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THE NEW ν-METRIC INDUCES THE CLASSICAL GAP

TOPOLOGY

AMOL SASANE

Abstract. Let A+ denote the set of Laplace transforms of complex
Borel measures µ on [0,+∞) such that µ does not have a singular non-
atomic part. In [1], an extension of the classical ν-metric of Vinnicombe
was given, which allowed one to address robust stabilization problems
for unstable plants over A+. In this article, we show that this new
ν-metric gives a topology on unstable plants which coincides with the
classical gap topology for unstable plants over A+ with a single input
and a single output.

1. Introduction

We recall the general stabilization problem in control theory. Suppose
that R is a commutative integral domain with identity (thought of as the
class of stable transfer functions) and let F(R) denote the field of fractions
of R. Then the stabilization problem is:

Given p ∈ F(R) (an unstable plant transfer function),
find c ∈ F(R) (a stabilizing controller transfer function),
such that (the closed loop transfer function)

H(p, c) :=

[
p
1

]
(1− cp)−1

[
−c 1

]

belongs to R2×2 (that is, it is stable).

In the robust stabilization problem, one goes a step further. One knows that
the plant is just an approximation of reality, and so one would really like the
controller c to not only stabilize the nominal plant p, but also all sufficiently
close plants p′ to p. The question of what one means by “closeness” of
plants thus arises naturally. So one needs a function d defined on pairs of
stabilizable plants such that

(1) d is a metric on the set of all stabilizable plants,
(2) d is amenable to computation, and
(3) stabilizability is a robust property of the plant with respect to d.

Such a desirable metric, was introduced by Glenn Vinnicombe in [14] and
is called the ν-metric. In that paper, essentially R was taken to be the
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rational functions without poles in the closed unit disk, and it was also
shown that the topology obtained was equivalent to the one obtained from
the gap-metric (introduced by Zames and El-Sakkary [15],[5], which in turn
is equivalent to the graph metric of Vidyasagar [13]).

The problem of what happens when R is some other ring of stable transfer
functions of infinite-dimensional systems was left open in [14]. This problem
of extending the ν-metric from the rational case to transfer function classes
of infinite-dimensional systems was addressed in [1]. There the starting point
in the approach was abstract. It was assumed that R is any commutative
integral domain with identity which is a subset of a Banach algebra S sat-
isfying certain assumptions, and then an “abstract” ν-metric was defined in
this setup, and it was shown in [1] that it does define a metric on the class of
all stabilizable plants. It was also shown there that stabilizability is a robust
property of the plant. In particular, this gave a metric on unstable plants
over A+, where A+ denotes the set of Laplace transforms of complex Borel
measures µ on [0,+∞) such that µ does not have a singular non-atomic
part.

One can also define a gap-metric for unstable plants over A+, and so it is
natural to ask if the ν-metric and the gap-metric induce the same topologies
on unstable plants over A+. In this article we address this issue, and prove
the following result.

Theorem 1.1. On the set S(A+), the topologies induced by the ν-metric dν
and the gap-metric dg are identical.

The notation S(A+) will be explained carefully in Section 3, but roughly
speaking, it is to be thought of as the class of unstable plants over A+ with a
single input and a single output. Owing to a technical difficulty, we restrict
ourselves to single input and single output systems. We end this article with
an open problem, namely the validity of our main result for systems with
multiple inputs and multiple outputs, while pointing out the precise nature
of the technical difficulty.

The paper is organized as follows:

(1) In Section 3, we recall from [1] the ν-metric in the context of unstable
plants over A+, and also derive an alternative expression for it in
Proposition 3.6, reminiscent of Georgiou’s formula for the gap-metric
from [6].

(2) In Section 4, we give the definition of the gap-metric in the context
of unstable plants over A+. An alternative expression for the gap-
metric is given in Proposition 4.9, which will be used in order to
show the equivalence of dν and dg.

(3) Finally, in Section 5, we will prove our main result (Theorem 1.1). At
the end of this section, we also highlight the main obstacle towards
extending Theorem 1.1 to systems with multiple inputs and outputs.
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2. Notation index

For the convenience of the reader, we have included a table here which
shows the page numbers of the places where the corresponding notation is
first defined.

Notation Page number

·̂ Laplace transform (page 4) or
Fourier transform (page 4)

·∗ pages 4, 6, 9
A page 4
A+ page 4
AP almost periodic functions (page 4)
C0 functions vanishing at ±∞ (page 11)
C+ right half of the complex plane (page 4)
~δ directed gap (page 9)
dg gap-metric (page 9)

dν ν-metric (page 6)
F(A+) field of fractions over A+ (page 5)

G graph of a system (page 8)

G, G̃,K, K̃ matrices built from coprime factorizations (page 6)
inv · invertible elements of a ring (page 3)
PG projection onto G (page 8)

PG1
|G2

restriction of PG1
to G2 (page 10)

S(A+) plants with a normalized coprime factorization (page 6)
TX Toeplitz operator (page 11)
w winding number for continuous closed

curves avoiding 0 (page 5)
w average winding number for invertible

AP functions (page 5)
W index for invertible elements in A (page 5)

3. The ν-metric

In this section we will recall the new ν-metric for unstable plants over
the ring A+ (defined below), which was listed as a particular example in
[1, Subsection 5.3] of the abstract ν-metric introduced in that paper. At
the end of this section, we will also give an alternate expression for the
ν-metric, which will be used later in order to show the equivalence of the
ν-metric topology with the classical gap topology.

If R is a commutative integral domain with identity 1, we use the symbol
inv R for the set of invertible elements of R.

We denote by A+ the set of Laplace transforms of complex Borel measures
µ on [0,+∞) such that µ does not have a singular non-atomic part. A more
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explicit description of the elements of A+ can be given as follows. Let

C+ := {s ∈ C : Re(s) ≥ 0}.

Then

A+ =

{
s(∈ C+) 7→ f̂a(s) +

∑

k≥0

fke
−stk

∣∣∣ fa ∈ L1(0,∞), (fk)k≥0 ∈ ℓ1,
0 = t0 < t1, t2, t3, . . .

}
,

and equipped with pointwise operations and the norm:

‖F‖ = ‖fa‖L1 + ‖(fk)k≥0‖ℓ1 , F (s) = f̂a(s) +
∑

k≥0

fke
−stk (s ∈ C+),

A+ is a Banach algebra. Here f̂a denotes the Laplace transform of fa:

f̂a(s) =

∫ ∞

0
e−stfa(t)dt, s ∈ C+.

Similarly, define A as follows:

A=

{
iy(∈ iR) 7→ f̂a(iy) +

∑

k∈Z

fke
−iytk

∣∣∣ fa ∈ L1(R), (fk)k∈Z ∈ ℓ1,
. . . , t−2, t−1 <0= t0< t1, t2, . . .

}
.

Then, equipped with pointwise operations and the norm:

‖F‖ = ‖fa‖L1 + ‖(fk)k∈Z‖ℓ1 , F (iy) := f̂a(iy) +
∑

k∈Z

fke
−iytk (y ∈ R),

A is a unital commutative complex semisimple Banach algebra. Here f̂a is
the Fourier transform of fa,

f̂a(iy) =

∫ ∞

−∞
e−iytfa(t)dt (y ∈ R).

One can also define an involution ·∗ on A, given by

F ∗(iy) = F (iy), y ∈ R,

for F ∈ A. Clearly, A+ ⊂ A.
The algebra AP of complex valued (uniformly) almost periodic functions

is the smallest closed subalgebra of L∞(R) that contains all the functions
eλ := eiλy. Here the parameter λ belongs to R. For any f ∈ AP , its
Bohr-Fourier series is defined by the formal sum

∑

λ

fλe
iλy, y ∈ R, (3.1)

where

fλ := lim
N→∞

1

2N

∫

[−N,N ]
e−iλyf(y)dy, λ ∈ R,

and the sum in (3.1) is taken over the set σ(f) := {λ ∈ R | fλ 6= 0},
called the Bohr-Fourier spectrum of f . The Bohr-Fourier spectrum of every
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f ∈ AP is at most a countable set. For each f ∈ inv AP , we can define the
average winding number w(f) ∈ R of f as follows [8, Theorem 1, p. 167]:

w(f) = lim
T→∞

1

2T

(
arg(f(T ))− arg(f(−T ))

)
.

We set

FAP (iy) =
∑

k∈Z

fke
−iytk (y ∈ R) for F = f̂a +

∑

k∈Z

fke
−i·tk ∈ A.

If F = f̂a + FAP ∈ inv A, then it can be shown that ([1, Subsection 5.3])

FAP (i·) ∈ inv AP . Moreover, F = f̂a + FAP ∈ A is invertible if and only if
for all y ∈ R, F (iy) 6= 0 and inf

y∈R
|FAP (iy)| > 0.

Since L̂1(R) is an ideal in A, it follows that F−1
AP f̂a is the Fourier transform

of a function in L1(R), and so the map

y 7→ 1 + (FAP (iy))
−1f̂a(iy) =

F (iy)

FAP (iy)

has a well-defined winding number w around 0. Geometrically, w(f) is the
number of times the curve t 7→ f(t) winds around the origin in a counter-
clockwise direction.

Define the index W : inv A → R× Z by

W (F ) =
(
w(FAP ), w(1 + F−1

AP f̂a)
)
, (3.2)

where F = f̂a + FAP ∈ inv A, and

w(FAP ) := lim
R→∞

1

2R

(
arg

(
FAP (iR)

)
− arg

(
FAP (−iR)

))
,

w(1 + F−1
AP f̂a) :=

1

2π

(
arg

(
1 + (FAP (iy)

)−1
f̂a(iy))

∣∣∣
y=+∞

y=−∞

)
.

The map W : inv A → R× Z satisfies:

(I1) W (ab) = W (a) +W (b) (a, b ∈ inv A).
(I2) W (a∗) = −W (a) (a ∈ inv A).
(I3) W is locally constant, that is, W continuous when R×Z is equipped

with the discrete topology.
(I4) x ∈ A+ ∩ (inv A) is invertible as an element of A+ if and only if

W (x) = (0, 0).

A consequence of (I3) is the following “homotopic invariance of the index”
(see [1, Proposition 2.1]): if H : [0, 1] → inv A is a continuous map, then
W (H(0)) = W (H(1)).

We recall the following standard notation and definitions from the factor-
ization approach to control theory.

3.1. The notation F(A+): F(A+) denotes the field of fractions of A+.



6 AMOL SASANE

3.2. The notation F ∗: If F ∈ Ap×m
+ , then F ∗ ∈ Am×p is the matrix with

the entry in the ith row and jth column given by F ∗
ji, for all 1 ≤ i ≤ p, and

all 1 ≤ j ≤ m.

3.3. Coprime/normalized coprime factorization: Given p ∈ F(R), a
factorization p = nd−1, where n, d ∈ R, is called a coprime factorization of

P if there exist x, y ∈ R such that xn+yd = 1. If moreover there holds that
n∗n+ d∗d = 1, then the coprime factorization is referred to as a normalized

coprime factorization of p.

3.4. The notation G, G̃,K, K̃ : Given p ∈ F(A+) with a normalized co-
prime factorization p = nd−1, we introduce the following matrices with
entries from A+:

G =

[
n
d

]
and G̃ =

[
−d n

]
.

Similarly, given c ∈ F(A+) with normalized coprime factorization c = xy−1,
we introduce the following matrices with entries from A+:

K =

[
y
x

]
and K̃ =

[
−x y

]
.

3.5. The notation S(A+): We denote by S(A+) the set of all elements
p ∈ F(A+) that possess a normalized coprime factorization.

Remark 3.1.

(1) It can be shown (see for example [13, Chapter 8]) that if p ∈ S(A+),
then p is a stabilizable plant overA+, that is, there exists a c ∈ F(A+)
such that H(p, c) ∈ R2×2.

(2) [2, Subsection 3.5] shows that every stabilizable plant p ∈ F(A+)
admits a coprime factorization over A+.

(3) It follows from the proof of [9, Lemma 6.5.6.(e)] and [9, Theo-
rem 5.2.8] that whenever p ∈ F(A+) has a coprime factorization
over A+, it also has a normalized coprime factorization over A+.

Putting these remarks together, we see that S(A+) is exactly the set of
all plants in F(A+) that are stabilizable over A+.

Definition 3.2 (ν-metric dν on S(A+)). For p1, p2 ∈ S(A+), with the nor-
malized coprime factorizations p1 = n1d

−1
1 and p2 = n2d

−1
2 , we define

dν(p1, p2) :=

{
‖G̃2G1‖∞ if G∗

1G2 ∈ inv A and W (G∗
1G2) = (0, 0),

1 otherwise.
(3.3)

where the notation is as in Subsections 3.1-3.5.

We have the following; see [1]:

Theorem 3.3. dν given by (3.3) is a metric on S(A+).
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Moreover, stabilizability is a robust property of the plant in this new ν-
metric. In order to see this, we first introduce the notion of stability margin
for a pair comprising a plant and its controller.

Definition 3.4. Given p, c ∈ F(A+), the stability margin of the pair (p, c)
is defined by

µp,c =

{
‖H(p, c)‖−1

∞ if p is stabilized by c,
0 otherwise.

The number µp,c can be interpreted as a measure of the performance of
the closed loop system comprising p and c: larger values of µp,c correspond
to better performance, with µp,c > 0 if c stabilizes p.

The following was proved in [1]:

Theorem 3.5. If p, p′ ∈ S(A+) and c ∈ S(A+), then µp′,c ≥ µp,c−dν(p, p
′).

The above result says that stabilizability is a robust property of the plant,
since if c stabilizes p with a stability margin µp,c > m, and p′ is another plant
which is close to p in the sense that dν(p

′, p) ≤ m, then c is also guaranteed
to stabilize p′.

We will now derive an alternative expression for the ν-metric, which is
reminiscent of Georgiou’s formula for the gap-metric from [6].

Proposition 3.6. If p1, p2 ∈ S(A+), then

dν(p1, p2) = inf
q∈inv A,

W (q)=(0,0)

‖G1 −G2q‖∞.

Proof. Let q ∈ inv A and W (q) = (0, 0). We have

‖G1 −G2q‖∞ =

∥∥∥∥
[
G∗

2

G̃2

]
(G1 −G2q)

∥∥∥∥
∞

(as
[
G2 G̃∗

2

] [ G∗
2

G̃2

]
= I)

=

∥∥∥∥
[
G∗

2G1 − q

G̃2G1

]∥∥∥∥
∞

(since G̃2G2 = 0 and G∗
2G2 = I)

≥ ‖G̃2G1‖∞.

So if G∗
2G1 ∈ inv A and W (G∗

2G1) = (0, 0), then from the above it follows

that ‖G1 −G2q‖∞ ≥ ‖G̃2G1‖∞ = dν(p1, p2). As the choice of q above was
arbitrary, we obtain

inf
q∈inv A,

W (q)=(0,0)

‖G1 −G2q‖∞ ≥ dν(p1, p2). (3.4)

If we define q0 := G∗
2G1 ∈ A, then q0 ∈ inv A and W (q0) = (0, 0), and so

inf
q∈inv A,

W (q)=(0,0)

‖G1 −G2q‖∞ ≤ ‖G1 −G2q0‖∞ =

∥∥∥∥
[
G∗

2G1 − q0
G̃2G1

]∥∥∥∥
∞

=

∥∥∥∥
[

0

G̃2G1

]∥∥∥∥
∞

= ‖G̃2G1‖∞ = dν(p1, p2).
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From this and (3.4), the claim in the proposition follows for the case when
G∗

2G1 ∈ inv A and W (G∗
2G1) = (0, 0).

Now let q ∈ inv A be such that W (q) = (0, 0) and ‖G1 − G2q‖∞ < 1.
Using G∗

1G1 = 1, we see that

‖1−G∗
1G2q‖∞ = ‖G∗

1(G1 −G2q)‖∞ ≤ ‖G∗
1‖∞‖G1 −G2q‖∞ < 1 · 1 = 1.

So G∗
1G2q = 1− (1−G∗

1G2q) is invertible as an element of A. Consider the
map H : [0, 1] → inv A given by H(t) = 1− t(1−G∗

1G2q), t ∈ [0, 1]. By the
homotopic invariance of the index,

(0, 0) = W (1) = W (H(0)) = W (H(1)) = W (G∗
1G2q).

As W (q) = (0, 0), we obtain that W (G∗
1G2) = (0, 0). So we have shown that

if there is a q ∈ A such that q ∈ inv A, W (q) = (0, 0) and ‖G1−G2q‖∞ < 1,
then G∗

1G2 ∈ inv A and W (G∗
1G2) = (0, 0). Thus if either G∗

1G2 6∈ inv A or
G∗

1G2 ∈ inv A butW (G∗
1G2) 6= (0, 0), then for all q ∈ A such that q ∈ inv A,

W (q) = (0, 0), we have that ‖G1 −G2q‖∞ ≥ 1, and so

inf
q∈inv A,

W (q)=(0,0)

‖G1 −G2q‖∞ ≥ 1 = dν(p1, p2).

Also, with qn :=
1

n
I, qn ∈ inv A and W (qn) = (0, 0). We have

‖G1 −G2qn‖∞ ≤ ‖G1‖∞ + ‖G2‖∞‖qn‖∞ ≤ 1 + 1 ·
1

n
.

Hence

inf
q∈inv A,

W (q)=(0,0)

‖G1−G2q‖∞ ≤ inf
n

‖G1−G2qn‖∞ ≤ inf
n

(
1 +

1

n

)
= 1 = dν(p1, p2).

Consequently, inf
q∈inv A,

W (q)=(0,0)

‖G1 −G2q‖∞ = 1 = dν(p1, p2). �

4. The gap-metric

In this section we will recall the gap-metric topology for unstable plants
over the ring A+. We will also prove a few technical lemmas which will be
used in the next section in order to prove our main result.

Definition 4.1 (Graph of a system). For p ∈ S(A+), with the normalized
coprime factorization p = nd−1, we define the graph of p, denoted by G, to
be the following subspace of the Hardy space H2(C2):

G = GH2 =

{[
nϕ
dϕ

]
: ϕ ∈ H2

}
.

Using the fact that there exist x, y ∈ A+ such that xn+ yd = 1, it is easy
to see that the graph G is a closed subspace of H2 × H2. We denote the
orthogonal projection from H2 ×H2 onto G by PG .
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Definition 4.2 (Gap-metric dg). For p1, p2 ∈ S(A+), with the normalized

coprime factorizations p1 = n1d
−1
1 and p2 = n2d

−1
2 , we define

dg(p1, p2) := ‖PG1
− PG2

‖L(H2×H2). (4.1)

We will need a few technical results on the gap-metric dg. For a self-
contained account of these results, we refer the reader to [12]. It can be
checked that dg given by (4.1) is well-defined. Since the gap-metric is a
metric on the set of closed subspaces of a Hilbert space, it follows that dg
given by (4.1) is a metric on S(A+).

For p1, p2 ∈ S(A+), dg(p1, p2) = max{~δ(p1, p2), ~δ(p2, p1)}, where ~δ(·, ·)
denotes the directed gap, defined by

~δ(p1, p2) := ‖(I − PG2
)PG1

‖L(H2×H2).

If dg(p1, p2) < 1, then dg(p1, p2) = ~δ(p1, p2) = ~δ(p2, p1) [7, Prop. 3, p.675].
In [6], it was shown that

dg(p1, p2) = max
{

inf
q∈H∞

‖G1 −G2q‖∞ , inf
q∈H∞

‖G2 −G1q‖∞

}
.

For p1, p2 ∈ S(A+), the infimums above can be taken over A+ instead of
H∞, and this follows from [9, Theorem 11.3.3].

Lemma 4.3. If p1, p2 ∈ S(A+), then

inf
q∈H∞

‖G1 −G2q‖∞ = inf
q∈A+

‖G1 −G2q‖∞.

Proof. Clearly m := inf
q∈H∞

‖G1 −G2q‖∞ ≤ inf
q∈A+

‖G1 −G2q‖∞ =: M. Define

V =

[
G2 G1

0 1

]
, W := V ⋆

[
I 0
0 −M2

]
V.

(For X ∈ (H∞)p×m, X⋆ ∈ (L∞)m×p is defined by X⋆(iy) = (X(iy))∗,
y ∈ R.) Suppose that m < M . Then there exists a q ∈ H∞ such that
‖G1 − G2q‖∞ < M . Now we apply [9, Theorem 11.3.3, p.654] to conclude
that the q can in fact be chosen in A+. For this, a few technical assumptions
have to be verified first, and we give these details in the following paragraph
for the interested reader.

(First of all, the Standing Hypothesis [9, 11.0.1, p.611] is satisfied, since
A+ does satisfy [9, Hypothesis 8.4.7., p.384], by [9, Theorem 8.4.9(β),
p.385]. Secondly, the Standing Hypothesis [9, 11.3.1, p.654] is satisfied,
since G∗

2G2 = 1. Actually, there are two extraneous assumptions in 11.3.1,
but neither is used in the part of the proofs required here, and these extra-
neous assumptions are anyway satisfied in our case. Now as the Assumption
(FI11

2s) of [9, Theorem 11.3.3, p.654] holds, also (FI13s) holds. By the last
sentence of [9, Theorem 11.3.6, p.659], as W has entries from A+, there
exists a q ∈ A+ such that ‖G1 −G2q‖∞ < M .)

Consequently, m = M . �
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We use the notation PG1
|G2

to mean the restriction of PG1
to G2, namely,

the operator from G2 to G1, given by

PG1
|G2

g2 = PG1
g2, g2 ∈ G2.

Then ker(PG1
|G2

) = {g2 ∈ G2 : PG1
g2 = 0} = G2 ∩ (kerPG1

) = G2 ∩ G⊥
1 . Also,

for g1 ∈ G1 and g2 ∈ G2, we have

〈PG1
|G2

g2, g1〉G1
= 〈PG1

g2, g1〉G1
= 〈g2, g1〉H2(C2)

= 〈g2, PG2
g1〉H2(C2) = 〈g2, PG2

g1〉G2

= 〈g2, PG2
|G1

g1〉G2
,

and so (PG1
|G2

)∗ = PG2
|G1

. Thus ker((PG1
|G2

)∗) = ker(PG2
|G1

) = G1 ∩G⊥
2 . So

if PG1
|G2

is a Fredholm operator [11, §2.5.1,p.218], then its Fredholm index
is given by dim(G2 ∩ G⊥

1 )− dim(G1 ∩ G⊥
2 ).

We will use the following result from [10, p.201].

Lemma 4.4 (Lemma on Closed Subspaces). Let H be a Hilbert space and

let U, V be subspaces of H. Then the following are equivalent:

(S1) U ∩ V ⊥ = {0}.
(S2) Closure of PUV is U .

Also, the following are equivalent:

(S3) PUV = U and V ∩ U⊥ = {0}.
(S4) ‖(I − PV )PU‖ < 1 and ‖(I − PU )PV ‖ < 1.

Lemma 4.5. Let p1, p2 ∈ S(A+). Then dg(p1, p2) < 1 if and only if the

following three conditions hold:

(1) PG1
|G2

is Fredholm,

(2) G1 ∩ G⊥
2 = {0}, and

(3) G2 ∩ G⊥
1 = {0}.

Proof. (Only if) As PG1
|G2 is Fredholm, its range is closed, that is, PG1

G2 is a
closed subspace. Hence from the equivalence of (S1) with (S2) in Lemma 4.4
above, we have that the closure of PG1

G2, which is the same as PG1
G2, is equal

to G1. Now from the equivalence of (S3) with (S4) in Lemma 4.4, we obtain

that ~δ(p1, p2) = ‖(I − PG2
)PG1

‖ < 1 and ~δ(p2, p1) = ‖(I − PG1
)PG2

‖ < 1.
Hence dg(p1, p2) < 1.

(If) As ~δ(p1, p2) = ‖(I−PG2
)PG1

‖ < 1 and ~δ(p2, p1) = ‖(I−PG1
)PG2

‖ < 1, by
the equivalence of (S3) with (S4) in Lemma 4.4, we obtain PG1

G2 = G1, and
so the range of PG1

|G2
is closed. Moreover, G2∩G⊥

1 = {0}. By interchanging
the roles of p1 and p2, we also get that G1 ∩ G⊥

2 = {0}. �

The following is easy to check.

Lemma 4.6. Let H1,H2 be Hilbert spaces and T ∈ L(H1,H2), S ∈ L(H2,H1)
be such that ST = I. Suppose that U is a subspace of H1. Then we have

that TU is closed if and only if U is closed.
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Proof. (If) Since T is left invertible, ‖x‖ = ‖STx‖ ≤ ‖S‖‖Tx‖ (x ∈ H1).
Suppose (yn) = (Txn) (xn ∈ U) is a sequence that converges in H2. Thus
‖yn−ym‖ ≥ 1

‖S‖‖xn−xm‖, showing that (xn) must converge to some x ∈ H1.

As U is closed, x ∈ U . Thus yn = Txn → Tx ∈ TU . Hence TU is closed.

(Only if) Now suppose that TU is closed. If (xn) is a sequence in U that
converges to x in H1, then clearly Txn → Tx. But TU is closed, and so
Tx ∈ TU . Hence Tx = Tx′ for some x′ ∈ U . Operating by S, we have
x = STx = STx′ = x′, and so x = x′ ∈ U . Thus U is closed. �

ForX ∈ (L∞)p×m, TX denotes the Toeplitz operator from (H2)m to (H2)p,
given by TXϕ = Π(H2)p(Xϕ) (ϕ ∈ (H2)m), where Xϕ is considered as an

element of (L2)p and Π(H2)p denotes the canonical orthogonal projection

from (L2)p onto (H2)p.

Lemma 4.7. Let p1, p2 ∈ S(A+). Then PG1
|G2

is Fredholm if and only if

TG∗

1
G2

is Fredholm. Moreover, their Fredholm indices coincide.

Proof. First of all, we note that TG∗

1
G2

= TG∗

1
TG2

(since G2 has H
∞ entries).

Also, it can be checked that for a matrix X with L∞ entries (TX)∗ = TX∗ .
Thus (TG∗

1
G2

)∗ = TG∗

2
G1

.
As TG1

is an isometry, it follows that the orthogonal projection onto the
range of TG1

, namely the subspace G1, is given by TG1
(TG1

)∗ = TG1
TG∗

1
.

Indeed, with P := TG1
TG∗

1
, and using G∗

1G1 = 1, we can check that P 2 = P ,
that P ∗ = P and that P maps onto the range of TG1

:

ran (TG1
TG∗

1
) ⊂ ran TG1

= ran (TG1
TG∗

1
TG1

) ⊂ ran (TG1
TG∗

1
).

We have that

ker(TG∗

1
TG2

) = {ϕ ∈ H2 : TG∗

1
TG2

ϕ = 0}

= {ϕ ∈ H2 : TG1
TG∗

1
TG2

ϕ = 0} (since
[
x1 y1

]
G1 = 1)

= {ϕ ∈ H2 : PG1
TG2

ϕ = 0} = {ϕ ∈ H2 : TG2
ϕ ∈ G⊥

1 }.

Consider the map ι : ker(TG∗

1
TG2

) → G⊥
1 ∩ G2 defined by ι(ϕ) = TG2

ϕ for
ϕ ∈ ker(TG∗

1
TG2

). From the above calculation, we see that ι is onto. Also,

since
[
x2 y2

]
G2 = 1 it follows that ι is one-to-one. So ι is invertible.

The above shows that in case that PG1
|G2

and TG∗

1
G2

are both Fredholm
operators, their Fredholm indices will coincide.

In light of the above, we just need to show that the range of PG1
|G2

is
closed if and only if the range of TG∗

1
G2

is closed. The range of PG1
|G2

is

PG1
G2 = PG1

ran TG2
= TG1

TG∗

1
ran TG2

= TG1
ran TG∗

1
G2

.

Since G1 has a left inverse
[
x1 y1

]
∈ A2

+, it follows that TG1
is left-

invertible. By Lemma 4.6, the range of PG1
|G2

is closed if and only if the
range of ran TG∗

1
G2

is closed. �

We will need the following result, which follows from [3, Thm. 3, p.150].
Here C0 denotes the set of continuous functions on R that vanish at ±∞.
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Proposition 4.8. Let F = f + g, where f ∈ AP and g ∈ C0 be such that

TF is Fredholm. Then the following hold:

(1) Tf is invertible.

(2) F ∈ inv (AP + C0).
(3) The Fredholm index of TF is the winding number of 1 + f−1g.

Proof. Since TF is invertible modulo the compacts, it is invertible modulo
any bigger ideal which we can take to be the kernel of the symbol map from
the Toeplitz C∗-algebra T (AP +C0) (generated by Tϕ for ϕ ∈ AP +C0) to
AP + C0. Consequently, there must exist ǫ > 0 such that |f + g| > ǫ on all
of R.

Since g is in C0, it follows that by choosing a large enough we can assume
that |g(x)| < ǫ/2 for x > a and hence |f(x)| > ǫ/2 for x > a. Since f ∈ AP ,
it follows that f(x) 6= 0 for all x ∈ R. Therefore f is invertible in AP .
Moreover, using [3, Theorem 3, p.150], one knows that its generalized index
is (0, n) for some integer n and hence the average winding number of f is
zero. Thus Tf is invertible [4, Theorem 11, p.25].

Again using [3, Theorem 3, p.150], one can see that the generalized index
of TF equals the sum of the generalized indices of Tf and T1+f−1g. But the
generalized index of Tf is (0, 0) which completes the proof. �

Proposition 4.9. If p1, p2 ∈ S(A+), then

dg(p1, p2) = inf
q∈inv A+

‖G1 −G2q‖∞

Proof. 1◦ Consider first the case when dg(p1, p2) < 1. From Lemma 4.5,

it follows that PG1
|G2

is Fredholm, G1 ∩ G⊥
2 = {0} and G2 ∩ G⊥

1 = {0}.
Furthermore, the Fredholm index of PG1

|G2
is 0. By Lemma 4.7, TG∗

1
G2

is
Fredholm, with Fredholm index 0 too. From Proposition 4.8, it follows that
G∗

1G2 is invertible as an element of AP + C0. Thus it is also invertible as
an element of A. Also, W (G∗

1G2) = (0, 0). Now suppose that there is a
q0 ∈ A+ such that ‖G1 − G2q0‖∞ < 1. Then ‖I − G∗

1G2q0‖∞ < 1 and so
G∗

1G2q0 = 1 − (1 − G∗
1G2q0) is invertible in A. Hence G∗

1G2q0 ∈ inv A.
In particular, q0 ∈ inv A. Consider the map H : [0, 1] → inv A given by
H(t) = 1− t(1−G∗

1G2q0), t ∈ [0, 1]. By the homotopic invariance,

(0, 0) = W (1) = W (H(0)) = W (H(1)) = W (G∗
1G2q0).

Since W (G∗
1G2) = (0, 0), it follows that W (q0) = (0, 0). Thus by (I4), we

obtain that q0 ∈ inv A+. Consequently,

1 > dg(p1, p2) = ~δ(p1, p2) = inf
q∈A+

‖G1 −G2q‖∞ = inf
q∈inv A+

‖G1 −G2q‖∞.

2◦ Now suppose that dg(p1, p2) = 1, but that ~δ(p1, p2) < 1. Since we have
~δ(p1, p2) = ‖(I − PG2

)PG1
‖, we obtain G1 ∩ G⊥

2 = {0}. For otherwise, if
0 6= v ∈ G1 ∩ G⊥

2 , then we have (I − PG2
)PG1

v = v, and so we would
obtain that ‖(I − PG2

)PG1
‖ ≥ ‖(I − PG2

)PG1
v‖/‖v‖ = 1, a contradiction.
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From Lemma 4.5, it now follows that either G2 ∩ G⊥
1 6= {0} or PG1

|G2
is not

Fredholm.
Suppose first that PG1

|G2
is Fredholm. Then we must have G2∩G⊥

1 6= {0}.
This gives that the Fredholm index of PG1

|G2
, namely

dim(G2 ∩ G⊥
1 )− dim(G1 ∩ G⊥

2 ) = dim(G2 ∩ G⊥
1 )− 0 = dim(G2 ∩ G⊥

1 ),

is nonzero. By Lemma 4.7, TG∗

1G2
is Fredholm, with Fredholm index nonzero

too. It now follows from Proposition 4.8, that W (G∗
1G2) = (∗, n) with the

integer n 6= 0. By the definition of dν , dν(p1, p2) = 1.
Next assume that PG1

|G2
is not Fredholm. Then Lemma 4.7 gives that

TG∗

1
G2

is not Fredholm either. Now if G∗
1G2 is not invertible in A, then we

have dν(p1, p2) = 1 by definition. On the other hand, if G∗
1G2 ∈ inv A and

W (G∗
1G2) = (0, 0), it follows from [4, Proposition 6.3, p.27] that TG∗

1
G2

is
invertible, a contradiction. Thus W (G∗

1G2) = (0, 0), and so dν(p1, p2) = 1
in this case as well.

Now that we have obtained dν(p1, p2) = 1, it follows that there is no
q ∈ inv A+ such that ‖G1 − G2q‖∞ < 1. In other words, for each q ∈ A+,
‖G1−G2q‖∞ ≥ 1. Also, ‖G1−G2q‖∞ ≤ ‖G1‖∞+‖G2‖∞‖q‖∞ ≤ 1+1·‖q‖∞,
and by taking q1 =

1
n
I ∈ inv A+, we obtain

inf
q∈inv A+

‖G1 −G2q‖∞ ≤ inf
n

(
1 +

1

n

)
= 1.

Consequently, inf
q∈inv A+

‖G1 −G2q‖∞ = 1 = dg(p1, p2).

3◦ Now suppose that dg(p1, p2) = 1 = ~δ(p1, p2) = ~δ(p2, p1). We have

inf
q∈inv A+

‖G1 −G2q‖∞ ≤ inf
n

∥∥∥G1 −G2
1

n
I
∥∥∥
∞

≤ inf
n

(
1 +

1

n

)
= 1.

Also, 1 = ~δ(p1, p2) = inf
q∈A+

‖G1 −G2q‖∞ ≤ inf
q∈inv A+

‖G1 −G2q‖∞. Thus

inf
q∈inv A+

‖G1 −G2q‖∞ = 1 = dg(p1, p2).

This completes the proof. �

5. Equivalence of the ν-metric and the gap-metric

Proof of Theorem 1.1. We will show the following for p1, p2 ∈ S(A+):

dg(p1, p2)µopt(p1) ≤ dν(p1, p2) ≤ dg(p1, p2), (5.1)

where µopt(p1) := sup
c

µp1,c.

This will prove the fact that the topologies induced by metrics dg and dν
on the set S(A+) are identical.
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The second inequality in (5.1) is an immediate consequence of the Propo-
sitions 3.6 and 3.6. Indeed, we have

dν(p1, p2) = inf
q∈inv A,

W (q)=(0,0)

‖G1 −G2q‖∞

≤ inf
q∈A+∩(inv A),
W (q)=(0,0)

‖G1 −G2q‖∞

= inf
q∈inv A+

‖G1 −G2q‖∞ (using (I4))

= dg(p1, p2).

Now we will show the first inequality in (5.1). This inequality is trivially sat-
isfied if dν(p1, p2) ≥ µopt(p1), since dg(p1, p2) ≤ 1. So we will only consider
the case when dν(p1, p2) < µopt(p1). Thus we can choose a c that stabilizes
both p1 and p2. (Since the above inequality shows that there exists a c0
stabilizing p1 such that dν(p1, p2) < µp1,c0 . But by Theorem 3.5, it follows

that c0 also stabilizes p2.) If we now define q0 := (K̃0G1)
−1K̃0G2, then we

have G2 −G1q0 = G2 −G1(K̃0G1)
−1K̃0G2 = (I −G1(K̃0G1)

−1K̃0)G2. Also

I −

[
p1
1

]
(1− c0p1)

−1
[
−c0 1

]
=

[
1
c0

]
(1− p1c0)

−1
[
1 −p1

]
.

that is, I −G1(K̃0G1)
−1K̃0 = K0(G̃1K0)

−1G̃1. Thus

G2 −G1q0 = K0(G̃1K0)
−1G̃1G2.

Then we use ‖K0‖ ≤ 1 (since K∗
0K0 = 1) to obtain

‖G2 −G1q0‖∞ = ‖K0(G̃1K0)
−1G̃1G2‖∞

≤ ‖K0‖∞‖(G̃1K0)
−1G̃1G2‖∞

≤ 1 · ‖(G̃1K0)
−1G̃1G2‖∞

≤ ‖(G̃1K0)
−1‖∞‖G̃1G2‖∞.

As for each c, µp1,c ≤ 1, we have µopt(p1) ≤ 1. So dν(p1, p2) < µopt(p1) ≤ 1,

and we obtain dν(p1, p2) = ‖G̃1G2‖∞.

From [1, Propositions 4.2,4.5], ‖(G̃1K0)
−1‖∞ = 1/µc0,p1 = 1/µp1,c0 . So

‖G2 −G1q0‖∞ ≤ ‖(G̃1K0)
−1‖∞‖G̃1G2‖∞ ≤

dν(p1, p2)

µp1,c0

.

Thus

dg(p1, p2) = inf
q∈inv A

‖G1 −G2q‖∞ ≤ ‖G1 −G2q0‖ ≤ dν(p1, p2)/µp1,c0.

This inequality holds for any c0 that stabilizes p1 for which there holds
dν(p1, p2) < µp1,c0 . We can choose a sequence (c0,n) such µp1,c0,n → µopt(p1)
as n → ∞. Thus dg(p1, p2) ≤ dν(p1, p2)/µopt(p1). This completes the proof
the first inequality in (5.1). �
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The question of whether our main result, Theorem 1.1 remains true for
systems with multiple inputs and multiple outputs (as opposed to just scalar
inputs and outputs) is open. A key technical difficulty is the validity of the
analogue of Proposition 4.8 for matricial data.
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