
ated equivalence relations ∼L, ∼R, ∼LR on W [KL1]. The equivalence classes for ∼L

(respectively ∼R, ∼LR) are called left cells (resp. right cells, two-sided cells) in W .
Every result about left cells translates to right cells and vice versa by the duality, so
in our considerations we will usually mention only one of the two.

Let Di = {z ∈ W | l(z)− a(z)− 2δ(z) = i}, where l(z) is the length of z in (W,S),
δ(z) is the degree of the polynomial Pe,z, so Pe,z = π(z)qδ(z) + lower degree terms,
and the function a(z) is defined as above. The set D = D0 is the set of distinguished
involutions of W , which was introduced in [L2, §1.3].

Our goal is to detect an inductive structure inside D and to describe an explicit re-
lationship between the elements of D and equivalence relations on W that determines
its partition into cells. To this end let us formulate two conjectures.
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We first introduce some more notations. Let w ∈ W . Denote by Z(w) the set
of all v ∈ W such that w = x.v.y for some x, y ∈ W and v ∈ WI for some I ⊂ S

with WI finite. We call v ∈ Z(w) maximal in w and write v ∈ M(w), if it is not
a proper subword of any other v′ ∈ Z(w) such that w = x′.v′.y′ with x′ ≤ x and
y′ ≤ y. Let Z = Z(W ) be the union of Z(w) over all w ∈ W , Df := D ∩ Z be
the set of distinguished involutions of the finite standard parabolic subgroups of W
and D•

f = Df r (S ∪ {1}). We will call w = x.v.y rigid at v if (i) v ∈ Df , (ii) v is
maximal in w, and (iii) for every reduced expression w = x′.v′.y′ with a(v′) ≥ a(v),
we have l(x) = l(x′) and l(y) = l(y′). This notion of combinatorial rigidity for the
elements of W is essential for our conjectures and results. We refer to [BG1, §4] for
some comments about its meaning.

Conjecture 2.1. (“distinguished involutions”) Let v = x.v1.x
−1 ∈ D with v1 ∈ D•

f

and a(v) = a(v1), and let v′ = s.v.s with s ∈ S. Then if sxv1 is rigid at v1, we have
v′ ∈ D.

Conjecture 2.2. (“basic equivalences”) Let w = y.v0 with v0 ∈ M(w).

(a) Let u = x.v1.x
−1 ∈ D satisfies a(u) ≤ a(v0) and w′ = wu is reduced and has

a(w′) = a(w). Then there exists v01 such that v0 = v′0.v01, v
′
01xv1 is rigid at

v1 for every v′01 such that v0 = v′′0 .v
′
01 and l(v′01) = l(v01), the right descent set

R(w′v−1
01 ) ( R(w), and µ(w,w′v−1

01 ) 6= 0, which implies w ∼R w′v−1
01 ∼R w′.

(b) Let w′′ = w.v1 with v1 ∈ Df not maximal in w′′ and a(w′′) = a(v0). Then we
can write w = y.v01.v02.v03 so that v03.v1 ∈ M(w′′), R(w′′v−1

02 ) 6= R(w), and
µ(w,w′′v−1

02 ) 6= 0. So again w ∼R w′′v−1
02 ∼R w′′.

In practice it is usually easy to find the required ’endings’ v01 and v02 as in the
conjecture. This can be seen, in particular, in the statement of Theorem 3.2 and in
results from [BG2]. At the same time some examples of [BG2] show that there are

cases, such as for instance affine F̃4, which require a special attention.

In order to be able to apply these conjectures we will need to recall some other
conjectures from the theory. The first is a variant of a conjecture of Lusztig about
the function a (cf. [L3, §13.12]):

Conjecture 2.3. (“the function a”) For every w ∈ W , a(w) = a′(w) where a′(w) =
maxv∈M(w) a(v).

One of the immediate corollaries of this conjecture is that there exists a constant
N ≥ 0, which depends only on (W,S), such that for every w ∈ W , a(w) ≤ N . The
groups whose a-function satisfies this property are called bounded. For affine and
some hyperbolic Coxeter groups the boundedness can be verified directly [L1, Bel].

Remark 2.4. There is a small gap in the proof of Theorem 4.2 in [Bel] which,
however, is easy to fix: One has to replace the corresponding part of line 3 on page
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332 there by “in which ij+1 = ij+1, for j = 1, . . . , p−1, and sij ∈ L(si1−1 . . . s1y), for
j = 1, . . . , p” and everywhere after in this paragraph replace y by y′ = si1−1 . . . s1y.
We would like to thank Nanhua Xi for pointing out this issue.

Finally, we recall the well known positivity conjecture (see e.g. [L1, §3]).

Conjecture 2.5. (“positivity”) For all x, y, z ∈ W , the coefficients of Kazhdan-
Lusztig polynomials Px,y(q) and polynomials hx,y,z(q

1/2, q−1/2) are positive integers.

Positivity of the coefficients of Kazhdan-Lusztig polynomials is well known for finite
and affine Weyl groups where it is proved using the relation between Kazhdan-Lusztig
polynomials and singularities of Schubert varieties [KL2, L1]. Later on this result was
extended to all crystallographic Coxeter groups using similar geometric ideas (cf. [Ku,
Theorem 12.2.9]). This, however, can hardly be generalized to non-crystallographic
cases. Another approach to positivity based on categorification of the Hecke algebra
was suggested by Soergel in [So]. We refer to [Li] for some recent results in this
direction.

Lemma 2.6. Assume Conjectures 2.1, 2.2, and 2.3 hold. Let w = x1.v1.x2.v2 with
vi ∈ M(w), a(v1) ≥ a(v2) > a(x2) and a(x2v2) = a(v2). Then w ∼R x1v1.

Proof. We are going to use induction by a(v2). First note that if a(v2) = 1, then
v2 = s ∈ S, x2 = e and R(w) 6⊃ R(x1v1) (by the maximality of v1 in w), so
w = x1v1s ∼R x1v1 follows from the definition of ∼R.

If a(v2) > 1 and v2 6∈ Df , we can replace it by some v′2 so that w ∼R x1.v1.x2.v
′
2 and

v′2 ∈ Df . In order to do so first find a distinguished involution v′2 of the finite parabolic
subgroup WI containing v2 which is right equivalent to v2 in WI (its existence and
uniqueness is proved in [L2]). Then using the maximality of v2 in w and the known
properties of the relation ∼R we can lift v2 ∼R v′2 in WI to x1.v1.x2.v2 ∼R x1.v1.x2.v

′
2

in W .

Now, assume that a(v2) > 1, v2 ∈ Df and x2v2 is rigid at v2. Then u = x2v2x
−1
2

(and also x1v1x2v2x
−1
2 ) is reduced, indeed, if it is not then there is s ∈ R(x2) such that

sv2s = v2, which contradicts the rigidity of x2v2 at v2. Rigidity of x2v2 at v2 enables
us to apply Conjecture 2.1 l(x2) times starting from v2 to show that u ∈ D. By
Conjecture 2.3, it follows that a(u) = a(v2) and a(wx−1

2 ) = a(x1v1). We are now in a
position to use Conjecture 2.2(a), which gives x1v1 ∼R x1v1x2v2x

−1
2 . As a(x2) < a(v2),

we can apply the inductions hypothesis together with Conjecture 2.2(a) to show that
in turn x1v1x2v2x

−1
2 ∼R x1v1x2v2, which finished the proof for this case.

It remains to consider the case when x2v2 is not rigid at v2. It implies that we
can write x2v2 = x.v.y with v ∈ M(xvy), where a(v) = a(v2) and l(y) > 0. We can
choose such an expression with l(y) maximal and a(y) < a(v). Then the induction
hypothesis applies to show that x2v2 ∼R xv and w ∼R x1v1xv. Thus we can replace
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x2v2 with xv and repeat the procedure if rigidity fails at v2 = v. As each iteration
reduces lengths of the elements, we eventually reach the case when x2v2 is rigid at v2,
which allows us to use the previous argument. �

Theorem 2.7. If Conjectures 2.1, 2.2, 2.3 and 2.5 are satisfied for an infinite Coxeter
group W , then the following are true:

(1) The set D of distinguished involutions consists of the union of v ∈ Df and the
elements of W obtained from them using Conjecture 2.1.

(2) The relations described in Conjecture 2.2 determine the partition of W into
right cells, i.e. x ∼R y in W if and only if there exists a sequence x = x0, x1,
. . . , xn = y in W such that {xi−1, xi} = {v, v′} as in 2.2 for every i = 1, . . . , n.

(3) The relations described in Conjecture 2.2 together with its ∼L-analogue deter-
mine the partition of W into two-sided cells.

Proof. By [L2], Conjectures 2.3 and 2.5 imply that each right cell of W contains a
uniquely defined distinguished involution. To prove assertions (1) and (2) we thus
need to show that for any w ∈ W we can find a sequence as in (2) such that x0 = w

and xn = d where d = d(w) satisfies the conditions of Conjecture 2.1.

So let w ∈ W be an arbitrary element. If #R(w) = 1 then w ∼R w′ = ws such
that l(ws) = l(w) − 1. Repeating this procedure we come to w ∼R w1 with either
#R(w1) > 1 or w1 = s ∈ S. In the second case w1 ∈ D and we are done. Thus we
can assume that #R(w1) > 1 and w1 = x.v with a maximal v. If a(x) ≥ a(v), then
using Conjecture 2.3 we can write w1 = x1.v1.x2.v2 as in Lemma 2.6, which implies
w1 ∼R x1.v1. Repeating the procedure if necessary, we come to w1 ∼R w2 = y.u with
#R(w2) > 1, u ∈ M(w2) and a(y) < a(u) = a(w2). As in the proof of Lemma 2.6
we can assume here that u ∈ Df . If w2 is rigid at u, we can apply Conjecture 2.1
l(y) times to show that y.u.y−1 ∈ D. Otherwise we can shift u to the left using
Conjecture 2.2(b), and repeating this procedure if necessary we eventually reduce w2

to a right-equivalent element of the same form which is rigid at u.

Thus in all the cases we show that w ∼R y.u such that d = y.u.y−1 ∈ D. It remains
to prove that d ∼R y.u which can be done applying the same procedure as in the
previous paragraph to d instead of w and using the fact that y.u is rigid at u and
satisfies a(y) < a(u) by the construction. This completes the proof of (1) and (2).

To show (3) we just need to recall the definition of the two-sided equivalence relation
and then refer to the previous argument together with its analogue for the left cells.

�

Let us consider two examples which demonstrate the necessity of the main condi-
tions imposed in the conjectures.

Example 2.8. Let W be an affine group of type Ã4 with extended Dynkin diagram
labelled as in Figure 1.
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0
1

2
3

4

Figure 1. Dynkin diagram for Ã4.

The element v1 = s4s0s4s2 is the longest element of the finite standard para-
bolic subgroup WI with I = {s0, s2, s4}, so v1 ∈ Df . We can check by direct
computation that s1 s4s0s4s2 s1, s3s1 s4s0s4s2 s1s3, and s2s3s1 s4s0s4s2 s1s3s2 are in
D, which agrees with Conjecture 2.1. However, the same computation shows that
s0s2s3s1 s4s0s4s2 s1s3s2s0 is not in D! The only possible reason for this in view of
the conjecture is that s0s2s3s1 s4s0s4s2 might not be rigid at v1, and, indeed, we can
check that

s0s2s3s1 s4s0s4s2 = s2s0s3s1 s0s4s0s2 = s2 s3s0s1s0 s4s0s2,

where s3s0s1s0 ∈ Df and a(s3s0s1s0) = a(v1).

Example 2.9. It is easy to check that if WI is a finite standard parabolic subgroup
of W then its longest element w0 is always in Df . The statements of our conjectures
would simplify quite a bit if all involutions in Df had this form. However, this is
not always the case. For example, let W be a Weyl group of type D4 with Dynkin
diagram as in Figure 2.

1
2

3

4

Figure 2. Dynkin diagram for D4.

Let v = s2s4s1s3s2s1s3s2s4s2s1. Then a(v) = 7 (see [J] or [BG2]) and a direct
computation shows that δ(v) = 2, so we have l(v)− a(v) − 2δ(v) = 11 − 7 − 4 = 0,
and thus v ∈ D. At the same time, it is clear that v is not the longest element in W

or in any of its standard parabolic subgroups.
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3. Results

Throughout this section we assume the positivity conjecture and boundedness of
the function a on W . These assumptions can be slightly relaxed in some cases but
can not be completely removed. The positivity and boundness conjectures are widely
believed to be true for any Coxeter group and are proved in a number important
special cases, we refer to the previous section for a related discussion.

Theorem 3.1. Let v = x.v1.x
−1 ∈ D with v1 ∈ D•

f , a(v) = a(vs) and L(vs)rR(vs) 6=
∅; and let v′ = s.v.s. Then if v′ is rigid at v1, we have v′ ∈ D.

Proof. The argument naturally splits into two steps:

(a) show that δ(vs), which is deg(Pe,vs), equals δ(v);
(b) show that δ(svs) = δ(vs) + 1.

The first step is a corollary of some results from the correspondence of Lusztig and
Springer [LS]. Let us briefly recall the argument (see also [Xi, §1.4]).

We have µ(v, vs) = 1 (by [KL1, 2.3.f]) and a(v) = a(vs) (by the assumption), so
by [L2, 1.9], v ∼R vs. As L(vs) 6= R(vs), clearly, vs 6∼R sv = (vs)−1. By Springer’s
formula µ(v, vs), which equals µ(vs, v), can be written

µ(v, vs) =
∑

v′∈D

δsv,v,v′ +
∑

f∈D1

γsv,v,fπ(f).

By [L2, Thm. 1.8], we have γsv,v,f = γf,sv,v. If γf,sv,v 6= 0, then [L2, Prop. 1.4(a)]
implies that f = sv (and γf,sv,v = 1). Thus in this case sv and also vs are in D1.

Assume now that vs is not in D1. Then by the previous argument all γsv,v,f = 0
and hence µ(v, vs) =

∑
v′∈D δx−1,v,v′ . But if δx−1,v,v′ 6= 0, then by a result of Springer

we have sv ∼R v′ and v ∼L v′. Since each left cell contains only one distinguished
involution ([L2, Thm. 1.10]) we must have v = v′. Hence we get sv ∼R v. But
L(sv) 6= L(v) and we come to a contradiction with [KL1, Prop. 2.4(ii)].

Therefore, we must have vs ∈ D1 which means

δ(vs) =
1

2
(l(vs)− a(vs)− 1) =

1

2
(l(v)− a(v)− 1) = δ(v).

We proceed with the second step.

By [KL1, 2.2.c], we have

Pe,svs = qPs,vs + Pe,vs −
∑

z≺vs
sz<z

µ(z, vs)q−1/2
z q1/2vs q1/2Pe,z = qPs,vs + Pe,vs − Σ;

and by [KL1, 2.3.g], Ps,vs = Pe,vs, thus

Pe,svs = (q + 1)Pe,vs − Σ.
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As z ≺ vs and s ∈ L(z) r L(vs), we have z ≤L vs for any z in Σ. By [L2, 1.5(c)],
this implies a(z) ≥ a(vs) = a(v). Now, by [L2, 1.3(a)], we obtain

δ(z) ≤
1

2
(l(z)− a(z)) ≤

1

2
(l(z)− a(v)).

This inequality enables us to bound the degree d1 of the summands in Σ:

d1 ≤
1

2
(−l(z) + l(vs) + 1 + l(z)− a(z)) ≤

1

2
(2δ(v) + a(v) + 1 + 1− a(v)) = δ(v) + 1,

thus by Step (a), d1 ≤ δ(vs) + 1. Note that the leading term of (q + 1)Pe,vs may
cancel only if d1 = δ(vs) + 1, in which case we obtain

a(z) = a(v) and δ(z) =
1

2
(l(z)− a(z)).

Hence any such z has to be a distinguished involution. Moreover, as a(z) = a(vs)
and z ≤L vs, by [L2, 1.9(b)] we have z ∼L vs. Hence we have L(z) = R(z) = R(vs).
Now z ≺ vs and L(vs)rR(vs) 6= ∅ together with [KL1, 2.3.e] imply vs = tz for some
t ∈ S. Hence we have vs = x.v1.x

−1.s = tz = tz−1 = x1.v1.x2 with l(x1) = l(x) + 2
and l(x2) = l(x)− 1. This contradicts the rigidity of vs (and also svs) at v1.

We showed that such z does not exist. Therefore the degree of Pe,svs is equal to
the degree of (q + 1)Pe,vs, and recalling again the result of Step (a), we have

δ(svs) = δ(vs) + 1 = δ(v) + 1.

On the other hand, l(svs) = l(v) + 2 and a(svs) ≥ a(vs) = a(v), so l(svs)− a(svs)−
2δ(svs) ≤ 0 but for any w ∈ W , l(w)− a(w)− 2δ(w) ≥ 0 (see [L2, 1.3(a)]). We thus
showed that a(svs) = a(v), l(svs)− a(svs)− 2δ(svs) = 0 and svs ∈ D. �

We see that with the extra condition L(vs)rR(vs) 6= ∅ and the assumption that
v′ is rigid at v1, Conjecture 2.1 is true. The extra condition is used only in Step (b)
of the proof. The rigidity assumption here obviously implies the rigidity of sxv1 at v1
(as in Conjecture 2.1). The converse is probably also true but we do not know how
to show it in a general setting.

The proof of Theorem 3.1 together with the following argument allows us to estab-
lish also a special case of Conjecture 2.2:

Theorem 3.2. Let w = x.v0 = tn . . . t1.sl . . . s1 with ti, si ∈ S, v0 = sl . . . s1 ∈ Df is
the longest element of a standard finite parabolic subgroup of W which is maximal in
w and a(w) = a(v0); u = y.u0.y

−1 ∈ D with u0 ∈ Df such that a(u) = a(u0) = l; and
w′ = w.u.v01 with v01 = s1 . . . sl−1 has a(w′) = a(w) and R(w′) ( R(w).

Assume that

(1) For any vj = tj . . . t1v0t1 . . . tj, j = 0, . . . , n − 1 and t = tj+1 or t = tj−1 if
tj−1 6∈ R(vj), we have a(vjt) = a(vj), L(vjt)rR(vjt) 6= ∅ and tvjt is rigid at
v0.
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(2) For any uj = sj−1 . . . s1us1 . . . sj−1, j = 1, . . . , l − 1 with u1 = u, we have
a(ujsj) = a(uj), L(ujsj)rR(ujsj) 6= ∅ and sjujsj is rigid at u0;

Then µ(w,w′) 6= 0 and w ∼R w′.

We note that conditions (1) and (2) are imposed in order to apply Theorem 3.1.
If we would be able to prove Conjecture 2.1 in its full generality, the assumptions of
the theorem would immediately simplify.

Proof. Let us first consider the case when x = e, so w = v0. As v0 = sl . . . s1 is the
longest element of a standard parabolic subgroup, for every i, si ∈ L(v0) = R(v0).
Thus by [KL1, 2.3.g],

Pv0, v0uv01 = Pe, v0uv01 .

Theorem 3.1 applied to each uj, j = 1, . . . , l−1 as in (2) implies that ul−1 = v−1
01 uv01 ∈

D, moreover, the argument of Step (a) of the proof shows that deg(Pe, v0uv01) =
deg(Pe, v−1

01 uv01
). So

deg(Pv0, v0uv01) =
1

2
(2l(v01) + l(u)− a(u)) =

1

2
(a(u) + l(u)− 2) =

1

2
(l(u) + l(v01)− 1).

Hence µ(w,w′) 6= 0 (in fact, we have µ = 1). Now, as R(w′) ( R(w), we have
w ≤R w′ by the definition of the preorder ≤R (see [KL1]). The opposite inequality
w′ ≤R w is easy to show using induction by l(w′) − l(w) and relations of the form
wis ≤R wi which follow from the definition. Thus we obtain that w ∼R w′.

Now let w = x.v0 with x = tn . . . t1 nontrivial. In order to prove the theorem for
this case we use induction on the length of x. The base case x = e has already been
considered. Assume that the theorem is proven for all wi = ti . . . t1.v0, i = 0, . . . , n−1
and corresponding w′

i. We need to show that then it follows for wn = s.xv0 and
w′

n = s.xv0uv01 with s = tn, in particular, the assumption (1) is satisfied for s.

By [KL1, 2.2.c], we have

Psxv0,sxv0uv01 = Pwn−1,w′

n−1
+ qPwn,w′

n−1
−

∑

wn≤z≺w′

n−1
sz<z

µ(z, w′
n−1)q

−1/2
z q

1/2
w′

n−1
q1/2Pwn,z

= Pwn−1,w′

n−1
+ qPwn,w′

n−1
− Σ.

By the induction hypothesis, µ(wn−1, w
′
n−1) 6= 0. It follows that a summand of Σ can

have the same degree as Pwn−1,w′

n−1
only if it corresponds to z with wn ≺ z.

Thus we have to consider z ∈ W such that

sxv0 ≺ z ≺ xv0uv01.

By assumption (1), there exists t ∈ S such that t ∈ L(xv0x
−1s) r R(xv0x

−1s) =
L(xv0)rL(sxv0). It then belongs to L(xv0uv01)rL(sxv0). We consider two possible
cases.
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(1) First assume t 6∈ L(z). Then by [KL1, 2.3.e] we have tz = w′
n−1 = tx′v0uv01

and thus z = w′
n−2. We have z = w′

n−2 ∼R wn−2 by the induction hypothesis

(assuming n ≥ 2), which is then easily seen to be right equivalent to x′v0x
′−1

using the definition of ∼R. Theorem 3.1 then implies x′v0x
′−1 ∈ D. On the

other hand, by a similar argument the relations sxv0 ≺ z, R(z) ( R(sxv0)
and a(z) = a(sxv0) imply z ∼R sxv0 ∼R sxv0x

−1s ∈ D. We thus see that
both x′v0x

′−1 ∼R sxv0x
−1s are in D and are not equal to each other, which is

a contradiction.
The case n = 1 has to be considered separately. We get tz = v0uv01, which

implies L(z) ⊂ {s1, . . . , sl} = L(v0) but s 6∈ L(v0) and thus we arrive at a
contradiction again.

(2) Now assume t ∈ L(z). As t 6∈ L(sxv0), by [KL1, 2.3.e] we have z = t.sxv0.
A similar argument to that given above shows that z ∼R xv0uv01 ∼R xv0,
which gives rise to two different but equivalent distinguished involutions — a
contradiction.

It follows that such z does not exist. Hence deg(Pwn,w′

n
) = deg(Pwn−1,w′

n−1
), µ(wn, w

′
n) 6=

0 and wn ∼R w′
n. This finishes the proof of the theorem. �

4. Applications

4.1. Groups of type (n). Let W be a Coxeter group whose Coxeter matrix non-
diagonal entries mi,j = m(si, sj), i 6= j are either n or infinity. Thus the only
non-trivial relations in W are those of the form (sisj)

n = e with si, sj ∈ S. We say
that such Coxeter groups are of type (n).

Coxeter groups of type (n) include all dihedral groups, the affine Weyl groups
Ã1 and Ã2, and infinitely many hyperbolic Coxeter groups. We claim that if some
elements of an infinite group of type (n) satisfy the conditions of Conjectures 2.1
and 2.2, then they also satisfy the conditions of Theorems 3.1 and 3.2. This follows
easily from the combinatorics of the relations in W and the fact that the only finite
standard parabolic subgroups of W of rank > 1 have the form WI with I = {si, sj},
and all such subgroups are isomorphic to each other. Conjecture 2.3 for groups of
type (n) can be verified using Tits’ elementary M-operations similar to the proof of
Theorem 4.2 in [Bel]. Although the positivity conjecture is not known in general for
such groups there are partial results in its direction (see §2 for a short discussion).

Let us consider some concrete examples.

Example 4.1. Let W = 〈s1, s2, s3 | s
2
1, s

2
2, s

2
3, (s1s2)

3, (s2s3)
3, (s3s1)

3〉 be the affine
Weyl group Ã2, which is of type (3). Then Df = {s1, s2, s3, s1s2s1, s2s3s2, s3s1s3}
and D•

f = {s1s2s1, s2s3s2, s3s1s3}. Let v1 = s1s2s1 ∈ D•
f . By Conjecture 2.1 (or

here Theorem 3.1) it gives rise to the distinguished involution s3 s1s2s1 s3 in W . If we
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try to continue the process, we see that both reduced elements s2s3 s1s2s1 s3s2 and
s1s3 s1s2s1 s3s1 are not rigid at v1. Thus the inductive construction terminates here.
The same can be done for the other two elements in D•

f . We obtain that in total
there are 6 + 3 distinguished involutions in W . Thus there are 9 non-trivial left cells
in W which agrees with the result of [L1, §11]. The partition of W into cells can be
recovered using Conjecture 2.2 which in this case is equivalent to Theorem 3.2. It is a
simple exercise to check that the resulting partition coincides with the one described
by Lusztig (loc. cit.).

Example 4.2. Let W = Pn = 〈s1, s2, . . . , sn | s2i = 1, (sisi+1)
2 = 1, i = 1, . . . , n〉 (for

the sake of convenience we assume sn+1 = s1). Assume n ≥ 5. ThenW can be realized
as a group generated by reflections in the hyperbolic plane about the sides of a right-
angled n-gon. This is a special class of right-angled Coxeter groups studied in detail
in [Bel] and is a group of type (2). We have Df = {si, sisi+1 | i = 1, . . . , n} and D•

f =
{sisi+1 | i = 1, . . . , n}. By Theorem 3.1, the elements of the form t1 . . . tksisi+1tk . . . t1
with m(tj , tj+1) = ∞ (j = 1, . . . , k − 1) and m(tk, si) = m(tk, si+1) = ∞ are in D.
These are, in fact, the only elements of W that satisfy the conditions of the theorem,
and thus from the discussion above we conclude that the elements of this form give
us the whole set D of the distinguished involutions. By Theorem 3.2 we obtain that
together with the obvious right equivalences W also admits the equivalences of the
form xsisi+1 ∼R xsisi+1t1 . . . tksjsj+1tk . . . t1si. Theorem 2.7 now shows that these
equivalences are sufficient for describing the right cells of W .

The resulting description of the right cells and distinguished involutions inW agrees
with the one which is given in [Bel], so we obtain an alternative proof for the main
results there.

4.2. Groups with infinitely many one-sided cells. Consider Coxeter groups W
with the following property:

(*) There exist s, t1, t2 ∈ S such that m(s, t1) = m(s, t2) = ∞ and m(t1, t2) is
finite.

We claim that, assuming the positivity and boundness conjectures, (*) implies that
W has infinitely many one-sided cells. Indeed, let v0 be the longest element in the
standard parabolic subgroup generated by t1 and t2. Then all elements with reduced
expressions of the form tis . . . tjsv0stj . . . sti (i, j = 1 or 2) satisfy the conditions of
Theorem 3.1, and hence are in D. As under our assumptions each one-sided cell of
W contains a uniquely defined distinguished involution ([L2]), the claim follows.

Let us put this result in a general perspective. The coexistence of infinite and
finite exponents in the Coxeter matrix of W implies that W contains a non-abelian
free subgroup (in our case it is the subgroup generated by, for example, t1t2s and
t1st2). A group is called large if a subgroup of finite index in it has a non-abelian free
quotient. In [MV] it was shown that any non-affine infinite indecomposable Coxeter
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group of finite rank is large. Any large group is SQ-universal, and hence contains a
non-abelian free subgroup. Thus an indecomposable infinite Coxeter group is either
affine or contains a non-abelian free subgroup. By the work of Lusztig [L2], any affine
Coxeter group has only finitely many cells. Our result here gives a support to the
conjecture that all other indecomposable infinite Coxeter groups except those whose
all exponents are infinite should have infinitely many one-sided cells.

Let us point out that there are large groups for which one cannot produce infinitely
many distinguished involution using only Theorem 3.1. For a simple example con-
sider the Hurwitz triangle group (2, 3, 7) with presentation Γ = 〈s1, s2, s3 | (s1s3)

2 =
(s1s2)

3 = (s2s3)
7〉. It is easy to check that applying Theorem 3.1 while starting from

the distinguished involutions in the standard parabolic subgroups of Γ we can only
get finitely many elements of D, while Conjecture 2.1, if true, implies that it should
be possible to continue the process to infinity. In [BG2] we present an experimental
conformation of the infiniteness of the number of one-sided cells as well as our main
conjectures for this and some other groups.
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