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Higher Lie algebra actions on Lie algebroids

Marco Zambon∗, Chenchang Zhu†‡§

Abstract

We consider a simple instance of action up to homotopy. More precisely, we consider
non-strict actions of DGLAs in degrees −1 and 0 on degree 1 NQ-manifolds. In a more
conventional language this means: non-strict actions of Lie algebra crossed modules on
Lie algebroids.

When the action is strict, we show that it integrates to group actions in the categories
of Lie algebroids and Lie groupoids (i.e. actions of LA-groups and 2-groups). We
perform the integration in the framework of Mackenzie’s doubles.

We study quotients of degree 1 NQ-manifolds by actions up to homotopy and by
distributions, recovering Mackenzie’s notion of Lie algebroid ideal system.
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Introduction

In recent years there has been an intense activity integrating certain infinitesimal struc-
tures, such as Lie algebroids [7][9] and L∞-algebras [10][11]. Here “integration” is meant
in the same sense in which a Lie algebra is integrated to a corresponding Lie group. Both
Lie algebroids and (non-positively graded) L∞-algebras are instances of NQ-manifolds –
non-negatively graded manifolds equipped with a homological vector field (Def. 1.9). In
this paper we focus on actions: our aim is to study infinitesimal actions on NQ-manifolds
and their integrations to global actions.

Part of our motivation comes from the theory of Courant algebroids, which plays an
important role in Hitchin and Gualtieri’s generalized complex geometry. Indeed Courant
algebroids are equivalent to a special class of NQ-manifolds (symplectic NQ-2 manifolds
[23]), and the work [5] shows that actions on Courant algebroids are realized by more data
than just a Lie group action.

Indeed, the symmetries of a NQ-manifold M are given by more data than simply a
Lie group, by the following elementary but important observation: the vector fields χ(M)
form a differential graded Lie algebra (DGLA). We say that M is a NQ-n manifold if its
coordinates are concentrated in degrees 0, . . . , n. In this case the DGLA χ(M) is generated
as a C(M)-module by its elements in degrees −n, . . . , 0 (Lemma 1.11 and Remark 1.12).
Thus the infinitesimal symmetries of M are controlled by an (n+1)-term DGLA – a special
kind of Lie (n + 1)-algebra –, just as the infinitesimal symmetries of an ordinary manifold
are controlled by a Lie algebra. This implies that some kind of Lie (n+ 1)-group naturally
plays the role of the global symmetries.

In this paper we consider the simplest case n = 1, that is, NQ-1 manifolds, which in
ordinary differential geometry language are just Lie algebroids. The main purpose of this
paper is to study infinitesimal actions on NQ-1 manifolds and to integrate them to global
actions. In a future work we plan to extend our study to NQ-2 manifolds and to Courant
algebroids. We saw above that the infinitesimal symmetries of NQ-1 manifolds are given
by 2- term DGLAs. The latter are also known as strict Lie 2-algebras1 (Def. 1.17), and
they are equivalent to crossed modules of Lie algebras (Lemma 1.22). The integration of
a strict Lie 2-algebra is a strict Lie 2-group. Hence strict Lie 2-groups control the global
symmetries of an NQ-1 manifold.

An infinitesimal action on an NQ-1 manifold M is a suitable morphism from a Lie
2-algebra L into the strict Lie-2 algebra χ(M) controlling the infinitesimal symmetries of
M (Def. 1.15). Even when L is strict, the action itself might be non-strict. We focus on
strict actions, which we integrate explicitly in §2 (the main section of this paper). A strict
action of L on M gives rise to a “action double Lie algebroid”, which we integrate to an
“action double Lie groupoid”. This is a major step, as there are no general statements in
the literature which allow to integrate double Lie algebroids to double groupoids. From the
“action double Lie groupoid” we extract an action G×Γ → Γ of a strict Lie 2-group G on the
Lie groupoid Γ integrating the Lie algebroid corresponding to M (Prop. 2.14, Thm. 2.16
and Prop. 2.18). This gives a conceptual explanation for the results obtained in a special
case by Cattaneo and the first author [8, Thm. 14.1]. Notice that the integrated action is

1For a general study of Lie 2-algebras please see Baez et al. [2].
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not on M, but rather on the its integration Γ. When the action or the Lie 2-algebra are
not necessarily strict, we expect to obtain an “action Lie 2-algebroid” (Remark 2.11), whose
study we postpone to future work. In the strict action case we discuss the Lie 2-groupoid
integrating the “action Lie 2-algebroid”; we obtain it applying the Artin-Mazur construction
[1] [22, Chap.12.5.2] to the “action double Lie groupoid” (Remark 2.20).

In §3 we give examples of Lie 2-algebra actions on tangent bundles, cotangent bundles
of Poisson manifolds and Lie algebras.

Finally in §4 we discuss quotients of NQ-1 manifolds by the above higher actions. We
build on §1.3, where we discuss distributions on NQ-1 manifolds and rediscover Mackenzie’s
notion of Lie ideal system on Lie algebroids [18]. As such distributions can be thought of
as the images of Lie 2-algebra actions, this serves as some evidence for our considerations
on higher Lie algebras. What is special in the higher action case is that a regular action
(not necessarily strict) of a strict Lie 2-algebra may not have an involutive image. We need
to make an additional assumption to achieve involutivity (Prop. 4.1) and obtain a quotient
NQ-1 manifold, which can also be realized via ideal systems.

Notation and conventions: M always denotes a smooth manifold. For any vector bundle
E, we denote by E[1] the N-manifold obtained from E by declaring that the fiber-wise linear
coordinates on E have degree one. If M is an N-manifold, we denote by C(M) the graded
commutative algebras of “functions on M”. By χ(M) we denote graded Lie algebra of vector
fields on M (i.e., graded derivations of C(M)).
The symbol A always denotes a Lie algebroid over M . When A is integrable, we denote the
corresponding source simply connected Lie groupoid by Γ, and its source and target maps
by s and t. We adopt the convention that two elements x, y ∈ Γ are composable to x ◦ y iff
s(x) = t(y). We identify A ∼= (ker s∗)|M .

Acknowledgements: We thank Rajan Mehta, Tim Porter, Pavol Ševera and Jim Stasheff
for their very helpful comments and for discussions.
Zambon thanks the Courant Research Centre “Higher Order Structures" for hospitality.
Zambon was partially supported by the Centro de Matemática da Universidade do Porto,
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2007, grants PTDC/MAT/098770/2008 and PTDC/MAT/099880/2008 (Portugal), and by
MICINN RYC-2009-04065 (Spain).
Zhu thanks C.R.M. Barcelona for hospitality. Zhu is supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy
of the University of Göttingen.

1 Infinitesimal actions on NQ-manifolds

This section introduces NQ-manifolds (§1.1) and infinitesimal actions of Lie-2 algebras
on them (§1.2). The integration of these infinitesimal actions is the main object of this
paper. Further we study distributions on NQ-manifolds (§1.3).
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1.1 Background on graded geometry

We start by proving some background material on graded geometry. In §1.1.1 we consider
degree 1 N-manifolds, which correspond simply to vector bundles. Then §1.1.2 we endow
them with a homological vector field, obtaining Lie algebroids.

1.1.1 N-manifolds

The notion of N-manifold was introduced by Ševera in [25] and appeared even earlier
in [24]. We recall some basic notions about N-manifolds (“N” stands for non-negative). See
also [23, §2], [6, §2].

If V = ⊕i∈ZVi is a finite dimensional Z-graded vector space, recall that V ∗ is the Z-
graded vector space defined by (V ∗)i = (V−i)

∗, and for any integer k, V [k] denotes the
Z-graded vector space obtained from V shifting the degree by k: (V [k])i = Vk+i.

Ordinary manifolds are modeled on open subsets of R
n, and N-manifolds modeled on

the following graded charts:

Definition 1.1. Let U ⊂ R
n open subset and V = ⊕i<0Vi a finite dimensional Z<0-graded

vector space.
The local model for an N-manifold consists of the pair

• U (the “body”)

• C∞(U)⊗ S•(V ∗) (the graded commutative algebra of “functions”).

Notice that here S•(V ∗) denotes the graded symmetric algebra over V ∗, so its homoge-
neous elements anti-commute if they both have odd degree.

Definition 1.2. An N-manifold M consists of a pair as follows:

• a topological space M (the “body”)

• a sheaf OM over M of graded commutative algebras, locally isomorphic to the above
local model (the sheaf of “functions”).

We use the notation C(M) for OM (M), the space of “functions on M”. It is a graded
commutative algebra, and it is concentrated in non-negative degrees (as a consequence of
the fact that in the local model V is concentrated in negative degrees and therefore V ∗

in positive degrees). For any non-negative k, Ck(M) denotes the degree k component of
C(M). In the following we will work mainly with the algebra C(M), even though strictly
speaking all our considerations should be carried out for the sheaf OM instead. When we
work explicitly with the sheaf OM , we also use the notation C(M)U := OM (U) for all open
subsets U ⊂M .

The largest i such that V−i 6= {0} is called the degree of the graded manifold. Degree
zero graded manifolds are just ordinary manifolds : V = {0}, and all functions have degree
zero.

Remark 1.3. A graded vector bundle E = ⊕i<0Ei → M can be viewed as an N-manifold
with body M and functions Γ(S•E∗). (To be more precise, the sheaf of “functions” is given
by the sheaf of sections of S•E∗.) It can be shown that every finite dimensional N-manifold
is (non-canonically) isomorphic to a graded vector bundle as above.
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To study the symmetries of a N-manifold M, we look at the vector fields on M.

Definition 1.4. A vector field on M is a graded derivation of the algebra2 C(M).

Since C(M) is a graded commutative algebras, the space of vector fields χ(M), equipped
with the graded commutator [−,−], is a graded Lie algebra (see Def. 1.10).

In this note we will consider mainly degree 1 N-manifolds, which we now describe in
more detail. To do so we recall first

Definition 1.5. Given a vector bundle E over M , a covariant differential operator3 (CDO)
is a linear over Y : Γ(E) → Γ(E) such that there exists a vector field Y on M (called
symbol) with

Y (f · e) = Y (f)e+ f · Y (e), for f ∈ C∞(M), e ∈ Γ(E). (1)

We denote the set of CDOs on E by CDO(E). If Y ∈ CDO(E), then the dual Y ∗ ∈
CDO(E∗) is defined by

〈Y ∗(ξ), e〉 + 〈ξ, Y (e)〉 = Y (〈ξ, e〉), for all e ∈ Γ(E), ξ ∈ Γ(E∗). (2)

Recall that if E → M is a (ordinary) vector bundle, E[1] denotes the graded vector
bundle whose fiber over x ∈ M is (Ex)[1] (a graded vector space concentrated in degree
−1).

Proposition 1.6. If E →M is a vector bundle, then M := E[1] is a degree 1 N-manifold
with body M , and conversely all degree 1 N-manifolds arise this way.

The algebra of functions C(M) is generated by

C0(M) = C∞(M) and C1(M) = Γ(E∗).

The C(M)-module of vector fields is generated by elements in degrees −1 and 0. We
have identifications

χ−1(M) = Γ(E) and χ0(M) = CDO(E∗)

induced by the actions on functions. Further the map χ0(M) ∼= CDO(E) obtained dualizing
CDOs is just X0 7→ [X0, ·] (using the identification χ−1(M) = Γ(E)).

Proof. By Remark 1.3

Γ(S•(E∗[−1])) = Γ(∧•E∗) (3)

is a sheaf over M making M := E[1] into a degree 1 N-manifold. On the right hand side
appears the ordinary exterior product of the vector bundle E∗, and elements of ∧kE∗ are
assigned degree k.

Conversely, let M be a topological space and OM a sheaf of graded commutative algebras
over M as in Def. 1.2, defining a graded manifold M′. Then M must be a smooth manifold

2Strictly speaking one should define vector fields in terms of the sheaf OM over M . However we will
work only with objects defined on the whole of the body M , hence the above definition will suffice for our
purposes.

3Also known as derivative endomorphism, see [13, §1].
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and the degree 1 elements of OM form a locally free module over C∞(M), hence sections of
a vector bundle, whose dual we denote by E. From Def. 1.1 we conclude that M′ ∼= E[1].

From Def. 1.1 it is clear that C(M) is generated (as a graded commutative algebra) by
its elements of degree 0 and 1. By eq. (3) we have C0(M) = C∞(M) and C1(M) = Γ(E∗).

A vector field on M, since it is a graded derivation, is determined by its action on
functions of degree 0 and 1. Let f0, g0 ∈ C0(M) and f1, g1 ∈ C1(M). If X−1 ∈ χ−1(M), it
maps C0(M) to zero and maps C1(M) to C0(M). Hence the graded derivation property is
simply

X−1(f0g1) = f0X−1(g1), (4)

so the action of X−1 on Γ(E∗) is C∞(M)-linear, i.e. given pairing with a section of E, and
we conclude that χ−1(M) = Γ(E).

If X0 ∈ χ0(M), then the action of X0 preserves C0(M) as well as C1(M). The graded
derivation property on generators reads

X0(f0g0) = X0(f0)g0 + f0X0(g0), X0(f0g1) = f0X0(g1) +X0(f0)g1.

The first equation tells us that X0|M , defined restricting the action of X0 to C0(M), is a
vector field on M , and altogether we conclude that X0 is a covariant differential operator
on E∗ with symbol X0|M . Hence χ0(M) = CDO(E∗).

The canonical identification CDO(E∗) ∼= CDO(E) obtained dualizing CDOs sendsX0 ∈
χ0(M) = CDO(E∗) to [X0, ·] ∈ CDO(E) (using the identification χ−1(M) = Γ(E)).
Indeed eq. (2) applied to Y ∗ = X0 reads

X−1(X0(ξ)) + [X0,X−1](ξ) = X0(X−1(ξ))

for all X−1 ∈ χ−1(M) = Γ(E) and ξ ∈ C1(M) = Γ(E∗).

Remark 1.7. Consider again a vector bundle E → M and M = E[1]. In Lemma 1.6 we
saw that C0(M) = C∞(M) and that C1(M) agrees with the fiber-wise linear functions on
E. [8, Lemma 8.7] states that this induces a canonical, bracket preserving identification of
vector fields

χ−1(E[1]) ∼={vertical vector fields on E which are invariant under translations in the fiber direction }

χ0(E[1]) ∼={vector fields on E whose flow preserves the vector bundle structure}.

Remark 1.8. Let us choose coordinates {xi} on an open subset U ⊂ M and a frame {eα}
of sections of E|U . Let {ξα} be the dual frame for E∗|U , and assign degree 1 to its ele-
ments. Then {xi, ξ

α} form a set of coordinates for M := E[1] (in particular they generate
C(M) over U). The coordinate expression of vector fields is as follows. χ−1(M) con-
sist of elements of the form fα

∂
∂ξα

, and χ0(M) of elements of the form gi
∂

∂xi
+ fαβξ

α ∂
∂ξβ

.

Here fα, gi, fαβ ∈ C∞(M), for i ≤ dim(M) and α, β ≤ rk(E), and we adopt the Einstein
summation convention.

1.1.2 NQ-manifolds and Lie algebroids

We will be interested in N-manifolds equipped with extra structure:
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Definition 1.9. An NQ-manifold is an N-manifold equipped with a homological vector field,
i.e. a degree 1 vector field Q such that [Q,Q] = 0.

To shorten notation, we call a degree n NQ-manifold a NQ-n manifold.
We recall the notion of differential graded Lie algebra (DGLA):

Definition 1.10. A graded Lie algebra consists of a a graded vector space L = ⊕i∈ZLi

together with a bilinear bracket [·, ·] : L× L→ L such that

– the bracket is degree-preserving: [Li, Lj ] ⊂ Li+j

– the bracket is graded skew-symmetric: [a, b] = −(−1)|a||b|[b, a]

– the adjoint action [a, ·] is a degree |a| derivation of the bracket (Jacobi identity):
[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]] .

A differential graded Lie algebra (DGLA) (L, [·, ·], δ) is a graded Lie algebra together with
a linear δ : L→ L such that

– δ is a degree 1 derivation of the bracket: δ(Li) ⊂ Li+1 and δ[a, b] = [δa, b] +
(−1)|a|[a, δb]

– δ2 = 0.

Above a, b, c are homogeneous elements of L of degrees |a|, |b|, |c| respectively.

Lemma 1.11. For a NQ-n manifold M, the space of vector fields

(χ(M), [Q,−], [−,−])

is a negatively bounded DGLA with lowest degree −n.

Proof. The fact that [Q,−] squares to zero follows from [Q, [Q,−]] = 1
2 [[Q,Q],−] = 0. The

fact that [Q,−] is a degree 1 derivation of the Lie bracket follows from the Jacobi identity.
So the above is a DGLA.

A vector field on M has local expression
∑

i fi
∂
∂yi

, where fi ∈ C(M) and yi’s are
local coordinates on M. The degree of ∂

∂yi
is −deg(yi). Since deg(yi) ∈ {0, . . . , n} we are

done.

Remark 1.12. As a C(M)-module, χ(M) is generated by its elements in degrees −n, . . . , 0.
This suggests that the most important information is contained in the truncated DGLA

χ−n(M)⊕ · · · ⊕ χ−1(M) ⊕ χQ
0 (M), (5)

where
χQ
0 (M) := {X ∈ χ0(M) : [Q,X] = 0}. (6)

It is a sub-DGLA of χ(M).

A well-known example of NQ-manifolds is given by Lie algebroids [18].

7



Definition 1.13. A Lie algebroid A over a manifold M is a vector bundle over M , such
that the global sections of A form a Lie algebra with Lie bracket [·, ·]A and Leibniz rule
holds

[X, fY ]A = f [X,Y ]A + ρ(X)(f)Y, X, Y ∈ Γ(A), f ∈ C∞(M),

where ρ : A→ TM is a vector bundle morphism called the anchor.

The following is well known ([28], see also [12]):

Lemma 1.14. NQ-1 manifolds are in bijective correspondence with Lie algebroids.

We describe the correspondence using the derived bracket construction. By Lemma
1.6 there is a bijection between vector bundles and degree 1 N-manifolds. If A is a Lie
algebroid, then the homological vector field is just the Lie algebroid differential acting on
Γ(∧•A∗) = C(A[1]). Conversely, if (M := A[1], QA) is an NQ-manifold, then the Lie
algebroid structure on A can be recovered by the derived bracket construction [12, §4.3]:
using the identification χ−1(M) = Γ(A) recalled in Lemma 1.6, we define

[a, a′]A = [[QA, a], a
′], ρ(a)f = [[QA, a], f ], (7)

where a, a′ ∈ Γ(A) and f ∈ C∞(M).
In coordinates the correspondence is as follows. Choose coordinates xα on M and a

frame of sections ei of A, inducing (degree 1) coordinates ξi on the fibers of A[1]. Then

QA =
1

2
ξjξickij(x)

∂

∂ξk
+ ραi (x)ξ

i ∂

∂xα
(8)

where [ei, ej ]A = ckij(x)ek and the anchor of ei is ραi (x)
∂

∂xα
.

Viewing Lie algebroids as NQ-manifolds proves to be very valuable. For example, the
definition of Lie algebroid morphism A→ A′ is quite involved, but in terms of NQ-manifolds
it is simply a morphism of N-manifolds from A[1] to A′[1] (i.e., a morphism of graded com-
mutative algebras C(A′[1]) → C(A[1])) which respects homological vector field. Similarly,
the notion of double Lie algebroid is quite involved, but it simplifies once expressed in terms
of homological vector fields (Def. 2.5).

1.2 Lie 2-algebra actions on NQ-1 manifolds

In this subsection we define Lie 2-algebra actions on NQ-1 manifolds. We first give a
general definition, but then restrict to a very special case (§1.2.1). Then in §1.2.2 we study
actions from an ordinary differential geometry view point, that is, we view NQ-1 manifolds
as Lie algebroids and describe the action by ordinary differential geometry data.

1.2.1 Definition of L∞-action on a NQ-manifold

Recall that an L∞-algebra4 is a graded vector space L =
⊕

i∈Z Li endowed with a
sequence of multi-brackets (n ≥ 1)

[. . . ]n : ∧n L→ L

4More precisely, this is a now-so-called flat L∞-algebra, and is also the original definition. Flat means
that the 0th-bracket (or curvature) vanishes. All L∞-algebras appearing in this paper (for example DGLAs
of vector fields on NQ-manifolds) are of this kind.
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of degree 2 − n, satisfying the quadratic relations specified in [14, Def. 2.1]5. Here ∧nL
denotes the n-th graded skew-symmetric product of L. When [. . . ]n = 0 for n ≥ 3 we recover
the notion of DGLA (Def. 1.10), which is the one of interest in this note. An L∞-morphism
µ : L L′ between L∞-algebras is a sequence of maps (n ≥ 1)

µn : ∧n L→ L′

of degree 1 − n, satisfying certain relations (see [14, Def. 5.2] in the case when L′ is a
DGLA).

Definition 1.15. Let L be a L∞-algebra and M be an NQ-manifold. An action of L on
M is an L∞-morphism

µ : L (χ(M), dQ := [Q,−], [−,−])

where the right hand side is the DGLA of vector fields on M as in Lemma 1.11.

Remark 1.16. Even for L a DGLA, such action µ might not be a strict DGLA-morphism.
There are important instances of this. For example, given a (ordinary) Lie algebra g and
a Poisson manifold (M,π), Ševera [26] defines an up to homotopy Poisson action as an
L∞-morphism g (C(T ∗[1]M)[1], [·, ·]S , [π, ·]S), where [·, ·]S denotes the Schouten bracket.
This is equivalent to the special case of Def. 1.15 in which (M, Q) = (T ∗[1]M, [π, ·]S) and
the action is Hamiltonian.

We will be concerned with

Definition 1.17. A Lie 2-algebra is an L∞-algebra concentrated in degrees −1 and 0.
A strict Lie 2-algebra in the sense of [2] is a DGLA (see Def. 1.10) concentrated in

degrees −1 and 0, or equivalently a Lie 2-algebra for which [. . . ]3 = 0.

Consider the case that M is an NQ-1 manifold and (L, δ := [·]1, [·, ·] := [·, ·]2) is a strict
Lie 2-algebra. We write L = h[1] ⊕ g for the underlying graded vector space, where h and
g are just ordinary vector spaces. (Notice that since the homogeneous vector fields on M
which do not vanish identically along the body M must have degrees −1 or 0, “almost free”
actions (meaning that µ is injective) can be achieved only when L is a Lie 2-algebra.)

The action
µ : h[1] ⊕ g χ(M). (9)

is an L∞-morphisms between DGLAs. We spell out its components. Since µi : ∧iL→ χ(M)
has degree 1− i the components of µ are

µ1 : g → χ0(M)

µ1 : h[1] → χ−1(M)

µ2 : g ∧ g → χ−1(M),

subject to the constraints

dQµ
1 =µ1δ (10)

µ1[x, y]− [µ1x, µ1y] =dQ(µ
2(x ∧ y)) ∀x, y ∈ g, (11)

µ1[w, x] − [µ1w,µ1x] =µ2(δw ∧ x) ∀w ∈ h[1], x ∈ g, (12)

5[14] uses a grading opposite to ours.
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as well as an equation for x ∧ y ∧ z ∈ ∧3g:

0 =µ2(x, [y, z]) − µ2(y, [x, z]) + µ2(z, [x, y]) (13)

+[µ1(x), µ2(y, z)]− [µ1(y), µ2(x, z)] + [µ1(z), µ2(x, y)].

Notice that condition (10) says that µ1 is a map of complexes, (12) says that µ1|g is a
morphism of Lie algebras up to homotopy, and (11) says that µ1|h[1] is a morphism of Lie
modules up to homotopy.

Remark 1.18. By eq. (10), the image of the action map µ will be contained in the truncated
DGLA χ−1(M)⊕χQ

0 (M) (see eq. (5)). Hence Lie 2-algebra actions on M can be formulated
using only the truncated DGLA.

Now we restrict ourselves even further, and consider actions (9) for which µ2 = 0:

Definition 1.19. A strict action of a strict Lie 2-algebra h[1]⊕ g on an NQ-1 manifold M
is a morphism of DGLAs

µ : h[1] ⊕ g → χ(M),

i.e., a degree-preserving linear map preserving the differentials and Lie brackets.

The NQ-1 manifold M is equal to A[1] for some Lie algebroid A, by Lemma 1.14. We
spell out what Def. 1.19 means: we have maps

µ|h[1] : h[1] →χ−1(A[1])

µ|g : g →χ0(A[1])

such that

µ(δw) =dQ(µ(w)) for all w ∈ h[1], (14)

0 =dQ(µ(v)) for all v ∈ g, (15)

µ[v,w] =[µ(v), µ(w)] for all v ∈ g, w ∈ h[1], (16)

µ[v1, v2] =[µ(v1), µ(v2)] for all vi ∈ g. (17)

1.2.2 DGLAs and Lie algebra crossed modules

Let h[1] ⊕ g be a strict Lie 2-algebra. Recall that [w,w′]δ := [δw,w′] makes h into
a Lie algebra, which we denote by hδ. Let A[1] be an NQ-1 manifold. Using the iden-
tifications χ−1(A[1]) = Γ(A) and χ0(A[1]) ∼= CDO(A) given in Lemma 1.6, we obtain a
characterization of strict actions (Def. 1.19) in terms of classical geometric objects.

Lemma 1.20. Let µ : h[1]⊕ g → χ(M) be a linear map. Then µ is a morphism of DGLAs
iff

• µ|g : g → CDO(A) is an infinitesimal action of g on A by infinitesimal Lie algebroid
automorphisms, with the property that δ(w) acts as [µ(w), ·]A for all w ∈ h

• µ|h : hδ → Γ(A) is a Lie algebra homomorphism which is equivariant w.r.t. the repre-
sentation of g on h by v 7→ [v, ·] and the representation µ|g of g on Γ(A).
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Proof. Assume that µ is a strict action. (17) means that µ|g is an infinitesimal action of
g on the vector bundle A, and (15) means that the action is by infinitesimal Lie algebroid
automorphisms.

(14) means that δw acts by [µ(w), ·]A for all w ∈ h, by the derived bracket construction.
(16) means that µ|h is an equivariant map.
Further µ|h is a Lie algebra morphism:

µ[w1, w2]δ = µ[δw1, w2] = [µ(δw1), µ(w2)] = [[Q,µ(w1)], µ(w2)] = [µ(w1), µ(w2)]A,

where the second equality holds by (16) and the third equality by (14).
The converse implication is obtained reversing the argument.

The idea behind Lemma 1.20 is the concept of crossed module, which might be more
familiar to the reader than strict Lie 2-algebras, even though they are equivalent concepts
(see Prop 1.22).

Definition 1.21. A crossed module of Lie algebras (h, g, δ, α) consists of a Lie algebra
morphism δ : h → g and an (left) action of g on h by derivations, i.e. α : g → Der(h), such
that

δ(α(v)(w)) = [v, δ(w)], α(δ(w))w′ = [w,w′].

where v ∈ g, w,w′ ∈ h.

A classical result (see [2, Thm. 36]) is that

Proposition 1.22. There is a one-to-one correspondence between strict Lie 2-algebras and
crossed modules of Lie algebra.

Since a similar construction will show up again in §2.2, we recall the correspondence:
A strict Lie 2-algebras (L−1[1]⊕ L0, δ, [·, ·]) gives rise to a Lie algebra crossed module with
h = L−1 and g = L0 where

[w,w′]h := [δ(w), w′],

α(v)(w) := [v,w],

[v, v′]g := [v, v′]

for v, v′ ∈ g, w,w′ ∈ h. The Jacobi identity of [·, ·] gives the Jacobi identities of [·, ·]h and
[·, ·]g and the remaining conditions for crossed modules.

On the other hand, a crossed module (h, g, δ, α) gives rise to a strict Lie-2 algebra with
L−1 = h, L0 = g, δ as a differential, and

[w,w′] := 0,

[v, v′] := [v, v′]g,

[v,w] = −[w, v] := α(v)(w)

for v, v′ ∈ L0, w,w′ ∈ L−1. The Jacobi identity of [·, ·] is implied by the Jacobi identities of
[·, ·]h and [·, ·]g and various conditions for crossed modules.

Consequently, there is a 1-1 correspondence between DGLA morphisms and crossed
module morphisms. Thus Lemma 1.20 basically explicitly tells us that given µ : h[1] ⊕

11



g → χ(M) a linear map, then µ is a morphism of DGLAs iff (µ|h, µ|g) is a morphism
of Lie algebra crossed modules from the crossed module associated to h[1] ⊕ g to the one
associated to the the truncated DGLA χ−1(A[1]) ⊕ χ0(A[1])

Q. For this, we only need
to notice that the crossed module associated to χ−1(A[1]) ⊕ χ0(A[1])

Q by Lemma 1.22 is
the quadruple given by (Γ(A), [·, ·]A), the subset of CDO(A) consisting of infinitesimal Lie
algebroid automorphisms, the morphism δ(a) = [a, ·]A and the natural action of CDO(A)
on Γ(A).

1.3 Distributions on NQ-1 manifolds

In this subsection A is a Lie algebroid over M and M := A[1] the corresponding NQ-
1 manifold (see Lemma 1.14). We consider the notion of involutive distribution on M,
and show that it allows us to construct a quotient of M which is again an NQ-1 manifold
provided some regularity condition is satisfied. Expressing our results in classical terms,
what we recover as a quotient is hence a Lie algebroid.

Distributions are of interest to us because they are related to Lie 2-algebras actions, ex-
actly as in ordinary geometry a distribution can be thought of as the image of a Lie algebra
action. The precise relation between distributions on M and Lie 2-algebras actions on M
is somehow subtle and is studied in §4. The material developed in the present subsection
supports the integration procedure of Lie 2-algebra actions we will carry out in §2.1-2.3.
Indeed in Prop. 4.3 we will see that, when the distribution is induced by a Lie 2-algebra
action satisfying certain regularity conditions, the Lie algebroid obtained quotienting M
by the distribution agrees with the one obtained by Stefanini [27] quotienting A by the
integration of the Lie 2-algebra action.

At first we will only use the fact that A→M is a vector bundle.

Definition 1.23. A distribution D on an NQ-1 manifold M := A[1] is a graded C(M)-
submodule of χ(M) such that for any x ∈ M there exists a neighborhood U ⊂ M and
homogeneous generators of D over U such that their evaluations at every point of U are
R-linearly independent. A distribution is involutive if it is closed under the Lie bracket of
vector fields on M.

Here the evaluation on M of a vector field on M is its image in χ(M)/C≥1(M)χ(M),
the space of sections of the graded vector bundle TM|M = A[1]⊕ TM →M .

Remark 1.24. A graded C(M)-submodule D of χ(M) is a distribution iff there exist l ≤
dim(M), λ ≤ rk(A) and, for any m ∈ M , coordinates {xi, ξα} on M = A[1] defined in a
neighborhood U of m (see Remark 1.8) such that, over U , D is generated as a C(M)-module
by

{

∂

∂ξα

}

α≤λ

and







fi(x)
∂

∂xi
+

∑

β,γ≤rk(A)

f iβγ(x)ξβ
∂

∂ξγ







i≤l

and the {fi
∂
∂xi

}i≤l are R-linearly independent at every point of U . Notice that there is no
condition on the coefficients f iβγ .
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Let D be a distribution on M. Denote by Di the degree i component of D, consisting
of the degree i vector fields on M which lie in D (i ≥ −1).

Recall that for any vector bundle A, there is an associated Lie algebroid D(A) whose
sections are exactly CDO(A) (see Def. 1.5) endowed with the commutator bracket, and
whose anchor s : D(A) → TM is given by the symbol [13, §1]. D(A) fits in an exact sequence
of vector bundles

0 → End(A) → D(A)
s
→ TM → 0 (18)

where End(A) denotes the vector bundle endomorphisms of A that cover IdM . The following
lemma gives a characterization of distributions on M in classical terms.

Lemma 1.25. There is a bijection between distributions D on M := A[1] and the following
data:

• subbundles B →M of A,

• subbundles C →M of D(A) for which ker(s) ∩ C = {φ ∈ End(A) : φ(A) ⊂ B}.

The correspondence is

D 7→

{

B such that Γ(B) = D−1

C such that Γ(C) = D0,
(19)

where we identify Γ(A) = χ−1(M) and Γ(D(A)) = CDO(A) ∼= χ0(M) as in Lemma 1.6.
D is involutive iff C ⊂ D(A) is a Lie subalgebroid and the action of sections of C

preserves Γ(B).

Remark 1.26. Recall from Lemma 1.6 that the identification χ0(M) ∼= CDO(A) is given
by X0 → [X0, ·].

Proof. Let D be a distribution. By definition, locally there exist integers l ≤ dim(M),
λ ≤ rk(A) as well as homogeneous generators {Xα

−1}α≤λ and {Xi
0}i≤l of D whose evaluations

at points of M , which are given by {Xα
−1}α≤λ and {s(Xi

0)}i≤l, are linearly independent.

D−1 = C∞(M) · {Xα
−1}α≤λ

hence consists of sections of a subbundle B ⊂ A. We have

D0 = C∞(M) · {Xi
0}i≤l + C1(M) · {Xα

−1}α≤λ.

The linear independence condition on the generators implies that ker(s|D0
) = C1(M) ·

{Xα
−1}α≤λ is the space of sections of a subbundle of End(A), and that s(D0) is the space of

sections of a subbundle of TM . Hence D0 is the space of sections of a subbundle C ⊂ D(A),
and ker(s) ∩ C = {φ ∈ End(A) : φ(A) ⊂ B}.

Conversely, given a pair (B,C) as in the statement, D−1 := Γ(B) and D0 := Γ(C) define
a distribution.

Since a distribution D is generated (as a C(M)-module) by D−1 and D0, the involutivity
of D is equivalent to [D0,D0] ⊂ D0 and [D0,D−1] ⊂ D−1. The first condition means that
C is a subalgebroid of D(A), the second (by Remark 1.26) that the sections of C preserve
Γ(B).
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By Lemma 1.25
F := s(C) = ∪x∈M{(X0)x : X0 ∈ D0} (20)

is a distribution on M . Here and in the following, if X0 ∈ D0 = CDO(A), we denote its
symbol by X0 := s(X0) ∈ χ(M). Notice that if D is involutive then F is an involutive
distribution.

From now on we let A→M be a Lie algebroid (and not just a vector bundle). We recall
the definition of ideal system on A [18, Def. 4.4.2].

Definition 1.27. An ideal system for the Lie algebroid A→M consists of

• a Lie subalgebroid B →M of A,

• a closed, embedded wide6 subgroupoid of the pair groupoid M × M of the form
R = {(x, x′) : π(x) = π(x′)} for some surjective submersion π : M → N ,

• a linear action Θ of R on the vector bundle A/B →M ,

such that, referring to a section Y ∈ Γ(A) as Θ-stable whenever Θ(Y ) ∈ Γ(B),

(i) if Y,Z ∈ Γ(A) are Θ-stable then [Y,Z]A is also Θ-stable,

(ii) if X ∈ Γ(B), and Y ∈ Γ(A) is Θ-stable, then [X,Y ]A ∈ Γ(B),

(iii) the anchor ρ maps B into F := ker(π∗),

(iv) the map A/B → TM/F induced by the anchor ρ is R-equivariant w.r.t. the action Θ
of R on A/B and the canonical action of R on TM/F .

When A is a Lie algebra, an ideal system is simply an ideal of A.
By [18, Thm. 4.4.3], an ideal system always induces a Lie algebroid structure on the

quotient of A/B by the action Θ (a vector bundle over N) such that the natural projection
is a Lie algebroid morphism.

Under certain conditions, an involutive distribution on A[1] preserved by the homological
vector field Q gives an ideal system on A. Let us first understand this in the case of a Lie
algebra A = g, then we give a proof for all Lie algebroids in Prop. 1.29.

Example 1.28. [Distributions on Lie algebras] Let A = g be a Lie algebra. The degree −1
part of a distribution D on g[1] corresponds to a subspace B ⊂ g. In local coordinates on
g[1], we have

D−1 = spanR

{

∂

∂ξα

}

α≤dimB

, D0 = spanR

{

ξα′

∂

∂ξα

}

α≤dimB,α′≤dim g

.

This can be seen directly from the definition of distribution or from Lemma 1.25. The
distribution D is automatically involutive.

6This means that the subgroupoid has the same base M .
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Further, if [Q, ·] preserves D, then B is an ideal in g. Indeed, for any index γ ≤ dim(B)
we have [Q, ∂

∂ξγ
] ∈ D0. Hence for any β ≤ dim(g), using the identification g ∼= χ−1(g[1]),

we have

[

∂

∂ξγ
,
∂

∂ξβ

]

g

=

[[

Q,
∂

∂ξγ

]

,
∂

∂ξβ

]

=

[

dimB
∑

α=1

dim g
∑

α′=1

Cα′αξα′
∂

∂ξα
,
∂

∂ξβ

]

= −

dimB
∑

α=1

Cβα
∂

∂ξα
∈ B

for some constants Cα′α.

Proposition 1.29. Let A→M be a Lie algebroid, and denote by Q the homological vector
field on M := A[1] as in Lemma 1.14. Let D be an involutive distribution on M and assume
that [Q,D] ⊂ D.

Denote by B ⊂ A and C ⊂ D(A) the subbundles associated to D as in Lemma 1.25, and
denote F := s(C). Consider the flat F -connection ∇X0

= ([X0, ·] mod B) on A/B, where
X0 ∈ D0 and the bracket denotes the Lie bracket of vector fields on M.

If M/F is a smooth manifold such that π : M →M/F is a submersion and if ∇ has no
holonomy then the following is an ideal system for the Lie algebroid A:

• the Lie subalgebroid B of A,

• the Lie subgroupoid R of M ×M associated to the submersion π : M →M/F ,

• the linear action of R on the vector bundle A/B given by parallel translation w.r.t. ∇.

Proof. B → M is a subbundle of A by Lemma 1.25. We show that ∇ is an F -connection
on A/B and that it is flat. Let X0 ∈ D0. Then [X0, ·] sends D−1 = Γ(B) to itself since D is
involutive. If X0 = 0 then by Lemma 1.25 [X0, ·] sends Γ(A) into Γ(B). Altogether we have
a well-defined map ∇ : Γ(F )× Γ(A/B) → Γ(A/B), which is easily seen to be a connection.
The flatness of ∇ follows from

∇[X0,X
′
0
] = [[X0,X

′
0], ·] mod B = [∇X0

,∇X′
0
]

where in the first equality we used the integrability of D and in the second the Jacobi
identity for the bracket of vector fields on M.

B is a Lie subalgebroid of A: if X−1,X
′
−1 ∈ Γ(B) then

[X−1,X
′
−1]A = [[Q,X−1],X

′
−1] ∈ D−1 = Γ(B)

using [Q,D] ⊂ D and [D0,D−1] ⊂ D−1. If M/F is a smooth manifold then R is a closed,
embedded wide subgroupoid of M ×M . If ∇ has no holonomy then the groupoid action of
R on A/B is well-defined.

To check that we indeed have an ideal system we need to check (i)-(iv) in Def. 1.27.

(ii) If X−1 ∈ Γ(B), and Y ∈ Γ(A) satisfies [D0, Y ] ∈ Γ(B), then [X−1, Y ]A ∈ Γ(B)

Indeed [[Q,X−1], Y ] ∈ Γ(B) because Q preserves D.

(iii) If X−1 ∈ Γ(B) then ρ(X−1) = [Q,X−1] ∈ Γ(F ).

This is clear because Q preserves D.
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(iv) If p, q are points of M lying in the same fiber of π and Yp ∈ Ap, then π∗(ρ(Yp)) =
π∗(ρ(Yq)), where Yq ∈ Aq is a lift of the ∇-parallel translation of (Yp mod B) from p
to q.

It is enough to show that if Y ∈ Γ(A) satisfies [D0, Y ] ∈ Γ(B) then ρ(Y ) = [Q,Y ]
descends to a vector field on M/F , i.e. [D0, [Q,Y ]] ∈ Γ(F ). To show this we proceed
as follows. For any X0 ∈ D0 consider the r.h.s. of

[X0, [Q,Y ]] = [[X0, Q], Y ] + [Q, [X0, Y ]].

[X0, Q] ∈ D1 = C1(M) · D0, so using the assumption on Y we get [[X0, Q], Y ] ∈ D0.
The second term on the r.h.s.al so lies in D0, since [X0, Y ] ∈ Γ(B) by assumption and
[Q,D] ⊂ D. Hence [D0, [Q,Y ]] = [D0, [Q,Y ]] ∈ s(D0) = Γ(F ).

(i) If Y,Z ∈ χ−1(M) = Γ(A) satisfy [D0, Y ] ∈ Γ(B), [D0, Z] ∈ Γ(B) then [D0, [Y,Z]A] ∈
Γ(B).

Let X0 ∈ D0. Using repeatedly the Jacobi identity we have

[X0, [[Q,Y ], Z]] =[[X0, [Q,Y ]], Z] + [[Q,Y ], [X0, Z]]

=[[[X0, Q], Y ], Z] + [[X0, Y ], Z]A + [Y, [X0, Z]]A.

Since [X0, Y ], [X0, Z] ∈ Γ(B) by assumption, (ii) implies that the second and third
term on the r.h.s. lie in Γ(B). The computation in (iv) shows that [[X0, Q], Y ] ∈ D0,
so by the assumption on Z the first term on the r.h.s. also lies in Γ(B).

We conclude showing that the quotient – which we now define – of M = A[1] by an
involutive distribution D agrees with the natural quotient of the Lie algebroid A by the
corresponding ideal system ([18, Thm. 4.4.3]). Consider C(M)D, the sheaf (over the body
M) of D-invariant functions on M, defined assigning to U ⊂M the algebra

C(M)DU := {f ∈ C(M)U : X(f) = 0 for all X ∈ DU}.

Assume that the quotient M/F is a smooth manifold such that π : M →M/F is a submer-
sion, where the involutive distribution F on M was defined in eq. (20). Then

V 7→ C(M)Dπ−1(V ) (21)

is a presheaf of graded commutative algebras over M/F . When it defines an N-manifold, we
say that the quotient of M by D is smooth, and denote the quotient N-manifold by M/D.

Proposition 1.30. Let A → M be a Lie algebroid. Let D be an involutive distribution on
M := A[1] such that [Q,D] ⊂ D. Let F and ∇ be as in Prop.1.29.

The quotient M/D is a smooth iff M/F is smooth and the connection ∇ has no holon-
omy. In this case

M/D ∼= Ã[1]

as NQ-manifolds, where Ã→M/F is the Lie algebroid obtained as the quotient of A by the
ideal system defined in Prop. 1.29.
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Proof. We compute C(M)D. In degree zero we simply have C0(M)D = C∞(M)F . In
degree 1 we have that the subset of C1(M) annihilated by D−1 is exactly Γ(B◦). Now
consider the F -connection ∇∗ on B◦ = (A/B)∗ dual to ∇, defined by

〈∇∗ξ, V 〉 = −〈ξ,∇V 〉+ d〈ξ, V 〉

for sections ξ of B◦ and V of A/B. It is given by ∇∗
X0
ξ = X0(ξ) where X0 ∈ D0 and where

we identify Γ(A∗) = C1(M) as in Lemma 1.6. Hence we conclude that

C1(M)D ={ξ ∈ Γ(B◦) : ∇∗ξ = 0}

={ξ ∈ Γ(B◦) : 〈ξ,Γ∇(A/B)〉 ⊂ C∞(M)F }

where Γ∇(A/B) denotes the space of ∇-parallel sections of A/B.
Now suppose that M/F is smooth and ∇ has no holonomy. On one hand, this assures

that the quotient of A by the ideal system defined in Prop. 1.29 is a Lie algebroid Ã→M/F ,
in particular a smooth vector bundle. On the other hand this implies that the technical
conditions i) and ii) of [8, Lemma 5.12] are satisfied and hence eq. (21) gives a sheaf of
graded commutative algebras generated by its elements in degrees 0 and 1. Since by the
above C0(M) ∼= C∞(M/F ) and C1(M)D ∼= Γ(Ã∗), this implies that the sheaf given by eq.
(21) corresponds to the N-manifold Ã[1]. Hence M/D ∼= Ã[1] as N-manifolds.

Conversely, if C0(M)D is isomorphic to the functions on a smooth manifold and C1(M)D

to sections of a the dual of a smooth vector bundle, then necessarily M/F is smooth and ∇
has no holonomy.

The assumption [Q,D] ⊂ D implies that Q preserves C(M)D: if f is D-invariant, then
Q(f) is also D-invariant, because for all X ∈ D we have

X(Q(f)) = ±Q(X(f)) + [X,Q](f) = 0.

Hence, by restricting the action of Q to C(M)D ∼= C(Ã[1]), we obtain a homological vector
field Q̃ on Ã[1]. By construction the inclusion C(M)D → C(M) respects the action of the
homological vector fields, so that the quotient Lie algebroid structure on Ã obtained via the
derived bracket construction using Q̃ has the property that the projection A → Ã is a Lie
algebroid morphism. Hence it agrees with the Lie algebroid structure obtained by the ideal
system.

We present an example where D is singular and the quotient is nevertheless a smooth
NQ-manifold (even though not concentrated in degrees 0 and 1).

Example 1.31. [Singular quotient] Let A be the Lie algebra su(2,R), so that in a suitable
basis we have [e1, e2] = e3, [e2, e3] = e1,[e3, e1] = e2. Denote by ξi the coordinates in A[1]
dual to the basis ei. The homological vector field on A[1] is Q = ξ2ξ1

∂
∂ξ3

+ξ1ξ3
∂
∂ξ2

+ξ3ξ2
∂
∂ξ1

.
On A[1] consider the span D of ∂

∂ξ1
and [Q, ∂

∂ξ1
] = −ξ3

∂
∂ξ2

+ξ2
∂
∂ξ3

. It is not a distribution
(compare also to Ex. 1.28). The set of invariant functions C(A[1])D is {a+bξ2ξ3 : a, b ∈ R},
so it is isomorphic to the functions on R[2] (with vanishing homological vector field).
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2 Integration to global actions

The purpose of this section is to integrate the infinitesimal actions introduced in §1.
We do so using the framework of Mackenzie’s doubles, which we review in §2.1. In §2.2 we
display the objects integrating strict Lie 2-algebras, and in §2.3 – the heart of this paper –
we integrate the corresponding strict actions.

Recall that one can differentiate a Lie groupoid G1 ⇉ G0 to obtain its Lie algebroid.
This defines a functor from the category of Lie groupoids to the category of Lie algebroids,
called Lie functor. We refer to the inverse process as “integration”.

2.1 Background on Mackenzie’s doubles

In this subsection we recall the formalism of Mackenzie doubles and its extension by
Mehta. We will use it in §2.2 and §2.3 to integrate strict Lie 2-algebras and their actions.

Recall that one can apply the Lie functor to any Lie groupoid to obtain its Lie algebroid.
Further, given a Lie algebroid, applying the degree shifting functor [1] one obtains an NQ-1
manifold (Lemma 1.14). The formalism of Mackenzie doubles relates double Lie groupoids
(see Def. 2.2) to three other structures obtained applying (horizontally or vertically) the
Lie functor. This was extended by Mehta [19] who applied (horizontally or vertically) the
degree shifting functor [1] to obtain NQ-manifolds with additional structures. The situation
is summarized in the following diagram taken from [19]:

Double Lie groupoids
LieH //

LieV
��

LA-groupoids
[1]

//

Lie
��

Q-groupoids

Lie
��

LA-groupoids Lie //

[1]
��

Double Lie algebroids
[1]H //

[1]V
��

Q-algebroids

[1]
��

Q-groupoids Lie // Q-algebroids
[1]

// Double Q-manifolds

(22)

Remark 2.1. In general it is not known whether the Lie functors appearing in the above
diagram can be inverted. For instance, given a double Lie algebroid whose vertical Lie
algebroids are integrable to Lie groupoids, it is not known if the integrating Lie groupoids
form an LA-groupoid. The following question is also open: does a LA-groupoid for which
the Lie algebroid structures are integrable arise from a double groupoid? Partial answers
to this problem were worked out in [27].

We define the objects appearing in diagram (22) which are relevant to us. We point
out that Mehta [19] works entirely in the category of graded manifolds, whereas we want to
assume that the double Lie groupoids appearing in (22) consist of ordinary manifolds. This
explain why our definitions below are more restrictive than those of [19].

Definition 2.2. Let StrLgd be the category of Lie groupoids with strict morphisms7. A
double Lie groupoid is a groupoid object in StrLgd. A strict Lie 2-group is a group object
in StrLgd. A strict Lie 2-group action is a group action in StrLgd.

7That is, usual Lie groupoid morphisms. We will not make use of the notion of generalized morphism,
i.e. Hilsum-Skandalis bimodule.
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Definition 2.3. Let LA be the category of Lie algebroid and Lie algebroid morphisms.
A LA-groupoid is a groupoid object in LA. An LA-group is a group object in LA. An
LA-group action on a Lie algebroid is a group action in LA.

In plain English, an LA-group is a Lie algebroid C endowed with an additional group
structure. For example, there is a multiplication

m : C × C → C

which is a Lie algebroid morphism and satisfies the (strict) associativity diagram. There
are also an identity morphism and an inverse morphism

e : pt→ C, i : C → C,

which satisfy the group axioms. If C is a Lie algebroid over N , then these axioms say
exactly that both C and N are Lie groups, and C → N is a group morphism, i.e. N has an
induced group structure from C.

Remark 2.4. A Q-groupoid is a groupoid object in the category of NQ-1 manifolds. We
will not make use of this notion. By the correspondence between Lie algebroids and NQ-1
manifolds (see Lemma 1.14) it is clear that LA-group(oid)s correspond to Q-group(oid)s.

Definition 2.5. A double Lie algebroid [16] is a double vector bundle

D

��

// B

��
A // M

(23)

such that both vertical sides and both horizontal sides are Lie algebroids, subject to certain
compatibility conditions (see for instance [30, §1]). By [30, Thm. 1], the compatibility
conditions are equivalent to the following condition. If we apply the [1]-functor to the
vertical sides, to obtain a vector bundle of graded manifolds D[1]A → B[1], and then we
apply again the [1]-functor to it, the resulting degree 2 graded manifold (D[1]A)[1] will be
endowed with homological vector fields encoding the Lie algebroid structures on D → A
and D → B; the condition is that these two vector fields commute.

Definition 2.6. A Q-algebroid [20, Def. 4.22] is a N1-algebroid8 [20, Def. 4.1] A → M
with a homological vector field Q which is morphic [20, Def. 4.14]. A Q-algebroid for which
M is a point is called a Q-algebra.

Q-algebras are exactly the same thing as strict Lie 2-algebras, as we will show in Lemma
2.9.

Definition 2.6 needs some explanation. An N1-vector bundle9 [20, Def. 2.1] E → M
consists of two degree 1 N-manifolds and a surjection between them, subject to a trivial-
ization condition. A section [20, Def. 2.4] is just a map of N-manifolds s : M → E (not

8Mehta refers to it as “superalgebroid” and allows for Z-graded manifolds.
9Mehta [20] refers to it as “super vector bundle” and allows for arbitrary Z-graded manifolds. In our

notation, the prefix “N1” refers to the category of degree 1 N-manifolds.
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necessarily degree-preserving) which composed with the projection equals IdM. A N1-
vector bundle E → M, endowed with a (degree preserving) morphism from Γ(E) → χ(M)
and bracket Γ(E)×Γ(E) → Γ(E) satisfying the graded Leibniz rule and Jacobi identity, forms
a N1-algebroid [20, Def. 4.1]. An example [19, Ex. 2.4.4] is given by the action algebroid
induced from a morphism of graded Lie algebras into χ(M), for M a degree 1 N-manifold.
Graded Lie algebras concentrated in degrees −1 and 0 are exactly the N1-algebroids for
which the base M is a point.

A vector field on a N1-algebroid A → M is morphic [20, Def. 4.14] if it is linear in
on the fibers (in the sense that its action on a function linear on the fibers is linear again)
and, viewed as a vector field on A[1], it commutes with QA. Here QA is the homological
vector field on A[1] which, by virtue of [20, Thm. 4.6], encodes the N1-algebroid structure
on A → M.

2.2 Integrating strict Lie 2-algebras: LA-groups and 2-groups

In this subsection we describe the objects that integrate a strict Lie-2 algebra (Def.
1.17), namely strict 2-groups (Def. 2.2) and LA-groups (Def. 2.3). The idea is

• §2.2.1: show that strict Lie-2 algebras fit in the framework of diagram (22)

• §2.2.2: chase back in diagram (22) to obtain the integrating objects.

2.2.1 What is an integration of a strict Lie 2-algebra?

A classical point of view is the following: strict Lie 2-algebras correspond bijectively to
crossed modules of Lie algebras (Lemma 1.22), which integrate to crossed modules of Lie
groups, which in turn correspond bijectively to strict 2-groups [3]. Therefore the latter are
regarded as the integration of the strict Lie 2-algebra.

We will adopt a different point of view, which fits into the formalism of Mackenzie
doubles described in §2.1. The outcome will be the same, but this point of view has the
advantage of providing a hint for what the right notion of integration of a strict action of a
strict Lie 2-algebra should be (see Def. 1.19).

More precisely, in this subsection we show that strict Lie 2-algebras can be viewed as a
Q-algebroids10 (Lemma 2.9). We then define their integration to be a double groupoid or
LA-groupoid which, upon applying the relevant functors in the diagram (22), give back the
original Q-algebroid. We will identify the integrations in the next subsection by “chasing
back” in diagram (22).

Remark 2.7. As mentioned above, a strict Lie 2-algebra can be viewed as a Q-algebroid,
or equivalently as a double Lie algebroid, and the integration we perform in §2.2.2 is its
integration to a strict Lie 2-group.

Another instance of Lie 2-algebroid that fits into the framework of double Lie algebroids
is given by a Courant algebroid A⊕A∗ arising from a Lie bialgebroid (A,A∗). In this case,
however, the integration of the corresponding double Lie algebroid via diagram (22) does
not coincide with the integration of the Courant algebroid A ⊕ A∗. The relation between
the two integrations is not yet clear to us.

10Equivalently we could view strict Lie 2-algebras as double Q-manifolds or as double Lie algebroids.
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We now describe how to view certain kinds of L∞-algebras – among them strict Lie
2-algebras – as Q-algebroids. Given a finite dimensional Z-graded vector space L, there is a
bijection between L∞-algebra structures on L (see §1.2) and homological vector fields Q on
L[1] (see Def. 1.9). We recall the procedure to recover the L∞-algebra structure on L from
the corresponding homological vector field on L[1]; it is a special case of Voronov’s higher
derived brackets construction [29, Ex. 4.1]. Let Q be a degree 1 vector field on L[1]. The
higher derived brackets induced by Q are the maps

{. . . }n : S
n(L[1]) → L[1], (v1, . . . , vn) 7→ [[[Q, ιv1 ], . . . ], ιvn ]|0,

where a vector v ∈ L[1] is also viewed as the constant vector field ιv on L[1], which acts on
linear functions by contraction with v, and “ |0” denotes the evaluation at the origin in L[1].

Composing with

(∧nL)[n] ∼= Sn(L[1]), v1 . . . vn 7→ v1 . . . vn · (−1)|vn−1|+2|vn−2|+···+(n−1)|v1|, (24)

where |v| denotes the degree of v ∈ L, we can view the higher derived brackets as maps
[. . . ]n : ∧n L → L. By [29, Thm. 1], Q satisfies [Q,Q] = 0 iff the [. . . ]n make L into an
L∞-algebra.

Remark 2.8. To make things more explicit, we express the above construction in coordinates,
for the case that the L∞-structure on L induced by Q is a DGLA. If {ei} is a basis of L
and ξi are the corresponding coordinates on L[1], then Q is at most quadratic:

Q = Qδ +Qbr =

(

ξiQk
i +

1

2
ξjξiQk

ij

)

∂

∂ξk
(25)

where we denote by Qδ and Qbr respectively the linear and quadratic component of Q. One
has11

δei = (−1)|ei|Qk
i ek and [ei, ej ]L = (−1)|ej |Qk

ijek. (26)

Lemma 2.9. There is a bijection between strict Lie 2-algebras (that is, DGLAs concentrated
in degrees −1 and 0) and Q-algebras, given by (L, [·, ·]L, δ) 7→ (L, [·, ·]L,−Qδ).

Proof. Recall from Def. 2.6 that a Q-algebra is a graded Lie algebra concentrated in degrees
−1 and 0, together with a morphic vector field.

Let (L, [·, ·]L, δ) be a strict Lie 2-algebra. All three of Qbr, Qδ and Qbr + Qδ are self-
commuting, because by the derived bracket construction they define L∞-structures on L
(namely the graded Lie bracket [·, ·]L, the differential δ, and the DGLA structure). In
particular Qδ is a linear homological vector field on L[1]. Further

[Qbr +Qδ, Qbr +Qδ] = [Qbr, Qbr] + [Qδ, Qδ] + 2[Qbr, Qδ]

implies that [Qbr, Qδ] = 0, that is, Qδ is a morphic vector field. Clearly −Qδ is also a
morphic vector field, so (L, [·, ·]L,−Qδ) is a Q-algebra. Reversing the argument we see that
all Q-algebras arise this way.

11These are the formulas in [29, §4] after application of the isomorphism (24).
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2.2.2 Integrating the strict Lie 2-algebra

Let h[1] ⊕ g be a strict Lie 2-algebra. By Lemma 2.9 we can view it as a Q-algebroid.
We now argue that it lies in the image of the functors appearing in the diagram (22), as
follows12:

(H ⋊G)⇉ G
LieH // (h⋊G) → G

Lie
��

(h⋊ g) → g
[1]H // (h[1] ⋊ g, Qδ).

(27)

We define the integration of the strict Lie 2-algebra h[1]⊕ g to be the strict Lie 2-group in
the upper left corner.

The bottom horizontal sides of the double Lie groupoid, LA-groupoid, etc appearing in
diagram (27) are just points, so they are omitted.

We describe the structures appearing in diagram (27), in particular the strict Lie 2-group
in the upper left corner. The strict Lie 2-algebra h[1]⊕g corresponds to the crossed module
of Lie algebras (g, hδ , δ, α) (Lemma 1.22), where hδ denotes the Lie algebra structure on the
vector space h with bracket [w1, w2]δ := [δw1, w2] and α(v) = [v, ·] for v ∈ g. Consider the
quadruple13 (G,H, t, φ). Here H and G are the simply connected Lie groups integrating hδ
and g, the map t : H → G is the Lie group morphism integrating δ, and the left action φ of
G on H (by automorphisms of H) is obtained integrating the infinitesimal action (by Lie
algebra derivations) α.

• Strict Lie 2-group The Lie 2-group14 G• = G1 ⇉ G0 is as follows. Its Lie groupoid
structure is the action groupoid of the H action on G via hg := t(h) · g (so the target
of (g, h) is given by t(h) · g and its source by g). The group structure on H ×G is the
semidirect product structure by the action φ, i.e., it is given by

m : G1 ×G1 → G1, m((h1, g1), (h2, g2)) = (h1 · φ(g1)(h2), g1g2)

over the base map m(g1, g2) = g1g2.

• LA-group Its Lie algebroid structure is obtained by differentiating the Lie groupoid
structure of the strict Lie 2-group G•, hence it is the transformation algebroid of the

infinitesimal action of hδ on G by w 7→
→
δw (the right-invariant vector field whose value

at the identity is δw).

The group multiplication on h × G is the Lie algebroid morphism corresponding to
m : G1 × G1 → G1, i.e., (w1, g1)(w2, g2) = (w1 + g1w2, g1g2). In other words, the
group structure on h ×G is the semidirect product by the action of G on the vector
space h obtained integrating α.

12the notation is chosen so to describe the vertical (Lie group or Lie algebra) structures
13This quadruple forms what is known as the crossed module of Lie groups integrating the above crossed

module of Lie algebras.
14This is the Lie 2-group associated to a crossed module of Lie groups [3].
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• Double Lie algebroid Notice first that applying LieV to the strict Lie 2-group above
one obtains the Lie groupoid in the category of Lie algebras (hδ ⋊ g) ⇉ g. The Lie
groupoid structure is the transformation groupoid of the action of the abelian Lie
algebra h on g which sends w ∈ h to the translation by δw.

Differentiating this Lie groupoid structure we obtain the Lie algebroid structure of
our double Lie algebroid, which therefore15 is the transformation algebroid of the
infinitesimal action of the abelian Lie algebra h on g which sends w to the constant
vector field δw.

The Lie algebra structure of our double Lie algebroid is obtained differentiating the
Lie group structure of the LA-group, so it is the semidirect product h⋊g of the action
α of g on the vector space (abelian Lie algebra) h. Explicitly: [(w1, v1), (w2, v2)] =
([v1, w2]− [v2, w1] , [v1, v2]).

• Q-algebra Applying the functor [1]H to the double Lie algebroid we obtain the NQ-
manifold (h[1] ⊕ g,−Qδ). (To see this, recall that the anchor of a transformation Lie
algebroid is given by the corresponding infinitesimal action, and use eq. (8) and eq.
(26).) It has the graded Lie algebra structure h[1]⋊ g.

The latter Q-algebra structure is exactly the one corresponding to our original strict
Lie-2 algebra by Lemma 2.9, hence the strict Lie 2-group (H ⋊G)⇉ G described above is
the integration of the strict Lie-2 algebra.

2.3 Integrating strict actions: LA-group actions on Lie algebroids and

2-group actions on Lie groupoids

This subsection is the heart of the paper: we define the notion of global action integrating
a strict action µ, and show that the global action exists. The idea is

• §2.3.1: show that the transformation algebroid of the action µ fits in the framework
of diagram (22)

• §2.3.2: chase back in the diagram to obtain certain transformation groupoids, and
describe the corresponding actions.

The diagram of Mackenzie’s doubles (22), in the setup at hand, is displayed in (39) (it
extends our previous diagram (27)). The various actions involved are displayed just before
Thm. 2.17.

We end this subsection with remarks on the integrated actions (§2.3.3).
As earlier, we let h[1]⊕ g be a strict Lie-2 algebra and A→M a Lie algebroid (so A[1]

is a NQ-1 manifold).

15Here we are using [17, Thm 2.3], which states that starting from a double Lie groupoid and applying the
functors LieH ◦LieV or LieV ◦LieH , one obtains the same double algebroid up to a canonical isomorphism.
The canonical isomorphism in our case is the identity on h × g. This follows from a simple computation
(see the proof of [17, Thm 2.3]) representing each element (w, v) ∈ h × g as second derivative of the map
γ : R2

→ H ×G, γ(t, u) = (exph(tuw), expg(tv)).
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2.3.1 What is an integration of a strict Lie-2 algebra action?

The following proposition, which is an analogue to Lemma 2.9, associates a Q-algebroid
to the strict action µ.

Proposition 2.10. Let h[1]⊕ g be a strict Lie-2 algebra, A be a Lie algebroid. We consider
a morphism of graded Lie algebras µ : h[1]⊕g → χ(A[1]). Then µ is a morphism of DGLAs
(i.e. it respects differentials) iff the transformation algebroid of the action µ

Tµ := (h[1] ⊕ g)×A[1]

��
A[1],

(28)

endowed with the homological vector field −Qδ +QA, is a Q-algebroid. Recall that Qδ was
defined in Remark 2.8, and QA encodes the Lie algebroid structure on A as in Lemma 1.14.

Proof. Denote L := h[1] ⊕ g. The vector field −Qδ + QA is homological and it is linear in
the fibers. So, in order to show that it is morphic, we just have to show that, once we view
it as a vector field on L[1] × A[1], it commutes with the homological vector field encoding
the Lie algebroid structure of (28). The latter is Qbr + Qaction, where Qbr was defined in
Remark 2.8 and Qaction is defined in eq. (30) below and encodes the action µ.

To show
[−Qδ +QA, Qbr +Qaction] = 0. (29)

we proceed as follows.
Take bases {vi} of g and {wα} of h[1] , whose dual bases induce coordinates ηi on g[1]

and Pα of h[2] (of degrees 1 and 2 respectively).
If the differential on L is given by δwα = Dαivi, then in coordinates

Qδ = −PαDαk
∂

∂ηk
.

Further

Qaction := ηiµ(vi)− Pαµ(wα) (30)

encodes the L-action on A[1]
We have [QA, Qbr] = 0, since the two vector fields are defined on different manifolds,

and [−Qδ, Qbr] = 0 as shown in Lemma 2.9. Since

[QA, Qaction] = −ηi[QA, µ(vi)]− Pα[QA, µ(wα)]

and
[−Qδ, Qaction] = PαDαkµ(vk) = Pαµ(δwα)

we conclude that (29) holds iff [QA, µ(wα)] = µ(δwα) for all wα and [QA, µ(vi)] = 0 for all
vi, which means that µ respects differentials.
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Remark 2.11. 1) Prop. 2.10 together with diagram (22) imply that
(

(h[1] × g)[1]×A[1] , Qδ +QA , Qbr +Qaction

)

is a double Q-manifold [30].
When the action µ is not necessarily strict but rather as in Def. 9, the above is no

longer a double Q-manifold. However in that case one can show [21] that the sum of the
four above vector fields is still a homological vector field. This makes (28) into an “action”
Lie 2-algebroid. Thus the integration of an action as in Def. 9 should be encoded by the
Lie 2-groupoid integrating this action Lie 2-algebroid.

In the strict case, we will see below that the integration of the action is given by a
double Lie groupoid (TΦ in diagram (39)). Moreover in this case, unlike the case of Courant
algebroids (see Remark 2.7), there is a Lie 2-groupoid, obtained applying the Artin-Mazur’s
codiagonal construction [1] (see Remark 2.20) to TΦ, which is also to be considered an
integration of the action. These two integrating objects are not exactly equivalent: the
double Lie groupoid contains more information because the double Lie algebroid contains
more information than the Lie 2-algebroid.

2) [20, Thm. 6.2], which is proved without the explicit use of coordinates, is a special
case of Prop. 2.10 (namely, the special case we consider in Ex. 3.1).

Now assume that

µ : h[1] ⊕ g → χ(A[1])

is a strict action (Def. 1.19), i.e. a morphism of DGLAs. Prop. 2.10 allows to view the
action µ in the framework of diagram (22).

We make the following definitions of integration of µ.

Definition 2.12. The integration of the strict action µ above is either of the following
actions:

I) An LA-group action Ψ of (h ⋊ G) → G on A → M such that applying the functor
LieV to its transformation groupoid one obtains the Q-algebroid (28).

II) A strict Lie 2-group action Φ of (H ⋊ G) ⇉ G on Γ ⇉ M such that applying the
functors LieH and LieV to its transformation groupoid one obtains the Q-algebroid
(28). (Here Γ⇉M denotes the source simply connected Lie groupoid integrating A.)

Def. 2.12 requires some explanation. The transformation groupoid appearing in I) is the
one corresponding to the group action Ψ. As Ψ is a group action in the category LA, the
transformation groupoid is a groupoid in LA, (an LA-groupoid), and hence fits in diagram
(22). This follows taking C = LA in [27, Prop. 3.0.15], which we now reproduce. The same
reasoning, applied to the category StrLgd, holds for II).

Proposition 2.13. Let C be a small category with direct products, G a group16 object in
C and N an object in C. Then a group action G × N → N is a morphism in C iff the
corresponding transformation groupoid G×N ⇉ N is a groupoid object in C.

16In [27, Prop. 3.0.15] G is allowed to be a groupoid object and C is additionally required to have fiber
products.
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The situation is summarized in diagram (39) in §2.3.2, which is the diagram of Macken-
zie’s doubles (22) for the above transformation groupoids.

Applying the vertical integration functor to a double Lie algebroid whose vertical struc-
tures are transformation algebroids (such as the one associated to (28) above), one expects
to obtain an LA-groupoid whose vertical structures are transformation groupoids.

Unfortunately there are no general enough statements about the integration of double
algebroids to LA-groupoids or LA-groupoid to double groupoids (see Remark 2.1), so we
can not “chase back” in diagram (22), but rather in §2.3.2 we have to check explicitly that
the expected fact mentioned above is true for the double algebroid (28).

Moreover our method has the advantage that it provides explicit formulae.

2.3.2 Integrating the strict action

Now we integrate the strict Lie 2-algebra action µ on a Lie algebroid A to both a LA-
group action on A and a Lie 2-group action on the source-simply connected Lie groupoid of
A.

By virtue of the identification of Remark 1.7, µ induces a Lie algebra morphism

µ̃ : h⋊ g → χ(A).

Here h ⋊ g is the semidirect product of g and the abelian Lie algebra h, and agrees with
the Lie algebra structure induced by the original graded Lie algebra structure on h[1] ⊕ g.
In other words, we have an infinitesimal action of the Lie algebra h ⋊ g on A. Using this
identification, w ∈ h maps to µ(w) seen as a constant vertical vector field on A and v ∈ g

maps to the infinitesimal vector bundle automorphism given by µ(v).

Assume that the infinitesimal action µ̃|g : g → χ(A) is complete in the sense that the
image of µ̃ consists of complete vector fields.

Then the infinitesimal action µ̃|g can be integrated to a Lie group action

ψ : G×A→ A

of G on A, where G denotes the simply connected Lie group integrating g. Notice that ψ
acts by Lie algebroid automorphisms of A, as a consequence of Lemma 1.20.

Proposition 2.14. Consider the Lie algebroids A → M and h ⋊ G → G (as in §2.2.2).
The Lie group action on A obtained integrating the infinitesimal action µ̃ is

Ψ: (h⋊G)×A → A

(w, g), ax 7→ ψ(g, ax) + µ(w)|gx

where x ∈M and ax ∈ Ax.
Further Ψ is a Lie algebroid morphism. In other words, Ψ is an LA-group action.

Proof. Checking that Ψ is really a group action is a straight-forward computation that uses

ψ(g, (µ(w))x) = (µ(gw))gx for all g ∈ G,w ∈ h, x ∈M,
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which is just the equivariance of µ|h : h → χ−1(A) = Γ(A) with respect to the G actions
on h and on the vector bundle A. The infinitesimal g-equivariance holds by Lemma 1.20,
and as G is connected the global G-equivariance also holds. A simple computation also
shows that differentiating the group action Ψ one obtains µ̃. This proves the first part of
the proposition.

Now we check that Ψ preserves the anchor maps. Fix (w, g) ∈ h ⋊G and ax ∈ Ax (the
fiber of A over x ∈M). Applying the anchor to ((w, g), ax) we obtain (

−→
δw(g), ρA(ax)), and

applying the derivative of the action map G×M →M gives

(δw)M (gx) + g · ρA(ax), (31)

where (δw)M denotes the vector field on M induced by the infinitesimal action of δw ∈ g

on M , the dot denotes tangent lift of the action of G on M , and ρA is the anchor of A. Now

(δw)M = (µ(δw))|M = [Q,µw]|M = ρA(µw),

where the second equality (between vector fields on A[1]) holds because µ respects differen-
tials, or alternatively by Lemma 1.20. We saw that the G-action ψ on A is by Lie algebroid
automorphism, so in particular ρA : A → TM is G-equivariant and g · ρA(ax) = ρA(g · ax).
Hence (31) is equal to ρA(Ψ((w, g), ax)), proving that Ψ respects the anchor maps.

Checking that Ψ maps the bracket [·, ·]E on the product Lie algebroid E := (h⋊G)×A
to the bracket [·, ·]A on A is more involved. First we remark that E, as a vector bundle
over G ×M , is a Whitney sum of pullback vector bundles π∗G(h ⋊ G) ⊕ π∗MA, where πG
and πM are the obvious projections of G×M onto G and M . We define the vector bundle
automorphism

ϕ : π∗MA→ π∗MA , a(g,x) 7→ g−1(a(g,x)) (32)

over the base diffeomorphism (g, x) 7→ (g, g−1x) of G ×M . It is actually a Lie algebroid
automorphism, since each g ∈ G acts by Lie algebroid automorphisms of A. Notice that
any a ∈ Γ(A) can be pulled back to a section of π∗MA ⊂ E (also denoted by a), and its
image ϕ(a) under ϕ is given by

(ϕ(a))(g,x) = g−1 · agx (33)

The section ϕ(a) ∈ Γ(E) is Ψ-projectable, and projects to a ∈ Γ(A). Similarly, for any
w ∈ h, the constant section w ∈ Γ(π∗G(h × G)) ⊂ E projects to µ(w) ∈ Γ(A). Sections of
the form ϕ(a) and w span the whole of E, hence, by [18, Prop. 4.3.8], it suffices to consider
such sections. We have

Ψ[ϕ(a1), ϕ(a2)]E = Ψ(ϕ[a1, a2]A) = [a1, a2]A = [Ψϕa1,Ψϕa2]A

where in the first equality we used that ϕ is a Lie algebroid automorphisms of π∗MA. We
have

Ψ[w1, w2]E = Ψ([w1, w2]δ) = µ([w1, w2]δ) = [µw1, µw2]A = [Ψw1,Ψw2]A

where in the third equality we used Lemma 1.20.
Next we show that

[w,ϕ(a)]E = ϕ([µ(w), a]A) for all a ∈ Γ(A), w ∈ h, (34)
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as it will imply that

Ψ[ϕ(a), w]E = Ψϕ([a, µ(w)]A) = [a, µ(w)]A = [Ψϕ(a),Ψw]A

and thus conclude our proof.

To show (34) we choose, on an open set U of M , a local frame of sections ai of Γ(A).
We have

(ϕai)(g,x) = f ji (g, x)aj(x) (35)

for functions f ji defined on G×U . Here we use the Einstein summation convention. By the
Leibniz rule we can write the l.h.s. of eq. (34) as

([w,ϕ(ai)]E)(g,x) =
→
δw(fki (g, x))ak(x), (36)

where
→
δw denotes the right-invariant vector field on G whose value at the identity is δw.

Notice that this lies in π∗MA ⊂ E. Further, using the identification Γ(A) = χ−1(A[1]),
we have

([µw, ai]A)x =[[QA, µw], ai]x = [µ(δw), ai]x = (Lµ(δw)ai)x =
d

dt
|0exp(−tδw) · (ai)exp(tδw)·x

(37)
(33)
=

d

dt
|0(ϕai)(exp(tδw),x) =

d

dt
|0f

j
i (exp(tδw), x)aj(x).

We deduce that

(ϕ[µ(w), ai]A)(g,x)
(33)
= g−1 · ([µ(w), ai]A)gx

(37)
=

d

dt
|0f

j
i (exp(tδw), gx) · g

−1aj(gx)

(33)
=

d

dt
|0f

j
i (exp(tδw), gx) · (ϕaj)(g,x)

=
d

dt
|0f

j
i (exp(tδw), gx) · f

k
j (g, x)ak(x)

=
d

dt
|0f

k
i (exp(tδw)g, x)ak(x)

=
→
δw(fki (g, x))ak(x)

(36)
= ([w,ϕ(ai)]E)(g,x).

Here in the third last equality we used the “multiplicativity formula”

f ji (gh, x) = fki (g, hx)f
j
k (h, x) (38)

which can be checked writing out (ϕai)(gh,x) by means of eq. (33). Hence eq. (34) is proved
and we are done.

Remark 2.15. It can be checked that the Lie algebroid automorphism ϕ of π∗MA in (32)
can be extended to a Lie algebroid automorphism of E by asking that it maps the constant
section w to w − ϕ(µw) ∈ Γ(E) for all w ∈ h.
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Integrating the Lie algebroid h⋊G→ G we obtain the strict Lie 2-group (H ⋊G)⇉ G
described in §2.2.2, where H is simply connected. Assume that the Lie algebroid A → M
is integrable to a source simply connected Lie groupoid Γ.

Theorem 2.16. Consider the Lie groupoids Γ⇉M and the Lie 2-group (H ⋊G)⇉ G.
The Lie groupoid morphism

Φ: (H ⋊G)× Γ → Γ

integrating the Lie algebroid morphism Ψ is a Lie 2-group action.

In Prop. 2.18 we will give a description of the action Φ.

Proof. Notice that Φ is a well-defined Lie groupoid morphism as its domain is source simply
connected.

We show that Φ is a group action. Recall from §2.2.2 that the group multiplication
m : (H ⋊ G) × (H ⋊ G) → (H ⋊ G) is the Lie groupoid morphism which integrates the
multiplication m̃ on h ⋊ G. Hence integrating both sides of the equality of Lie algebroid
morphisms

Ψ ◦ (m̃× IdA) = Ψ ◦ (Idh⋊G ×Ψ),

which holds because Ψ is a group action, one obtains

Φ ◦ (m× IdΓ) = Φ ◦ (IdH⋊G × Φ).

This shows that Φ is a group action both at the level of objects and of morphisms, hence it
is a Lie 2-group action.

The various actions appearing in this subsection can are summarized in the following
diagram:

µ : h[1]⊕ g → χ(A[1])

 µ̃ : h⋊ g → χ(A)
Integrate the Lie algebra action

 Ψ: (h⋊G)×A→ A
Integrate the Lie algebroid morphism

 Φ: (H ⋊G)× Γ → Γ

Theorem 2.17. The actions Φ and Ψ defined above are really integrations of µ in the sense
of Def. 2.12 I) and II) respectively.

Proof. We consider the double Lie groupoid TΦ obtained by taking the transformation
groupoid of the action Φ and the LA-groupoid TΨ obtained by taking the transformation
groupoid of the action Ψ. Notice that TΦ is really a double Lie groupoid by Prop. 2.13
together with Thm. 2.16, and TΨ is really an LA-groupoid because of Prop. 2.13 together
with Prop. 2.14.

Further we consider the double algebroid Tµ̃ consisting of the transformation algebroid
of the action µ̃ : h⋊g → χ(A) and of the g action on M obtained by restricting µ̃ (vertically),
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together with A → M and the transformation algebroid of the action of the abelian Lie
algebra h on g which sends w ∈ h to the constant vector field δw (vertically):

Tµ̃ = (h⋊ g)×A

����

// g×M

��
A // M.

Applying to Tµ̃ the horizontal degree shifting functor [1]H we obtain (28) together with the
homological vector field −Qδ + QA (see §2.2.2). Since by Prop. 2.10 it is a Q-algebroid,
from Voronov’s work ([30, Thm. 1], see also [30, §3]) it follows in particular that Tµ̃ is a
really a double Lie algebroid.

TΦ, TΨ and Tµ̃ fit into the upper row of the following table.

TΦ = (H ⋊G)× Γ //////

������

G×M

�� ����

TΨ = (h⋊G)×A //

������

G×M

�� ����

LieH //

Γ ////// M A //

LieV

��

M

Tµ̃ = (h⋊ g)×A

��

// g×M

��

Tµ = (h[1] ⋊ g)×A[1]

��

[1]H //

A // M A[1]

(39)
We check that applying the functor LieH to TΦ we obtain TΨ. Clearly the horizontal Lie

algebroid structures obtained this way are A → M and its product with the Lie algebroid
structure of the LA-group h⋊G→ G (see §2.2.2). The left vertical Lie groupoid structure
is obtained applying LieH to the maps defining the vertical Lie algebroid structures in TΦ.
It is the transformation groupoid for the action Ψ, since the Lie algebroid morphism Ψ is
obtained differentiating the Lie groupoid morphism Φ.

Next we check that applying the functor LieV to TΨ we obtain Tµ̃. Since the vertical
groupoids of TΨ are transformation groupoids for group actions (of h⋊G and G respectively),
applying the functor LieV we obtain the transformation algebroids of the corresponding
infinitesimal actions, which by Prop. 2.14 are µ̃ and the g-action on M respectively. The
horizontal Lie algebroids in TΨ are the Lie algebroid A → M and its product with the Lie
algebroid structure on the LA-group h ⋊G → G. Since the application of the Lie functor
to the vertical groupoids of TΨ does not affect their spaces of units (A and M respectively),
as horizontal Lie algebroid structures we obtain again A→M and its product with the Lie
algebroid structure of the double Lie algebroid h⋊ g → g (see §2.2.2). Altogether we obtain
exactly Tµ̃.
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Finally, we saw in the first part of this proof that applying to Tµ̃ the horizontal degree
shifting functor [1]H we obtain the Q-algebroid Tµ given in (28).

From this we conclude that Ψ and Φ are integrations of the action µ in the sense of Def.
2.12 I) and II) respectively.

It is abstract to define the Lie 2-group action Φ in Thm. 2.16 as the integration of the
strict action µ we started with. Now we give an explicit description of Φ.

Proposition 2.18. The Lie 2-group action Φ: (H ⋊G)× Γ → Γ can be described in terms
of µ̃ as follows:

a) g ∈ G acts by the Lie groupoid automorphism of Γ which integrates the Lie algebroid
automorphism ψ(g, ·) of A, where ψ denotes the Lie group action of G on A obtained
by integrating the Lie algebra action µ̃|g : g → χ(A).

b) the Lie group action of H on Γ is obtained integrating the Lie algebra action

hδ → χright(Γ), w 7→
−−−→
µ̃(w),

where for any section s of A ∼= (ker s∗)|M we denote by −→s its extension as a right
invariant vector field on Γ.

Since a general element of H⋊G can be written as (h, g) = (h, e)(e, g), this gives a complete
description of the action Φ.

Proof. a) Fix g ∈ G. Consider Φ((e, g), ·) : Γ → Γ. Its derivative restricted to (ker s∗)|M ∼=
A is Ψ((0, g), ·) = ψ(g, ·) : A→ A, since Φ is the Lie groupoid morphism integrating the Lie
algebroid morphism Ψ.

b) Let w ∈ h, denote by W the corresponding vector field on Γ induced by the action
Φ, and let h(t) := exphδ(tw) ∈ H. For any m ∈M we have

Wm =
d

dt
|0Φ((h(t), e),m) = Ψ((w, e), 0m) = µ̃(w)m,

so W |M = µ̃(w). We want to show that W is a right-invariant vector field, i.e., that if
x, y ∈ Γ are composable elements then (Ry)∗Wx = Wx◦y, where ◦ denotes the groupoid
composition on Γ. Since Φ is a Lie groupoid morphism (Thm. 2.16) and the elements
(h(t), e) and (e, e) of the groupoid H ⋊G are composable, we have

Φ(((h(t), e), x)) ◦ Φ((e, e), y) = Φ((h(t), e), x ◦ y),

and since Φ((e, e), y) = y applying the time derivative at t = 0 we obtain exactly (Ry)∗Wx =

Wx◦y. This shows that W =
−−−→
µ̃(w) and concludes the proof.

Remark 2.19. Prop. 2.18 allows also to describe the Lie algebra action on Γ corresponding
to the Lie group action Φ. It maps v ∈ g to the multiplicative vector field on Γ which
corresponds to the vector field µ̃(v) on A. It maps w ∈ h to

−−−→
µ̃(w). This shows that the

action Φ coincides with the action constructed in [8, §11.2] in the special case where A is
the Lie algebroid of a Poisson manifold. Notice that the action of [8, §11.2] was constructed
“integrating” Tµ̃ (see diagram in the proof of Thm. 2.17) first horizontally and then vertically,
while we constructed Φ “integrating” Tµ̃ in the opposite order.
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2.3.3 Lie 2-groupoids and principality of the integrated action

First, we make a remark on the integration of the Lie 2-algebroid (28). This is the point
of view that should be generalized to integrate non-strict actions.

Remark 2.20. We describe the strict Lie 2-groupoid integrating the Lie 2-algebroid (28),
obtained by applying the Artin-Mazur’s codiagonal construction to the double groupoid
TΦ appearing in (39). A strict Lie 2-groupoid is a groupoid object in the category of
Lie groupoids whose space of objects (object-groupoid) is just a manifold. Our strict Lie
2-groupoid has as space of objects M (the base of A), as object space of the morphism-
groupoid (space of 1-arrows) G×Γ, and as morphism space of the morphism-groupoid (space
of 2-arrows) H ×G× Γ. The space of 2-arrows is a Lie groupoid over the space of 1-arrows
with source and target defined by

s(h, g, γ) = (g, γ), t(h, g, γ) = (δ(h)g,Φ(φ(g−1)(h−1), 1, γ)),

and groupoid multiplication ·v (vertical product) defined by

(h, g, γ) ·v (h
′, g′, γ′) = (hh′, g′, γγ′).

y x

(g,γ)

zz
(g′,γ′)oo

(δ(h′)g′,Φ(φ(g′−1)(h′−1),1,γ′))

dd

(h,g,γ)=:a
��

(h′,g′,γ′)=:a′
��

� // y x

(g,γ)

uu

(δ(h′)g′,Φ(φ(g′−1)(h′−1),1,γ′))

ii a·va′
��

Moreover, there are two maps t0, s0 : G × Γ → M defined by s0(g, γ) = sΓ(γ) and
t0(g, γ) = ψ(g, tΓ(γ)) via the source and target of Γ (denoted as x and y respectively in the
above picture), so that we define the horizontal multiplication ·h

(H ×G× Γ)×s◦s0,M,t◦t0 (H ×G× Γ)

����

·h // H ×G× Γ

����
(G× Γ)×s0,M,t0 (G× Γ)

·h // G× Γ

,

by

(h1, g1, γ1) ·h (h2, g2, γ2) = (h1φ(g1)(h2), g1g2,Φ(1, g
−1
2 , γ1)γ2),

(g1, γ1) ·h (g2, γ2) = (g1g2,Φ(1, g
−1
2 , γ1)γ2).

z y

(g1,γ1)

uu

t(h1,g1,γ1)

ii (h1,g1,γ1)=:a1
��

x

(g2,γ2)

uu

t(h2,g2,γ2)

ii (h2,g2,γ2)=:a2
��

7→ z x.

(g1g2,Φ(1,g−1

2
,γ1)γ2)

vv

(δ(h1)g1δ(h2)g2,Φ(φ((g1g2)−1)((h1φ(g1)(h2))−1),1,γ)

hh a1·ha2
��

It is routine to verify that ·h is a groupoid morphism. Thus these data define a strict Lie
2-groupoid. It is obvious that this Lie 2-groupoid differentiates to the Lie 2-algebroid (28).
This Lie 2-groupoid can thus be interpreted as the “action”-groupoid of the action Φ.
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Next we remark that, under certain assumptions, the above action Φ in Theorem 2.16
defines a principal 2-group bundle (over a manifold N) in the sense of Wockel [31, Def.
I.8]. One reason why principal 2-group bundles are interesting is the following [31, Rem.
II.11]: when the Lie 2-group G corresponds to a crossed module of Lie groups of the form
(H,Aut(H), ∂, φ), where H is a Lie group and ∂ : H → Aut(H) is given by conjugation,
then principal G-2-bundles define gerbes over N [15].

Proposition 2.21. Let Φ: (H ⋊ G) × Γ → Γ be a Lie 2-group action such that both the
G-action on M and the H ⋊ G-action on Γ are free and proper with the same quotient
N :=M/G = Γ/(H ⋊G). Then the action Φ makes

Γ
π
→ N

into a principal G-2-bundle.

Proof. A special case of the the above statement is [8, Prop. 4.2]. Its proof carries over
literarily to the present case, after one checks that the projection Γ → Γ/(H⋊G) = N is a Lie
groupoid morphism. The latter fact follows easily since the action map Φ: (H⋊G)×Γ → Γ
is a Lie groupoid morphism.

3 Examples

In this section we display classes of examples of Lie 2-algebra actions on NQ-1 manifolds
(see §1.2) and of the integrated actions (see §2.3). More examples of Lie 2-algebra actions
are given at the end of §4.

The starting data for the first example is just a bracket-preserving map of a Lie algebra
into the sections of a Lie algebroid.

Example 3.1. [g acting on A] Let g be a Lie algebra, A → M a Lie algebroid and η : g →
(Γ(A), [·, ·]A) a Lie algebra morphism17. Then (A[1], Q := QA) is an NQ-1 manifold by
Lemma 1.14, and

µ : g[1]⊕ g →χ(A[1])

(w, 0) 7→η(w)

(0, δw) 7→[Q, η(w)]

is a morphism a DGLAs. Here g[1]⊕g denotes the strict Lie-2 algebra with δ = Idg and [·, ·]
given by the Lie bracket on g and its adjoint action. Further we view η(w) as an element
of χ−1(A[1]) ∼= Γ(A).

The image of µ generates a submodule D of χ(A[1]) as in eq. (42). It is a distribution iff
η(g) ⊂ Γ(A) spans a subbundle B ⊂ A, ρ(B) is a distribution on M , and [η(w), Ax]A ⊂ Bx

whenever ρ(η(w))x = 0 for some w ∈ g and x ∈ M (this follows from Lemma 1.25). Here
ρ : A→ TM is the anchor, which satisfies ρ(η(w)) = [Q, η(w)].

In this case, since µ is a strict action, D is integrable as a distribution and it is preserved
by [Q, ·]. Under the regularity assumptions of Prop. 1.29, the ideal system corresponding
to D by Prop. 1.29 is given by

17In [20, Def. 6.1] this is called A-action of g on M .
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• the Lie subalgebroid B spanned by η(g)

• the Lie subgroupoid of M ×M given by the foliation integrating ρ(B)

• parallel translation by the flat ρ(B)-connection onA/B given by ∇ρ(s) = ([s, ·]A mod B)
for all s ∈ Γ(B).

The following example is a special case of Ex. 3.1 for which we can write down explicitly
the integrated action Φ.

Example 3.2. [g acting on TM ] Let G be a Lie group and η̂ an action of G on a manifold
M (which for simplicity we take to be simply connected). It is immediate that the product
action

(G×G)× (M ×M) →(M ×M) (40)

(g1, g2), (m1,m2) 7→(g1m1, g2m2)

is a Lie 2-group action, where all the Lie groupoids appearing are pair groupoids.
We show how to recover this Lie 2-group action from infinitesimal data. Let g be the

Lie algebra of G, and η : g → χ(M) the infinitesimal action corresponding to η̂ (that is, a
Lie algebra morphism g → (Γ(TM), [·, ·]TM )). By Ex. 3.1 we obtain a (strict) morphism of
DGLAs µ : g[1]⊕ g → χ(T [1]M). It induces a Lie algebra morphism

µ̃ : gab ⋊ g →χ(TM)

(w, 0) 7→η(w)

(0, δw) 7→(η(w))T .

Here gab denotes the vector space underlying the Lie algebra g and the first η(w) is viewed
a vector field tangent to the fibers of TM → M . The tangent lift (η(w))T of the vector
field η(w) on M appears since it agrees with the element [[Q, η(w)], ·] = [η(w), ·]TM of
CDO(TM) (see Remark 1.26). By Prop. 2.18 this integrates to the Lie 2-group action

Φ: (G⋊G)× (M ×M) →(M ×M)

(h, g), (m1,m2) 7→(hgm1, gm2).

Under the isomorphism of Lie 2-groups (over IdG)

G⋊G ∼= G×G, (h, g) 7→ (hg, g)

to the pair groupoid G×G⇉G, this action corresponds to (40).

Example 3.3. [Actions on T ∗M ] Let h[1]⊕ g be a strict Lie-2 algebra and (M,π) a Poisson
manifold. Since T ∗M is a Lie algebroid, (M, Q) := (T ∗[1]M, [π, ·]S) is a NQ-1 manifold,
where [·, ·]S denotes the Schouten bracket of multivector fields.

In [8, §8,9] Cattaneo and the first author consider a morphism of DGLAs of the form

h[1]⊕ g → χ−1(M)⊕ χ0(M) (41)

(w, v) 7→ XJ0
∗w +XJ1

∗v

where (J0, J1) : M → (h[1] ⊕ g)∗[1] is a Poisson (moment) map, and discuss its reduction.
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When h = g and the differential is Idg, the morphism (41) is recovered from our Ex. 3.1
with A = T ∗M and η : g → Γ(T ∗M), w → −d(J∗

0 v). Notice that in this case, as pointed
out in [8, Ex. 15.2], the morphism (41) is equivalent to an ordinary Hamiltonian

action of g on (M,π).

Given a Lie group, we see that the conjugation and adjoint actions fit into our framework:

Example 3.4. [Adjoint action] Let g be a Lie algebra and consider the DGLA morphism

µ : g → χ(g[1]), v 7→ [Q, ιv],

where ιv is the (constant) vector field corresponding to v under g ∼= χ−1(g[1]) and Q is the
homological vector field on g[1]. Notice that D as in eq. (42) is usually not a distribution
on g[1] (it is iff g is an abelian Lie algebra). We now show that diagram (39) about
transformation groupoids/algebroids applied to this example is the following:

Transf. groupoid of conjugation
LieH // Transf. groupoid of Ad

Lie
��

Transf. algebroid of ad.

The Lie algebra action on g corresponding to µ reads

µ̃ = ad : g → End(g) ⊂ χ(g), v 7→ adv

by Remark 1.26. Integrating this Lie algebra action we obtain essentially the adjoint action
of G on g. More precisely, we obtain the Lie algebroid morphism (see Prop. 2.14)

Ψ = Ad : (G → G)× (g → {pt}) → (g → {pt}).

Integrating this Lie algebroid morphism, by Prop. 2.18 a) we obtain the action of G on
itself by conjugation, or more precisely, the Lie 2-group action

Φ = conjugation : (G⇉ G) × (G⇉ {pt}) → (G⇉ {pt}).

4 Quotients by Lie 2-algebra actions

In this final section we consider again distributions, as in §1.3. We define the distribution
associated to a Lie 2-algebra action, and study the corresponding quotient.

Let L = L−1[1]⊕L0 be a Lie 2-algebra (Def. 1.17), M an NQ-1 manifold, and µ : L 
χ(M) a Lie 2-algebra action as in (9). The C(M)-submodule of χ(M) generated by µ1(L)
and µ2(L0 ∧ L0) is usually not a distribution on M. Moreover it has two defects: first it is
not involutive in general (as suggested by eq. (11)), and second the operator dQ := [Q, ·]
does not preserve its sections. (A counterexample for both defects is given in Ex. 4.4 below).

Therefore we are lead to consider the C(M)-module

D := SpanC(M){µ
1(L) , µ2(L0 ∧ L0) , dQ(µ

2(L0 ∧ L0))}. (42)

When D forms a distribution, we say the action of the Lie 2-algebra is regular.
Unfortunately, the fact that µ is an L∞-morphism (the constraints (10)-(13)) do not

imply that D is involutive. (A counterexample is given by Ex. 4.5 below.)
Making an additional assumption, we can achieve that D is involutive and Q-invariant:
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Proposition 4.1. If µ is a regular action of the Lie 2-algebra L on M and [D0,D−1] ⊂ D−1

then
i) [Q,D] ⊂ D
ii) D is involutive

Proof. i) follows from the facts that µ1 satisfies eq. (10) and that d2Q = 0.
ii) Since we assume [D0,D−1] ⊂ D−1, we just need to check that D0 is closed under

the bracket, so we just need to consider µ1(L0) and dQ(µ
2(L0 ∧ L0)). Let l0, l′0 ∈ L0 and

m,m′ ∈ L0 ∧ L0. We have [µ1(l0), µ
1(l′0)] ∈ D by eq. (11).

Further

[µ1(l0), [Q,µ
2(m)]] = [Q, [µ1(l0), µ

2(m)]]− [[Q,µ1(l0)], µ
2(m)]

also lies in D. Indeed [Q,µ1(l0)] = 0 by eq. (10), and the first term on the r.h.s. lies in D0

because of [D0,D−1] ⊂ D−1 and because of i).
Similarly, we have [[Q,µ2(m)], [Q,µ2(m

′)]] = [Q, [[Q,µ2(m)], µ2(m
′)]] ∈ D0.

We summarize the conditions under which we can nicely quotient M by the Lie 2-algebra
action µ:

Corollary 4.2. Let µ be a regular action of the Lie 2-algebra L on M = A[1] such that
[D0,D−1] ⊂ D−1 and the assumptions on smoothness and holonomy of Prop. 1.29 are
satisfied. Then M/D is an NQ-1 manifold. It corresponds to the quotient of A by the ideal
system given by

• the Lie subalgebroid B = spanC∞(M){µ
1(L−1), Im(µ2)} of A

• the Lie subgroupoid R of M ×M associated to the integrable distribution
F := span{µ1(L0), ρ(Im(µ2))} on M

• the action of R on A/B induced by spanC∞(M){µ
1(L0), dQ(Im(µ2))} ⊂ χ0(M) ∼=

CDO(A) (where the identification is given in Remark 1.26).

Proof. M/D is an NQ-manifold by Prop. 4.1 and Prop. 1.30. By the same Prop. 1.30
M/D corresponds to the quotient of A by the ideal system associated to D as in Prop. 1.29,
which is the above.

Let us specialize to the case when the action µ is strict.
In this case, we showed in Prop. 2.14 that Ψ: (h⋊G)×A→ A is an LA-group action.

The latter is called a morphic action [27, Def. 3.0.14]. From [27, Thm. 3.2.1] in Stefanini’s
thesis, it follows that, when the action is free and proper, A/(h⋊G) →M/G is again a Lie
algebroid with the property18 that the projection of A onto the quotient is a Lie algebroid
morphism.

18Even more, it is a Lie algebroid fibration [4, Def. 1.1], which means that the projection A/(h⋊G) → M/G
admit a complete Ehresmann connection. Such a map is called a “fibration” in the sense that it introduces
the expected long exact sequence of homotopy groups of Lie algebroids.
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Corollary 4.3. Let L be a strict Lie-2 algebra, A[1] a NQ-1 manifold, and let µ : L →
χ(A[1]) be a strict Lie 2-algebra action. Assume that the action is locally free, that is, for
all m ∈ M , the map L → TmM = Am[1] ⊕ TmM is injective. Further assume that the
induced Lie group action ψ : G×A→ A defined just before Prop. 2.14 is free and proper.

Then the Lie algebroid corresponding to the NQ-1 manifold A[1]/D agrees with Ste-
fanini’s quotient of A by the LA-group action Ψ.

Proof. We have D = SpanC(M){µ
1(L)}. By the local freeness assumption, the image under

µ1 of a basis of L provides a set of local homogeneous generators of D whose evaluations at
points of M are linearly independent, hence D is a distribution and the action is regular. D
is involutive since µ preserves brackets. The leaves of the distribution F on M are just the
orbits of the free action ψ|M , the restriction of the G-action ψ to M , so M/F is a smooth
manifold. Let B be as in Cor. 4.2, then the holonomy of the partial connection ∇ is given
by the action of G on A/B induced by ψ, so by the freeness of ψ the holonomy is trivial.

Hence we can apply Cor. 4.2. The vector bundle obtained quotienting A by the ideal
system of Cor. 4.2 agrees with the quotient of A by the action Ψ, and the induced Lie
algebroid structures agree because in both cases the projection map from A is a Lie algebroid
morphism.

The following is an example where the image of the action µ is a distribution, which
however is neither involutive nor preserved by [Q, ·].

Example 4.4. [The image of µ is not involutive] Let L = R
2 be the abelian 2-dimensional

Lie algebra (concentrated in degree zero), fix a basis l0, l′0. Let A = TR3, so A[1] = T [1]R3,
on which we take the standard degree 0 coordinates x1, x2, x3 and the corresponding degree
1 coordinates ξi(= dxi). The deRham vector field on A[1] reads Q =

∑

i ξi
∂
∂xi

. Define
µ : L χ(T [1]R3) by

µ1(l0) =[Q,
∂

∂ξ1
]

µ1(l′0) =[Q,x1
∂

∂ξ3
−

∂

∂ξ2
]

µ2(l0 ∧ l
′
0) =−

∂

∂ξ3
.

Notice that µ1(l0) acts on functions on T [1]R3 – which are just differential forms on R
3 –

by the Lie derivative L ∂
∂x1

, and similarly for µ1(l′0).

One checks that µ is an L∞-morphism (conditions (10)-(13)). The span of the image of
µ is span{ ∂

∂x1
, x1

∂
∂x3

− ∂
∂x2

, ∂
∂ξ3

}: it has constant rank 3, and is not involutive (because its
restriction to the body R

3 is not involutive) nor preserved by [Q, ·].
On the other hand, the distribution D (defined in eq. (42)) on M is spanned by

∂
∂x1

, ∂
∂x2

, ∂
∂x3

, ∂
∂ξ3

. D is involutive and its sections are preserved by [Q, ·]. The quotient
M/D is isomorphic to R

2[1] with vanishing homological vector field, which corresponds to
the abelian 2-dimensional Lie algebra.

Next we display an example where the C(M)-module D is not involutive.

Example 4.5. [D is not involutive] Consider the strict Lie-2 algebra L = R[1]⊕R
2, with zero

bracket and differential δ : R[1] → R
2, l−1 7→ l0, where {l−1} and {l0, l

′
0} are bases of R and
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R
2 respectively. Let M be a manifold and X,Y vector fields such that [[X, [X,Y ]M ]M does

not lie in the the span of X and [X,Y ]M . Take M = (T [1]M,Q) where Q is the deRham
vector field. By [·, ·]M we denote the Lie bracket of vector fields on M , while by [·, ·] we
denote the graded Lie bracket of vector fields on M.

Consider the Lie 2-algebra action

µ : R[1]⊕ R
2
 χ(M)

given by

µ1(l−1) = X̄

µ1(l0) = [Q, X̄ ]

µ1(l′0) = [Q, Ȳ ]

µ2(l0 ∧ l
′
0) = −[X,Y ]M .

Here the overline denotes the identification Γ(TM) ∼= χ−1(M),X 7→ X̄ as in Prop. 1.6).
It is easy to check that µ is an L∞-morphism, i.e. that eq. (10)-(13) are satisfied. However

[µ1(l0), µ
2(l0 ∧ l

′
0)] = −[[Q, X̄ ], [X,Y ]M ] = −[X, [X,Y ]M ]M

does not lie in D−1 = spanC∞(M){µ
1(l−1), µ

2(l0 ∧ l′0)} = spanC∞(M){X̄, [X,Y ]M}. This
shows that D is not involutive.

More concretely, we can take M = R
3 with coordinates x1, x2, x3 and X = ∂

∂x1
, Y =

x2

1

2
∂

∂x3
− x1

∂
∂x2

, so that [X,Y ]M = x1
∂

∂x3
− ∂

∂x2
and [X, [X,Y ]M ]M = ∂

∂x3
.
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