溶液浓度对前驱体 FePO4·xH2O 及 LiFePO4 性能的影响

彭春丽,沈超,张宝,张佳峰,李倩

(中南大学 冶金科学与工程学院,湖南 长沙, 410083)

摘 要:以 NH₄H₂PO₄和 FeSO₄·7H₂O 为原料, H₂O₂ 为氧化剂, 通过液相法合成 FePO₄·xH₂O 前驱体, 将 FePO₄·xH₂O, Li₂CO₃ 和葡萄糖球磨混合以低温固相法合成正极材料 LiFePO₄,研究溶液浓度对前驱体 FePO₄·xH₂O 和 LiFePO₄ 的影响;采用 X 线衍射(XRD)和扫描电镜(SEM)对样品的晶体结构和形貌进行表征,采用比表面积分析和原子发射光谱分析等手段比较不同的溶液浓度对产物性能的影响。研究结果表明: 当溶液浓度为 0.1, 0.3, 0.5, 1.0 和 1.5 mol/L 时制备的 FePO₄·2H₂O 均为纯相,在溶液浓度为 1.0 mol/L 时合成的 FePO₄·xH₂O 肉 备的 LiFePO₄ 具有良好的电化学性能;充放电容量为 0.1*C*(其中,*C* 为充、放电倍率)首次放电容量达 154.4 mA·h/g,循环 30 次后容量保持率为 99.7%。 关键词: 锂离子电池; LiFePO₄; 前驱体;溶液浓度; 电化学性能 中图分类号: TM 912.9 文献标志码: A 文章编号: 1672-7207(2010)05-1668-06

Effect of solution concentration on FePO₄·2H₂O precursor and performance of LiFePO₄

PENG Chun-li, SHEN Chao, ZHANG Bao, ZHANG Jia-feng, LI Qian

(School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China)

Abstract: FePO₄·2H₂O was prepared by liquid phase method in air using NH₄H₂PO₄, FeSO₄·7H₂O and oxidant of H₂O₂ as starting materials. LiFePO₄ was synthesized at low temperature with the homogeneous mixture of Li₂CO₃, glucose and FePO₄·2H₂O. The structures of FePO₄·2H₂O and LiFePO₄ were characterized by XRD and SEM. The effect of solution concentration on FePO₄·2H₂O precursor and LiFePO₄ was represented by specific surface area and element contents using ICP-AES. The results show that no impurities exist in FePO₄·2H₂O synthesized with solution concentration from 0.1 mol/L to 1.5 mol/L. LiFePO₄/C made from FePO₄·2H₂O precursor with the solution concentration of 1 mol/L shows excellent electrochemical performance. It has an initial discharge capacity of 154.4 mA·h/g at 0.1*C*, and capacity retention remains 99.7 % after 30 cycles.

Key words: lithium ion batteries; LiFePO4; precursor; solution concentration; electrochemical performance

Padhi等^[1]发现的橄榄石型LiFePO₄不但能够可逆 地嵌入/脱出Li⁺,还具有较高的理论容量(170 mA·h/g) 和可逆容量的优点,人们对正极材料LiFePO₄进行了 大量的理论研究和实际应用。目前,LiFePO₄的合成 方法主要分为固相法和湿化学法两大类,其中:固相 法有高温固相法、机械化学法和微波法等^[2-6];湿化学 法分水热法、共沉淀法、溶胶-凝胶法等^[7-10]。丁燕怀 等^[11]采用固相法制备锂离子电池正极材料并研究了 煅烧温度对 LiFePO₄电化学性能的影响;郑俊超等^[12] 采用低温固相法研究了 pH 对前驱体 FePO₄:xH₂O 和 LiFePO₄ 性能的影响;Yu 等^[13]在采用液相法制备 LiFePO₄/C 过程中分别考察了流速、温度、pH 以及压

收稿日期: 2010-02-21; 修回日期: 2010-05-10

基金项目:国家自然科学基金资助项目(51072233);中南大学贵重仪器设备开放共享基金资助项目(ZKJ2009036)

通信作者: 彭春丽(1971-), 女, 河南开封人, 博士, 副教授, 从事电化学研究; 电话: 0731-82654596; E-mail: clpeng228@126.com

力对产物的影响; Chen 等^[14]考察了不同的碳源对高温 固相合成的 LiFePO₄/C 性能的影响; 张宝等^[15]采用共 沉淀法制备 FePO₄·xH₂O 前驱体, 然后与乙炔黑混合, 在高纯氩气气氛保护下, 利用碳热还原法制备 LiFePO₄/C。目前, 有关反应体系溶液浓度对合成前驱 体 FePO₄·xH₂O 以及 LiFePO₄性能影响的研究很少, 为 此,本文作者对其进行研究,同时对浓度与 FePO₄·xH₂O 中结晶水数量的关系进行探讨。

1 实验

1.1 材料的制备

将 NH₄H₂PO₄(AR)和 FeSO₄·7H₂O(AR)按照物质的 量比依次配制成浓度为 0.1, 0.3, 0.5, 1.0 和 1.5 mol/L 的溶液,以一定的流速同时加入烧杯并放置于恒温水 浴槽中强烈搅拌。随后加入过量 H₂O₂,溶液立即出现 大量白色沉淀。充分反应后陈化一段时间,洗涤过滤 数次后干燥,得到浅黄色 FePO₄·xH₂O 粉末。将干燥 的 FePO₄·xH₂O 和 Li₂CO₃ 按物质的量比混合,并加入 过量的葡萄糖(AR),置于行星式球磨机中高速混合球 磨一段时间,然后将混合物取出,在真空干燥箱中充 分干燥后装入管式炉中煅烧,得到 LiFePO₄。

1.2 材料的表征

采用日本 RIGAKU D/MAX 型X 线衍射仪对样品的晶体结构进行 XRD 物相分析。物相分析的条件是: Cu K_a辐射,波长为 1.540 6×10⁻¹⁰ m,管压为 40 kV, 管流为 300 mA,扫描速度为 8 (°)/min,步长为 0.02°, 扫描范围 2θ 为 10°~90°;采用 JEOL 公司的 JSM-5612LV 扫描电子显微镜,在电压为 20 kV 时,分别以 不同的放大倍数对样品的表面形貌进行观察;采用美 国生产的 SDT-Q600 型 DSC-TGA 分析仪进行热重差 热分析,温度从 20 ℃升到 1 000 ℃,升温速度为 10 ℃/min,保护气氛为 99.999%的氩气;采用由美国 热电元素公司生产的电感耦合等离子发射光谱仪(型 号: Intrepid 11 XSP)分析材料含量。

1.3 电池组装和测试

将活性物质 LiFePO₄、黏结剂 PVDF(聚偏二氟乙 烯)和导电剂乙炔黑按质量比 80:10:10 混合均匀,加 入定量溶剂 NMP(N-甲基吡咯烷炯),研磨成浆状;再 将电极浆料均匀地涂覆于厚度为 0.02 mm 的铝箔上, 经 120 ℃鼓风干燥后裁成直径为 1.4 cm 的正极片;最 后于 60 ℃真空干燥 6 h。以金属锂片作负极, Celgard2400 为隔膜,1 mol/L LiPF₆(EC, DMC 和 EMC 质量比为 1:1:1)为电解液,在氩气保护的手套箱内装 配完成 CR2025 型扣式电池。采用深圳市新威尔电子 有限公司生产的 BTS-51 型二次电池性能检测仪对电 池的充、放电性能进行测试。

2 结果和讨论

2.1 反应物浓度对 FePO4·xH2O 的影响

图 1 所示为不同浓度条件下合成的 FePO₄·xH₂O 于 480 ℃热处理 12 h 后转化为晶态的 FePO₄ 的 XRD 谱。由图 1 可见:在所有反应物浓度条件下合成产物的 衍射峰与纯相 FePO₄(JCPDS29-715)谱图吻合,说明合 成的 FePO₄均为纯相,表明浓度为 0.1, 0.3, 0.5, 1.0 和 1.5 mol/L 时对合成产物 FePO₄·xH₂O 的物相没有影响。

图 2 所示为不同浓度下合成的 FePO₄:xH₂O 的扫 描电镜图。由图 2 可见:随着溶液浓度的增大,合成 的 FePO₄:xH₂O 颗粒粒径呈增大趋势。其原因可能是 随着浓度的增大,溶液中反应粒子之间接触的概率增 大,核化速率加快,导致颗粒粒度增大。

表1所示是不同浓度下合成的 FePO4:xH2O 中 Fe 含量和结晶水的数量;图3所示是溶液浓度为1 mol/L 时合成的前驱体 FePO4:xH2O 的热重-差热图。由表1 可见:随着溶液浓度的逐渐增大,Fe 的含量逐渐增大 而结晶水的数目逐渐减小。这可能是因为随着溶液浓 度的不断增大,颗粒粒度也不断增大,而比表面积和 表面吸附力逐渐减小,致使结晶水的含量不断减小。 所以,不同浓度下合成 FePO4:xH2O 中的 x 不同,且随 着溶液浓度增大,x 逐渐减小。在溶液浓度为1 mol/L

表1 溶液浓度不同时合成的 FePO4:xH2O 中 Fe 含量和 结晶水的数量

Table 1	Content of Fe and number of crystal water of
Table 1	Content of Fe and number of crystal water of

FePO ₄ :xH ₂ O at various concentrations of solution			
溶液浓度/(mol·L ⁻¹)	w(Fe)/%	结晶水数量x	
0.1	26.7	3.26	
0.3	27.6	2.89	
0.5	28.4	2.56	
1.0	29.8	2.05	
1.5	30.6	1.78	

时, FePO₄·xH₂O 中结晶水的数目接近 2。由图 3 可见: 当温度为 20~500 ℃时,第 1 次质量损失基本完成, 约为 19%,而此范围内曲线上只有 1 个反应峰,即

图 3 溶液浓度为 1 mol/L 时合成的 FePO₄·xH₂O 的 热重-差热(DSC-TGA)图

Fig.3 DSC-TGA curves of FePO₄:*x*H₂O at concentration of 1 mol/L

失去结晶水反应峰,此质量损失过程应为磷酸铁失去 结晶水的过程。因此,在溶液浓度为1 mol/L 时,磷 酸铁有2个结晶水,即 FePO4·xH₂O 为 FePO4·2H₂O。 所以,可以通过调节溶液浓度来控制结晶水的含量, 为 LiFePO4 的制备确定 Fe 源、Li 源和 C 源的物质的 量比。

2.2 溶液浓度对 LiFePO4 性能的影响

图4所示为以不同溶液浓度下合成的FePO₄·xH₂O 为前驱体合成的LiFePO₄的XRD 谱。由图4可见:在 以溶液浓度分别为0.1,0.3,0.5,1.0和1.5 mol/L 时 合成的FePO₄·xH₂O 为前驱体合成的LiFePO₄与标准图 谱一致,说明合成的LiFePO₄为纯相。而过量的碳以 无定形态存在,不会破坏LiFePO₄的晶体结构, LiFePO₄仍将保持正交晶系橄榄石型结构。

图 5 所示为以不同溶液浓度下合成的 FePO₄·xH₂O 为前驱体合成的 LiFePO₄ 的 SEM 图。碳源的加入能有

溶液浓度/(mol·L⁻¹): (a) 0.1; (b) 0.3; (c) 0.5; (d) 1.0; (e) 1.5
 图 4 不同溶液浓度下合成的 LiFePO₄ 的 XRD 谱

Fig.4 XRD patterns of LiFePO₄ at various concentrations of solution

溶液浓度/(mol·L⁻¹): (a) 0.1; (b) 0.3; (c) 0.5; (d) 1.0; (e) 1.5
图 5 溶液浓度不同时合成的 LiFePO₄ 的 SEM 图像
Fig.5 SEM images of LiFePO₄ at various concentrations of solution

效地减小材料的颗粒尺寸,并且材料的电导率比纯 LiFePO₄的电导率提高 5 个数量级以上。由图 5 可见, 碳均匀分布于 LiFePO₄之间,能显著提高 LiFePO₄的电 导率;在溶液浓度为 1.0 mol/L 时合成的 LiFePO₄粒子 呈类球形(见图 5(d)),其颗粒粒径分布均匀,一次粒 径约为 0.5 μm,较其他样品粒径小,颗粒粒径减少能 提高 LiFePO₄的利用率;同时,絮状葡萄糖颗粒包覆 良好,增强了 LiFePO₄的电导性,从而有利于提高 LiFePO₄的电化学性能。

图 6 所示为以不同溶液浓度下合成的 FePO₄·xH₂O 为前驱体,在氩气气氛下于 650 ℃碳热还原 12 h 得到的 LiFePO₄ 在 0.1*C* 的倍率下的首次放电曲线(其中,*C* 为充、放电倍率)。由图 6 可见: 当浓度为 0.1, 0.3, 0.5, 1.0 和 1.5 mol/L 时,首次放电容量分别为 123.8, 137.6, 144.0, 154.4 和 110.6 mA·h/g。其中在浓度为 1.0 mol/L 时合成的 LiFePO₄ 首次放电比容量最高。所以,当溶液浓度为 1.0 mol/L 时,由该条件下合成的 FePO₄·xH₂O 前驱体制备的 LiFePO₄ 的首次放电性能最佳。

图 7 所示是溶液浓度为 1 mol/L 时合成的 LiFePO₄ 在不同放电倍率下的放电比容量和循环曲线。由图 7 可见:在 0.1C 和 1.0C 倍率下合成的 LiFePO₄其首次 放电比容量分别为 154.4 mA·h/g 和 137.7 mA·h/g,说 明随着放电倍率的增大,首次放电比容量逐渐减小。 从图 7(b)可见:以 1 mol/L 条件下合成的 LiFePO₄在 0.1C 和 1.0C 倍率下经过 30 次循环后,容量保持率分 别为 99.7%和 98.6%,循环性能优良。

综上所述,溶液浓度在制备过程中对前驱体 FePO4:xH₂O以及LiFePO4的性能影响很大,经综合考 虑,宜选取溶液浓度为1 mol/L 左右。

3 结论

(1) 以 NH₄H₂PO₄ 和 FeSO₄·7H₂O 为原料, H₂O₂ 为氧化剂,研究了不同浓度的溶液对合成前驱体 FePO₄·xH₂O 的影响。当溶液浓度为 0.1, 0.3, 0.5, 1.0 和 1.5 mol/L 时,合成的前驱体 FePO₄·xH₂O 均为纯相。

(2) 在溶液浓度为 1.0 mol/L 时合成的前驱体 FePO4:xH₂O 含 2 个结晶水,即可以通过调节溶液浓度

第5期

来控制结晶水的含量,为LiFePO₄的制备确定Fe源、Li源和C源的物质的量比。

(3) 以浓度为 1 mol/L 时合成的 FePO₄:xH₂O 为原 料制备的 LiFePO₄ 其电化学性能优于其他浓度下合成 的 LiFePO₄ 的电化学性能,该样在 0.1*C* 倍率下的首次 放电容量为 154.4 mA·h/g, 30 次循环后的容量保持率 为 99.7%。

参考文献:

- Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Electrochemical Society, 1997, 144(4): 1188–1194.
- [2] Takahashi M, Tobishima S, et al. Characterization of LiFePO₄ as the cathode material for rechargeable lithium batteries[J]. J Power Sources, 2001, 97(98): 508–511.
- [3] LIAO Xiao-zhen, MA Zi-feng, HE Yu-shi, et al. Electrochemical behavior of LiFePO₄/C cathode material for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2005, 152(10): A1969–A1973.
- [4] Amine K, Liu J, Bellharouak I. High-temperature storage and cycling of C-LiFePO₄/grap Hite Li-ion cells[J]. Electrochemistry Communications, 2005, 7(7): 669–673.
- [5] Prosini P P, Zane D. Improved electrochemical performance of a LiFePO₄-based composite cathode[J]. Electrochemical Acta, 2001, 46: 3517–3523.
- [6] Masashi H, Katayama K, Azuma Y, et al. Synthesis of LiFePO₄ cathode material by microwave processing[J]. J Power Sources, 2003, 119(121): 258–261.
- [7] 郑绵平, 文衍宣. 一种制备磷酸铁锂的湿化学方法: 中国专利, 03102665.6[P]. 2003.
 ZHENG Jin-ping, WEN Yan-xuan. A wet chemical method of preparation of lithium iron phosphate: China Patent, 03102665.6[P]. 2003.
- [8] Arnold G, Garche J, Hemmer R, et al. Fine-particle iron

phosphate LiFePO₄ synthesized by a new low-cost aqueous precipitation technique[J]. J Power Sources, 2003, 119(121): 247–251

- [9] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO₄[J]. Solid State Communications, 2004, 129: 311–314.
- [10] HU Yao-qin, Doeff M M, Kostechi R, et al. Electrochemical performance of sol-gel synthesized LiFePO₄[J]. J Electrochemical Soc, 2004, 151(12): 1279–1285.
- [11] 丁燕怀, 苏光耀, 高德淑, 等. 合成温度对 LiFePO₄ 电化学性 能的影响[J]. 电池工业, 2006, 11(1): 33-35.
 DING Yan-huai, SU Guang-yao, GAO De-shu, et al. Effect of synthesis temperature on the electrochemical performance of LiFePO₄[J]. Chinese Battery Industry, 2006, 11(1): 33-35.
- [12] 郑俊超, 李新海, 王志兴, 等. 制备过程 pH 值对 FePO4·xH₂O
 及 LiFePO4 性能的影响[J]. 中国有色金属学报, 2008, 18(5):
 867-872.
 ZHENG Jun-chao, LI Xin-hai, WANG Zhi-xing, et al. Effect of

pH value on performance of $FePO_4$ ·xH₂O and LiFePO₄ in synthesis process[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 867–872.

- [13] YU Wen-li, ZHAO Ya-ping, RAO Qun-li. Rapid and continuous production of LiFePO₄/C nanoparticles in super heated water[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 171–174.
- [14] CHEN Zhao-yong, ZHU Hua-li, JI Shan, et al. Influence of carbon sources on electrochemical performances of LiFePO₄/C composites[J]. Solid State Ionics, 2008, 179(27/32): 1810–1815.
- [15] 张宝, 彭春丽, 王志兴, 等. 加碳方式对磷酸铁锂动力学及电化学性能的影响[J]. 中南大学学报: 自然科学版, 2007, 38(5): 863-866.

ZHANG Bao, PENG Chun-li, WANG Zhi-xing, et al. Electrochemical properties of LiFePO₄/C for cathode materials of lithium ion batteries[J]. Journal of Central South University: Science and Technology, 2007, 38(5): 863–866.

(编辑 陈灿华)