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IDEAL-ADIC SEMI-CONTINUITY PROBLEM FOR
MINIMAL LOG DISCREPANCIES

MASAYUKI KAWAKITA

ABSTRACT. We discuss the ideal-adic semi-continuity problem for minimal log
discrepancies by Mustaţă. We study the purely log terminal case, and prove the
semi-continuity of minimal log discrepancies when a Kawamata log terminal
triple deforms in the ideal-adic topology.

INTRODUCTION

In the minimal model program, singularities are measured interms of log dis-
crepancies. The log discrepancy is attached to each divisoron an extraction of
the singularity, and their infimum is called theminimal log discrepancy. Recently,
de Fernex, Ein and Mustaţă in [3] after Kollár in [12] proved the ideal-adic semi-
continuity of log canonicity effectively to obtain Shokurov’s ACC conjecture [18]
for log canonical thresholds on l.c.i. varieties. This paper discusses its generalisa-
tion to minimal log discrepancies, proposed by Mustaţă.

Conjecture (Mustaţă). Let(X,∆) be a pair, Z a closed subset of X andIZ its ideal
sheaf. Leta be an ideal sheaf and r a positive real number. Then there exists an
integer l such that: if an ideal sheafb satisfiesa+I l

Z = b+I l
Z, then

mldZ(X,∆,ar) = mldZ(X,∆,br).

The mld above denotes the minimal log discrepancy. Mustaţ˘a observed that the
conjecture on formal schemes implies the ACC for minimal logdiscrepancies on a
fixed germ by the argument of generic limits of ideals.

The conjecture is not difficult to prove in the Kawamata log terminal case, stated
in Theorem 1.6. It is however inevitable to deal with log canonical singularities in
the study of limits. As its first extension, we treat a purely log terminal triple
(X,F +∆,ar) with a Cartier divisorF and control the minimal log discrepancy
of (X,G+∆,br) for G,b close toF,a. Our main theorem compares minimal log
discrepancies onF,G rather than those onX. We adopt the weaker conditiona≈l b

defined byan +I nl
Z = bn +I nl

Z for somen to reflect the distance ofa,b with
allowance of real exponents.

Theorem (full form in Theorem 1.9). (X,∆), Z, a and r as inConjecture. Let F
be a reduced Cartier divisor such that(X,F +∆,ar) is plt about Z. Then there
exists an integer l such that: if an effective Cartier divisor G and an ideal sheaf
b satisfyOX(−F) ≈l OX(−G) anda ≈l b, then G is reduced about Z and with its
normalisationν : Gν → G,

mldF∩Z(F,∆F ,a
rOF) = mldν−1(G∩Z)(G

ν ,∆Gν ,brOGν ).

The theorem can be regarded as an extension to the case when a variety as well
as a boundary deforms, so it would provide a perspective in the study of the be-
haviour of minimal log discrepancies under deformations. It should be related to
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Shokurov’s reduction [19] of the termination of flips. One can recover the equality
mldZ(X,F +∆,ar) = mldZ(X,G+∆,br) if the precise inversion of adjunction in
[13] holds onX such as l.c.i. varieties in [6], [7].

We prove the theorem by using motivic integration by Kontsevich in [15] and
Denef and Loeser in [5]. Take a divisorE on an extraction ofX whose restriction
computes the minimal log discrepancy onG. By the plt assumption, the order of
(the inverse image of) the JacobianJ ′

G of G alongE should be small in contrast
to those ofF,G, then it coincides with that of the JacobianJ ′

F of F. This provides
further the equality of the orders of the ideal sheavesJr,F ,Jr,G, and we derive the
theorem by the descriptions of minimal log discrepancies involving Jr,F ,Jr,G by
Ein, Mustaţă and Yasuda in [7].

We work over an algebraically closed fieldk of characteristic zero throughout.
Z>0,Z≥0,R>0,R≥0 denote the sets of positive/non-negative, integers/real numbers.

1. I -ADIC SEMI-CONTINUITY PROBLEM

In this section we discuss general aspects of Mustaţă’sI -adic semi-continuity
problem for minimal log discrepancies.

For the study of limits, we formulate the notion ofR-ideal sheaves by extending
that ofQ-ideal sheaves in [10, Section 2]. On a schemeX we letRX denote the free
semi-group generated by the familyIX of all ideal sheaves onX, with coefficients
in the semi-groupR≥0. An element ofRX is written multiplicatively asar1

1 · · ·ark
k

with ai ∈ IX, r i ∈ R≥0. We say thata,b ∈ RX areadheredif they are written as
a= ∏i j a

r imi j
i j ·Oa

X ·0a′ ,b=∏ik b
r inik
ik ·Ob

X ·0b′ in RX with ai j ,bik ∈ IX , r i ,a,a′,b,b′ ∈
R≥0, mi j ,nik ∈ Z≥0, such that∏ j a

mi j
i j equals∏kb

nik
ik as ideal sheaves for eachi, or

a′,b′ > 0. We say thata,b ∈RX areequivalentif there existc0, . . . ,ci ∈RX with
c0 = a,ci = b such that eachc j−1 is adhered toc j .

Definition 1.1. An R-ideal sheafonX is an equivalence class of the above relation
in RX .

We letIRX denote the family ofR-ideal sheaves onX. By anexpressionof a∈ IRX
we mean an elementar1

1 · · ·ark
k ∈RX with ai ∈ IX, r i ∈R>0 in the class ofa.

Remark1.1.1. While some literatures define anR-ideal sheaf as an element ofRX,
we adopt that ofIRX from the viewpoint that fora,b ∈ IX one should identify for

example the product ofa
√

2+1,b and that ofa
√

2,ab, which remain different inRX.

Remark1.1.2. Two ideal sheaves on a normal varietyX have the same order along
every divisor if they have the same integral closure. We havean equivalence re-
lation in IX by this. However we will not formulate in this direction, because the
relation does not seem to be compatible with the notion ofI -adic topology.

One can extend the notions of orders and resolutions toR-ideal sheaves.

Lemma-Definition 1.2. Let fr1
1 · · · frk

k , gsl
1 · · ·g

sl
l be two expressions of the sameR-

ideal sheafa on a normal variety X. Supposefi = OX(−Fi) with a Cartier divisor
Fi. Theng j = OX(−G j) with some Cartier divisor Gj , and∑i r iFi = ∑ j sjG j . Such
a is called a locally principalR-ideal sheaf. In particular, the notion of resolutions
ofR-ideal sheaves makes sense.

Proof. It suffices to prove that if the producta1a2 of ideal sheavesa1,a2 is locally
principal, then so area1,a2 also. Seta1a2 = OX(−F) = fOX locally. ThenF is
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decomposed into Weil divisorsF1,F2 asF = F1+F2 such thatai ⊂ OX(−Fi). On
the other hand, one can writef = ∑ j f1 j f2 j and f1 j f2 j = c j f with fi j ∈ ai , c j ∈OX.
Thus 1= ∑ j c j , so there existsj such thatc j is a unit, that isf1 j f2 jOX = OX(−F).
If we set fi j OX =: OX(−F ′

i ), thenFi ≤ F ′
i and F = F1 + F2 = F ′

1 +F ′
2, so ai ⊂

OX(−Fi) = OX(−F ′
i )⊂ ai which meansai = fi j OX. q.e.d.

We introduce the notion ofI -adic topology forR-ideal sheaves.

Definition 1.3. Fix a closed subschemeZ of a schemeX and letIZ denote its ideal
sheaf.

(i) For a,b ∈ IX andl ∈ Z≥0, we writea≡l b if

a+I l
Z = b+I l

Z.

(ii) For a,b ∈ IX and l ∈ R, we writea ≈l b if there existm∈ Z≥0,n∈ Z>0

such that

an ≡m bn, m/n≥ l .

(iii) For a,b ∈ IRX and l ∈ R, we write a ∼l b if there exist expressionsa =
a

r1
1 · · ·ark

k , b= b
r1
1 · · ·brk

k such that for eachi

ai ≈l/r i
bi.

Remark1.3.1. One may replace the conditionai ≈l/r i
bi in (iii) above withai ≡li bi,

l i ≥ l/r i .

The following basic fact will be used repeatedly.

Remark1.3.2. If a ∼l b and lordE IZ > ordE a along a divisor E on an extrac-
tion, thenordE a= ordE b. This follows from the inequality ordE ai ≤ r−1

i ordE a<

r−1
i l ordE IZ ≤ ordE I li

Z in the contextai +I li
Z = bi +I li

Z of Remark 1.3.1.

We recall the theory of singularities in the minimal model program. Apair
(X,∆) consists of a normal varietyX and aboundary∆, that is an effectiveR-
divisor such thatKX +∆ is anR-CartierR-divisor. We treat atriple (X,∆,a) by
attaching anR-ideal sheafa. For a prime divisorE on an extractionϕ : X′ → X,
that is proper and birational, itslog discrepancyis

aE(X,∆,a) := 1+ordE(KX′ −ϕ∗(KX +∆))−ordE a.

The imageϕ(E) is called itscentreon X. (X,∆,a) is said to belog canonical(lc),
purely log terminal(plt), Kawamata log terminal(klt) respectively ifaE(X,∆,a)≥
0 (∀E), > 0 (∀exceptionalE), > 0 (∀E). For a closed subsetZ of X, theminimal
log discrepancy

mldZ(X,∆,a)

overZ is the infimum ofaE(X,∆,a) for all E with centre inZ. The log canonicity
of (X,∆,a) aboutZ is equivalent to mldZ(X,∆,a)≥ 0. See [11, Section 1], [14] for
details.

De Fernex, Ein and Mustaţă in [3] after Kollár in [12] proved theI -adic semi-
continuity of log canonicity effectively to obtain with [4]the ACC for log canonical
thresholds on l.c.i. varieties. We state its direct extension to the case with bound-
aries here.
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Theorem 1.4([3, Theorem 1.4]). Let (X,∆) be a pair and Z a closed subset of X.
Leta be anR-ideal sheaf such that

mldZ(X,∆,a) = 0.

Then there exists a real number l such that: if an R-ideal sheafb satisfiesa ∼l b,
then

mldZ(X,∆,b) = 0.

Remark1.4.1. The l is given effectively in terms of a divisorE with centre inZ
such thataE(X,∆,a) = 0. One may take an arbitraryl such thatl ordE IZ > ordE a

by Remark 1.3.2.

We will consider its generalisation to minimal log discrepancies, proposed by
Mustaţă.

Conjecture 1.5 (Mustaţă). Let (X,∆) be a pair and Z a closed subset of X. Let
a be anR-ideal sheaf. Then there exists a real number l such that: if an R-ideal
sheafb satisfiesa∼l b, then

mldZ(X,∆,a) = mldZ(X,∆,b).

This conjecture is related to Shokurov’s ACC conjecture [16], [18, Conjec-
ture 4.2] for minimal log discrepancies. In fact, Conjecture 1.5 has originated
in Mustaţă’s following observation parallel to [3] by generic limits of ideals.

Remark1.5.1 (Mustaţă). If Conjecture1.5holds on formal schemes, then for a fixed
pair (X,∆), a closed point x and a set R of positive real numbers which satisfies
the descending chain condition, the set

{mldx(X,∆,ar1
1 · · ·ark

k ) | ai ∈ IX, r i ∈ R}
satisfies the ascending chain condition.

Indeed, we shall prove the stability of an arbitrary non-decreasing sequence of
elementsci = mldx(X,∆,ar i1

i1 · · ·ar iki
iki
) ≥ 0. We may assume thatai j are non-trivial

at x, then for a fixed divisorF with centrex we have∑ j r i j ≤ ∑ j r i j ordF ai j ≤
aF(X,∆). R has its minimumr say, whenceki ≤ r−1aF(X,∆). Thus by replacing
with a subsequence, we may assume the constancyk= ki . Further we may assume
that r i j form a non-decreasing sequence for eachj. Then r i j have a limitr j by
r i j ≤ aF(X,∆).

Take generic limitsa j of ai j following [3, Section 4], [12]. After extending the
ground fieldk, we havea j on the completion(X̂, ∆̂) of (X,∆) at x. Conjecture 1.5
on (X̂, ∆̂) provides an integeri0 and a divisorE on X with centrex such that for
i ≥ i0, ordÊ a j = ordE ai j and

c := mldx̂(X̂, ∆̂,ar1
1 · · ·ark

k ) = aÊ(X̂, ∆̂,ar1
1 · · ·ark

k )

= aE(X,∆,ar1
i1 · · ·a

rk
ik) = mldx(X,∆,ar1

i1 · · ·a
rk
ik)≤ ci ,

with x̂ := x×X X̂, Ê := E×X X̂. Hence

c≤ ci ≤ aE(X,∆,ar i1
i1 · · ·ar ik

ik ) = c+∑
j
(r j − r i j )ordÊ a j ,

and its right-hand side converges toc. Thusci = c for i ≥ i0.

We expect an effective form of Conjecture 1.5, but the naive generalisation of
Remark 1.4.1 never holds.
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Remark-Example1.5.2. SetX = A2 with coordinatesx,y and a = (x2 + y3)OX,
b= x2OX. The pair(X,a2/3) has minimal log discrepancy 2/3= aE(X,a2/3) over
the origino, computed by the divisorE obtained by the blow-up ato. We have
a+I 3

o = b+I 3
o and ordE a= 2< 3, but(X,b2/3) is not log canonical.

We provide a few reductions of the conjecture.

Remark1.5.3. One inequality mldZ(X,∆,a) ≥ mldZ(X,∆,b) is obvious. For, take
a divisorE with centre inZ such thataE(X,∆,a) = mldZ(X,∆,a), or negative in
the non-lc case, andl such thatl ordE IZ > ordE a by Remark 1.3.2.

Remark1.5.4. Conjecture 1.5 is reduced to the case whenX hasQ-factorial ter-
minal singularities,∆ is zero and Z is irreducible. Indeed, by [2] one can con-
struct an extractionϕ : X′ → X such thatX′ hasQ-factorial terminal singulari-
ties with effective∆′ defined byKX′ +∆′ = ϕ∗(KX +∆). Then mldZ(X,∆,a) =
mldϕ−1(Z)(X

′,∆′,aOX′), so the conjecture is reduced to that onX′. Further, we may
assume∆ = 0 by forcinga to absorb∆. It is obviously permissible to assume the
irreducibility of Z.

Remark1.5.5. Mostly, we need just a weaker form of Conjecture 1.5 in whichan
expressionar1

1 · · ·ark
k of a is fixed and only thoseb = b

r1/n1
1 · · ·brk/nk

k with a
ni
i ≡li

bi, li ≥ lni/r i are considered. This is reduced to the case whenai ,bi are locally

principal R-ideal sheaves. Indeed, after replacingar i
i with the s-uple of ar i/s

i for
somes, we may assume that mldZ(X,∆,a) equals mldZ(X,∆, f) locally for some
f = ∏i( fiOX)

r i with fi ∈ ai . By ani
i ≡li bi one can writef ni

i = gi + hi with gi ∈
bi, hi ∈ I li

Z , so f ni
i OX ≡li giOX. For g = ∏i(giOX)

r i/ni the weaker conjecture for
locally principalR-ideal sheaves provides

mldZ(X,∆,a) = mldZ(X,∆, f) = mldZ(X,∆,g)≤ mldZ(X,∆,b),
and we have the equality by Remark 1.5.3.

In the klt case, it is not difficult to prove our conjecture.

Theorem 1.6. Conjecture1.5holds for a klt triple(X,∆,a).

Proof. It suffices to prove mldZ(X,∆,a) ≤ mldZ(X,∆,b) by Remark 1.5.3. As
(X,∆,a) is klt, we can fixt, t ′ > 0 such that mldZ(X,∆,a1+tI t ′

Z ) = 0. Then by
Theorem 1.4 there exists

l ≥ t−1mldZ(X,∆,a)

such thata∼l b implies mldZ(X,∆,b1+tI t ′
Z ) = 0. Thus every divisorE with centre

in Z satisfies

aE(X,∆,b)> t ordE b.

SupposeaE(X,∆,a) 6= aE(X,∆,b), equivalently ordE a 6= ordE b. Then by Remark
1.3.2,

ordE b≥ l ordE IZ ≥ l .

The above three inequalities giveaE(X,∆,b)>mldZ(X,∆,a), which completes the
theorem. q.e.d.

Even if we start with klt singularities, it is inevitable to deal with log canonical
singularities in the study of limits of them.
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Example1.7. SetX =A2 with coordinatesx,y andan = x(x+yn)OX. The limit of

thesean isa∞ = x2OX, so that of klt pairs(X,a
1/2
n ) is a plt pair(X,a

1/2
∞ )= (X,xOX).

It is standard to reduce to lower dimensions by the restriction of pairs to sub-
varieties. For a pair(X,G+ ∆) such thatG is a reduced divisor which has no
component in the support of effective∆, one can construct thedifferent∆Gν on its
normalisationν : Gν → G as in [13, Chapter 16], [17,§3]. It is a boundary which
satisfies the equalityKGν +∆Gν = ν∗((KX +G+∆)|G).

As the first extension of Theorem 1.6, we study the plt case in which the bound-
ary involves a Cartier divisorF. LetF be a Cartier divisor on a triple(X,∆,a) such
that (X,F +∆,a) is plt. ThenF is normal by the connectedness lemma [13, 17.4
Theorem], [17, 5.7], and the induced triple(F,∆F ,aOF) is klt. In this setting, we
control mldZ(X,G+∆,b) for G,b close toF,a. We adopt the notation

F ∼l G

for the conditionOX(−F)∼l OX(−G), and(F,a)∼l (G,b) for F ∼l G, a∼l b. We
compare minimal log discrepancies onF,G rather than those onX, soG should be
a divisor of the following type.

Definition 1.8. A transversaldivisor on a triple(X,∆,b) is a reduced Cartier divi-
sor which has no component in the support of∆ or the zero locus ofb.

For example, an effective Cartier divisorG is transversal if(X,G+∆,b) is log
canonical.

We state our theorem in the plt case, which will be proved in Section 2.

Theorem 1.9. Let (X,∆) be a pair and Z a closed subset of X. Let F be a reduced
Cartier divisor anda anR-ideal sheaf such that(X,F +∆,a) is plt about Z. Then
there exists a real number l such that: if an effective Cartier divisor G and an
R-ideal sheafb satisfy(F,a) ∼l (G,b), then G is transversal on(X,∆,b) about Z
and

mldF∩Z(F,∆F ,aOF) = mldν−1(G∩Z)(G
ν ,∆Gν ,bOGν ).

Theorem 1.9 compares minimal log discrepancies on different varieties, so it
would provide a perspective in the study of their behaviour under deformations.
One can interpret it as an extension of Theorem 1.6 to the casewhen a variety as
well as a boundary deforms. Theorem 1.9 is also joined with Conjecture 1.5 via
theprecise inversion of adjunctionin [13, Chapter 17].

Conjecture 1.10(precise inversion of adjunction). Let (X,G+∆) be a pair such
that G is a reduced divisor which has no component in the support of effective∆,
and Z a closed subset of G. Let∆Gν be the different on the normalisationν : Gν →
G. Then

mldZ(X,G+∆) = mldν−1(Z)(G,∆Gν ).

The equality of minimal log discrepancies onX follows if the precise inversion
of adjunction holds onX, such as l.c.i. varieties in [6], [7].

Corollary 1.11. (X,∆,a), Z and F as in Theorem1.9. Suppose that the precise
inversion of adjunction holds on X. Then there exists a real number l such that: if
effective Cartier divisors Gi and anR-ideal sheafb satisfy F∼l Gi, a ∼l b, then
for G= ∑i giGi with 1= ∑i gi , gi ∈ R≥0,

mldZ(X,F +∆,a) = mldZ(X,G+∆,b).
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Proof. We want mldZ(X,F +∆,a) ≤ mldZ(X,G+∆,b) by Remark 1.5.3. Since
mldZ(X,G+∆,b)≥ ∑i gi mldZ(X,Gi +∆,b) by KX +G+∆ = ∑i gi(KX +Gi +∆),
it is reduced to the case with a Cartier divisorG. We may assumeZ ⊂ F,G by
Theorem 1.6 and the argument after Lemma 2.2. Then the statement follows from
Theorem 1.9. Note that the precise inversion of adjunction for triples is reduced to
that for pairs. q.e.d.

We close this section by one observation related to Conjecture 1.5.

Proposition 1.12. Let (X,∆) be a pair and Z a closed subset of X. Leta be anR-
ideal sheaf. Then there exist real numbers l and0< t ≤ 1 such that: if an R-ideal
sheafb satisfiesa∼l b, then

mldZ(X,∆,a) = mldZ(X,∆,a1−tbt).

Proof. It suffices to prove mldZ(X,∆,a) ≤ mldZ(X,∆,a1−tbt) by Remark 1.5.3.
We may assume the log canonicity of(X,∆,a). Fix a log resolutionϕ : X′ → X of
(X,∆,aIZ) and setKX′ +∆′ := ϕ∗(KX +∆). Let A denote the effectiveR-divisor
onX′ defined by the locally principalR-ideal sheafaOX′ , andSthe reduced divisor
whose support is the union of the exceptional locus, Supp∆′ and SuppA. We take
0< t ≤ 1 such thattA≤ S. By Theorem 1.4 we havel such thata∼l b implies the
log canonicity of(X′,S− tA,btOX′). In particular, for a divisorE on an extraction
ψ : Y → X′ with (ϕ ◦ψ)(E)⊂ Z,

aE(X,∆,a1−tbt) = aE(X
′,(1− t)A,btOX′)−ordE ∆′

= aE(X
′,S− tA,btOX′)+ordE(S−A−∆′)

≥ ordE(S−A−∆′).

S−A−∆′ = K′
X +S− (ϕ∗(KX +∆)+A)≥ 0, and by a divisorF with ψ(E)⊂ F ⊂

ϕ−1(Z),

ordE(S−A−∆′)≥ ordF(S−A−∆′) = aF(X,∆,a).

These two inequalities prove the proposition. q.e.d.

2. PURELY LOG TERMINAL CASE

The purpose of this section is to prove Theorem 1.9; see Lemmata 2.4 and 2.9.
As (X,∆) is klt, by [2] there exists aQ-factorisationϕ : X′ → X which is iso-

morphic in codimension one. Then as in Remark 1.5.4 we can reduce the theorem
to that onX′, and hence we may assume thatX isQ-factorial and∆ = 0. We shall
discuss on the germ at a closed point of X.

We set the ideal sheaves in the context of motivic integration. Let d denote the
dimension ofX. We fix a positive integerr such thatrKX is a Cartier divisor. We
extend the construction in [10, Section 2] to transversal divisors. A general l.c.i.
subschemeY of dimensiond of a smooth ambient spaceA which containsX is the
union

Y = X∪CY(1)

of X and another varietyCY. The subschemeDY := CY|X of X is defined by
the conductor ideal sheafCX/Y := H omOY(OX,OY), and is a divisor such that
OX(rKX) = OX(−rDY)ω⊗r

Y . The summationD ′
X := ∑Y CX/Y over all generalY is

called thel.c.i. defect ideal sheafof X, which one can define for reduced schemes
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of pure dimension. We treat the summationDr,X := ∑Y OX(−rDY) also. For a re-
duced Cartier divisorG, the aboveY =X∪CY has a Cartier divisorYG =G∪CY|YG.
ThusG has its l.c.i. defect ideal sheaf

D ′
G = D ′

XOG,(2)

and we haveOX(r(KX +G))OG = OX(−rDY)OG ·ω⊗r
YG

.
Let J ′

G be the Jacobian ideal sheaf ofG, andJr,G the image of the natural
map (Ωd−1

G )⊗r ⊗OX(−r(KX +G)) → OG. Let J̃ ′
G,J̃r,G be the inverse images

of them by the natural mapOX → OG. The argument in [10] provides the equality
∑Y J ′

YG

rOG =Jr,G ·Dr,XOG similar to [10, (2.4)] with the JacobianJ ′
YG

of YG. Its
left-hand side is nothing butJ ′

G
r . For, set local coordinatesx1, . . . ,xk of A and the

ideal sheavesIX,IY of X,Y onA, and takef1, . . . , fc ∈OA, c= k−d+1, such that
f1|X definesG and f2, . . . , fc generateIY. Then for arbitraryg2, . . . ,gc ∈ IX and
generalt2, . . . , tc ∈ k, the subscheme defined byfi + tigi , 2≤ i ≤ c, is a general l.c.i.
Y′. Thus withg1 := f1 andt1 ∈ k, ther-th powers of determinants ofc×c minors
of the matrix(∂ ( fi + tigi)/∂x j )i j |G are contained in∑Y J ′

YG

rOG, whence so are
those of(∂gi/∂x j)i j |G. This means∑Y J ′

YG

rOG = ∑ j∈J ′
G

j rOG, and its right-hand
side equalsJ ′

G
r by the same trick. Hence we obtain

J ′
G

r
= Jr,G ·Dr,XOG,

J̃ ′
G

r +OX(−G) = J̃r,G ·Dr,X +OX(−G).(3)

We set

c := mldF∩Z(F,aOF ).

As (X,F,a) is plt, we can fixt > 0, t ′ ≥ 0 such that

mldZ(X,F,a1+tJ̃ ′
F

rt D ′
X

tI t ′
Z ) = 0.

We will fix a log resolutionϕ̄ : X̄ → X of (X,F,aIZJ̃ ′
FJ̃r,FD ′

XDr,X). Let F̄ be
the strict transform ofF. By blowing upX̄ further, we may assume the existence
of a prime divisorEF ⊂ ϕ̄−1(F ∩Z) which intersects̄F properly and satisfies

aEF (X,F,a) = aEF |F̄ (F,aOF) = c.(4)

Take the decomposition̄ϕ∗F = VF +HF , whereVF consists of prime divisors in
ϕ̄−1(Z) andHF those not inϕ̄−1(Z). By blowing upX̄ further, we may assume
that every divisorĒ with Ē ⊂ SuppVF , Ē∩SuppHF 6= /0 satisfies

ordĒVF > t−1c.(5)

We take an integerl1 such that

l1 > ordĒVF , l1 > ordĒ a(6)

for all divisorsĒ on X̄ with ϕ̄(Ē)⊂ Z. Note that

l1 > t−1c+1(7)

unlessF ⊂ Z.
The next lemma is a direct application of Theorem 1.4 with Remark 1.4.1 by

(6).

Lemma 2.1. For R-ideal sheavesg,b such thatOX(−F) ∼l1 g, a ∼l1 b, we have
mldZ(X,gb1+tJ̃ ′

F
rt D ′

X
tI t ′

Z ) = 0. In particular if (F,a) ∼l1 (G,b) then G is a
transversal divisor on(X,b).
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We can replace the conditionF ∼l G with the stronger oneF ≈l G defined by
OX(−F)≈l OX(−G).

Lemma 2.2. If F ∼l G with l ≥ l1, then F≈l G.

Proof. G is reduced by Lemma 2.1. By the definition ofF ∼l G and Lemma-
Definition 1.2, there exist decompositions 1= ∑ j f jn j , G= ∑ j f jH j with f j ∈R>0,
n j ∈Z>0 and effective Cartier divisorsH j such thatOX(−n jF)≡mj OX(−H j) with
mj ≥ l/ f j . NoteOX(−F)≈mj/nj

OX(−Hi)
1/nj andmj/n j ≥ l/ f jn j ≥ l . Hence all

coefficients inn−1
j H j are at most one by Lemma 2.1. Thus each componentGi of G

has ordGi H j ≤ n j , so 1=∑ j f j ordGi H j ≤ ∑ j f jn j = 1 and ordGi H j = n j , H j = n jG.
Now the lemma follows fromOX(−n jF)≡mj OX(−n jG) andmj/n j ≥ l . q.e.d.

Now we may assume thatZ is an irreducible proper subset of F, and is con-
tained in G also. Indeed, sinceF ≈1 G implies F ∩Z = G∩Z as sets, we may
assumeZ ⊂ F,G by replacingZ with F ∩Z. If Z = F thenG ≥ F andF ≈2 G
meansOX(−nF)=OX(−nF)(OX(−n(G−F))+OX(−nF)) for somen, soF =G,
aOF = bOG and the statement is trivial.

We write (F,a) ≈l (G,b) for the conditionF ≈l G, a ∼l b. G is transversal
if (F,a) ≈l1 (G,b) by Lemma 2.1. We then consider a log resolutionG′ → G
embedded into some log resolutionϕ : X′ → X of (X,F +G,abJ̃ ′

GJ̃r,G) which
factors throughX̄. Setϕ ′ : X′ → X̄. Let I denote the set of allϕ-exceptional prime
divisors E on X′ intersectingG′, and IZ the subset ofI consisting of allE with
ϕ(E)⊂ Z. By blowing upX′ further, we may assume thatG′ does not intersect the
strict transform of the divisorial part of the zero locus ofb, and that for allE ∈ I

ϕ ′(E) = ϕ ′(E|G′).(8)

Then mldν−1(Z)(G
ν ,bOGν ) equals the minimum ofaE(X,G,b) = aE|G′ (G

ν ,bOGν )
for all E ∈ IZ, or−∞ if the minimum is negative.

Lemma 2.3. If (F,a)≈l1 (G,b), then for E∈ IZ
(i) rt ordE J̃ ′

F + t ordE D ′
X + t ordE b≤ aE|G′ (G

ν ,bOGν ).
(ii) ordE F > t−1c andordE G> t−1c.

Proof. (i) It follows from Lemma 2.1.
(ii) If we write IZOX̄ = OX̄(−VZ), then by (6) the divisorl1VZ−VF is effective

with supportϕ̄−1(Z). By F ≈l1 G we have the decomposition̄ϕ∗G=VF +HG in
which HG consists of divisors not in̄ϕ−1(Z), and moreover

OX̄(−nVF)(OX̄(−nHF)+OX̄(−n(l1VZ −VF))

= OX̄(−nVF)(OX̄(−nHG)+OX̄(−n(l1VZ −VF))

for somen. Hence on the reduced divisor̄ϕ−1(Z),

nHF ∩ ϕ̄−1(Z) = nHG∩ ϕ̄−1(Z)(9)

scheme-theoretically, and its support containsϕ ′(E) by (8). Thus there exists a
prime divisor Ē on X̄ with ϕ ′(E) ⊂ Ē ⊂ ϕ̄−1(Z) and Ē ∩SuppHF 6= /0. Ē has
ordĒ G = ordĒ F > t−1c by (5), so ordE F ≥ ordĒ F > t−1c, ordE G ≥ ordĒ G >
t−1c. q.e.d.

We obtain one inequality in Theorem 1.9 as in Remark 1.5.3.

Lemma 2.4. If (F,a)≈l1 (G,b), thenmldZ(F,aOF )≥ mldν−1(Z)(G
ν ,bOGν ).
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Proof. We have the divisorEF ⊂ ϕ̄−1(Z) in (4). W := F̄ ∩EF is contained in the
support of the locus (9), whenceW ⊂ SuppHG∩EF . This impliesW ⊂ Ḡ∩EF

for the strict transformḠ of G by the s.n.c. property of̄F +EF +Supp(HG− Ḡ).
Moreover by (9),nW = nḠ|EF as divisors onEF at the generic pointηW of W.
HenceW = Ḡ∩EF scheme-theoretically atηW, and its strict transformW′ on G′

is defined. With (6) we obtain

mldν−1(Z)(G
ν ,bOGν )≤ aW′(Gν ,bOGν ) = aEF (X,G,b) = aEF (X,F,a) = c.

q.e.d.

We shall prove the other inequality mldν−1(Z)(G
ν ,bOGν )≥ c in Theorem 1.9 by

studyingE ∈ IZ with aE|G′ (G
ν ,bOGν ) ≤ c. We fix a prime divisorEZ on X̄ such

that ϕ̄(EZ) = Z, and apply Zariski’s subspace theorem [1, (10.6)] as in the proof
of [9, Lemma 3] to the natural mapOX,Z → OX̄,EZ

and its specialisations, to fix an
integerl2 ≥ l1 such that

ϕ̄∗OX̄(−l2EZ)⊂ I l1
Z .(10)

Lemma 2.5. If (F,a)≈l2 (G,b) and E∈ IZ satisfies aE|G′ (G
ν ,bOGν )≤ c, then

(i) ordE J̃ ′
F = ordE J̃ ′

G ≤ (rt )−1c.
(ii) ordE J̃r,F = ordE J̃r,G ≤ t−1c.
(iii) ordE D ′

X ≤ t−1c.
(iv) ordE a= ordE b≤ t−1c.

Proof. (i) We use explicit descriptions ofJ̃ ′
F ,J̃

′
G in terms of Jacobian matrices.

EmbedX into a smooth ambient spaceA with local coordinatesx1, . . . ,xk and take
f ,g∈ OA such thatf |X ,g|X defineF,G. By F ≈l2 G, f nOX +I nl2

Z = gnOX +I nl2
Z

for somen. Note f n|X 6∈ I nl2
Z by ordEZ f |X < l1 from (6). If we chooseu,v∈ OA

so that f n−ugn|X ,gn−v fn|X ∈ I nl2
Z , then(1−uv) f n|X ∈ I nl2

Z souv should be a
unit. We take an etale cover̃X → X by adding a functiony with yn = u to produce
the factorisationf n − ugn = ∏i( f − µ iyg) with a primitive n-th root µ of unity,
and discuss on the germ̃U at some closed point of̃X. Set the prime divisor̃EZ :=
EZ ×X Ũ on ϕ̃ : X̄ ×X Ũ → Ũ . Since∏i( f − µ iyg)|Ũ ∈ ϕ̃∗OX̄×XŨ(−nl2ẼZ), with
(10) there existsi such that

f −µ iyg|Ũ ∈ ϕ̃∗OX̄×XŨ(−l2ẼZ) = ϕ̄∗OX̄(−l2EZ)⊗OX OŨ ⊂ I l1
Z OŨ .

F ×X Ũ ,G×X Ũ are given byf |Ũ ,µ iyg|Ũ . By the description ofJ̃ ′
FOŨ ,J̃

′
GOŨ in

terms of Jacobian matrices, we have

J̃ ′
FOŨ +C = J̃ ′

GOŨ +C

for C := ∑ j(∂ ( f − µ iyg)/∂x j ·OŨ) ⊂ I l1−1
Z OŨ . By Lemma 2.3(i) and (7), for

Ẽ := E×X Ũ

ordẼ J̃ ′
FOŨ = ordE J̃ ′

F ≤ (rt )−1c< l1−1,

ordẼ J̃ ′
GOŨ = ordE J̃ ′

G,

which provide (i).
(ii) Lemma 2.3 implies ordE J̃ ′

F
r ≤ t−1c < ordE F,ordE G. Thus (ii) follows

from (i) and (3) forF,G.
(iii) It follows from Lemma 2.3(i).
(iv) It follows from Lemma 2.3(i), (7) and Remark 1.3.2. q.e.d.
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We shall apply motivic integration by Kontsevich in [15] andDenef and Loeser
in [5] to transversal divisors. We fix notation following [10, Section 3]. For a
schemeX of dimensiond, we letJnX denote itsjet schemeof ordern, J∞X its arc
space, and setπX

n : J∞X → JnX, πX
nm: JmX → JnX. One has themotivic measure

µX : BX → M̂ from the familyBX of measurablesubsets ofJ∞X to an extension
M̂ of the Grothendieck ring.BX is an extension of the family of stable subsets.
A subsetS of J∞X is said to bestableat level n if πX

n (S) is constructible,S=
(πX

n )
−1(πX

n (S)), andπX
m+1(S)→ πX

m(S) is piecewise trivial with fibresAd for m≥ n.
Shas measure

µX(S) = [πX
n (S)]L

−(n+1)d

with L= [A1].
For a morphismϕ : X →Y, we writeϕn : JnX → JnY, ϕ∞ : J∞X → J∞Y for the

induced morphisms. For a closed subsetZ, we letJnX|Z,J∞X|Z denote the inverse
images ofZ by JnX,J∞X → X. Finally for anR-ideal sheafa, the order orda γ
alonga is defined forγ ∈ J∞X. The notion of ordI γn for an ideal sheafI makes
sense even forγn ∈ JnX as long as ordI γn ≤ n.

Back to the theorem, we fix an expression

a= ar1
1 · · ·ark

k .

We fix an integerc1 such that

c1 ≥ t−1c, c1 ≥ (r it)
−1c(11)

for all i. Applying Greenberg’s result [8] toF, one can findc2 ≥ c1 such that

πF
c1c2

(Jc2F) = πF
c1
(J∞F).(12)

We take an integerl3 ≥ l2 such that

l3 > c2.(13)

From now on we fix an arbitraryE ∈ IZ for (G,b)≈l3 (F,a) such that

aE|G′ (G
ν ,bOGν )≤ c,(14)

and will derive the opposite inequalityaE|G′ (G
ν ,bOGν ) ≥ c. To avoid confusion

we setψ := ϕ |G′ : G′ → G. By blowing upX′ further, we may assume thatE′|G′

is ψ-exceptional for allE′ ∈ I \{E} with E|G′ ∩E′|G′ 6= /0. Take the subsetT ′ of
J∞G′ which consists of all arcsγ such that

ordE′|G′ γ =

{
1 if E′ = E,

0 if E′ ∈ I \{E}, E′|G′ ∩E|G′ 6= /0.

T ′ is stable at level one. SetT := ψ∞(T ′)⊂ J∞G, T ′
n := πG′

n (T ′)⊂ JnG′ andTn :=
πG

n (T) = ψn(T ′
n)⊂ JnG as

J∞G′ ⊃

��

T ′ πG′
n

// //

ψ∞
��
��

T ′
n ⊂

ψn
��
��

JnG′

��

J∞G ⊃ T
πG

n
// // Tn ⊂ JnG.
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One can regardJnF,JnG ⊂ JnX. ThenF ≈l3 G implies Jc2F|Z = Jc2G|Z by (13).
Hence by (12)

Tc1 ⊂ πG
c1c2

(Jc2G|Z) = πF
c1c2

(Jc2F|Z) = πF
c1
(J∞F|Z).

Thus if we set

S:= (πF
c1
)−1(Tc1)⊂ J∞F

andSn := πF
n (S)⊂ JnF, thenSc1 = Tc1 as

J∞F ⊃ S
πF

n
// // Sn

πF
c1n

// // Sc1 = Tc1.(15)

We translate Lemma 2.5 into the language of arcs.

Lemma 2.6. (i) On S,T , ordJ̃ ′
F
= ordJ̃ ′

G
and takes constantordE J̃ ′

F =

ordE J̃ ′
G ≤ c1.

(ii) On S,T , ordJ̃r,F
= ordJ̃r,G

and takes constantordE J̃r,F = ordE J̃r,G ≤
c1.

(iii) On S,T, ordD ′
X

takes constantordE D ′
X ≤ c1.

(iv) On T,orda = ordb and takes constantordE a = ordE b ≤ c1. On S,orda
takes constantordE a= ordE b.

Proof. It is obvious by Lemma 2.5, (11) and the construction ofT ′. Note ordE ai ≤
r−1
i ordE a≤ c1. q.e.d.

Let Jψ be the image of the natural mapψ∗Ωd−1
G ⊗ω−1

G′ → OG′ . By definition
we obtain the equality

J r
ψ = J̃r,GOG′

(
− r ∑

E′∈I

(aE′|G′ (G
ν)−1)E′|G′)

)
.

HenceJψ is resolved onG′, and onT ′ the order alongJψ takes constant

e := ordE|G′ Jψ = r−1 ordE J̃r,G+aE|G′ (G
ν)−1.

We use the following form of [5, Lemma 4.1] to estimateµF(S).

Proposition 2.7. Let X be a reduced scheme of pure dimension, and LX
n the locus

of J∞X on which the orders along the Jacobian ideal sheafJ ′
X and the l.c.i. defect

ideal sheafD ′
X are at most n. Then LXn is stable at level n.

Proof. For a l.c.i. scheme, the proposition follows from the proof of [5, Lemma
4.1] directly. Note that the l.c.i. defect ideal sheaf of a l.c.i. scheme is trivial.

For generalX, we fix a jetγn ∈ πX
n (L

X
n ). By the definitions ofJ ′

X,D
′
X , one

can embedX into a l.c.i. schemeY = X ∪CY as (1) so that on a neighbourhood
Uγn of γn in JnY, ordJ ′

Y
≤ ordJ ′

X
(γn) and ordCX/Y

≤ ordD ′
X
(γn) for the Jacobian

J ′
Y and the conductorCX/Y. Then(πX

n )
−1(Uγn) ⊂ LX

n and(πY
n )

−1(Uγn) ⊂ LY
n . By

CX/YIX/Y = 0 for the ideal sheafIX/Y of X onY, we haveJ∞Y\(ordCX/Y
)−1(∞)⊂

J∞X. Hence(πX
n )

−1(Uγn) = (πY
n )

−1(Uγn), and the statement is reduced to that of
the l.c.i. schemeY. q.e.d.

Lemma 2.8. µF(S) = µG(T) = µG′(T ′)L−e.
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Proof. We apply Proposition 2.7 toS⊂ LF
c1

, T ⊂ LG
c1

by Lemma 2.6(i), (iii) and (2),
to obtain their stabilities at levelc1 and bySc1 = Tc1 in (15)

µF(S) = µG(T).

By [5, Lemma 3.4] forT ⊂L (c1)(G) with notation in [5], there existsn≥ c1,e,1
such that ordJψ takes constante on ψ−1

n (Tn), and thatψ−1
n (Tn)→ Tn is piecewise

trivial with fibresAe. If the equalityT ′
n = ψ−1

n (Tn) holds, then

µG(T) = [Tn]L
−(n+1)(d−1) = [T ′

n]L
−(n+1)(d−1)−e= µG′(T ′)L−e.

Thus it suffices to proveψ−1
n (Tn)⊂ T ′

n.
Take a varietyUn dense inTn such thatψ−1

n (Un) is irreducible. The closureCn of
ψ−1

n (Un) in JnG′ contains the closureJnG′|E|G′ of T ′
n, which is a prime divisor. Thus

Cn = JnG′|E|G′ by the irreducibility ofCn, so the image of the restricted morphism
χn : JnG′|E|G′ → JnG containsTn. Its fibreχ−1

n (t) at t ∈ Tn has dimension at leaste
and is contained inψ−1

n (t)≃Ae. Henceχ−1
n (t) = ψ−1

n (t) asχ−1
n (t) is closed. This

meansψ−1
n (Tn)⊂ JnG′|E|G′ .

Consider onψ−1
n (Tn) the constant function

e= ordJψ = ∑
E′∈I

(ordE′|G′ Jψ) ·ordE′|G′ .

Note that

ordE|G′ Jψ = e, ordE′|G′ Jψ > 0 for E′ ∈ I \{E}, E′|G′ ∩E|G′ 6= /0,

because suchE′|G′ is ψ-exceptional andJψ vanishes on the support ofΩG′/G.
Moreover ordE|G′ is positive onψ−1

n (Tn) ⊂ JnG′|E|G′ . Henceψ−1
n (Tn) ⊂ T ′

n by the
definition ofT ′. q.e.d.

Remark2.8.1. We need only the inequality dimµF(S) ≥ dimµG′(T ′)L−e for the
proof of Theorem 1.9.

We shall complete the proof by using the below description ofc=mldZ(F,aOF)
in terms of motivic integration by [7]; see also [10, Remark 3.3].

c=−dim
∫

J∞F |Z
L

r−1ordJ̃r,F
+ordadµF .(16)

Lemma 2.9. If (F,a)≈l3 (G,b), thenmldZ(F,aOF )≤ mldν−1(Z)(G
ν ,bOGν ).

Proof. We have fixed an arbitraryE ∈ IZ which satisfies (14). By Lemma 2.6(ii),
(iv), ordJ̃r,F

,orda take constants ordE J̃r,G,ordE b on S. Thus with Lemma 2.8,
∫

S
L

r−1ordJ̃r,F
+ordadµF = µF(S)L

r−1 ordE J̃r,G+ordE b

= µG′(T ′)Lr−1ordE J̃r,G+ordE b−e,

and

dim
∫

J∞F|Z
L

r−1ordJ̃r,F
+ordadµF ≥ dim

∫

S
L

r−1ordJ̃r,F
+ordadµF

=−1+ r−1ordE J̃r,G+ordE b−e

=−aE|G′ (G
ν)+ordE b

=−aE|G′ (G
ν ,bOGν ).
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HenceaE|G′ (G
ν ,bOGν )≥ c by (16), which proves the lemma. q.e.d.

Theorem 1.9 is therefore proved.
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Étud. Sci.31 (1966), 59-64

9. M. Kawakita, Inversion of adjunction on log canonicity, Invent. Math.167(2007), 129-133
10. M. Kawakita, On a comparison of minimal log discrepancies in terms of motivic integration, J.

Reine Angew. Math.620(2008), 55-65
11. M. Kawakita, Towards boundedness of minimal log discrepancies by Riemann–Roch theorem,

to appear in Am. J. Math.
12. J. Kollár, Which powers of holomorphic functions are integrable?, arXiv:0805.0756
13. J. Kollár et al,Flips and abundance for algebraic threefolds, Astérisque211(1992)
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