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IDEAL-ADIC SEMI-CONTINUITY PROBLEM FOR
MINIMAL LOG DISCREPANCIES

MASAY UKI KAWAKITA

ABSTRACT. We discuss the ideal-adic semi-continuity problem forimaid log
discrepancies by Mustata. We study the purely log terhdase, and prove the
semi-continuity of minimal log discrepancies when a Kawtarlag terminal
triple deforms in the ideal-adic topology.

INTRODUCTION

In the minimal model program, singularities are measuregims of log dis-
crepancies. The log discrepancy is attached to each digis@n extraction of
the singularity, and their infimum is called th@&nimal log discrepancyRecently,
de Fernex, Ein and Mustata inl [3] after Kollar in [12] peavthe ideal-adic semi-
continuity of log canonicity effectively to obtain Shokut® ACC conjecture[[18]
for log canonical thresholds on I.c.i. varieties. This pagiecusses its generalisa-
tion to minimal log discrepancies, proposed by Mustata.

Conjecture (Mustata) Let(X,A) be a pair, Z a closed subset of X arf its ideal
sheaf. Let be an ideal sheaf and r a positive real number. Then therdsezis
integer | such thatif an ideal sheab satisfiesa + .73 = b + .75, then

mldz(X,A, Clr) = mldz(X,A, br)

The mld above denotes the minimal log discrepancy. Masibgserved that the
conjecture on formal schemes implies the ACC for minimald@grepancies on a
fixed germ by the argument of generic limits of ideals.

The conjecture is not difficult to prove in the Kawamata lagrtimal case, stated
in Theoreni L. It is however inevitable to deal with log aaigal singularities in
the study of limits. As its first extension, we treat a puraldg terminal triple
(X,F +A,a") with a Cartier divisorF and control the minimal log discrepancy
of (X,G+A,b") for G,b close toF,a. Our main theorem compares minimal log
discrepancies oR, G rather than those oK. We adopt the weaker conditiarn b
defined bya"+ ./ = b" + .72 for somen to reflect the distance af, b with
allowance of real exponents.

Theorem (full form in Theoren(1.B) (X,A), Z, a and r as inConjecture Let F
be a reduced Cartier divisor such théX,F + A, a") is plt about Z. Then there
exists an integer | such thatf an effective Cartier divisor G and an ideal sheaf
b satisfyOx(—F) =~ Ox(—G) anda =~ b, then G is reduced about Z and with its
normalisationv: GY — G,

mldpmz(F,AF,ar ﬁp) = mldvfl(sz)(Gv,AGv,brﬁgv).

The theorem can be regarded as an extension to the case whgatg &s well
as a boundary deforms, so it would provide a perspectivedrstady of the be-

haviour of minimal log discrepancies under deformationsshbuld be related to
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Shokurov’s reductior [19] of the termination of flips. Onencacover the equality
mldz(X,F +A,a") = mldz(X,G+A,b") if the precise inversion of adjunction in
[13] holds onX such as I.c.i. varieties in [6].[7].

We prove the theorem by using motivic integration by Konislewn [15] and
Denef and Loeser in [5]. Take a divisBron an extraction oK whose restriction
computes the minimal log discrepancy Gn By the plt assumption, the order of
(the inverse image of) the Jacobigfi; of G alongE should be small in contrast
to those ofF, G, then it coincides with that of the Jacobig#i of F. This provides
further the equality of the orders of the ideal sheaygg, 7 c, and we derive the
theorem by the descriptions of minimal log discrepancigslining #,r, #c by
Ein, Mustata and Yasuda inl[7].

We work over an algebraically closed fidtbf characteristic zero throughout.
Z~0,Z>0,R~0,R>0 denote the sets of positive/non-negative, integers/tgabers.

1. .Z-ADIC SEMI-CONTINUITY PROBLEM

In this section we discuss general aspects of Mustafaadic semi-continuity
problem for minimal log discrepancies.

For the study of limits, we formulate the notionRfideal sheaves by extending
that ofQ-ideal sheaves in[10, Section 2]. On a schefiee letRx denote the free
semi-group generated by the family of all ideal sheaves oK, with coefficients
in the semi-grouR>o. An element ofRy is written multiplicatively a:urll e arkk
with a; € Jx,r; € R>o. We say that, b € %ix areadheredif they are written as
a=[]ja " 0% 0% b=l bi™ 0%-0° in Ry with aij, by € Ix, r,a,a,b,b/
R>0, Mj,Nik € Z=o, such thafT; ai'}“ equals[xbi* as ideal sheaves for eathor
a,b’ > 0. We say thati, b € Ry areequivalentif there existc, ..., € Ry with
¢o = a,¢j = b such that each;_, is adhered ta;.

Definition 1.1. An R-ideal sheafon X is an equivalence class of the above relation
in NRy.

We letJ% denote the family oR-ideal sheaves oX. By anexpressiornof a € 7§
we mean an elemenff “ee arkk € My with a; € Tx,r; € Ry in the class ofi.

Remarkl.1.1 While some literatures define @&xideal sheaf as an elementfi,
we adopt that ofi§f from the viewpoint that for, b € Jx one should identify for

example the product m‘ﬁ“, b and that ofaﬂ, ab, which remain different ifRy.

Remarkl.1.2 Two ideal sheaves on a normal varietyhave the same order along
every divisor if they have the same integral closure. We lavequivalence re-
lation in Jx by this. However we will not formulate in this direction, lzese the
relation does not seem to be compatible with the notioZeddic topology.

One can extend the notions of orders and resolutiofi&itheal sheaves.

Lemma-Definition 1.2. Letfi---fi%, g3 --- ;' be two expressions of the saie
ideal sheaf: on a normal variety X. Suppose= Ox(—F) with a Cartier divisor
F. Thengj = Ox(—G;j) with some Cartier divisor G andy; riF; = 3 ;5;G;j. Such

a is called a locally principalR-ideal sheaf. In particular, the notion of resolutions
of R-ideal sheaves makes sense.

Proof. It suffices to prove that if the produaia, of ideal sheaves;, as is locally
principal, then so are;,a; also. Setnia; = Ox(—F) = fOx locally. ThenF is
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decomposed into Weil divisofs, F, asF = F; + F, such thaty; C Ox(—F). On
the other hand, one can wrife= ¥ ; f1j f2j and fy; f2; = ¢; f with fj; € aj, ¢j € Ox.
Thus 1= 5 ¢j, so there exist$ such that; is a unit, that isfy f2; Ox = Ox(—F).
If we set fijOx =: Ox(—F/), thenF <F andF =F +F =F +F}, soq C
Ox(—F) = Ox(—F') C a; which meansy; = fjj Ox. g.e.d.

We introduce the notion of -adic topology forR-ideal sheaves.

Definition 1.3. Fix a closed subschenzeof a schemeX and let.#7 denote its ideal
sheaf.

(i) Fora,b € Jx andl € Z>q, we writea = b if
a+ .72 =b+ .7

(i) For a,b € Jx andl € R, we writea ~; b if there existm e Z>o,n € Z~o
such that

a"=n 6", m/n> 1.

(iii) For a,b € J% andl € R, we write a ~| b if there exist expressions =
ait @, b =bf - bk such that for each

a &y, bi.

Remarkl.3.1 One may replace the conditian=y ;, b; in (i) above witha; =, b;,
li >1/r;.

The following basic fact will be used repeatedly.

Remarkl.3.2 If a ~ b and lorde .#7 > orde a along a divisor E on an extrac-
tion, thenorde a = orde b. This follows from the inequality ofga; < rflordE a<

r-Y ordg .#7 < orde .7y in the contexis; + .7 = b + .75 of RemarkL31.

We recall the theory of singularities in the minimal modebgmam. A pair
(X,A) consists of a normal variet and aboundaryA, that is an effectiveR-
divisor such thaKy + A is anR-Cartier R-divisor. We treat driple (X,A,a) by
attaching arR-ideal sheafi. For a prime divisolE on an extractionp : X' — X,
that is proper and birational, iteg discrepancys

ag(X,Aa) ;=14 orde(Kx — ¢ (Kx +4)) — orde a.

The imagep (E) is called itscentreon X. (X, A, a) is said to bdog canonical(lc),
purely log terminalplt), Kawamata log termina(klt) respectively ifag (X, A, a) >
0 (VE), > 0 (Vexceptional), > 0 (VE). For a closed subs& of X, the minimal
log discrepancy

mldz(X,A, Cl)

overZ is the infimum ofag (X, A, a) for all E with centre inZ. The log canonicity
of (X,A, a) aboutZ is equivalent to mlg(X,A, a) > 0. Seel[11, Section 1], [14] for
details.

De Fernex, Ein and Mustata inl [3] after Kollar [n[12] pealthe 7 -adic semi-
continuity of log canonicity effectively to obtain with|[4fe ACC for log canonical
thresholds on I.c.i. varieties. We state its direct ex@mm$d the case with bound-
aries here.
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Theorem 1.4([3, Theorem 1.4]) Let (X,A) be a pair and Z a closed subset of X.
Leta be anR-ideal sheaf such that

mldz(X,A,a) = 0.

Then there exists a real number | such thidian R-ideal sheaft satisfiesa ~ b,
then

mldz (X, A, b) = 0.

Remarkl.4.1 Thel is given effectively in terms of a divisde with centre inZ
such thabg (X, A, a) = 0. One may take an arbitrahysuch that ordg .#z > ordg a
by Remark1.3]2.

We will consider its generalisation to minimal log discrepie@s, proposed by
Mustata.

Conjecture 1.5(Mustata) Let (X,A) be a pair and Z a closed subset of X. Let
a be anR-ideal sheaf. Then there exists a real number | such: tan R-ideal
sheafb satisfiesa ~ b, then

mldz(X, A, a) = midz(X,A, b).

This conjecture is related to Shokurov’'s ACC conjecture],[168, Conjec-
ture 4.2] for minimal log discrepancies. In fact, Conjeetld.5 has originated
in Mustata’s following observation parallel to [3] by gaic limits of ideals.

Remarkl.5.1 (Mustata) If Conjecturél.5holds on formal schemes, then for a fixed
pair (X,A), a closed point x and a set R of positive real numbers whicisfiest
the descending chain condition, the set

{mldy(X,A,af - a¥) | a € Tx, i € R}
satisfies the ascending chain condition.

Indeed, we shall prove the stability of an arbitrary nonrdasing sequence of
elementsc; = mldy (X, A, ai”ll---airl'(kii) > 0. We may assume that; are non-trivial
at x, then for a fixed divisof= with centrex we havey ;rij < ¥;rij Ordr ajj <
ar (X,A). Rhas its minimunr say, whencég < r—ag(X,A). Thus by replacing
with a subsequence, we may assume the constaady. Further we may assume
thatr;; form a non-decreasing sequence for eqchrhenr;; have a limitr; by
rij < ar(X,4).

Take generic limitsy; of aj; following [3, Section 4],[[12]. After extending the
ground fieldk, we haven; on the completior{X,A) of (X,A) atx. Conjecturd 1]5
on ()Z,A) provides an integeip and a divisorE on X with centrex such that for
I > ip, Ordz aj = orde a;; and

c:= mldg(X,A, afak) = aé()A(,A, af - ak)

= ag (X, A, a} - aif) = mldy(X, A, a} - ai¥) < ¢,
with R:= x xx X, E := E xx X. Hence
c<c <ae(X.Aaf-a) =c+ Y (rj—rij) ordg aj,
]
and its right-hand side convergesdorhusc; = cfori > ig.

We expect an effective form of Conjecture]1.5, but the naiemeegalisation of
RemarkK1.4.11 never holds.
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Remark-Exampld.5.2 SetX = A? with coordinatesc,y anda = (x? + y3) 0,

b = x20x. The pair(X,a??) has minimal log discrepancy/2 = ag (X, a%/3) over
the origino, computed by the divisoE obtained by the blow-up a. We have
a+.72=b+.#3and or¢ a = 2 < 3, but(X,b%3) is not log canonical.

We provide a few reductions of the conjecture.

Remarkl.5.3 One inequality mid(X,A,a) > mldz(X,A,b) is obvious. For, take
a divisor E with centre inZ such thatag (X,A,a) = mldz(X,A, a), or negative in
the non-Ic case, andsuch that orde .#7 > orde a by RemarkK1.312.

Remarkl.5.4 Conjecturé 15 is reduced to the case wkehasQ-factorial ter-
minal singularities,A is zero and Z is irreducible Indeed, by[[2] one can con-
struct an extractionp: X’ — X such thatX’ hasQ-factorial terminal singulari-
ties with effectiveA” defined byKyx + A" = ¢*(Kx +4). Then mig(X,A,a) =
mldy-1(z) (X', &', a0x), so the conjecture is reduced to thattn Further, we may
assume\ = 0 by forcinga to absorbA. It is obviously permissible to assume the
irreducibility of Z.

Remarkl.5.5 Mostly, we need just a weaker form of Conjectlrel 1.5 in wraoh
expressiona]! ---a%* of a is fixed and only those = b™...p//™ with ' =
bi, i > In;/r; are considered This is reduced to the case whenb; are locally
principal R-ideal sheaves Indeed, after replacing!’ with the s-uple of af'/® for
somes, we may assume that mi@X,A, a) equals mlgd(X,A, ) locally for some
f=T1i(fiox)" with fi € ai. By a" =, bj one can writef" = g + h; with gj €
bi, hj € fz'i, SO fini Ox =), 9:0x. Forg=];(a ﬁx)’i/”i the weaker conjecture for
locally principalR-ideal sheaves provides

mldz(X,A,a) = mldz(X,A,f) = mldz(X,A,g) < mildz(X,A,b),
and we have the equality by Remark 115.3.
In the Klt case, it is not difficult to prove our conjecture.
Theorem 1.6. Conjecturél.Bholds for a Kit triple(X,A, a).

Proof. It suffices to prove mig(X,A,a) < mldz(X,A,b) by RemarkK_1.513. As
(X,A,a) is Kit, we can fixt,t’ > 0 such that mld(X,A,a**'.#3) = 0. Then by
Theoreni_ L} there exists

| >t tmldz(X,A, q)
such that ~| b implies midz (X, A, b*+.#8") = 0. Thus every divisoE with centre
in Z satisfies

ag (X,A,b) >tordg b.

Supposeg (X,A,a) # ag(X,A,b), equivalently org a # ordg b. Then by Remark
1.3.2,

orde b > lorde %7 > 1.

The above three inequalities gigg(X,A, b) > mldz(X,A, a), which completes the
theorem. g.e.d.

Even if we start with kit singularities, it is inevitable teal with log canonical
singularities in the study of limits of them.
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Examplel.7. SetX = A? with coordinates,y anda, = X(x+Yy") Ox. The limit of

thesenn is a. = X2 O, so that of kit pairgX, arl/z) is aplt pair(X, ai/z) = (X,X0x).

It is standard to reduce to lower dimensions by the restrictf pairs to sub-
varieties. For a paifX,G+ A) such thatG is a reduced divisor which has no
component in the support of effective one can construct thdifferentAgv on its
normalisationv: G¥ — G as in [13, Chapter 16],_[1%&3]. It is a boundary which
satisfies the equalitilcy + Agy = v*((Kx + G+ A4)|s).

As the first extension of Theordm 1.6, we study the plt casehiciwthe bound-
ary involves a Cartier divisdf. LetF be a Cartier divisor on a tripleX, A, a) such
that (X,F + A, a) is plt. ThenF is normal by the connectedness lemma [13, 17.4
Theorem], [17, 5.7], and the induced triglE, A, a0k ) is kit. In this setting, we
control midz(X,G+ A, b) for G, b close toF, a. We adopt the notation

F~G

for the conditionox (—F) ~| Ox(—G), and(F,a) ~ (G,b) for F ~| G, a ~ b. We
compare minimal log discrepancies BrG rather than those oX, soG should be
a divisor of the following type.

Definition 1.8. A transversaldivisor on a triple(X,A, b) is a reduced Cartier divi-
sor which has no component in the supporf\adr the zero locus of.

For example, an effective Cartier divis@ris transversal if X,G+A,b) is log
canonical.
We state our theorem in the plt case, which will be proved ictiSe[2.

Theorem 1.9. Let(X,A) be a pair and Z a closed subset of X. Let F be a reduced
Cartier divisor anda anR-ideal sheaf such thaiX,F + A, a) is plt about Z. Then
there exists a real number | such thaf an effective Cartier divisor G and an
R-ideal sheafb satisfy(F,a) ~ (G,b), then G is transversal ofX,A,b) about Z
and

I'T1|d|:mz(|:7 Ar, a0k ) = mldvfl(sz) (GV,AG\/ , bﬁGV).

Theorem_1.D compares minimal log discrepancies on differaneties, so it
would provide a perspective in the study of their behaviomlar deformations.
One can interpret it as an extension of Theotem 1.6 to thewhsa a variety as
well as a boundary deforms. Theorém|1.9 is also joined withj&ure 1.b via
the precise inversion of adjunction [13, Chapter 17].

Conjecture 1.10(precise inversion of adjunction).et (X,G+ A) be a pair such
that G is a reduced divisor which has no component in the steffectivel,
and Z a closed subset of G. L&t be the different on the normalisation GY —
G. Then

mldz(X, G +A) = mldv71(2>(G,AGV).
The equality of minimal log discrepancies ¥rfollows if the precise inversion
of adjunction holds oiX, such as l.c.i. varieties in[[6].[7].

Corollary 1.11. (X,A,a), Z and F as in Theoreffi.d Suppose that the precise
inversion of adjunction holds on X. Then there exists a reahiper | such thatif
effective Cartier divisors Gand anR-ideal sheafb satisfy F~| Gj, a ~| b, then
for G= 730G with1=5;0, g € R,

mldz(X,F +A,a) = mldz(X,G+A, b).
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Proof. We want mlg (X,F +A,a) < mldz(X,G+A,b) by RemarK 1.5]3. Since
m|dz(X,G—|—A, [J) > >iGi m|dz(X,Gi + A, b) by Ky +G+A= Si gi(Kx + G +A),
it is reduced to the case with a Cartier diviser We may assum& C F,G by
Theoreni 1.6 and the argument after Lenima 2.2. Then the satdollows from
Theoreni 1.B. Note that the precise inversion of adjunctiwririples is reduced to
that for pairs. g.e.d.

We close this section by one observation related to Conjeldib.

Proposition 1.12. Let(X,A) be a pair and Z a closed subset of X. kdie anR-
ideal sheaf. Then there exist real numbers | @ndt < 1 such that if an R-ideal
sheafb satisfiesa ~ b, then

midz (X, A, a) = midz(X,A, al'bt).

Proof. It suffices to prove mig(X,A,a) < mldz(X,A,att6t) by Remark L513.
We may assume the log canonicity (,A, a). Fix a log resolutionp : X" — X of
(X,A,a.97) and selyx + A" := ¢*(Kx +4). Let A denote the effectivi-divisor
on X’ defined by the locally principa-ideal sheafidx/, andSthe reduced divisor
whose support is the union of the exceptional locus, ¥amd Sup@\. We take
0 <t <1 suchthatA < S By Theoreni 1.4 we havesuch thatt ~; b implies the
log canonicity of(X’,S—tA, b'@y). In particular, for a divisoE on an extraction
g:Y — X with (¢ o ¢)(E) C Z,

ag (X, A, al7tet) = ag (X', (1-1)A, bt Ox/) — orde &
= ag (X', S—tA b Ox/) +0orde (S— A—A)
> orde(S—A-A").
S—A-N =K{+S—(¢*(Kx+4A)+A) >0, and by a divisoF with (E) CF C
$(2),
ordg(S—A—A") > orde (S—A—-A) =ar (X,Aa).
These two inequalities prove the proposition. g.e.d.

2. PURELY LOG TERMINAL CASE

The purpose of this section is to prove Theofen 1.9; see Leaifnd and 2)9.

As (X,A) is kit, by [2] there exists &-factorisationg : X" — X which is iso-
morphic in codimension one. Then as in Renfark1.5.4 we carceethe theorem
to that onX’, and hence we may assume tiais Q-factorial andA = 0. We shall
discuss on the germ at a closed point of X

We set the ideal sheaves in the context of motivic integnaticetd denote the
dimension ofX. We fix a positive integer such thatrKy is a Cartier divisor. We
extend the construction in_[10, Section 2] to transversakdis. A general I.c.i.
subschem# of dimensiond of a smooth ambient spagewhich containsX is the
union

1) Y =Xuc’
of X and another variet€'. The subschem®" := C"|x of X is defined by
the conductor ideal she&fy v := J#omy, (Ox,Oy), and is a divisor such that

Ox(rKx) = Ox(—rDY)wy". The summatiory := Sy %y over all genera¥ is
called thdl.c.i. defect ideal sheabf X, which one can define for reduced schemes
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of pure dimension. We treat the summati@ny := Sy Ox(—rD") also. For a re-
duced Cartier divisoB, the abover = XUCY has a Cartier divisorg = GUC" |y.
ThusG has its |.c.i. defect ideal sheaf

2 D = I% 0,

and we havedx (r(Kx + G)) 0 = Ox(—1DY) 0c - wy".

Let 7¢ be the Jacobian ideal sheaf Gf and 7, the image of the natural
map (Q% 1) @ Ox(—r(Kx +G)) — 0. Let g%, . be the inverse images
of them by the natural magx — Os. The argument in [10] provides the equality
Sy /{Grﬁg = %6 ZrxOg similar to [10, (2.4)] with the Jacobiagf\;G of Y. Its
left-hand side is nothing buyér. For, set local coordinates, ..., xc of Aand the
ideal sheave&?y, 4 of X,Y onA, and takefq,. .., f. € O, c=k—d-+1, such that
fi|x definesG and fy, ..., fc generate#y. Then for arbitranygy,...,g. € #x and
generaly, ..., t; € k, the subscheme defined Ihy+tigi, 2<i <c, isageneral |.c.i.
Y’. Thus withg; := f; andt; € k, ther-th powers of determinants ofx ¢ minors
of the matrix (9 (fi +1gi)/0Xj)ij|c are contained iryy /\;Grﬁg, whence so are
those of(dgi/9x))ij |- This meangy 2. 06 = 3 jc 4 i' €, and its right-hand
side equalsjér by the same trick. Hence we obtain

= #ie %x0c,
3) S+ Ox(—G) = _Fra Drx + Ox(—G).
We set
¢c:=mldez(F,a0k).
As (X,F,a) is plt, we can fix > 0,t" > 0 such that
mldz(X,F,a**t Zit gt s8) =o0.
We will fix a log resolutiond: X — X of (X,F,a.%2_#{ #:¢ Z%%x). LetF be

the strict transform oF. By blowing upX further, we may assume the existence
of a prime divisorEr C ¢ 1(F NZ) which intersectd properly and satisfies

4) ag: (X,F,a) = ag. |- (F,a0F) = C.
Take the decompositiof*F = Vi + Hg, whereVg consists of prime divisors in

¢ 1(Z) andHg those not ing ~1(Z). By blowing upX further, we may assume
that every divisoiE with E C SuppVe, E N SuppHE # 0 satisfies

(5) ordsVe >t e
We take an integdr such that

(6) [1 > ords Ve, 1 > ordga
for all divisorsE on X with ¢(E) C Z. Note that

7) L >t tc+1
unlessF C Z.

The next lemma is a direct application of Theorem 1.4 with Rexii.4.1 by
©).
Lemma 2.1. For R-ideal sheaveg, b such thatox (—F) ~, g, a ~, b, we have
midz (X, gb**t LM 74t 78) = 0. In particular if (F,a) ~, (G,b) then G is a
transversal divisor oriX, b).
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We can replace the conditidh ~; G with the stronger on& = G defined by
ﬁx(—F) | ﬁx(—G)

Lemma2.2. If F ~ Gwith | > |1, then F~; G.

Proof. Gis reduced by Lemma_2.1. By the definition Bf~; G and Lemma-
Definition[L1.2, there exist decompositions=15 ; fin;, G= 3 ; f;H; with f; € R-,
nj € Z-o and effective Cartier divisord; such thatvx (—njF) = Ox(—Hj) with
m; > | /fj. Note Ox(—F) ~ jn, Ox(—Hi)¥" andm;/n; >1/fjn; > |. Hence all
coefficients imlej are at most one by Lemrha2.1. Thus each compoBeot G
has or¢; Hj <nj,so 1=y fjordg H; < y; fjnj = 1 and org, H; = nj, H; = n;G.
Now the lemma follows fron¥x (—n;F) =m Ox(—n;G) andm;/n; >1.  g.e.d.

Now we may assume that is an irreducible proper subset of F, and is con-
tained in G also Indeed, sincd= ~; G impliesFNZ = GNZ as sets, we may
assumeZ C F,G by replacingZ with FNZ. If Z=F thenG > F andF ~, G
means’x (—nF) = Ox(—nF)(Ox(—n(G—F))+ Ox(—nF)) for somen, soF =G,
a0r = bOg and the statement is trivial.

We write (F,a) = (G,b) for the conditionF ~| G, a ~| b. G is transversal
if (F,a)~, (G,b) by Lemma[ZJl. We then consider a log resoluti@h— G
embedded into some log resolutign X' — X of (X,F + G,ab_#}_#c) which
factors throughX. Set¢’: X’ — X. Let| denote the set of al-exceptional prime
divisors E on X’ intersectingG’, andlz the subset of consisting of allE with
¢ (E) C Z. By blowing upX' further, we may assume th@t does not intersect the
strict transform of the divisorial part of the zero locusbotind that for alE € |

(8) ¢'(E) =¢'(Elo).
Then mid, 1) (G",b0gv) equals the minimum dde (X, G,b) = ag|, (G”,b0cv)
for all E € Iz, or —oo if the minimum is negative.
Lemma 2.3. If (F,a) ~, (G,b), then for E€ I
(i) rtorde #f +torde Z +torde b < ag|, (G',b0gv).
(i) orde F >t~'candorde G >t 'c.
Proof. ([ It follows from LemmdZ2.1.

(@ If we write 7705 = Ox(—Vz), then by [(6) the divisohVz —VE is effective
with supportd —1(Z). By F ~, G we have the decompositigh*G = V¢ + Hg in
which Hg consists of divisors not igg~1(Z), and moreover

Ox(=nVE)(Ox(—nHr) + Og(—n(11Vz — VE))

= ﬁg(—nvp)(ﬁg(—nHG) + ﬁ){(—n“lVZ —VF))
for somen. Hence on the reduced divisgr1(Z),
(9) nHeN @ 1(Z) =nHsN§ 1(2)

scheme-theoretically, and its support contalx’l(sE) by (8). Thus there exists a
prime divisorE on X with ¢’(E) c E ¢ ¢ 1(Z) andE N SuppHg # 0. E has
ordsG = ordsF > t~'c by (§), so or¢ F > ord=F >t~'c, orde G > ord=G >
t—tc. g.e.d.

We obtain one inequality in Theordm11.9 as in Renfark1.5.3.
Lemma 2.4. If (F,a) ~, (G,b), thenmldz(F,adF) > mld, 17 (G",b0cv ).
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Proof. We have the divisoEr C ¢ 1(Z) in (). W := F N Ef is contained in the
support of the locud (9), when®® C SuppHg NEg. This impliesW ¢ GNEr
for the strict transfornG of G by the s.n.c. property df + Er + SupgHg — G).
Moreover by [(9),nW = nG|g. as divisors orEg at the generic pointyy of W.
HenceW = G Er scheme-theoretically agy, and its strict transforiV’ on G’
is defined. With[(6) we obtain

mldvfl(z)(G", bﬁgv) < aW/(G", bﬁGV) = ag (X,G, [J) = ag (X, F, Cl) =_C.
g.e.d.

We shall prove the other inequality nld ;) (G",b0gv) > cin TheoreniLD by
studyingE € Iz with ag|_ (G",b0cv) < c. We fix a prime divisorEz on X such
that ¢ (Ez) = Z, and apply Zariski's subspace theorém [1, (10.6)] as in toefp
of [9, Lemma 3] to the natural mafx z — Ox g, and its specialisations, to fix an
integerl, > 11 such that

(10) §.0x(~12E7) C 53
Lemma 2.5. If (F,a) ~, (G,b) and E€ Iz satisfies g, (G",b0cv) < c, then

(i) ordg /:F’ — Orde jég (rt)Lc.
(i) orde _#ir =orde ¢ <t lc.
(iii) orde 7 <t lc.

(iv) ordea=orde b <t lc.

Proof. () We use explicit descriptions of7¢, #¢ in terms of Jacobian matrices.
EmbedX into a smooth ambient spaéewith local coordinates, ..., x and take
f,g € Oa such thatf|x,g|x defineF,G. By F ~, G, f"0x + .75 = g"0x + 73"
for somen. Note f"|x ¢ JZ”'Z by ords, f|x <11 from (6). If we chooseu,v € Op
so thatf" —ug|x,g" — vI"x € .75, then(1—uv) f"|x € 722 souv should be a
unit. We take an etale covét — X by adding a functiory with y" = u to produce
the factorisationf” — ug" = [;(f — u'yg) with a primitive n-th root p of unity,
and discuss on the gerichat some closed point of. Set the prime divisoEz :=
Ez xxU on@: X xxU — U. Since[]i(f — p'yg)lg € ¢ 0%, g(—nlEz), with
(d0) there exists such that

f—p'ydg € §. 0%, (—12E2) = 8. 0x(—12E2) @y O C I7 0.
F xxU,GxxU are given byf|j, u'yg|y. By the description of 7L 65, #5605 in
terms of Jacobian matrices, we have
j,éﬁg +% = jéﬁg +€
for ¢ =3 ;(0(f - p'yg)/ax; - 0g) C Jz'l’lﬁg. By Lemma 2.8{i) and[{7), for

orde 705 =orde gf < () le<li—1,
ordg 7405 = orde _7¢,
which provide [{i). y
(@ Lemmal23 implies ord #." <t lc < orde F,ordg G. Thus (i) follows
from (i) and [3) forF,G.
@D It follows from LemmalZ.3).
It follows from Lemmd Z.8{(i),[(¥) and Remairk 1.8.2. ale.
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We shall apply motivic integration by Kontsevich in [15] abeénef and Loeser
in [B] to transversal divisors. We fix notation following [1&ection 3]. For a
schemeX of dimensiond, we letJ,X denote itget schemef ordern, J,X its arc
space and sety : JoX — X, TR InX — JuX. One has thenotivic measure
Ux : Bx — . from the family #x of measurablesubsets 08X to an extension
. of the Grothendieck ring%y is an extension of the family of stable subsets.
A subsetS of J,X is said to bestableat leveln if 72{(S) is constructible,S =
()1 (9)), and7gl, 1 (S) — 15(S) is piecewise trivial with fibre& for m> n.
Shas measure

Hx(S) = [ (S)IL- e

with L = [AY].

For a morphisnp : X — Y, we write ¢,,: Jn X — Y, o JuX — JoY for the
induced morphisms. For a closed subigtve letJ,X|z, J.. X |z denote the inverse
images ofZ by J,X,J.X — X. Finally for anR-ideal sheafua, the order ord, y
alonga is defined fory € J,X. The notion of ord, y, for an ideal sheaf¥ makes
sense even foy, € J,X as long as org y, < n.

Back to the theorem, we fix an expression

a=al--ak
We fix an integerc; such that
(11) c >t lc, c1 > (rit) e

for all i. Applying Greenberg’s result|[8] tB, one can findt, > ¢; such that

(12) nflcz (‘]CzF) = n\j:__l(‘]wF)'
We take an integdg > |, such that
(13) I3 > Cp.

From now on we fix an arbitrarf € |7 for (G, b) ~, (F,a) such that
(14) a'E|G/ (GV7 bﬁG") <,

and will derive the opposite inequaligg, (G",b0cv) > . To avoid confusion
we sety = ¢|e: G — G. By blowing upX’ further, we may assume thit|c
is Y-exceptional for alE’ € |1 \ {E} with E| NE'|g # 0. Take the subsek’ of
J G’ which consists of all arcg such that

o 1 TE=E,
®lo Y= Y0 ifE eI\ {E}, E'lg NE|s 0.

T’ is stable at level one. S&t:= Y (T') C J.G, T, := i€ (T') € J,G andT, :=
e(T) = Yn(T)) c JGas

J.G o T’—n"G»Tn’ c JG

P

JooG D T —_—> Tn C anG
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One can regard,F,JnG C J,X. ThenF =, G implies J.,F|z = J.,G|z by (13).
Hence by[(1P)

Te, C TG, (3, Glz) = Ty, (Je,F |2) = T, (JoF [2).
Thus if we set

Si= (1) }(Te)) C F
and$, := 1, (S) C JiF, then, = T, as

(15) wFos s Mg o1

We translate Lemnia 2.5 into the language of arcs.

- - _ - ~, _
Lemma 2.6. ) () On ST, ord/F, = ord/é and takes constanbrde 7¢ =
orde 74 < cy. ) )
(i) On ST, Ordjr,p = ordjrG and takes constardrde ¢, = orcg _#;c <
C.

(iif) On ST, ordy, takes constanbrde D% < c1.
(iv) On T,ord, = ord, and takes constardrds a = orde b < ¢;. On S,ord,
takes constanbrds a = ordg b.

Proof. Itis obvious by Lemm&2]5[(11) and the constructiol bfNote ord: a; <
rrtordea < c. g.e.d.

Let 7 be the image of the natural mgp Q% ® wg! — 0. By definition
we obtain the equality

Sy = S1606(~1 § (8e1(G") ~ DE'|a)).
E’el
Hence 7 is resolved orG’, and onT’ the order along,#,, takes constant

e=ordey, Zy=rtord Fic+ag,(G') -1
We use the following form of [5, Lemma 4.1] to estimate(S).

Proposition 2.7. Let X be a reduced scheme of pure dimension, ghthk locus
of J,X on which the orders along the Jacobian ideal shggf and the I.c.i. defect
ideal sheaf are at most n. ThenLis stable at level n.

Proof. For a l.c.i. scheme, the proposition follows from the probf& Lemma
4.1] directly. Note that the l.c.i. defect ideal sheaf ofcail.scheme is trivial.

For generalX, we fix a jety, € X (LY). By the definitions of #y, 4, one
can embedX into a l.c.i. schem& = X UCY as [1) so that on a neighbourhood
Uy, of yn in JuY, ord -, < ord 4 (yn) and ordg , < ordy (y) for the Jacobian
v and the conductd¥ . Then(m\)~*(Uy,) C LY and(ry)*(Uy,) C Ly. By
Gxv-Ixv = 0 for the ideal shea¥y v of X onY, we havel,Y \ (ordg ) () C
J.X. Hence(mX)"1(Uy,) = () "1(Uy,), and the statement is reduced to that of
the I.c.i. schem¥. g.e.d.

Lemma 2.8. e (S) = ps(T) = pe (T/)LC.
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Proof. We apply Proposition 217 t8C L{,, T C Lg by Lemmd 2.1{i),[(ili) and.(2),
to obtain their stabilities at level and byS;, = T, in (15)
HF(S) = pe(T).
By [5, Lemma 3.4] folT ¢ .#(%)(G) with notation in [‘i] there exists> ¢, e, 1
such that ord,,, takes constare on j, L(Th), and thaty; 1(T,) — T, is piecewise
trivial with fibres A®. If the equalityT! = g, 1(T,) holds, then

IlG( ): [Tn]L (n+1)(d 1): [TA]L—(n-‘rl)(d l u (T/)L—e.

Thus it suffices to provey;, 1(T,) C T,

Take a variety, dense irl, such that, 1(Uy) is irreducible. The closur€, of
W, *(Un) in J,G’ contains the closur&G'|g|, of T;;, which is a prime divisor. Thus
Ch= JnG’|E|G, by the irreducibility ofC,, so the image of the restricted morphism
Xn: JnG’|E‘G, — JoG containsT,. Its fibre x; 1(t) att € T, has dimension at least
and is contained i, 1(t) ~ A® Hencex; 1(t) = g7 1(t) asx, 1(t) is closed. This
meansy, *(Tn) C hGlgy -

Consider ony; 1(T,) the constant function

e=ordy, = % (ordg, “y) orde,
E’el
Note that
ordE‘G, jw =€, ordE/|G/ /w >0forE el \{E}, E/‘G/ N E’g #£0,
because suck’|w is -exceptional and#, vanishes on the support 6l .

Moreover org,, is positive ony, *(Ty) C J,G'[g|, . Hencey, *(Ty) C Ty by the
definition of T'. g.e.d.

Remark2.8.1 We need only the inequality dipy(S) > dim g (T")LL~€ for the
proof of Theorend 1)9.

We shall complete the proof by using the below description-eimldz (F, adF)
in terms of motivic integration by [7]; see also [10, Remarg]3

g -1 -
(16) c=—dm [ L" "V %y
JaFlz
Lemma 2.9. If (F,a) =, (G, b), thenmldz(F,adF ) < mld, 17 (G",b0cv).
Proof. We have fixed an arbitrarf € Iz which satisfies[(14). By Lemmia 2(6(ii),
(v, ord%F,orda take constants ogd 7 g,0rde b on S Thus with Lemma 2]8,
/. L% T e = pe (S)L'orde Fratordsb
s

— e (T/)Lr*10r¢ Jrgtorde b—e
and

. r~tord ; +ord . r~tord ; _+ord
dim L SrF ‘dus > dlm/L SrF ‘dur
JooF|Z S

= —1+rlorde Zgtordeb—e
= —ag|, (G") +ordeb
= —aE|G,(GV,bﬁGv).
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Henceag |, (G”,b0cv) > c by (18), which proves the lemma. g.e.d.
Theoren_1.B is therefore proved.
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